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ABSTRACT

A model of human speech quality perception has been developed

to provide an objective measure for predicting subjective qual-

ity assessments. The Virtual Speech Quality Objective Listener

(ViSQOL) model is a signal based full reference metric that uses a

spectro-temporal measure of similarity between a reference and a

test speech signal. This paper describes the algorithm and compares

the results with PESQ for common problems in VoIP: clock drift,

associated time warping and jitter. The results indicate that ViSQOL

is less prone to underestimation of speech quality in both scenarios

than the ITU standard.

1. INTRODUCTION

Perceptual measures of quality of experience rather than quality of

service are becoming more important as transmission channels for

human speech communication have evolved from a dominance of

POTS to a greater reliance on VoIP. Accurate reproduction of the

input signal is less important, as long as the user perceives the output

signal as a high quality representation of the original input.

PESQ (Perceptual Evaluation of Speech Quality) [1] and its re-

cent successor POLQA (Perceptual Objective Listening Quality As-

sessment) [2] are full reference measures described in ITU standards

that allow prediction of speech quality by comparing a reference to

a received signal. PESQ was developed to give an objective estimate

of narrowband speech quality. The newer POLQA model yields

quality estimates for both narrowband and super-wideband speech

and addresses other limitations in PESQ. It is not yet in widespread

use or freely available for testing and has not been evaluated in this

study.

NSIM (Neurogram Similarity Index Measure) was originally de-

veloped as a full-reference measure for predicting speech intelligi-

bility [3]. This paper adapts the NSIM methodology to the domain

of speech quality prediction. We concentrate specifically on areas

of speech quality assessment where PESQ has known weaknesses.

Clock drift is a commonly encountered problem in VoIP systems

which can cause a drop in speech quality estimates from PESQ, but

in reality does not impact on the user perception of speech quality.

Small resulting changes, such as some temporal or frequency warp-

ing, may be imperceptible to the human ear and should not necessar-

ily be judged as a quality degradation. Jitter may not always be fully

corrected for in cases where the jitter buffer is not sufficiently long,

even with no packet loss. This can cause the received signal to be

speeded up or slowed down to maintain overall delay, an effect that

will not impact overall perceived quality in a call when low enough.

This paper presents an analysis of the use of NSIM as the ba-

sis of the development of a Virtual Speech Quality Objective Lis-

tener (ViSQOL) model. Realistic examples of time warping and jit-

ter are assessed for speech quality using PESQ and the results com-
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pared to the newly developed ViSQOL. Section 2 gives further back-

ground on the measures of PESQ and NSIM. Section 3 describes

the VisQOL model architecture and sections 4 and 5 introduce the

experiments involving clock drift and jitter typical of modern VoIP

communications. The discussion in section 6 highlights the ViSQOL

model’s ability to predict and estimate time warping and discusses

its further potential.

2. QUALITY MEASURES

2.1. PESQ

PESQ is a full reference metric that compares two signals before and

after passing through a communications channel to predict speech

quality. The signals are time aligned, followed by a quality calcula-

tion based on a psychophysical representation. Quality is scored in a

range of -0.5 to 4.5, although the results for speech are usually in the

range of 1 to 4.5. A transfer function mapping from PESQ to MOS

has been developed using a large speech corpus [4]. The original

PESQ metric was developed for use on narrowband signals (300-

3,400 Hz). It deals with a range of transmission channel problems

including speech input levels, multiple bit rate mode codecs, vary-

ing delays, short and long term time warping, packet loss and envi-

ronmental noise at the transmission side. It is acknowledged in the

ITU standard that PESQ provides inaccurate predictions for quality

involving a number of other issues: listening levels, loudness loss,

effects of delay in conversational tests, talker echo and side tones.

PESQ has evolved over the last decade with a number of extensions.

2.2. NSIM

The Neurogram Similarity Index Measure (NSIM) [3] was devel-

oped by the authors to evaluate the auditory nerve discharge outputs

of models simulating the working of the ear. A neurogram is anal-

ogous to a spectrogram with colour intensity related to neural firing

activity. NSIM rates the similarity of neurograms and can be used as

a full reference metric to predict speech intelligibility. Speech intel-

ligibility and speech quality are closely related. Work by Voiers [5]

showed that an amplitude distorted signal that had been peak-clipped

did not seriously affect intelligibility but seriously affected the aes-

thetic quality. In evaluating the speech intelligibility provided by two

hearing aid algorithms with NSIM, it was noted that while the intel-

ligibility level was the same for both, the NSIM predicted higher lev-

els of similarity for one algorithm over the other [6]. This suggested

that NSIM may be a good indicator of other factors beyond intelli-

gibility such as speech quality. It was necessary to evaluate intelligi-

bility after the auditory periphery when modelling hearing impaired

listeners as the signal impairment occurs in the cochlea. This paper

looks at situations where the degradation occurs in the communica-

tion channel and hence assessing the signal directly using NSIM on

the signal spectrograms rather than neurograms simplifies the model.
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Fig. 1. Flow diagram for VisQOL.

3. VISQOL MODEL ARCHITECTURE

ViSQOL is a model of human sensitivity to degradations in speech

quality. It compares a reference signal with a degraded test signal.

The output is a prediction of speech quality perceived by an aver-

age individual. The model has three major processing stages shown

in Fig. 1: pre-processing, feature selection and comparison, and a

regression fitted transfer function. The pre-processing stage scales

the test signal to match the reference signal’s sound pressure level.

Short-term Fourier Transform (STFT) spectrogram representations

of the reference and test signals are created with 30 frequency bands

logarithmically spaced between 250 and 8,000 Hz. A 512 sample,

50% overlap Hamming window is used for signals with 16 kHz sam-

pling rate and a 256 sample window for 8 kHz sampling rate to keep

frame resolution temporally consistent. The spectrograms are used

as inputs to the second stage of the model, shown in detail on the

right-hand side of Fig. 1.

Three patches of interest are selected from the reference sig-

nal for comparison, each 30 frames long by 30 frequency bands (23

bands, i.e. 250-3,400 Hz, are used for narrowband quality assess-

ment). The bands are automatically chosen by finding the maximum

intensity frame in each of three frequency bands (bands 2, 6 and

10 corresponding roughly to 250, 450 and 750 Hz. These points are

marked with a small arrow in the middle of the reference patch boxes

in the Fig. 2 example.) This mechanism ensures that the patches of

interest contain speech content rather than silences and are likely

contain structured vowel phonemes with strongly comparative fea-

tures. While bands can potentially overlap there is generally a good

spread between them.

Each reference patch is aligned with the corresponding area

from the test spectrogram. A relative mean squared error (RMSE)

difference is carried out between the reference patch and a test

spectrogram patch frame by frame, thus identifying the maximum

correlation point for each patch. The bottom pane in Fig. 2 shows

the RMSE for each patch, with the patch windows on the test spec-

trogram at their RMSE minima.

NSIM is more sensitive to time warping than a human listener.

The model counteracts this by warping the spectrogram patches

temporally. It creates alternative reference patches from 1% to 5%

longer and shorter than the original reference. The patches are

created using a cubic two-dimensional interpolation. The compar-

ison stage is completed by comparing the test patches to both the

reference patches and the warped reference patches using NSIM.

If a warped version of a patch has a higher similarity score this

score is used for the patch. The mean NSIM score for the three test
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Fig. 2. Jitter Signal Example. The spectrogram of the original signal

is shown above the degraded. The patch windows are shown on both

signals with a small pointer in the centre of the reference windows

showing the frequency band used to select the patch of interest. Each

patch is 30 frames. The RMSE correlation shown in the bottom pane

also illustrates how the patches in the degraded signal were aligned

to the reference patches. The mean NSIM for the three patches is

shown with the NSIM per patch in parenthesis.

patches is returned as the signal similarity estimate. NSIM outputs

a bounded score between 0 and 1 for the range from no similarity to

identical. A final stage uses a Laplacian function fitted to training

data to predict the amount of time warping in the test signal.

4. EXPERIMENT 1: CLOCK DRIFT SIMULATION

This experiment simulates time warp distortion of signals due to low

frequency clock drift between the signal transmitter and receiver.

Clock drift can cause delay problems if not detected and seriously

impact VoIP conversation quality, but a small delay of (e.g. 1 to 4

or 5%) is not noticeable to a listener when comparing over a short

speech sample. Clock drift can be mitigated using clock synchroni-

sation algorithms at a network level by analysing packet time-stamps

but the clock drift can be masked by other factors such as jitter when

packets arrive out of synchronisation.

Ten sentences from the IEEE Harvard Speech Corpus were used

as reference speech signals [7]. The 8 kHz sampled reference sig-

nals were originally resampled to create time warped versions. The

reference and resampled test signal were evaluated with both PESQ-

LQO and the ViSQOL model. The test was repeated for reference

signals with a range of resampled test signals, with resampling fac-

tors ranging from 0.85 to 1.15.

The results are presented in Fig. 3. The mean speech qual-

ity predictions are plotted against the resampling factor, with error

bars showing the standard deviation. The top plot shows the PESQ

results, the middle shows the ViSQOL model results (NSIM is the

scale unit) and the bottom plot shows a stack bar breakdown of the

warped patches used by chosen by ViSQOL for the similarity mea-

sure. Looking at the comparison between the PESQ and ViSQOL

models, it is evident that the full ranges of both metrics are covered

by the test. Both follow a similar trend with plateaus at the extremi-

ties and symmetry around the non-resampled perfect quality compar-

ison maximum. It should be noted that prior experience measuring

speech similarity with NSIM [3] found a practical peak similarity



1

2

3

4

5
P

E
S

Q
−

L
Q

O

0

0.2

0.4

0.6

0.8

1

V
iS

Q
O

L
 (

N
S

IM
)

0.85 0.9 0.95 1 1.05 1.1 1.15
0

25

50

75

100

Resample Factor

P
a
tc

h
 D

is
tr

ib
u
ti
o
n
 (

%
)

 

 
wf=   1

wf=0.95

wf=0.99

wf=1.01

wf=1.05

Fig. 3. Warp Results. Speech quality predictions for 10 clean nar-

rowband sentences. Top two plots: PESQ and ViSQOL speech qual-

ity predictions showing mean values at each resampling factor com-

pared to the reference signals. Error bars are standard deviation.

Bottom: Distribution plot of warped patch sizes used for each signal

resampling factor. WF in legend refers to the patch warp factor.

even for small differences at approximately 0.8. Hence the fall off

from the reference comparison at 1.0 is not as steep as this graph

might suggest. Listening to the resampled tests, the differences are

not audible at 2% resampling or less. Although a change in pitch is

noticeable, the change is not a dramatic degradation in quality until

5% to 10%. The PESQ predictions show a dramatic drop in pre-

dicted quality between 3% and 4% resampling whereas the NSIM

drop occurs later between 5% and 10%, which matches the listener

experience. The standard deviation for PESQ is significantly larger

than for ViSQOL which is more consistent for the same time warp.

The stacked bar plot under the ViSQOL results illustrates the

distribution of warped reference patch usage by ViSQOL in calcu-

lating the NSIM similarity. The y-axis shows the number of patches

for each patch warp factor that were used with signals of a given

resampling. The model uses the maximum similarity from the test

patch compared with the reference patch and its warped reference

patches. As the resampling increases, so the warp factor of the se-

lected patches increases. As expected, the patch distribution shows

that the non-resampled reference only uses unwarped patches and

the reliance on larger warps grows as the resampling increases. How-

ever, less intuitively, the warp factors do not necessarily match ex-

actly with the resampling factors. The NSIM scores combined with

knowledge of the warped patches used is discussed below where a

potential application of ViSQOL in the detection of clockdrift above

the network layer is presented.
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Fig. 4. Top Left: Model Fit of Laplace function to IEEE Speaker

data. Top Right and Bottom: Mean predicted warp for 10 samples

for 3 test speakers.

4.1. Predicting Time Warping

The ViSQOL output can be used to predict time warping in speech

samples by fitting a regression model to the NSIM data. A Laplacian

function,

y =
e

−A|x−µ|
β

2β
+ c (1)

was fitted to the mean NSIM scores for each resample factor.

The fitted function is shown in Fig. 4. By inverting (1), a function

for predicting the warp factor for a given NSIM can be obtained as

x =
b

A
ln(2b(y − c)) + µ, 0.06 ≥ y ≥ 0.89. (2)

The symmetrical nature of the function means that it will not

predict whether the test signal’s resample factor is greater or less

than the reference signal. To determine which side of the Laplacian

slope should be predicted, the warp factors used in the patches are

examined. The ratio of patches smaller than the original size versus

those larger than the original size and the resample factor prediction

is adjusted to match.

Fig. 4 shows the results for the IEEE Speaker from experiment 1

which was used to obtain the model fit as well as two other test sets:

TIMIT Speaker and TIMIT Speaker 2, a female and male speaker.

Each test featured a single speaker and 10 reference sentences with

14 warp factors per sentence. The scatter diagrams show the actual

resample factor plotted on the x-axis against the predicted resample

factor on the y-axis. The points are mean predicted values for the 10

sentences. It is clear from the results that the model is very accurate

at predicting warps of 10% around the reference rate for clean data.

The magnitude of warps at 15% are still predicted well but the model

failed in both the IEEE Speaker and TIMIT Speaker cases to detect

whether it is a higher or lower sampling rate detected, resulting in a

warp factor of 1.15 being predicted as 0.85.

5. EXPERIMENT 2: JITTER

A second experiment used 8 IEEE sentences: 2 sentences spoken

by 2 male and 2 female speakers. These were concatenated to form
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Fig. 5. Speech quality predictions for 10 jitter conditions. Top:

MOS scores and 95% CI for actual listeners listening to 8 sentences

in each condition. Middle and Bottom PESQ-LQO and ViSQOL

speech quality predictions. Circles and 95% CI show results for test-

ing each sentence per condition. Diamonds show results for testing

against concatenated sentences.

a reference signal. Ten jitter test conditions containing varying

amounts of non-uniform warping were created from the reference

signal. MOS scores based on 25 listeners with 4 votes per con-

dition are shown in Fig. 5 along with corresponding results for

PESQ-LQO and the ViSQOL model. For PESQ-LQO and ViSQOL,

quality was estimated both for the complete concatenated 8 sen-

tences (32 seconds) and per sentence (4 seconds). The diamonds

show the predicted scores based of the full signal comparisons and

the circles show the estimates per sentence with 95% confidence

intervals (CIs). The mean scores per sentence and the concatenated

scores correspond closely for both metrics, however the 95% CI for

the PESQ-LQO per sentences show the wide variability between

sentences in the same condition. This is not a feature in the ViSQOL

results. The results for the 10 conditions are presented in order of

ascending MOS scores and range from 3.16 to 3.85. The PESQ-

LQO results do not predict the same ranking trend as the MOS

scores and have a wider range between 2.4 and 3.9. As for PESQ,

ViSQOL does not rank the conditions in the same order as the MOS

test, but the range, with NSIM scores between 0.61 and 0.69 and

much smaller error bars shows a better ability to handle jitter and

predict the impact on quality in a consistent manner. This result is a

promising indicator of ViSQOL’s ability to provide consistent qual-

ity measures in varying jitter conditions, even over short periods.

The next step in the process of establishing ViSQOL as a quality

measure is to make the connection between the NSIM score and

the MOS score. This will require a comprehensive evaluation of

the metric. The initial attractive attributes of this metric are demon-

strated in these two experiment: an ability to detect clock drift; and

consistent sensitivity to jitter.

6. DISCUSSION AND FUTURE WORK

The results demonstrate the ViSQOL model’s ability to detect and

quantify clock drift and jitter. The tests focused on detecting con-

stant and varying time warping. Based on short speech samples,

temporally varying warps are handled more consistently by VisQOL

than PESQ. This is a useful property as whilst there are a range of

QoS metrics available to predict delay and clock drift, their ability to

predict the end user perceptual quality of experience is limited [8].

The experimental results highlighted the large deviation in predicted

quality exhibited by PESQ for small sampling factor changes, and

for short samples of variable warping.

The model is still in the early stages of development and while

the results are promising there are a range of issues requiring further

analysis. The key decisions in the evolution of the model’s param-

eters included evaluating and testing: the number of patches; the

frequency bands used to determine the patch locations in the refer-

ence signal; and the number of warp factors to be evaluated. The

optimal values were chosen and used in the experiments presented.

This work focused on narrowband signals but the model is open

to adaptation by adjusting the parameters of the spectrogram im-

ages to suit the wideband signals commonly used in VoIP. ViSQOL

was developed as a full objective speech quality prediction tool and

further work is underway to develop a transfer function to map the

NSIM output from the model to a predicted MOS score. The current

model could also be used in combination with PESQ to flag poor

quality estimates caused by time warping.

This paper has introduced ViSQOL as a model for predicting

speech quality. Specifically, the ability to detect and predict the level

of clock drift or jitter and whether it will impact a listeners quality of

experience was investigated. It was shown that VisQOL can detect

clock drift and jitter and also predict the magnitude of clock drift

distortion.
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