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In the last decade, various spatial and temporal methodologies were developed to investigate the processes that drive 
ecological and evolutionary patterns. However, these methods frequently fail to acknowledge that the observed patterns 
result from the overlap of different underlying processes. In order to understand how the patterns are formed, we must 
have recourse to methods that allow us to disentangle these simultaneous processes. Here we develop a hierarchical 
spatial predictive process (PP) combined with a separable temporal PP to disentangle and describe those overlapping 
processes in one very frequent setting in ecology and evolution: multilevel spatio-temporally indexed data. We present 
our methodology through a case study of fisheries discards and investigate for example whether the inclusion of the hier-
archical structure and the temporal processes of the system alter the observed spatial patterns. Recently it is recognized 
that understanding the processes driving discards is essential to sustainably manage and conserve marine resources. The 
results show that consideration of multiple underlying processes dramatically changes the pattern and characteristics of 
the discards hot- and coldspots. In the Irish Sea, the inclusion of the hierarchical structure of the system leads to the 
reduction of the hot- and coldspots. Simultaneously, our model identifies key bi-annual fluctuations in the temporal 
process which, together with the variance associated at the level of individual fishing trips in the hierarchical structure of 
the data explained most of the variance driving discards. Whether the hierarchical, spatial and temporal processes are con-
sidered together or not can profoundly alter our understanding of what constitutes an appropriate mitigation measure. 
Misidentification of hotspots can culminate in inappropriate mitigation practices which can sometimes be irreversible. 
As the proposed method offers a unified approach for understanding the processes that drive observed patterns, many 
areas in ecology such as conservation and epidemiological studies can benefit from its use, increasing the effectiveness of 
management plans.

Elucidating the links between emergent patterns and the 
functions and processes driving them has been a central chal-
lenge in ecology (MacArthur 1984, Levin 1992, Gustafson 
1998, Urban 2006). However, for statistical simplicity we 
often ignore that the observed patterns result from the  
overlap of different mechanistic processes. This is particu-
larly relevant in fields such as spatial ecology, conservation 
and evolutionary studies in which we frequently struggle 
with the confounding effects of space, time and the structure 
in which the system is embedded and constrained (e.g. envi-
ronment or genes).

For example, it is common for two biological units (those 
being cells, individuals or populations) geographically close 
to each other to be more similar or have a stronger relation-
ship than those far apart (e.g. spatial autocorrelation, Fig. 1a) 
(Legendre et al. 2002, Dormann et al. 2007); additionally, 
these biological units are frequently organized in groups that 
are further divided in subgroups and so forth over multiple 

scales (multilevel structure, Snijders and Bosker 1999)  
which can create additional correlation beyond that imposed 
by the spatial autocorrelations (Fig. 1b). These groups can 
arise from the sampling design or as a result of naturally 
occurring functional units such as a genealogical/phyloge-
netic tree, ecological niches within food webs or a network 
of connected lakes. Finally, the relationships between bio-
logical units can change over time according to a temporal 
process in which successive biological units are expected  
to be more similar than those distant in time, or simply  
vary with factors associated with time (e.g. temporal auto-
correlation or seasonal effects owing to environmental con-
ditions). To fully understand the pattern generated by these 
biological units we must therefore distinguish the effect  
of these multiple overlapping processes.

In the last decade, various methodologies were developed 
to independently investigate these effects, e.g. GAMs, and 
Kriging (Cressie 1993) for spatial patterns, hierarchical and 
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mixed effects modelling for investigating the structure of a 
system (Pinheiro and Bates 2000) and various time-series 
analyses such as autoregressive components that deal with 
time effects (Brockwell and Davis 2002). Models which 
combine these aspects to integrate space, time and structure 
are sparse and only began to emerge recently in ecology 
(Banerjee et al. 2004, Wikle and Hooten 2010). Two key 
hurdles are that of estimating the uncertainties in the para
meters of interest, and the computational time required to 
fit such models, especially for large data sets. The former can 
be overcome via Bayesian models through which the uncer-
tainty is estimated as part of the fitting process, by treating 
all unknown quantities on a probabilistic basis. Solutions to 
the latter are an active topic of statistical research. Recently, 
Banerjee et al. (2008) have developed the predictive process 
(PP), a dimension-reduction technique for Kriging on large 
spatial data sets. The PP lowers the computational demands 
required to fit spatial models by reducing the dimension of 
the autocovariance matrix and thus enabling a richer set  
of models to be evaluated. The PP has not been widely used 
in ecology (though see Finley et  al. 2009a, Latimer et  al. 
2009), especially for space-time data (though see Finley et al. 
2012 which used the PP in a dynamic space-time model).

In this paper we apply the PP to one of the most frequent 
settings in ecology: multilevel spatio-temporal data. We 
extend the standard PP approach to consider more detailed 
hierarchical behaviour and include a separable temporal pre-
dictive process. We further correct for bias in the standard 
PP model by including the error correction terms proposed 
by Finley et  al. (2009b). The main prediction here is that  
not considering the structure from which the data arises  
can result in misleading spatial patterns and consequently 
alter the way we interpret and act upon the results. We  
present our methodology by testing this hypothesis in a fish-
eries discards dataset. We investigate, among other questions, 
whether the hotspots of fisheries discards change with  
the inclusion of temporal effects or the various levels of the 
organizational structure of the data and explore which  
level or process is most responsible for this change. This can 
reveal for example if discards occur mainly due to the geo-
graphic location of the fish prone to be discarded or due to 
gear type, skipper behaviour or environmental conditions.

After describing the concept and importance of fisheries 
discards, we briefly describe the proposed methodology. One 
of the aims of this paper is to make this methodology  
more accessible to non-statisticians. As such, we clearly pres-
ent the details of this approach by developing the models  
for our case study step by step and make the model code 
available to the readers. Subsequently, we explore and discuss 
the results of our case study and provide examples of other 
studies that can benefit from this approach.

Case study: fisheries discards

Discards are the portion of the catch from commercial  
fisheries returned to sea, and are estimated to be approxi-
mately 40% of the total catch in European waters (Kelleher 
2005). This brings enormous conservation and ecological 
concerns as the survival rate of discarded organisms is 
extremely low (Kelleher 2005). Therefore, in order to sus-
tainably manage the marine ecosystem it is crucial to  
mitigate discards. Understanding the pattern of discards is 
central to understanding the underlying causes and drivers 
of the discarding practice (Dunn et  al. 2010), which is  
essential for developing mitigation tools. Indeed, spatial 
management of discarding has been recognized as one of  
the most successful discards reduction strategies (Roberts 
1999). Discards data make an excellent case study, ecologi-
cally because very little is known about the spatial distri
bution of discards, and methodologically because when data 
are gathered it results in a specific organisational structure, 
common to many other ecological datasets.

We wish to determine if discarding events are spatially 
autocorrelated whilst taking account of their hierarchical 
structure. The structure of the relationship we propose is 
shown in Fig. 1. In Fig. 1a, each node corresponds to a dis-
carding event located in space. Those closest to each other 
might share common features making them more similar 
than otherwise we would expect. In addition to the spatial 
information, discards have an inherently multilevel struc-
ture in which hauls are sampled from multiple trips that  
are performed by the same or different vessels (Fig. 1b). 
Therefore, features common to individual fishing trips  
representing, e.g. environmental conditions or mesh size,  
provide direct linkages among hauls, and features common 
to the vessel such as vessel size or gear type, may link dis-
cards rates among trips. Discarding events are also tempo-
rally explicit so that rates vary seasonally or from year  
to year (Viana et al. 2011). These temporal effects may be 
linked to spatial processes such as recruitment grounds  
and might provide linkages among trips represented by 
environmental conditions. In the latter, the influence of  
the sampling unit of trip could therefore act as a proxy for 
temporal variation. In any case, the overall observed pattern 
of discards is a product of the overlap between all these  
correlations processes (Fig. 1c).

There are several questions we might ask of such data in 
order to understand how each of these processes shape the 
spatial patterns of discards and ultimately how we should 
manage them: 1) where do the hotspots of discards occur 
and do they change after correcting for the organisational 
structure and time? 2) How do fisher-level factors, such as 

Figure 1. (a) Spatial autocorrelation diagram. The focal datum  
indicated by the arrow is more correlated to data close in space than 
those further away as represented by the line thickness. (b) Multi-
level structure diagram. The focal datum, located at the lowest  
level of the structure, may be most similar to other datum from 
within the same medium level entity (filled circles within squares), 
but are also correlated with datum from other entities (open  
circles) within the same upper level. (c) Joint spatial and multilevel 
correlations diagram. The focal datum is both close in space to  
data derived from the same level (closed circles) or the level above 
(open circles) but also from a different structure (triangles).
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behavior or vessel characteristics, influence spatial variation 
in discards, and how does this compare with environmental/
ecological factors? 3) What is the spatial distance over which 
similar underlying causes of discards occur? All such ques-
tions involve disentangling the underlying processes.

Methods

Discards data

The Irish Marine Institute collects discards data on a regular 
basis through an onboard observers program. As discards  
are sampled from commercial fishing vessels, the available 
dataset has an inherent multilevel structure in which 430 
hauls were sampled from 59 trips that were performed by  
23 different vessels. With the purpose of illustrating the pro-
posed methodology, here we model the natural log of dis-
cards per unit effort (or time spent hauling (dpue, kg h21)) 
collected quarterly from 2003 to 2009 in the Irish Sea métier 
defined as ‘Nephrops directed fishery using otter board trawls’ 
(Nephrops métier, Fig. 2). Métier is a subdivision of a fishery 
defined with regards to the Data Collection Framework  
(EC Regulation 199/2008) which is based on landings  
percentage composition, area of operation and gear type. 
Thus, we investigate discards of the gear otter board trawl 
only. In addition to dpue, several other variables such as  
geographic coordinates, time, date, vessel name among many 
others are collected for each haul sampled.

Hierarchical predictive process

The hierarchical PP was proposed by Banerjee et al. (2008), 
with minor corrections proposed by Finley et  al. (2009b). 
This method provides a powerful tool for understanding  
the scale over which the underlying spatial environment 
exerts common pressures and shapes the overall pattern. It 
allows the use of spatially explicit models for very large  
spatial data sets, while simultaneously modelling multiple 
ecological processes that describe the spatial relationships 
among data points (Latimer et al. 2009).

The PP presented here is built under a Bayesian frame-
work and is based on the kriging assumption that correla-
tion among data points (spatial or temporal) decreases  
with distance. Most commonly, exponential decay functions 
are used to weight such correlations (for more detail see 
Diggle and Ribeiro 2002, Banerjee et al. 2004). The models 
we apply use this covariance structure as part of a Gaussian 
process applied to our response variable. This structure  
allows for fast and flexible model fitting, clear interpreta-
tion and simple interpolation techniques for prediction.  
The PP projects the original process observed at certain loca-
tions (usually a large number) onto a lower-dimensional  
subspace defined by the user. It is an approximation of a 
standard Gaussian process that depends on a far smaller  
set of locations, known as knots, on which the original pro-
cess is trained. Figure 2 (bottom panel) shows the locations 
of the observations (black dots) with a grid of chosen knots 
overlaid (grey triangles). The PP will estimate the dpue  
in each of these knots rather than for each observed site. The 
dimension reduction enables far quicker calculation of  
the inverse autocorrelation matrix, required for evaluating 
the Gaussian process density. The larger original process is 
obtained via the usual Kriging stochastic interpolation.  
The number of knots should provide a good coverage of the  
process domain in order minimize the approximation error 
but it should also be as low as possible to keep the computa-
tional complexity low.

The main advantage of the methodology presented here is 
that we can combine this low demand method with other 
techniques that describe the remaining processes involved. 
Multilevel modeling has been increasingly applied in social 
(Snijders and Bosker 1999), medical (Langford et al. 1999) 
and more recently ecological fields (Wikle 2003, Wilson 
et  al. 2010). In a multilevel structure, each level is funda-
mentally separated by different characteristics of the data  
or process. In the discards dataset this structure arises from 
the sampling and fishing activity i.e. hauls within trips and 
vessels. We also investigate the influence of temporal pro-
cesses in the discarding practice of the Irish Sea by taking 
two different approaches: first we include time (per quarter 
year) as a quadratic fixed factor and second we use time 
under a spatio-temporal separable PP framework.

We define our response variable Zjkq(s, t) to be the  
natural log of dpue for location s, time t, haul j, trip k and 
vessel q. We write our model as:

Zjkq(s, t)  b0  b1t  b2t
2  w1(s)  w2(t)  uk 	  

         vq  ∈jkq	
(1)

where b0 is an overall mean parameter, and b1 and b2 are  
the coefficients of linear and quadratic time respectively.  

Figure 2. Irish Sea Nephrops directed fishery using otter board  
trawls métier (square in left panel) with the geographic locations  
of sampled hauls (points) from 2003 to 2008. The right panel  
shows an expanded version of the métier in which the dashed  
lines represent the 50 m bathymetry level and full line 100 m 
bathymetry level.
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and spatio-temporal models based on restricting Eq. 1. These 
restrictions correspond to Bayesian prior distributions on  
the various parameters which may be weak (e.g. giving a 
parameter a vague normal distribution) or strong (fixing  
a parameter to 0). All models investigated are described in 
Table 1. The model described in Eq. 1 is model I.

We fit such models via the Bayesian framework which 
allows for full parametric uncertainty and simple interpre
tation of results. We do not discuss the merits of Bayesian 
inference here but refer readers to Gelman et al. (2003) for 
further information. A Bayesian model will produce poste-
rior probability distributions of the parameters given a  
likelihood (or data generating model) and a set of prior  
probability distributions for the parameters. In our case,  
the likelihood of the data is a multivariate normal distri
bution with mean and variance matrix determined by the 
multi-level spatial structure. We have relatively little prior 
information about the parameters for this particular prob-
lem, but we follow the approach of Finley et al. (2009a, b)  
to give inverse-Gamma priors to the residual variance 
s2 ~ Ga(0.1, 0.1) and the spatial and temporal random effect 
variances 1/s 2

s ~ Ga(2, 1) and 1/s 2
t ~ Ga(2, 1). Our results 

are relatively robust to changes in this specification. The 

The PP is introduced via w1(s), a mean zero spatial PP,  
and w2(t), a mean zero temporal PP. The multilevel structure 
is defined via uk, a random effect term for trip k so that 
uk ~ N(0, s 2

u), vq is a random effect term for vessel q so  
that vq ~ N(0, s 2

v) and ∈jkq represents i.i.d model error  
so that ∈jkq ~ N(0, s2).

For the predictive processes, we define a set of ks knots  
in space and kt knots in time, here we use ks  kt  36. The 
knots are chosen to cover the full range of locations  
and times and lie on a regular grid, and are set far fewer  
in number than the size of the data set n. We write the loca-
tions of the data as s1, s2,…, sn and the times t1, t2,…, tn. 
Similarly, we write the knots in space as s*

1, s*
2,…, s*

ks and  
in time as t*

1, t*
2,…, t*

kt . We then define a Gaussian process 
with a exponential covariance on the spatial knots, written  
as w~1(s*) ~ GP(0, s2

s rs(s*
i, s*

j; fs)) where rs is an autocorre
lation  function with  rs(s*

i, s*
j; fs)  exp[2|ds*

i ,s*
j
|/fs], where

|ds*
i ,s*

j
| is the distance between locations s*

i and s*
j (here the 

great circle distance), and a Gaussian process on the tem
poral knots, such that w~2(t *) ~ GP(0, s2

t rt(t*
i, t*

j; ft)) with 
rt(t*

i, t*
j; ft)  exp[2d 2

t*
i ,t*

j
/ft]. We follow Finley et al. (2009a, b) 

in correcting for bias in the predictive process by finally  
setting:

where c*
s,ij and c*

t,ij are the ijth elements of the precision matrix 
of the Gaussian processes w~1(s*) and w~2(t*) respectively.  
Note that this precision matrix is defined only on the ks or  
kt knots and is thus much faster to invert.

The multi-level trip and vessel effects allow us to disen-
tangle the uncertainty in the discards created by repeated 
sampling from individual trips or vessels. For example,  
we are able to estimate and remove the variability of indi-
vidual vessels, some of which may have particularly high or 
low discard rates. We can thus create more precise predic-
tions. The key advantage of the spatial model is that preci-
sion is borrowed from neighbouring data points through the 
autocovariance function. The function can be thought of as 
containing a variance parameter s2

s , which controls the  
variance of the spatial process, and a correlation function 
exp[2ds,s′/fs] which determines the degree of correlation 
between data points according to their location. Here, fs 
controls the rate of decay as the distance d increases between 
locations s and s ′. When the distance between sites is large 
the correlation decreases to 0. Oppositely, when the distance 
between sites is small, the correlation approaches 1. Note 
that we use an exponential covariance in space, but a Gaussian 
covariance in time as this is believed to be a much smoother 
process (Banerjee et al. 2004).

To test our hypothesis and investigate the different pro-
cesses associated with discarding, we consider various spatial 

autocorrelation parameters are often found to be hard to 
identify so we suggest slightly more informative priors 
fs ~ Ga(1, 0.1) and ft ~ Ga(7.5, 0.5). These values have been 
picked in order to constrain the autocorrelation to feasible 
values given the range of locations and times specific to  
our data. The former arises from the belief that a reasonable 
upper value for the correlation is to fall to 0.5 at a distance  
of around 100 km (the maximum distance between two 
points in our data). The latter prior corresponds to correla-
tion falling to 0.5 at a maximum of 24 quarters (the  
maximum time-span between two points in our data). The 
0.5 correlation value was chosen as the threshold between 
correlated and non-correlated. Thus, our prior rather gener-
ously allows at most a correlation of 0.5 between the end-
members of our spatio-temporal data. Further details can  
be found in the Supplementary material Appendix 1.

We use the R (R Development Core Team) and JAGS 
(Plummer 2003) software to fit our models. The models are 
fitted by repeated Gibbs sampling of parameter values that 
match the likelihood and prior distributions. More detail 
can be found in Spiegelhalter et al. (1996). The algorithm 
requires starting values to begin, and thus can take time to 
converge to the posterior distribution. We run our model for 
105 iterations, discarding 104 to achieve convergence. We use 
the Brooks, Gelman, Rubin diagnostic (Gelman and Rubin 
1992) to check the status of convergence. More technical 

w s N s s c w s s ss s
j

k

i

k

si s ij j s i

ss

1 1
2

11

( ) ( , ; ) ( ), 1 ( ,,∼ ρ φ σ ρ∗ ∗ ∗


2∑∑ ∗∗ ∗ ∗φ ρ φ; ) ( , ; ),
11

s s ij j sc s ss
j

k

i

k ss



∑∑




















 (2)

w t N t t c w t t tt
j

k

i

k

ti t t ij j t i

tt

2 2
2

11

( ) ( , ; ) ( ), 1 ( ,,∼ ρ φ σ ρ∗ ∗ ∗


2∑∑ ∗∗ ∗ ∗φ ρ φ; ) ( , ; ),
11

t t ij jc t tt t
j

k

i

k tt



∑∑






















(3)



5-EV

accurately describe the observed values as seen from the  
spatial distribution of the model variance, the normally dis-
tributed residuals and goodness of fit plots provided in 
Supplementary material Appendix 3, Fig. A1–A4. Our 
results were also robust to knot intensity and configuration. 
The full multilevel structure, i.e. hauls within trips within 
vessels, the fixed effect of time and the predictive effects of 
time and space are therefore necessary to understand and 
characterize the pattern associated with the log of dpue in 
the Irish Sea. Model B is the closest competitor for best 
model in terms of DIC (Table 2). However, the residuals 
were not as satisfactory as those from model I and since  
the best model in terms of DIC is still the most parameter-
ized, even after using the ‘popt’ penalty which penalizes 
harsher more complex models, is a good indication of the 
goodness of the model chosen. Furthermore, model B does 
not include a temporal component but our results clearly 
support the presence of a temporal effect in discarding.

The log of dpue spatial pattern is shaped by the various 
processes underlying discarding as seen by the changing  
location, shape and intensity of the spatial residuals hot- 
(high values) and coldspots (lower values) in the predicted 
spatial surfaces (Fig. 3). The spatial surfaces in Fig. 3 corre-
spond to the spatial random effects pattern that is not 
explained by any of the other parameters in the models,  
i.e. they show the hot- and coldspots of the fish. On the 
other hand, the spatial surfaces in Fig. 4 correspond to the 
mean discards distribution, i.e. Fig. 4A (obtained from 
model A) shows the discarding hotposts independently  
of the factors that are driving it, and Fig. 4I (the mean dis-
cards distribution of the best model, model I) shows the  
discards hot- and coldspots after removing the effect of  
vessel, trip and time. In our case study, the patterns observed 
for the spatial residuals distribution and the mean spatial  
distribution of discards are similar. If a residual hotspot 
remains after removing the effects of vessel, trip and time, 
this would mean that the fish hotspots match the discarding 
hotspots. As such, closing that area to fishing would be an 
appropriate mitigation measure. However, if after removing 
those effects there is no residual hotspot, this would mean 
that the fish hotspots do not match the discarding hotspots. 
As such, closing the area where the fish hotspots are, or  
the area where the discarding hotspots are, would only real-
locate the drivers of discarding to a different area creating a 
discarding hotspot elsewhere rather than reducing discards. 
It is therefore of crucial to understand the residual spatial 
distribution.

details on the models and a JAGS code example can be  
found in Supplementary material Appendix 1.

We compare the different models by inspecting the  
posterior distributions of the variance parameters, noting 
their changing values between the different models. We fur-
ther use the deviance information criterion (Spiegelhalter 
et  al. 2002) which enables comparisons between models  
via the penalised expected deviance. The deviance is a mea-
sure of overall fit, whilst the penalty measures the complex-
ity of the model by identifying the effective number of 
parameters in the model (Spiegelhalter et al. 1998). Owing 
to the large number of parameters used in the models, we  
use the ‘popt’ penalty from the r2jags package (Plummer 
2003) to estimate the DIC which penalizes more severely the 
more complex models. A parsimonious model is expected  
to fit well and ideally will have relatively few parameters, 
thus a lower DIC can indicate a better model.

Once the model has been fitted, it is relatively simple to 
create predicted surfaces from a grid of new locations. The 
technical details of such predictions arise immediately from 
standard theory on the multivariate normal distribution.  
We can similarly sample uncertainties in the predicted  
surfaces from the posterior distributions of the parameters 
(see Supplementary material Appendix 2 for the method 
used to make the prediction surfaces).

Results

Based on the model selection criteria set out above, the most 
parsimonious model for describing the log of dpue in the 
Irish Sea Nephrops métier is model I. All models converged 
satisfactorily but the lowest DIC (Table 2) was obtained 
from model I, corresponding to a fully separable spatio- 
temporal model with all random effects included. The  
estimated values obtained from model I were found to  

Table 2. Deviance information criterion (DIC) obtained from models 
A to O. The most parsimonious model, that with the lowest DIC, is 
highlighted bold.

Model DIC Model DIC

A 1018 I 917.6
B 920.0 J 991.1
C 921.8 K 923.8
D 1015 L 922.5
E 922.0 M 991.8
F 926.1 N 925.0
G 966.5 O 922.9
H 921.2

Table 1. Description of all models (A to O) fitted with their prior 
distributions. We use the shorthand ~ PP to indicate a parameter  
following a predictive process, and ~ N to indicate a parameter  
following a normal distribution. b1 and b2 correspond to the  
coefficients of the quadratic effect on time, w1(s) and w2(t) corre-
spond to the predictive process of space and time respectively,  
and uk and vq correspond to the random effects of trip and vessel, 
respectively. The hyper-parameters involved in these distributions 
are suppressed for clarity but can all be seen in Eq. 1.

Model b1 b2 w1(s) w2(t) uk vq

A 0 0 ~ PP 0 0 0
B 0 0 ~ PP 0 ~ N 0
C 0 0 ~ PP 0 ~ N ~ N
D ~ N ~ N ~ PP 0 0 0
E ~ N ~ N ~ PP 0 ~ N 0
F ~ N ~ N ~ PP 0 ~ N ~ N
G ~ N ~ N ~ PP ~ PP 0 0
H ~ N ~ N ~ PP ~ PP ~ N 0
I ~ N ~ N ~ PP ~ PP ~ N ~ N
J 0 0 0 ~ PP 0 0
K 0 0 0 ~ PP ~ N 0
L 0 0 0 ~ PP ~ N ~ N
M ~ N ~ N 0 ~ PP 0 0
N ~ N ~ N 0 ~ PP ~ N 0
0 ~ N ~ N 0 ~ PP ~ N ~ N
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The multilevel structure of the data, in particular trip 
level, is the process that affects the spatial pattern the most. 
The inclusion of trip level (Fig. 3B, E, H) leads to the con-
traction of both the residuals hot and coldspots and also  
to the northward migration of the coldspot region. The 
inclusion of the second level of the sampling structure, i.e. 
vessel (Fig. 3C, F, I), is essential to characterize the discard-
ing spatial process but seems to have little effect on the  
shape and pattern of the residual spatial surfaces. Similarly, 
inclusion of time as a linear predictor (Fig. 3D–I) has little 
effect on the spatial distribution, however time seems to 
slightly expand the residual coldspots (compared to model B 
and C without a linear predictor), this is particularly  
visible in the small isolated coldspots in the left hand side  
of Fig. 3C compared to Fig. 3F. Finally, the autocorrelation 
effect of time, described by the separable temporal PP  
(Fig. 3G–I) adds little or no changes to the residual spatial 
surface of log dpue in the Irish Sea. However, by investigat-
ing the effect of the temporal PP separately (Fig. 5) from  
the spatial distribution, we can understand its role in the 
discarding process and the reason it is necessary to describe 
the process.

The predictive effect of time reveals the change in discard-
ing intensity over time. Independently of where discarding 

Figure 4. Overall spatial distribution (hotspots) of the log of dis-
cards per unit effort (dpue, kg h21) in the Irish Sea Nephrops métier. 
The dotted line represents the 75 m bathymetry line.

Figure 3. Spatial residuals prediction surface of model A: spatial PP without random effect; model B: spatial PP with trip as random effect; 
model C: spatial PP with trip and vessel as random effects; model D: spatial PP without random effects but with fixed effect of time; model E: 
spatial PP with trip as random effect and fixed effect of time; model F: spatial PP with trip and vessel as random effects and fixed effect of 
time; model G: spatial-temporal PP without random effects but with fixed effect of time; model H: spatial-temporal PP with trip as random 
effect and fixed effect of time; model I: spatial-temporal PP with trip and vessel as random effects and fixed effect of time.
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(see Fig. 6 and Supplementary material Appendix 4,  
Table A1 for the parameter values). When present, the spa-
tial process (Fig. 6 models A–I, grey circles) and trip level 
(Fig. 6, black triangles) variances were consistently the  
highest (Fig. 6, grey circles) while vessel level (Fig. 6, grey 
triangles) have little or no variance. Most remarkably is that 
the inclusion of the temporal process not only explains  
part of the variance that was previously associated with trip 
level but also with the spatial process as seen from the 
decrease in these variances, from models without temporal 
process to models with the temporal process. The spatial 
variance in model I is lower than the variance associated 
with the temporal process (Fig. 6, black circles) indicating 

occurs, the log of dpue in the Irish Sea Nephrops métier has  
a strong cyclical behaviour of approximately two years  
as seen from Fig. 5. This indicates that following a year of 
low discarding there is a year of high discarding. Therefore,  
the temporal PP did not affect the overall mean of dpue 
(hence we could not detect any changes in the spatial distri-
bution surfaces). Although small changes in the temporal 
process can be seen among models, the inclusion of one level 
or the full multilevel structure and the removal of the spatial 
process do not alter the observed temporal cycle.

To understand how the different processes influence  
each other, we quantify the uncertainty, estimated here  
as variance, of each parameter associated with each model 

Figure 6. Variances associated with each process or level of model A to O. Black squares represent the residual variance; triangles represent 
the multilevel structure variance where black triangles represent trip level and grey triangles the vessel level variance; circles represent the 
predictive process variances where black circles represent the temporal term and grey circles the spatial term variance.

Figure 5. Temporal prediction of model G: spatial-temporal PP without random effects but with fixed effect of time; model H: spatial-
temporal PP with trip as random effect and fixed effect of time; model I: spatial-temporal PP with trip and vessel as random effects and 
fixed effect of time; model J: temporal PP without random effects; model K: temporal PP with trip as random effect; model L: temporal  
PP with trip and vessel as random effects; model M: temporal PP without random effects but with fixed effect of time; model N: temporal 
PP with trip as random effect and fixed effect of time; model O: temporal PP with trip and vessel as random effects and fixed effect  
of time.
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discards but would also proportionally reduce fishing profit 
and yield or create a discarding hotspot elsewhere, making 
this mitigation strategy unsuitable.

Similarly, the non-inclusion of the various underlying 
processes of discarding could have lead to the false conclu-
sion that it is more sustainable to fish in the large area identi-
fied in model A as a discarding coldspot. However, part of 
the coldspot identified in model A is not actually a coldspot 
and therefore discarding in that area is higher than expected. 
Lower discarding seem to occur at water depths below the  
75 m bathymetry line (Fig. 4) suggesting that the distribu-
tion of fish prone to be discarded is also shaped by bathy
metry. Since discards are comprised mainly of fish below  
the minimum landings size, this concurs with Dickey-Collas 
et al. (1997) who found that small fish in the area are found 
in shallower waters around the 50 m bathymetry line.

Within the Irish Sea Nephrops métier, the temporal pro-
cess seem to be key in the discarding process. Rather than 
mitigating discarding through closed areas, our results sug-
gest that temporal closures might be a more appropriate 
management plan for the Nephrops fishery in the Irish  
Sea. Viana et al. (2011) suggested that in the Irish Sea higher 
discards of whiting, cod and haddock occurred during  
late spring and our results here show that discards have  
cycles of two years. Therefore, a mitigation strategy for this 
fishery that deserves further investigation is temporal clo-
sures during late spring occurring every other year. These 
2-yr cycles could be driven by recruitment or spawning- 
stock biomass pulses in the species’ population dynamics  
as shown by ICES (2009) for some species.

The spatial homogeneity of discarding can be partially 
explained by the relatively small autocorrelation between 
discarding events; after 10 km the spatial correlation of  
discards is already  0.5. This indicates that other processes 
are driving discards. Multilevel modelling is a way of break-
ing down complexity and disentangling the effects attribut-
able to a number of different factors (Postma et al. 2012).  
In our case study, trip level was found to explain most of  
the variability previously associated with the haul level or 
even the spatial process. This indicates that factors associated 
with trip such as season, environmental conditions or mesh 
size, have a bigger influence in the discarding process of  
the Irish Sea Nephrops métier than the spatial process or the 
factors associated with vessel such as vessel characteristics 
and crew (Tamsett and Janacek 1999). This supports our 
suggestion that mitigation measures should target para
meters such as season rather than vessel characteristics (e.g. 
vessel length and power). The organisational structure con-
siders the links between the events which results in events 
from the same trip, during which for example high discard-
ing occurred, being recognized as a product of that trip  
(or factors associated with) rather than a mere high occur-
rence of fish prone to be discarded. As a consequence  
the model takes this into account and removes this effect 
(e.g. resultant from skippers experience) from the process. 
The multilevel component of the model can therefore also  
be used to improve the sampling strategy and the results  
suggest that more trips within the same vessel should be 
sampled as there is a high variance associated with trip and 
very little with vessel.

that most of the variance present in the log of dpue is due to 
a temporal process, more so than a spatial or organizational 
process. The residual variance (Fig. 6, black squares), i.e.  
the variance left to explain in the model, also drops with  
the inclusion of the temporal process but only when the 
spatial process is present. When the spatial process is 
removed the overall variance of the model increases consid-
erably revealing the importance of the spatial process in the 
discarding process of the Irish Sea.

The exponential decay function that forms the kriging 
method gives information on the extent of spatial and  
temporal autocorrelation through the rate parameter f 
(Supplementary material Appendix 4, Fig. A5). The spatial 
autocorrelation rate of decay (fs, Supplementary material 
Appendix 4, Fig. A5 upper panel) was highest in model I 
indicating a higher autocorrelation among discards events 
over long distances compared to other less complicated  
models. The temporal autocorrelation rate of decay of model 
I (Supplementary material Appendix 4, Fig. A5, bottom 
panel) was also among the highest of all models, similarly 
indicating a higher temporal autocorrelation between events 
separated by time than that of simpler models. However, all 
the spatial and temporal autocorrelation rates were very  
similar among the investigated models. The f values, and  
all other estimated parameters for all models, can be found 
in the Supplementary material Appendix 4, Table A1.

Discussion

The proposed spatio-temporal model is a robust and versatile 
method for investigating the processes underlying the spatial 
patterns. Its main advantage lies in its ability to address  
both technical (e.g. autocorrelation and organisational struc-
ture) and practical problems (e.g. identifying hotspots, dis-
entangling effects and describing basic spatial processes or 
quantification of uncertainties). While both multilevel mod-
elling and geostatistics have been widely used in ecology  
and evolution, the PP method presented here has received 
little attention despite combining these two techniques  
into a versatile methodology with a low computational 
demand.

Spatial fisheries ecology has a direct applied relevance to 
resource management, but it also has a broad ecological sig-
nificance (Botsford et al. 1997). Our results clearly support 
the prediction that hotspots are sensitive to the organisa-
tional structure of the data. If only the spatial autocorrela-
tion process were considered in modelling the distribution  
of discards, drastic mitigation measures might be invoked. 
Two large hotspots, one in the southeast and another in 
northwestern part of the Irish Sea Nephrops métier were 
identified in model A which could drive a policy decision to 
close these areas for fishing. However, the inclusion of the 
trip and vessel level shows that the discarding hotspots are 
actually much smaller revealing that discarding and fish dis-
tribution are quite homogeneous in space. As a consequence, 
our results show that spatial closures based on high discard-
ing locations are not an appropriate mitigation measure for 
the Irish Sea discards. Indeed, closing any area to fishing,  
in particular areas where fishing effort is high, would reduce 
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However, this method also has its disadvantages. Owing to 
the relatively simplicity of the model, it is not possible to 
capture richer space-time dependence structures, namely 
how the hotspots move around with time. In the presence  
of a more comprehensive dataset, the next step in this meth-
odology could then be to create a non-separable spatio- 
temporal model in which the spatial pattern is allowed to 
change location with time. Furthermore, if there is a high 
level of spatial detail that needs to be captured, the full 
Gaussian process might be preferable to the PP. Nonetheless, 
if one is interested in the links between emergent patterns 
and the underlying processes that drive them, the advantages 
of this simple and powerful framework for spatial ecology 
and conservation studies are evident.
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