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Abstract: Internal conical diffraction by biaxial crystals with aligned optic 
axes, known as cascade conical diffraction is investigated. Formulae giving 
the intensity distributions for a cascade conically diffracted Gaussian beam 
are shown to compare well with experiment for the cases of two biaxial 
crystals with the same and different lengths and with the second crystal 
rotated with respect to the first. The effects of placing half wave-plates 
between crystals are also investigated. 
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1. Introduction 

Internal conical refraction is a phenomenon of crystal optics in which a beam of light that is 
refracted into the optic axis of a biaxial crystal propagates as a cone of light in the crystal, and 
then refracts into a hollow cylinder as it exits the crystal [1–5]. Several attempts have been 
made to extend the theory of conical refraction to deal with situations involving realistic light 
beams rather than idealized rays propagating in biaxial crystals. The most fruitful approach is 
to make the assumption of paraxiality. This approach has led to detailed predictions of the 
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intensity distributions of conically diffracted paraxial light beams [6–8]. These predictions 
have been shown to agree well with theory for the case of the conically diffracted Gaussian 
beam [9,10]. The propagation of paraxial light beams along the optic axes of successive 
biaxial crystals, known as cascade conical diffraction, has been receiving interest recently for 
the creation and annihilation of optical vortices [11], as a versatile beam shaping tool [12] and 
in connection with a novel type of laser based on conical diffraction [13]. Berry has provided 
a paraxial theory for a general N-crystal cascade in which the relative orientation of crystals 
of differing lengths is considered [14]. For a two-crystal cascade, conical diffraction leads to a 
pair of Poggendorf (double) rings, whose relative intensity depends on the angle between the 
crystals. In the degenerate case, where the crystals are identical the smaller ring becomes a 
central spot. Abdolvand [15] has provided a first set of experimental results on cascade 
conical refraction. Here we compare the intensity profiles predicted by the paraxial theory for 
this case with experiments on crystals of both the same and different lengths. In addition we 
consider the generalization to include a half-wave plate between the crystals, which can also 
lead to beams comprising a central spot and an outer ring. Our results demonstrate that the 
paraxial theory provides an excellent account of the complex beams generated by crystal 
cascades. 

2. Background theory 

 
Fig. 1. Schematic diagram showing conical diffraction by one biaxial crystal, and the 
coordinate system used in the text. 

We are considering the case of conical diffraction of a Gaussian beam by propagation along 
the optic axis of a biaxial crystal of length l and with principal refractive indices n1<n2<n3. We 
define our coordinate system, as shown in Fig. 1, such that conical refraction displaces the 
center of the incident beam along the x axis, and measure angles from this axis. A paraxial 
light beam defined by the Fourier transform of the x- and y- components of its electric 
field ( ),a P  where { , }PP ϕ=P is the normalized transverse wave-vector in polar coordinates, is 
transformed by conical diffraction into: 

 { }2
0 0

1( , ) d e exp( ) cos( ) sin( ) ( ) ( ),22
ik

P
kZ ikP Z kPR i kPR ϕ
π

= − −∫∫ P RE R P I M a P (1) 

where 
cos( ) sin( )

( )
sin( ) cos( )

P P
P

P P

ϕ ϕ
ϕ

ϕ ϕ
 

=  − 
M  and I is the identity matrix. { , }R φ=R is the position 

in the transverse plane and Z = l + (z - l)n2 is the propagation distance from the image in the 
crystal of the incident beam waist (or other reference plane at which ( )a P is specified). 

2 0k n k= is the crystal wave-number with k0 being the free space wave number and R0 is the 
radius of the refracted cylinder predicted by geometrical optics. Making the assumption that 
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the incident beam is uniformly polarized, i.e., replacing ( )a P with in( )a P e  where ine is the 
incident polarization vector, and performing the integration over φP we have: 

 { }0 1 in( , , ) B B ( )R Zφ φ= +E I M e  (2) 

where 

 2
0 0 0

1B d exp( )cos( ) J ( ) ( ),2k PP ikP Z kPR kPR a P= −∫   (3) 

 2
1 0 1

1B d exp( )sin( ) J ( ) ( ).2k PP ikP Z kPR kPR a P= −∫   (4) 

The generalization to a cascade of several crystals [14] follows on noting that the 
transformation described by Eq. (1) can be written in Fourier space as 

 2
0

1( ) exp( ) ( , ) ( )2 ikP Z R→ −a P C P a P  (5) 

where 0 0 0( , ) cos( ) sin( ) ( ).pR kPR i kPR ϕ≡ −C P I M  

 
Fig. 2. Cascade conical diffraction setup consisting of two biaxial crystals in series with their 
optic axes aligned and a relative rotation of one about the optic axis. 

We now consider a configuration in which there are two biaxial crystals and the second 
crystal is rotated about the optic axis by an angle α  relative to the first, as shown in Fig. 2. 
Note that such a rotation displaces the beam, because conical diffraction induces a translation 
of the center of the beam in the transverse (x, y) plane (Fig. 1), and if the crystals are rotated, 
so are the displacements induced by the two crystals (Fig. 2). In what follows we will ignore 
this effect and consider the position of the center of the beam being described to be at the 
origin of the coordinate system. The crystals are assumed to have equal principal refractive 
indices and hence equal cone refraction angles. The crystals have lengths l1 and l2 and 
geometrical ring radii R1 and R2. The transformation generated by the second crystal is Eq. (5) 
with 0 2( , ) ( ) ({ , }, ) ( ),pR P Rα ϕ α α→ − −C P R C R  with rotation matrix 

cos sin
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α
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The coordinate Z is now defined by Z = l1 + l2 + (z –(l1 + l2))n2 to take into account 
propagation through the two crystals. If we assume that the two crystals are the same length 
Eq. (6) reduces to 

 0 0 0

1 0 in

( , , ) {G ( ( ) ) B (2 ) ( ( ) )
B (2 ) ( ( ) ( ))}

R Z R
R

φ α α
φ φ α

= × − + + × +
+ × + +

E R I R I
M M e

  (7) 

where 0G represents the incident Gaussian beam (taking into account propagation) and we 
have used the fact that 0 0 0B ( 0) GR = = and 1 0B ( 0) 0.R = =  

A half wave plate (HWP) inserted between the crystals has the effect of interchanging the 
polarisations of the 0B and 1B components before propagation through the second crystal. This 
interchange of polarisations will occur regardless of the orientation of the HWP. A HWP with 
its fast axis making an angle β with the positive x axis is represented by the Jones 

matrix
cos(2 ) sin(2 )

.
sin(2 ) cos(2 )

β β
β β

 
 − 

 If the HWP is placed between two biaxial crystals with α set to 

0° and with equal lengths l then a beam that propagates through this system is given (in 
Fourier space) by: 
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2
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Multiplying out the matrices and integrating over φP leads to: 
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and we have used the following identities for the integrals over φP; 
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3. Experiment compared with theory 

Experiments were carried out to observe the intensity distributions predicted by the theory 
outlined in the previous section for the cases of two biaxial crystals of equal and unequal 
lengths. In each case, the biaxial crystals used were slabs of KGd(WO4)2 with entrance and 
exit faces cut perpendicular to the optic axis and with principal refractive indices n1 = 2.013, 
n2 = 2.045, n3 = 2.086 [16]. The crystals were obtained from Croptics. Figure 3 shows the 
experimental setup used to observe a cascade conically diffracted Gaussian (CCDG) beam for 
the case of two identical biaxial crystals. The figure includes an optional half-wave plate 
between the crystals. The FIP was formed inside the first crystal, as indicated in the diagram, 
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and imaged with unit magnification onto the CCD. The laser used was a 10 mW He-Ne with a 
Gaussian intensity distribution. The beam entering the crystal was circularly polarized by a 
linear polarizer (LP) and quarter-wave plate, and had a minimum beam waist of 40 μm. 

 

Fig. 3. The experimental arrangement used to observe the intensity profiles in the focal image 
plane for cascade conical diffraction by a pair of crystals. We consider the effects of rotating 
one crystal about the optic axis as well as introducing a half-wave plate (HWP) between the 
crystals. 

Figure 4 shows CCD images of the FIP profiles recorded with the experimental setup 
shown in Fig. 3 without the half-wave plate between the two crystals for four different values 
of the angle between the crystals, α. The predicted increase of intensity of the central spot 
relative to the ring is evident. Theory is compared with experiment in Fig. 5 for rotations of 
15° and 45°. It is noteworthy that the agreement with theory is less accurate for the smaller 
rotation angle. This could be because the peak intensity of the central spot grows rapidly 
relative to the peak intensity of the outer ring as the crystals are rotated away from 0°. 

 

Fig. 4. Experimental images in the focal image plane for conical diffraction by a pair of 
crystals with a relative rotation about the optic axis, as shown in Fig. 2. The second crystal is 
rotated relative to the first by (a) 0°, (b) 15°, (c) 45° and (d) 90°. 

 
Fig. 5. Intensity profiles from experiment (dashed line) compared with theory (solid line) for 
cascade conical diffraction with a relative rotation of α = 45° (a) and 15° (b) for the two 
crystals. 

The predictions regarding the effect of placing a half wave plate between the crystals were 
also confirmed by the experimental setup shown in Fig. 3. The results are shown in Fig. 6. 
The notable features are a central spot that is elongated in one direction and a ring profile with 
an angular modulation. The two maxima in the ring’s intensity distribution are at the same 
(diametrically opposite) angular positions as the maxima in the modulated central spot. 
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Fig. 6. Experimental (b,d) and theoretical (a,c) images in the focal image plane following 
conical diffraction by two identical crystals separated by a half-wave plate 
(angles 0= =α β ). Experimental images are obtained from the setup in Fig. 3, and 
theoretical images calculated using Eq. (9). (c) and (d) are close-ups of the central region of (a) 
and (b). 

A similar experimental setup, shown in Fig. 7, was used to observe the beam produced by 
propagation through two biaxial crystals with different geometric ring radii. This time the 
crystal lengths were 3 cm and 2 cm respectively. These crystal lengths implied the 
geometrical ring radii associated with each crystal would be 0.53 mm and 0.37 mm 
respectively. Hence theory predicts that the FIP intensity distribution will consist of two 
concentric double ring patterns with dark ring radii of 0.9 and 0.16 mm. The same laser 
source was used in this experiment as in the case of equal length crystals but in this 
experiment a longer focal length lens was used to form the FIP on the CCD without an 
imaging lens (this point is discussed in [10]). The minimum waist of the Gaussian formed by 
the lens was 70 μm. 

 

Fig. 7. The experimental arrangement used to observe conical diffraction by a pair of crystals 
with different geometrical ring radii R0. 

Figure 8(a) shows a CCD image of the beam recorded using the optical arrangement 
shown in Fig. 7 with the predicted pair of concentric double rings clearly visible. Theory is 
plotted against experiment in Fig. 8(b). 

 

Fig. 8. (a) Intensity in the focal image plane generated by cascade conical diffraction from two 
aligned crystals of different lengths, obtained using the apparatus of Fig. 7. (b) Intensity profile 
from the experiment (dashed line) compared with paraxial theory (solid lines). 
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4. Conclusion 

Paraxial conical diffraction theory can be extended to cases involving more than one biaxial 
crystal as well as biaxial crystals separated by wave plates in a relatively straightforward 
manner. The dependence of beam shape on both relative crystal orientation and both 
polarisation of the incident beam as well as manipulation of the polarisation between crystals 
facilitates the generation of a wide variety of beam geometries. The dependence of the 
conically diffracted beams on Gaussian waist and geometric ring radius explored in other 
publications can be combined with the effects explored in this paper further adding to the 
versatility of the biaxial crystal as a beam shaping device. 
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