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Abstract—Swarms within peer-to-peer networks are hindered
by content containing incorrect metadata. After publishing, any
incorrect metadata requires either a complete republish/swarm
recreation or for each peer to manually make corrections (causing
them to leave the swarm, decreasing performance). We present
an approach which enables a swarm to both collaboratively
upgrade embedded data to reflect changes in metadata, and
identify additional candidates which contain metadata errors
but a correct payload. Swarm degradation due to peer drop-off
resulting from edits is eliminated, and additional peers can be
identified in a fully automated fashion, increasing swarm lifetime
and performance.

Stemming from this metadata abstraction, automatic pu-
rification can be realised in situations where multiple incom-
plete/incorrect versions are available within one or more un-
connected swarms. Variations associated with a content set are
processed associatively using a knowledge discovery rule set to
extrapolate a canonical tag set, which can also be reinforced
using data from external corpora. After any update, these
changes can again be automatically disseminated in a peer-to-
peer swarm. The system presented enables context-aware P2P
data transfers which abstract metadata optimally, while also
maximising swarm size and enabling cataloguing of content. A
proof-of-concept implementation is presented, and its impact on
swarm purification/optimisation is evaluated.

I. INTRODUCTION

Accurate identification and recognition of media files
remains an unsolved problem. Consumers routinely stream
and download audio and video data from the Internet on a
daily basis from a variety of sources, yet the majority of this
comes with incomplete, incorrect, or simply no metadata.
This presents a major obstacle when it comes to organisation,
processing, and searching [1]. This paper proposes the
application of an existing algorithm used for identifying
regular data files, in order to rapidly identify media with high
accuracy.

Existing implementations make use of a number of
variations on a core method to identify media [2]–[5]. First
we will examine some audio oriented solutions - these
include Acoustid, Echoprint, last.fm and Open Fingerprint
Architecture. The audio file is decoded into uncompressed
PCM data, and a Discrete Fourier Transform is performed.
This converts the data into a frequency domain representation,
from its original time domain representation. Usually some
post-processing also takes place, and the resulting output can

be used for recognition of the song in an accurate, noise
tolerant fashion.

We introduce a completely different method of
identification, which draws inspiration from more traditional
method of verifying a file is intact and has not experienced
any corruption - the hash algorithm. The hash process is
quite simple - some input is fed into a function which
produces a random, but deterministic output identifier [6].
The input can be split up into evenly sized chunks, or
taken as a whole - the former approach can be more
attractive if it is necessary to parallelise the computation,
or if the payload is likely to be sent in packets over a network.

Until now, hashing as a method of identifying media files
has not been very effective, for two primary reasons:

• Popular protocols use chunking approaches, creating a
hash for a subset of the file in question, without spec-
ifying a standardised chunk size. This means that even
an identical file will not be matched without rehashing,
since the chunks will not produce the same hash [7].

• Media files, in particular audio files, tend to contain a
plethora of metadata [3]. Even if the media data is the
same in two versions of an audio track, they will possibly
have been tagged or retagged differently according to
the information available to the human/machine tagger.
Human error will also cause a problem [8], in addition
to the fact that many popular metadata encoders do
not embed data in full accordance with the appropriate
standards. Since the files will now be different, a simple
hash check will fail [9].

The first drawback is overcome simply by hashing the
entire input data set. A formula which outputs different chunk
sizes based on the characteristics of the input (e.g. size) could
also be used here. This paper focuses on tackling the second
issue, as it is less trivial to overcome. “Metadata independent
hashes” are introduced. A media file is examined, and only
the stream data is hashed (audio/video streams, in addition to
subtitles). The result is a hash which can be matched against
differently tagged versions of the same encoded data. This
identifier is far more versatile than a blind hash for several
reasons. Any retagging, edits to metadata, addition or removal



of embedded artwork will not affect the integrity of the stream
data, and will therefore not cause an unwanted hash mismatch.
At the same time, any transfer error, disk corruption, or other
unwanted change of the file will cause a hash mismatch,
indicating that the integrity of the item has been compromised.

This approach is format agnostic - it will work on any
stream encoded in an existing or future codec. Metadata
independent hashes have not previously been implemented for
media identification - despite their relative simplicity, existing
systems have opted for more computationally expensive
approaches.

A. Implications of this work

Users can scan their media collections, and generate a
database of hashes for their files, in addition to extracting
metadata as appropriate. This information is then uploaded to
a central database for examination, as is common with such
systems.

Immediately it becomes possible to identify identical files
in a person’s collection, especially in cases where a badly
tagged or untagged version would not have been flagged by
conventional methods. It also becomes possible to estimate
what percentage of media files available on the Internet are
popular, as the central database can track how many different
users possess exactly the same version of a media item.

As from an archival point of view, having only a single
high integrity version mirrored in many locations is desirable,
investigating what percentage of files are highly available
and what percentage are not will be a useful contribution.
Older P2P networks tended to have many disassociated
copies of a single item, with peers tending to have single,
relatively short availability sessions [10]. However, recent
improved protocols such as BitTorrent have shown that
having a single version of a content item available boosts
swarm performance and longevity significantly; the work
presented in this paper attempts to investigate the model
further. The correlation between media items which have
single/multiple versions available and how many copies of
each are present, if any, will also be investigated. Initially
crawling a large media collection (which may be in the order
of hundreds of gigabytes, or even terabytes) is an extremely
slow process, and thus finding participants for the research
proves a challenge. By allowing users access to derived
metadata, and a means to embed it back into their collection,
there is an incentive to upload data back for further central
study. Since the user can also be informed if their files
are corrupt, contain illicit/illegal content (provided this has
previously been flagged), or if a higher quality version is
available from some source, there is further scope for raising
participation.

By virtue of these metadata independent hashes being far
faster to compute than spectral transform based fingerprinting

methods, it becomes more viable for users with large collec-
tions to submit a full data set - at present, it can take weeks
to process a few hundred gigabytes on a single computer.

In addition to providing media consumers with correct
metadata, there are other benefits to be had from a derived
central database of metadata. Using multiple submissions of
the same items from different users, it will become easy to
extract the “correct” value for each appropriate field. Majority
rule is expected to be sufficient, but this has yet to be seen.
Radically different submissions can be easily flagged, and
approved manually if required.

Since a simple rule-based approach can be taken, it can
evolve over time to suit edge cases. Existing file taggers
are very insular - they may query online databases, but
feedback is rarely if ever submitted back. A tagging engine
may make a mistake on an edge case which will be noticed
by the human user and corrected - but this information is
not published for re-use. A centralised database, such as the
one proposed by this research, allows for feedback into the
rule-based algorithm, resulting in improvements which can
then be felt through the whole network. Previous studies have
proposed the use of peer-to-peer based metadata storage [11],
however a traditional centralised approach has proved superior.

Future plans would see the system upgraded to allow for
a hybrid identification approach - in cases where hashing /
comparison of metadata could not be used to match files, audio
fingerprints could be generated in the conventional, slower
way.

A centralised database can also be used to flag fake or illegal
versions of media files, allowing users to purge them from the
Internet [12].

Using hashes for accurate identification is superior to intel-
ligent fingerprinting for several reasons - the algorithms are
simple, fast and portable, and on modern hardware are bound
only by the rate at which the data can be read off disk [6].
By comparison, short audio files may take several seconds
to fingerprint, and the resulting identifier will be significantly
larger than a simple hash.

Treating a file in this way is also useful for transferring it
or distributing it among a large audience. One problem noted
in Peer-to-Peer file transfer implementations is that files are
treated blindly - there is no awareness of what the content
is [9]. If media files are identified at publishing time, this
can be leveraged usefully. Metadata and header information
could be completely abstracted - i.e. only stream data would
be transferred. On the receiving end, an appropriate container
can be constructed, and the stream data fed in as it is
received. Finally, metadata, from some other source, could be
added back to the file. The result is a published file which is
effectively version-controlled. Stream data will not change,
but updates to the metadata can easily be distributed after
publication. Users who downloaded a file could have their
client check periodically for updates, and have their metadata
altered without needing to supervise the process.



Building on top of this system, an application has been
implemented which allows context-sensitive transfer of MP3
files in a peer-to-peer swarm, leveraging the benefits described
above. Stream data (i.e., data containing the audio stream only)
contained in a file is extracted, tagged with sequence informa-
tion, and disseminated in a similar fashion to BitTorrent. Upon
completion of a transfer, a downloading peer will generate
a new MP3 file containing the data, and no metadata. This
missing metadata can be embedded either by querying one or
more peers in the swarm, or by requesting from a canonical
authority using its identifying hash.

II. BACKGROUND

This section examines the Discrete Fourier Transform
(DFT) approach used by many existing audio identification
systems, and discusses the advantages and disadvantages that
go along with it.

Computing a DFT using a Fourier transform method is
a computationally expensive operation [2]. For the most
useful output to be computed, a DFT must be generated
from the entire input dataset - i.e. an entire song. The
output is a frequency-variant representation (the input being
time-variant). This can be matched against the output from
another audio file, usually taking into account a similarity
threshold, which allows for the presence of noise in one of
the two files.

Comparing media items in the frequency domain is useful
as it is strictly not necessary to process the entirety of both
files - a subset may be enough to give an accurate enough
representation for matching. The resolution of the generated
spectrogram can also be reduced for storage, useful when
hundreds of thousands of items must be archived for a
match-against library.

Identification of video streams is quite similar to the process
described above. Keyframes (full frames) can be extracted out
of a video stream, and put through a similar transforming
function. Then, keyframes from different versions of a video
can be matched up [13]. Further matching can be performed
to ascertain whether the video streams are equivalent, or if one
simply contains a clipping of another. While audio processing
can be performed far faster than real-time, fingerprinting of
thousands of tracks is still a slow process. Video streams
are slower again, as image processing over a clip of several
minutes or even hours is an expensive task.

Aside from content identification and intellectual property
law enforcement, the vast majority of the work in this do-
main has been undertaken for the purposes of detecting,
correcting and adding meta data associated with audio files.
Traditionally video files do not embed any identification, apart
from anything contained in the file name, excepting subtitle
language. No authoritative system has superseded the plethora
of different approaches, hence tagging applications often try to

make use of disjoint algorithms concurrently. This is because
each approach usually has its own fingerprint library associated
with it for lookup - and the identifiers are incompatible.
MusicBrainz, a popular MP3 tag correction application, is a
good example of this trend [14].

A traditional fingerprinting library will return the most sim-
ilar track it matches, along with a certainty rating. This leeway
has advantages and disadvantages. The primary advantage
is that streams subject to corruption, artifacting caused by
compression, range compression, or clipping introduced by
the copying or mastering processes can be matched. There are
several disadvantages - audio tracks on DJ mixes tend to be
overlapped on top of each other, which confuses the spectral
patterns, and sabotages the certainty ratings by a large amount.
Extended mixes and shortened versions of audio productions
will still match together, which is not always desirable when
pursuing completely accurate meta data.

In addition, there is one overhanging concern when de-
signing a media implementation system - the accuracy /
resource trade-off of the library. The higher the resolution
of a fingerprint, the more disk space it requires to store as
part of the library. Some work has been done to optimise
the usefulness of a fingerprint, while minimising size [15],
though compared with a hash, spectral fingerprints are still
not ideal. Higher resolution fingerprints also require more CPU
time to match against queries. If the resolution is reduced too
much, though, the higher the chance of a mismatch, and the
reliability of matches will also suffer. Since our solution only
requires the storage of a number of SHA-1 hashes, which are
computationally trivial to match against, this compromise need
not be made.

III. METHODOLOGY

A media file cannot simply have headers and metadata
blindly stripped from it. Metadata is littered throughout many
containers, particularly with MP3. There are potentially differ-
ent tags in the header of the file, stored at the end, and even
inside the stream data. If this is not all handled correctly, then
the resulting data hash will not be fully metadata independent.
As a desirable property of a hash algorithm is that a one bit
flip in the payload will cause a random selection of half of
the output hash’s bits to flip, even the smallest error when
identifying metadata will damage the hash integrity, leading to
mismatches. This would effectively render the system useless
for our purposes.

In addition to this delicate problem, a useful system would
need to support all of the common containers, and be able
to semi-intelligently cater for the quirks associated with each.
Each media file is opened and treated as a media file. Headers
are processed, and each stream in the file is identified. A
SHA-1 hash is identified for each stream, and can be used to
uniquely identify that stream. To compute an overall identifier
for the file as a piece of media, the collection of hashes is



XOR’ed1 together. While a synchronised hash dependent on
the packet order could be computed, it would be extremely
wasteful to recompute this for big files. If certain streams are
identified as dummy, non important, or containing metadata,
it is trivial to exclude them from the XOR process, even at a
later stage.

The output a unique identifier for a given media file, as
well as inner identifiers for each component stream. The latter
can be used to detect the presence of identical streams inside
otherwise different files (e.g. two copies of a video clip which
have identical encoded audio, but different resolution video).
If the source file is retagged (the metadata is changed) a rehash
will now yield the same result.

Since a lot of media is highly redistributed, matching these
hashes against a database can immediately provide a reference
point

IV. IMPLEMENTATION

An initial approach taken was to attempt parsing an MP3
file and simply zeroing or ignoring all meta data. Although
easy to implement, due to various reasons, it was useless.
Firstly, fields padded with spaces, or superfluous nulls, were
impossible to cater for - two matching files might have been
tagged differently in this regard. Secondly, identifying every
possible metadata field in every file would have required
implementation of every desired format. Since an eventual
goal was identification of a most correct set of meta data
for a single file, every unsupported format reduces the
potential quantity of collectable data. In addition to this,
many multimedia containers are badly documented, badly
implemented by the software with generates them, and often
ambiguously standardised. Failure to cater for every potential
quirk would result in an erroneous hash mismatch - something
which it is crucial to avoid.
The MP3 container is a good example of this - unofficial
extensions, such as the Xing and Lame standards, insert
additional meta data into a file inside a fake stream frame
located near the beginning of the file. Legacy decoders
simply play a few unnoticeable milliseconds of noise, and
newer players which are aware of them can skip over them.
Including them for our purposes would mangle the results
- and this is but one example of many. It followed that the
only useful way to proceed was to treat the files as stream
containers - extracting the stream data out of the file, rather
than disregarding the meta data.

The FFMPEG library, which incorporates container inter-
preters for most common multimedia formats [16], is firstly
used to identify the codecs which were used in creating a
file. This can be important, since quite often a filename’s

1The authors are aware of the implications of this approach with respect to
cryptographic strength. Although XOR does not upset the uniformity of the
distribution, care must be taken that two streams are not identical, as their
existence would be eliminated from the result. Moreover, the ordering of the
streams is naturally ignored as well. Although there are several secure ways to
combine hashes, XOR was chosen for efficiency because collision resistance
against an attacker was not a primary design goal.

extension cannot be relied on as accurate. Next, the streams are
identified, and the data is streamed out. Streams are packetized,
and inside a multi stream file, different stream packets are
ordered serially in roughly the order they should be needed.
A video file will almost always have an accompanying audio
track synchronised to it. Given the design of rotational storage
devices, and the performance penalty associated in seeking
across a disk, thus interleaving frames from different streams
in a temporally suitable fashion was sensible. Each contains
an identifier, which is used to pass them to their respective
decoders upon playback.

Fig. 1. High-level System Layout

Two different files could be equivalent - i.e. contain byte-
for-byte identical streams. However, if they were interleaved
differently at mux time, again a hash mismatch would be
possible. As a result, and because it is also useful to uniquely
identify streams within a file, we hash each different stream
independently. The resulting set of hashes are combined to
yield a hash deterministically identifying the stream collection.

The resulting hashes are stored into a local database,
along with any available metadata contained within the files.
Additional information regarding the file’s modification and
the hasher’s version allow for future version control and
rescanning of files which are modified externally between
scans.

The system currently uses the SHA-1 algorithm, although
any other algorithm could easily be switched in. SHA-1



was selected on a “good enough” basis - it is quite fast,
and resistant to practical collision attacks. It is essential that
files are handled correctly - any bugginess in the hashing
algorithm, such as treating a placeholder frame as stream
data, or any buffer overflow between streams, would result
in an inaccurate hash. The consequences of this would be
that all existing data would have to be marked invalid, and
each user would require a full rescan, which is extremely
undesirable.

The resulting fingerprint is stored as a string - lookups only
require a computationally trivial string comparison. Rival
approaches require some or all of the file to be computed
using a variation of a FFT, with the result sent over a
network, and compared with the remote database’s fingerprint
collection. The higher accuracy required, the higher the
resolution the spectral must be, and thus the slower the file
transfer (network bandwidth) and comparison (CPU time)
will be. Conversely, hash based matches are binary, they
either match as identical or must be treated as different. Thus,
any file sourced corruption is highly undesirable.

Finally, the local database is synchronised with a remote,
centralised system. All information, from file path (important,
the lack of embedded support for metadata in many
containers forces archivists to record data in a hierarchy
of folders/filenames) to stream information and embedded
metadata is sent, and associated with an identifying user
account. Embedded artwork, common in music files, is also
uploaded.

We now have a system which can open almost any multi-
media file, and separate metadata and stream data. It proved
possible to serialise stream data out separately, hash it, and
derive a matching hash back - thus proving that metadata
independent hashes can be used for identification, and that
stream based multimedia files can be transferred in a swarm
based context sensitive fashion. A prototype implementation
was used to demonstrate this secondary hypothesis, modelled
on the BitTorrent paradigm. A “tracker”-like coordinator al-
lowed audio files to be published to it, using the hash only. No
other data about the file needs to be known by the coordinator.
Peers, including one or more with the original file, connect to
the tracker, and download lists of other peers (IP addresses
and associated ports) who also have the file of interest. They
then interconnect, similarly to BitTorrent [17], and download
stream packets from each other. When a downloader has
successfully obtained all packets from other peers, they are
serialised back out to disk. The prototype queries a web
service using the identifying hash, and receives all embeddable
metadata, as well as an appropriate file name. This is then
tagged in appropriately.

V. DERIVING DATA

The major advantage of abstracting the metadata to a
central store is that it can be error corrected. Many different

versions of the same stream data often carry different versions
of the metadata which should be associated with them - some
fields are incomplete, truncated, missing, or simply incorrect.
Frequent inconsistencies include capitalization, spelling and
word order [18], [19]. The metadata authority can combine
submissions from many different sources and attempt to
extract a verified canonical set of data for each file.

Currently, for a given datum, the best candidate is chosen
by majority rule. For every unique file submitted, the entries
for all users are examined, and from all non blank entries,
the most frequently occurring candidate is selected. This can
easily be customised per datum - for example, when processing
the title for an audio track, a customisation could be made
which preferred candidates containing spaces where others
contain underscores (a common artifact). Spell checking, or
illegal character detection could also be considered. Invalid
entries could be ignored; for example a non integer entry in a
“track number” or “release year” field could be disregarded.
The extracted canonical data is saved separately to the user
submissions, and can then be pushed out to scanner clients
for embedding back into library files. A key point to note is
that if an extracted entry is flagged as erroneous, or a missing
piece of data is later added, the updated canonical version can
easily be pushed out to clients next time they synchronise.
The alternative is each client manually tagging their files, a
process which has proved to be too tedious to carry out by
most collectors.

Unavoidably, any form of corruption affects the integrity
of the data set. Corruption commonly occurs due to storage
device error, network transmission error, and software-driven
error. CRC check failures, line noise, and faulty tagging
software respectively are some examples. Files may also have
been “double encoded”, or re-encoded in such a way that
fidelity is lowered [20]. Users can manually remove such
files from their collections, which will result in them being
synchronised out of the database, or alternatively they can flag
them for blacklisting on the centralised authority.

Entries are mapped in such a way that multiple unique
streams can point to the same metadata. This allows multiple
legitimate versions of the same multimedia item to share
metadata, thus increasing the likelihood of having a complete,
correct entry. Detecting legitimate cases for combination is
computationally expensive and prone to error, and is only
automatically considered when the probability of it being a
true positive is extremely high. The current strategy requires
a fully matching “artist”, “album” and “track number” data set.

Any other missing data can be corrected/added externally
in two fashions. Firstly, human users can use an online tool
to edit tags associated with their collection on the metadata
authority server. Upon synchronisation, these changes can then
be pushed out to their local collection. Secondly, existing
external corpora can be leveraged to incorporate missing
data. Some examples of suitable corpora would be last.fm,
Gracenote and Discogs. Combining external and internal data



made it possible to rapidly build a consolidated canonical
corpus with extremely high correctness/accuracy. Relevant
artwork can also be imported from external sources, and low
resolution submissions can be automatically replaced with
higher resolution candidates.

VI. FINDINGS & EXPERIMENTAL RESULTS

Presented below are some benchmark results, and statistics
regarding data collected thus far. Some performance data
about the implementation is given, which should clarify the
advantage of this approach over traditional fingerprinting.

A. Performance

Some input data sets were used to benchmark throughput.
The host machine contains an Intel Core i7 CPU @ 2.8GHz
(HyperThreading disabled), and both an SSD and standard
rotational hard disk. Sequential filesystem read throughput
tests were run on the two devices to determine what the
performance ceiling should be for the system. A data set of
4.6GB in 675 MP3 files was used for the audio benchmark,
with 4.6GB in 4 MKV files for the video.

Filesystem Audio scan Video scan
SSD 202.9 MB/sec 40.4 MB/sec 90.7 MB/sec
HDD 83.0 MB/sec 35.1 MB/sec 31.5 MB/sec

TABLE I
THROUGHPUT BENCHMARKS FOR THE MEDIA SCANNER, WITH

REFERENCE FILESYSTEM VALUES

Performance on the data set read from the SSD is
noticeably faster, especially with the video files, which
contain no explicitly tagged data (TableI). The files are read
sequentially back, thus the increase in throughput cannot be
attributed to the lack of a seek penalty on the SSD. Though the
system was thought initially to be I/O bound, the fact that files
are only read or processed at a given time is a limiting factor.
A future alteration to allow files to be streamed in by a reader
thread, and then processed (possibly several at once) by a
pool of worker threads could yield significantly better timings.

The disparity between the audio and video gains the SSD
has on the HDD are attributable to the fact that video files
have no (explicit) tagged meta data. The specification of the
MP3’s tags means that searching around inside the file for
extraction is relatively expensive. It is difficult to draw a
comparison between this approach and other meta data tagging
systems. The quantity of data which must be collected for
a reference database means that establishing a new system
requires significant investment. At time of writing no similar
research systems have been made available. However, two
commercialised pieces of software have become well known
for this task - MusicBrainz [14], and MediaMonkey. The
former was able to identify the test audio data set in just over
12 minutes (6.3MB/sec), and the latter could not be compared,
as it forces the user to manually step through each song and
verify that the identity assigned is correct. In addition, neither

perform any verification, so it cannot be guaranteed that the
tracks are intact. Video files are also not supported by either
system.

B. Submitted data

Forty volunteer users were asked to use the tool to scan
their video and audio collections. While far more would be
needed to draw realistic conclusions as to how many duplicate
copies of files exist in different libraries, it is evident that
there is significant crossover. This will likely increase as more
submissions are made from future users.

In total, 51.04TiB of data was scanned - user library size
ranged from 6.5GiB up to 7.09TiB. This comprised 771,209
files. The mean number of per-user submissions was 25,707.

Total Video Audio
Submissions 771,209 69,683 701,526
Unique submissions 634,595 54,502 580,093
Duplicate submissions 136,614 15,181 121,433
Duplicate submissions (%) 17.714% 21.785% 17.309%

TABLE II
STATISTICS REGARDING DUPLICATE SUBMISSIONS

Examining just 40 libraries, all independently sourced, we
can see that there is a significant portion of duplicate files.
In cases where meta data does not match between duplicate
files, it would be possible to correct, or at least flag the errors,
allowing them to be semi or fully automatically corrected.
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The data examined is a representative cross section of
media currently available in the wild. The majority of
audio data is sized between 0 and 16MB, and is normally
distributed, as can be seen in Figure 2. This is attributable to
the fact that most users favour lossy encodes, using codecs
which perform similarly. A small amount of audio files are
radically different, and may be in the order of 100-200MB,
usually representing a substantial live recording in one track.
No such pattern emerges in video file sizes, however - certain
size intervals, which correspond with rules, guidelines, or
other factors related to video encoding, contain almost all
submitted data (Figure 3). Some examples would be 175MB,
350MB, 700MB (standardised sizes which fill a 700MB CD),
4.3GB and 8.3GB (standardised sizes which fill a DVD), as
well as 1.2GB and 2GB (sizes which are believed to give
optimal results for a 44 minute TV episode in high definitions
using the most efficient codecs). A relatively small number
of other video files which do not fit into these known ranges
of interest are also present.
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Fig. 4. Frequency of Audio Codecs

The distributions of codecs used to create files in the users’
libraries are also worth mentioning, as they indicate which
are currently popular among media authors. For audio, MP3
remains the most popular, with 95.7% of files examined using
it (Figure 4). Its only competitor, AAC, ranked second among
lossy codecs with 1.13% of files being encoded using it. This
suggests that even though AAC and Vorbis have been shown
to be higher performance codecs, the existing prevalence of
MP3 has made it hard to dislodge. FLAC, a popular lossless
codec, was used for 2.1% of audio files.

A codec monopoly in video files was less evident - 61.5%
of files were encoded using MPEG4, and 23.1% with h.264
(Figure 5). This reflects that while h.264 has been embraced as
the current best choice for video distribution, a large quantity
of media using MPEG4 still exists in user collections.

C. Disagreement in Metadata

It was found that of the distinct audio tracks processed
by the system, approximately 17.309% were associated with
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Fig. 5. Frequency of Video Codecs

more than one user. It is interesting to examine the disparity
in metadata between the copies of these shared files. The
focus was on MP3 as such files constitute the majority of
submissions from users, and their ID3 tags are widely used.
A sizable proportion of the set of shared tracks had at least
two copies with different metadata. A distribution capturing
the number of disagreements per tag is shown in Figure 6.
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Fig. 6. Degree of disagreement of tags

It would be useful to investigate whether the results in
Figure 6 are representative of a larger data sets. The strategy
for pointing multiple unique streams to the same metadata
proposed in Section V (based on matching Artist, Album and
Track Number tags) may thus not be satisfactory - especially
since it seems that track numbers are missing from a large
percentage of files.

VII. CONCLUSIONS & FUTURE WORK

The systems detailed in this article have demonstrated
that it is both possible and advantageous to leverage media
specific context awareness when disseminating files across a
peer to peer network, and reconstruct them at the receiving
end. Files can both arrive intact, anonymously, and embed
highly accurate metadata.

We have also demonstrated how a centralised authority
for media metadata can, in a semi- or fully-automated
fashion, calculate correct metadata based on multiple user



submissions, as well as external sources. Media which has
been previously processed by the system can be identified as
matching with 100% accuracy, and requires a trivial identifier
to do so. Disadvantages include the fact that a media source,
extracted almost identically by two different human users
on differing hardware, are unlikely to match byte-for-byte,
and must be combined. Fortunately, the vast majority of
media files possessed by users are encoded by a relatively
small subset - i.e. most files have multiple copies. We have
also demonstrated how effectively identical variations can be
handled and combined.

Traditional approaches require significantly more
computational power both on the user and server sides,
in addition to bandwidth. Hash based matching requires a
tiny fraction of the resources, and as a result provides a better
user experience, making it possible to verify and optimise a
large media collection in mere hours.

Extracting canonical metadata centrally also proved to be
optimal - the data yielded edge cases which had not been
considered, and would only become apparent when combining
such large quantities of data, something which would never
occur on a per-user level. The extraction algorithms can be
edited on the central authority, and no user software update
rollout is needed. Changes to their files can simply be pushed
out upon synchronisation. Region-specific data, special cases
and temporal exceptions could also be integrated if required.

Future work includes collection of significantly more data
than was used to draw the conclusions in this report, and
in addition, data extraction algorithms based on an expanded
data set could be optimised. One possible additional use for
the corpus presented would be as a queryable database for
decoding software. Users could be presented with online data
for their media as it is played. A suggested testbed for this
would be a HTPC solution such as Boxee or XBMC [21], [22].
Future work will also include an examination of the security
implications of the proposed system, in particular user privacy
and prevention against injection of rogue data.
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