
 

 

   
 

The incentive to invest in thermal plants in the presence of 
wind generation 

Valeria Di Cosmo and Laura Malaguzzi Valeri1 

 
Abstract: In a deregulated market, the decision to build new thermal power plants rests with 
private investors and they will decide whether to invest on the basis of expected profits. This 
paper evaluates how such profits are affected by the increasing presence of wind 
generation. 
We use hourly historical data for the Irish Single Electricity Market, a compulsory pool 
market with capacity payments, and simulate future series of electricity shadow prices, bids 
of representative plants and wind generation. We estimate the correlation between shadow 
price and installed wind capacity on the basis of past data, finding a negative correlation. We 
then evaluate the effects of increased wind capacity on thermal power plants' expected 
profits. We find that increasing installed wind from the current level of 2000MW to about 
3000MW causes a larger decrease in profits for baseload gas plants and a smaller decrease 
for less flexible coal-fuelled plants. The decrease in profits is of the order of 1 to 2 per cent. 
 
Corresponding Author: valeria.dicosmo@esri.ie 
 
Keywords: electricity; generation incentives; simulation; wind generation; Ireland 
 
                                                           
1 Economic and Social Research Institute, Dublin and Departments of Economics, Trinity College Dublin.  
 
 Funding from the Energy Policy Research Centre of the Economic and Social Research Institute is gratefully 
acknowledged. We would also like to thank participants at the ZEW conference in Mannheim, the IAEE 2012 
conference and the 2012 ESRI UCC Environmental Modelling Research Seminar for comments and suggestions. 
The usual disclaimer applies. 
 
 
ESRI working papers represent un-refereed work-in-progress by researchers who are solely responsible for the 
content and any views expressed therein. Any comments on these papers will be welcome and should be sent to 
the author(s) by email. Papers may be downloaded for personal use only. 

Working Paper No. 446 
 

December 2012 
 



1 Introduction

This paper analyses the effects of increasing wind generation on the incentives to invest in thermal
plants and offers insights on how increased wind generation affects the wholesale cost of electricity.
Continued investment in thermal plants is critical for the reliability of electricity systems, especially
for countries that face a large renewal of their electricity generation portfolios.

An active and growing literature has analysed the effect of wind on electricity prices, for ex-
ample see Newbery (2010),Perez Arriaga and Batlle (2012), Troy et al. (2010), and Devitt and
Malaguzzi Valeri (2011). Wind generation has the advantage of relying on free fuel and the disad-
vantage of depending on a fuel source that is variable: wind does not blow all the time, and when
it blows it is not constant. Increased wind generation tends to decrease the price of electricity in
any system based on merit orders, since wind-powered plants displace plants that have positive fuel
costs (and positive carbon dioxide emissions). On the other hand, extensive investments in wind
generation have been fostered by subsidies, which are generally recovered through additional fees
tacked on to the final price of electricity, pushing towards higher electricity prices. Additionally,
as wind generation increases, traditional thermal plants (operated by natural gas, coal or oil) have
to accommodate the fluctuations in wind to meet a fairly inelastic demand. Thermal plants there-
fore vary the amount they produce more often in situations where there is a large variation in the
amounts of wind. The result is that these plants start up (and shut down) more often and are sub-
ject to larger ramping costs (costs incurred when increasing or decreasing generation). This issue
has been analysed in Troy et al. (2010) for Ireland and discussed more in general in Perez Arriaga
and Batlle (2012).

This paper focuses on the implications of these findings for investment incentives in conventional
generation in deregulated systems. In deregulated systems, the decision to invest in a certain size
and type of generating plant rests with investors and is therefore driven by expected profits. To
determine how power plants’ expected profits change as wind generation capacity increases, we
compare the revenue and cost streams of three types of thermal generation plants: a coal plant, a
combined cycle gas turbine plant (CCGT) and an open cycle gas turbine plant (OCGT). This allows
us to assess how electricity systems are likely to evolve over time and determine if investment in
new power plants is likely to be sustained over time, given current retribution schemes and expected
increases in wind penetration. The biggest challenge we face is the estimation of robust parameters
that drive how costs and prices evolve with higher wind generation.

Steggals et al. (2011) present an overview of how wind generation may affect electricity prices
and its implications for investment decisions in other generation technologies. The authors do
not quantify the effects, but focus on discussing potential policies to encourage investment in the
presence of wind, with a particular focus on Great Britain (GB). Traber and Kemfert (2011)
consider both the dampening effect of wind generation on wholesale prices and how they increase
the costs for conventional plants. Using a simulation model of Germany’s electricity plant portfolio,
they find that investment in relatively flexible plants is likely to be suboptimal, since they generate
less frequently in the presence of large amounts of wind. We adopt a different approach in this
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paper, simulating many years of future prices, but we obtain a similar result for flexible natural gas
plants: their returns decrease in the presence of more wind. However, Traber and Kemfert (2011)
also conclude that non-flexible coal plants are displaced by wind over time, whereas our results
show that the lack of flexibility might be rewarded under certain circumstances. Gross et al. (2010)
analyze the GB electricity market and argue that the incentives to invest depend in part on the
risks associated with fluctuations in electricity prices. Plants that tend to set the marginal price
and are therefore price makers automatically hedge against fluctuations in energy prices. In our
paper we explicitly simulate price fluctuations as a function of wind generation.

Garcia et al. (2012) are primarily interested in analysing the effects of different regulatory
schemes on the incentives to invest in renewable capacity. Using a stylised theoretical model,
they find that designing incentives to invest in renewable capacity without affecting investment in
conventional capacity is challenging.

We study a specific electricity system: the Irish Single Electricity Market (SEM). The SEM
encompasses the electricity systems of both the Republic of Ireland and Northern Ireland, making
it a unique cross-jurisdiction, cross-currency system. The Irish system also displays a few favorable
characteristics from the point of view of this study: first, it has limited interconnection with other
systems allowing us to identify the effect of wind more easily. Second, it has experienced a large
increase in installed wind capacity, more than doubling from about 900MW at the end of 2007 to
more than 2000MW at the end of 2011. Third, it is a compulsory pool system with central dispatch
that publishes most of the system data.

The contribution of renewable energy to overall energy demand has been estimated around 5%
in 2010 (SEAI, 2011), but Ireland’s target under the European Directive (2009/28/EC) is to achieve
a 16% penetration.1 Similar numbers hold for Northern Ireland, where renewables accounted for
about 3% of total energy consumption in 2009 (calculated from the information presented in DECC,
2011). Wind generation is the largest single source of renewables available in Ireland.2 The Govern-
ment plan of 2011 (http://www.taoiseach.gov.ie/eng/Publications/Publications_Archive/

Publications_2011/Programme_for_Government_2011.pdf) asserts that electricity generation
from renewable sources offers effective ways to reduce the contribution of power generation to Ire-
land’s greenhouse gas emissions (GHGs). The same document declares that renewables will have
to account for about 40% of electricity demand if Ireland is to meet its overall targets. Installed
wind capacity is therefore expected to continue rising in the near future.

The rest of the paper is organised as follows. Section 2 describes the SEM and presents a
stylised framework of the setup. Section 3 describes the data and Sections 4 gives details of the
empirical methodology. Section 5 reports the simulation results and Section 6 concludes.

1 The Directive is available at (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:
0016:0062:en:PDF)

2The Irish renewables targets and commitment are outlined in several documents available from the TSO website
(http://www.eirgrid.com/renewables/policyandtargets/irelandandnorthernireland/)

2

http://www.taoiseach.gov.ie/eng/Publications/Publications_Archive/Publications_2011/Programme_for_Government_2011.pdf
http://www.taoiseach.gov.ie/eng/Publications/Publications_Archive/Publications_2011/Programme_for_Government_2011.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF
http://www.eirgrid.com/renewables/policyandtargets/irelandandnorthernireland/


2 Introducing the SEM and an analytical framework

2.1 The SEM

In the Irish system, the system marginal price (SMP) is determined by the bid provided by the
marginal plant – defined as shadow price– plus the value of uplift. Plants are stacked according
to their bid, from cheapest to most expensive, and are called to generate in that order up until
they produce enough to service existing demand. The uplift measures the additional startup costs
generators have to be paid to avoid short-run losses. Bids reflect the short run marginal costs
of a plant and include the costs of fuel and carbon dioxide emission permits needed to generate
a megawatthour (MWh) of electricity. On top of the SMP, power plants also receive capacity
payments, designed to help cover capital costs.

Power plants are required to bid their short run marginal cost in line with the bidding code of
practice available from the regulator’s website at (http:www.allislandproject.org). The Market
Monitoring Unit monitors the market to make sure that generators are bidding within the rules.
Extensive system data are available from the start of SEM, in November 2007. The SEM is a
compulsory pool system, where every generator with a capacity larger than 10MW has to offer
electricity and generation is centrally dispatched. Similarly, all buyers have to buy from the pool.
We are therefore able to simulate our model based on complete system data. This is particularly
interesting considering that other studies, such as Nicholson and Porter (2012) and Woo et al.
(2011) report results for the balancing market of the Texas ERCOT system, which accounts for
only 5 per cent of all electricity exchanges.3

As a further check of market power, there is a system of future contracts in the form of contracts
for differences (CFD), created to enhance competition between generators both in the Republic of
Ireland and in Northern Ireland. However, centrally dispatched market and the regulation that
forces the generators to bid their marginal prices limit the incentives in developing the forward
electricity market. As result, the CFD market is not well developed.

The presence of wind on the system raises some interesting questions related to security of
supply. The system cannot rely on wind alone due to its large and sudden variations given that
thermal plants are unable to change their production instantly. In order to ensure that a sufficient
amount of thermal electricity generation is always available, in any given period the System Oper-
ator (SO) curtails up to 50% of wind capacity. If wind is curtailed and thermal plants that would
not otherwise be called to generate have to produce electricity, they receive ”constraint payments”
that cover their cost of generation. A side effect of being constrained on is that thermal power
plants end up increasing or decreasing generation less frequently. Ramping costs of thermal power
plants are therefore reduced by wind curtailment (and its associated payments).

3Both these works focus on the estimation of the relation between electricity spot prices and wind based on the
ERCOT historical data. Nicholson and Porter (2012) show that wind generation is negatively related to the electricity
price, and that wind has a stronger effect on the balancing-energy price during the day than it does at night. Woo
et al. (2011) highlights that rising wind generation tends to reduce the level of spot prices and enlarge the spot-price
variance. Both these studies, however, are focused on the estimation of the relation between wind and electricity
price, and not on the simulation of the effects of different wind capacities installed in the system.
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2.2 A model of generator returns in the presence of wind

In a deregulated electricity system, any new investment depends on the level of expected monetary
returns to private investors, which in turn depends on market prices and the costs associated with
generation.

The following sections illustrate the main aspects of this investment problem by providing a
stylised example of how wholesale prices are set in a compulsory pool market with a binding code
of conduct. We start by assuming that plants are infinitely flexible and in section 2.3 refine the
results under the more realistic assumption that ramping is both costly and cannot occur instantly.

We assume there are three different types of generating plants: wind, baseload and peakload.
Firms have capacity constraints. Each can produce a maximum of Ki MegaWatts (MW) in each
period, where i = {H,L,W} indexes technologies, which differ in their costs. Ki represents total
installed capacity for a plant using technology i. Peak plants (indexed by H) generate electricity at
the highest marginal cost (MC), followed by baseload (indexed by L) and wind (indexed by W),
which is assumed to have 0 short-run marginal costs (since wind itself is free).

Given a demand Dt in every period t (which we assume varies over time but is inelastic to
price), and wind generation Wt, with 0 ≥Wt ≥ KW , the price is determined as follows:

Pt =



0 if Dt ≤Wt

MCL if Wt < Dt ≤ KL +Wt

MCH if Wt +KL < Dt ≤Wt +KL +KH

Pmax otherwise

(1)

Generators are only allowed to bid costs related to their fuel and carbon permit consumption,
which leads to the wholesale price reported in Equation 1. However, baseload plants incur an
additional cost, represented by φ(Dt,Wt), which affects their profits. This cost arises when a
baseload plant has to increase or decrease its output (often referred to as ramping) to accommodate
variations in wind, which will happen when demand is greater than available wind, but less than
the sum of wind and baseload capacity, and wind varies over time. Put more concisely, when
0 < Dt −Wt ≤ KL and |∆Wt| > 0, where ∆Wt = Wt −Wt−1. Peaking plants are designed to be
more flexible and therefore do not incur any additional cost when required to change their output
quickly.4

We characterise the cost φ as follows:

φ(Dt,Wt) =

g · |∆Wt| if 0 < [Dt −Wt] ≤ KL

0 otherwise
(2)

where g is a parameter that determines the size of additional ramping costs.
Generators also receive capacity payments. In the SEM, the regulators establish a capacity

4While this is a simplification, costs associated with changes in output are going to be much smaller for peaking
plants than for baseload plants.
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‘pot’ at the beginning of every year and allocate it across periods in response to the existing margin
between available generating capacity and expected demand. In this analysis we will simplify and
assume that they are allocated equally across all periods.5

For a plant that lasts T periods, generator i receives the following payments, gross of capital
costs over the lifetime of the plant:

πi =
T∑
t=0

(1 + r)−t[Pt − (MCi + φ(Dt,Wt)) + Ct] · qit (3)

where r is the discount rate and Ct are the capacity payments per MW of available generation
paid out at time t.

Based on equations 1 and 3, the expected returns to a generator depend on the distribution
of Dt and Wt. We assume that Dt and Wt are distributed independently. To keep the example
simple, the distribution of demand is assumed to be as follows:

Dt =

D̄ with probability p

D with probability 1-p
(4)

with 0 < KL ≤ D < D̄. Wind, on the other hand, is distributed as a Weibull distribution, as is
common in the literature, 6 with scale parameter α and shape parameter β. Given the cumulative
distribution function of a Weibull distribution, the following holds:

prob[Wt ≤ Dt −KL] =

1− e−((Dt−KL)/β)α ifDt −KL ≥ 0

0 otherwise
(5)

For Dt −KL ≥ 0 the expected value of the additional ramping costs φ is therefore going to be:

Et(φ) = g · |∆Wt| ·
{
p · [1− e−((D̄−KL)/β)α ] + (1− p) · [1− e−((D−KL)/β)α ]

}
(6)

2.3 A case with non-flexible baseload plants

Now let’s make the example slightly more complex (and somewhat more realistic). In the previous
section we assumed that the baseload plant will be able to adapt instantly to wind generation
fluctuations. In this section we explore what happens if that is not the case, i.e. if the baseload
plant is not perfectly flexible. This means that if it has to produce at high levels in period t+ 1,
it must be already operating at time t. To facilitate the operation of the baseload plant, wind at
time t will be curtailed if needed. Wind curtailment is already taking place in the SEM (Pöyry
(2010), pg.30 and Gorecki (2011)) and in other systems with large amounts of wind (e.g. Spain.

5The actual allocation methodology is more complex. Part of the allocation is done ex-ante, and part is ex-post.
There is therefore a possibilty of strategic behaviour on the part of firms, but we abstract from it in this paper.

6See Weisser (2003), Yeh and Wang (2008), Yu and Tuzuner (2008) and Yu and Tuzuner (2009), for some examples
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For a review see Rogers et al. (2010)).7

When the plant has to stay on for operational safety reasons, it will not ramp on and off and
its associated φ will be equal to zero. We formalise this in the following example.

If wind and peak plants are not sufficient to meet expected demand at time t+ 1, or Et[Dt+1−
Wt+1−KH ] > 0, the baseload plant will be constrained on at time t. Note that Et is the expectation
at time t of events that take place at future dates. When a plant is constrained on, it receives a
payment to cover its cost of production, but does not receive the electricity market price (which
might be zero, if it is set by wind in that period). As before, firms have capacity constraints. They
can each produce a maximum of Ki MegaWatts in each period. To simplify the presentation we
also assume that for every period t, Dt > KH , or that demand is always larger than the capacity
of peaking plants.

The price is determined as in equation 1. However, the system operator applies adjustments to
the generation schedule to maintain system reliability. In particular, if the baseload plant is needed
to meet demand in period t+1, the system operator dispatches it in period t as well, even if Dt ≤Wt.
This changes the costs for baseload plants. We will show that φ(·) unambiguously decreases, and
therefore baseload plant profits unambiguously increase when compared to the results in section
2.2. The expected value of φ from equation 6 has to be adjusted for the probability that the plant
will be needed at time t+1 and therefore dispatched at time t as well, or Et[Dt+1−Wt+1−KH ] > 0.
More formally, if we define the updated φ as φ′:

Et(φ′) = Et(φ)− Et[Dt+1 −Wt+1 −KH ] (7)

As before, Dt and Wt are independently distributed. This allows us to rewrite the second term
on the right hand side of Equation 7 as prob

[
Et(Wt+1) < Et(Dt+1)−KH

]
, which can be measured

as the cumulative distribution function of Wt+1 calculated at Et(Dt+1) −KH . If, as we assumed
above, the expected value of Dt+1 −KH is positive, it is also true that:

Et[Dt+1 −Wt+1 −KH ] > 0 (8)

and substituting Equation 8 in 7 we obtain the following result:

Et(φ′) = Et(φ)− Et[Dt+1 −Wt+1 −KH ] > Et(φ) (9)

thereby proving that Et(φ′) < Et(φ), where Et(φ) comes from equation 6.
What changes for peaking plant profits? Not much, really. They might be called on to produce

more often, since they are capable of adjusting quickly to changes in wind generation, but every
time they are called to produce out of the theoretical merit order, they are remunerated exactly
for their costs, leaving their profits unvaried.

7For details on the curtailment of wind for security of supply reasons see EirGrid (http://www.eirgrid.com/
media/47958_EG_Summary09.pdf);(http://www.eirgrid.com/media/Annual%20Renewable%20Report%202010.pdf.
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3 Data description

Information on daily bids of gas, coal and distillate power plants come from the market operator’s
website (http://www.sem-o.com). We calculate the short run costs of the different power plants
starting from the bid/quantity pairs declared by each market participant for each day from January
2008 (two months after the market started, in November 2007). On the basis of the data, we
calculate the average cost of 3 typical power plants: a natural combined cycle gas turbine, a
coal and a distillate oil peaking one.8 Table 1 summarises the data for the average costs of each
representative power plant.

Table 1: Summary Statistics (2008-2011), €/MWh

Gas Coal Distillate Shadow price
Mean 36 46.7 163.3 49.8
Max 60.1 88.7 224.6 494.6
Min 15 30.3 85.1 0

St. Dev 10.8 10.1 34.6 23.5
The series for the distillate-fuelled plant (an open cycle gas turbine) starts in January 2009 instead of January 2008 due to
availability of historical data.

Plants bid their fuel and carbon permit price costs. They incur additional costs if they have to
vary the amount of electricity generated and/or turn on and off. We refer to these additional costs
as cycling costs. When the plant turns on or off, cycling costs vary depending on the length of time
since the last generation period. The largest costs occur when the plant has not been generating
for long periods and has cooled off completely. In our model we consider only hot starts (when the
plant has been shut down for fewer than 12 hours) and warm starts (when the plant has been shut
down between 12 and 60 hours), as in the past cold starts (with the plant shut down for longer than
60 hours) have proved rare. Data on ramping costs have been taken from the All-Island Project
website, set up by the electricity regulator (CER).9

Historical wind generation for the Republic of Ireland and Northern Ireland comes from EirGrid
and SONI respectively.10

We build a series describing the monthly capacity of installed wind based on system operator
files that specify the size and initial connection date of all wind farms in the Republic of Ireland
and Northern Ireland.

Definitions of cycling have varied from on/off starts, (normally defined as hot, warm, and cold
starts) to high frequency load variations. In our model we consider only hot and warm starts, as
in the past cold starts have rarely taken place.11 Data on ramping costs have been taken from
information provided by the electricity regulator (CER) through the All-Island Project.

8In particular, we take Huntstown II as representative of a baseload CCGT natural gas plant, Moneypoint I for
coal and Rhode I for oil.

9This data come from the 2011 Plexos validation report data.
10EirGrid records data on wind farms that bid into SEM. They estimate that smaller wind farms (i.e. producing

less than 10MW) account for an additional 20% of wind generation and add this amount to published data.
11Cold starts occur when baseload plants have been idle for more than 72 hours.
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4 Methodology

We specify a dynamic system to evaluate generators’ profits over time. Many studies have simulated
the effect of wind by creating unit-commitment models and varying the amount of wind. In this
paper we take the historical data on electricity prices and costs, use them to estimate parameters,
and build a time series of future costs and revenues based on the simulated series.

The main advantage of our approach relies on its simplicity. Using data on bids and electricity
prices, and making some straightforward hypotheses on the distribution of wind, we are able to
replicate generators’ costs and profits without having to make explicit assumptions on how the
portfolio mix evolves, and especially without having to model the short-run lumpiness of investment
that arises every time a new (large) plant is set up in a relatively small system. This allows us to
isolate the effect of increasing renewables on the system, net of the effect of lumpy changes in the
generation mix.

This exercise is somewhat easier for the SEM as generators are forced to bid exactly their
marginal costs. More complex hypotheses should be considered in different markets (see Wolak
(2001)).

We start by studying the relation between wholesale electricity prices (specifically the shadow
price) and wind. We examine how the wholesale price of electricity changes with more wind,
after controlling for energy prices and the level of electricity demand. This allows us to estimate
parameters that describe how electricity prices evolve as a function of installed wind capacity. The
other component of the SMP, the uplift, is not correlated with wind, as shown in Di Cosmo and
Malaguzzi Valeri (2012).

We then analyse how the power plant costs and electricity prices have evolved over time and use
the findings to simulate the profits of potential new thermal power plants. The power plant costs
are defined as the sum of their bids and their ramping costs, as described in the previous section.

4.1 Calibration period

We test a number of specifications to check the best fitting process for each price series. In order to
determine whether electricity and energy prices follow stationary processes apply both the standard
augmented Dickey-Fuller(ADF) and the Phillips Perron (PP) unit root tests. These tests reject
the null hypothesis of presence of a unit root in the considered sample for all the series with the
exception of the oil power plant bids.12 However, as argued by Muñoz and Dickey (2009), financial
series can show a (spurious) unit root in the presence of structural breaks.

12For the shadow price series the ADF test statistic is -9.680 with a 1% critical value equals to -3.430. The PP
statistic is -9.827 and the 1% test statistic is equal to -3.960. For the gas-fueled power plant the ADF test statistic
is -2.581. For the coal power plant the ADF is -5.289 and for distillate power plants the ADF is -3.491.
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Figure 1: Shadow price, coal, gas and distillate bid prices (2008-2011), €/MWh

(a) shadow price (b) cost for PP with gas

(c) cost for PP with coal (d) cost for PP with distillate

Figure 1 shows an obvious downturn in oil prices and natural gas prices in early 2009, which
might have affected the bids of the power plants that use these fuels as their main input. We
therefore test for the presence of structural breaks in our sample. This allows us to identify an
optimal calibration period and estimate the parameters of the mean reverting process that drives
the simulated prices. The Chow test rejects the null hypothesis of absence of structural breaks in
the shadow price series for the 12th of February 2009, with an F statistic equal to 3454.95. Both
Zivot and Andrews (1992) and Baum (2001) have introduced tests to identify unit roots in the
presence of structural breaks. The Clemente and Rao test detects the presence of a structural
break in the shadow price series on the 8th of February 2009, whereas the Zivot test finds a break
on the 12th of the same month. All the tests suggest a structural break in a similar period in
February 2009; however these tests reject the hypothesis of the presence of a unit root in the series.
The same tests on the natural gas power plant bids show that the presence of the structural break
cannot be rejected at the 5% level for the end of December 2008. This is plausible, as the shadow
price in the SEM follows natural gas prices (including the implicit carbon cost of a standard CCGT)
fairly closely, as reported in SEM (2010).13 We therefore estimate the parameters of the simulated
series on the subsamples identified by these tests.

13The Clemente and Rao test statistics for gas and coal power plants are -3.684 and -3.341 respectively, with the
test statistic equal to -3.893. We then reject the hypothesis of the presence of a unit root in these series at the 5%
level
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4.2 Model choice

In order to simulate the series we first remove the seasonality applying a moving average technique
as suggested by Weron (2008). We also preprocess the price series eliminating all the spikes, which
are defined as price changes that are farther than two standard deviations from the average price.
After the calibration and simulation processes, both seasonality and spikes are added back to
simulated series, to obtain the final series.

4.2.1 Oil power plant costs

Which process best fits the historical data depends crucially on the series’ properties. As the bids
of the oil-fuelled OCGT power plant follow a persistent (non-stationary) process, we simulate the
future values of this series with a geometric Brownian motion process (GBM thereafter). This
process reflects the non-stationarity of the series, which increases at a constant rate. A GBM
process can be described as

dXt = µXtdt+ σXtdW (t) (10)

with solution
dxt = (µ+ 1

2σ
2)dt+ σdWt (11)

in which xt = log(Xt) In order to estimate µ and σ we use the MLE estimator following Brigo et al.
(2007).

4.2.2 Electricity prices, gas and coal power plant costs

Electricity, coal and gas bids proved to be stationary in the calibration period and we simulate these
series with mean reverting processes with jumps. In order to control the size and the frequency
of the jumps, we follow Weron (2008) and model the jump as a Poisson process of the form Jtdqt

where Jt is a (truncated) random variable responsible for the size of the spike and qt is a Poisson
process with intensity λ. The process can be described as follows

dXt = αXt(θ −Xt)dt+ σXtdWt + Jtdqt (12)

Applying the Ito formula, the process solution can be characterized as follows:

dxt = θ(1− e−αdt) + xt−dte
−αdt + σe−αt

∫ t

t−dt
eαu dWu + Jtdqt (13)

in which xt = log(Xt). We estimate the parameters of this model by standard OLS.

4.2.3 Modelling the effect of wind

Correlation between wind and price As mentioned previously, we determine that the shadow
price is stationary. Equation (13) does account for the specific effect of wind on the shadow price.
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We identify the correlation coefficient between wind and the shadow price using the following
relation and hourly historical data:

SPSimul = MRPSimul − ρWind,SP ∗WindHist ∗WindCapacityHist (14)

where the simulated electricity price is a function of the mean reverting process described in
equation (13), the historical wind load curve (WindHist) and the total installed wind capacity
(WindCapacityHist). We determine the correlation coefficient between the shadow price and the
wind (ρWind,SP ), by minimizing the difference between the simulated series SPSimul and its realised
values SPHist , for the period 2009-2011.

ρWind,SP = argmin(SPHist, SPSimul) (15)

The minimization above leads to ρWind,SP equal to -0.0020. This correlation parameter is consistent
with the one found by Di Cosmo and Malaguzzi Valeri (2012), who use an econometric analysis of
SEM data to estimate the relation between wind and shadow price.

Wind simulation Wind is introduced as a shock that affects the system and follows a Weibull
distribution, the parameters of which are estimated from the historical wind series. We add a jump
to the Weibull process in order to simulate the effect of wind on the shadow price, which in the
recent past has on occasion reached zero. Wind capacity on the island of Ireland is expected to
increase to up to 6000MW in the next 10 years, as discussed previously. In this paper we assume
that wind capacity will rise from 2000MW to 3000MW within the next 3 years.

5 Results

5.1 Shadow prices and fuel costs

Each power plant runs only if the it bids less than (or up to) the shadow price, since SEM is a
merit order dispatch system. We impose this condition in our simulation. Moreover, we impose
that the simulated price cannot exceed the peaking plant cost each hour of the simulation.

We simulate three different scenarios in order to assess the effect of the wind on the system. In
the first scenario we rise the same wind to reproduce the wind capacity installed in 2011. In the
second scenario, wind capacity is set equal to zero. Without wind generation, we expect generation
costs to be lower (as the ramping costs will be lower) shadow price and profits to be higher than in
the past, during which the installed capacity of wind was equal to 1889MW. Finally, in the third
scenario, we calculate electricity prices and generation costs when installed wind capacity is equal
to 3000MW. In order to simulate power plant costs and electricity prices correctly, we calculate
1000 draws of each simulated process and report the average of these draws.
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5.1.1 Scenario 1 (baseline): wind capacity installed on the system from 2009 to 2011

In this scenario we assume that the capacity of wind installed in the system is fixed at the average
2011 capacity of 1889MW. We use the correlation coefficient identified by the minimization process
described by equation (15). Moreover, we impose that wind follows a Weibull distribution with
shape and slope parameters estimated from historical data.

Figure 2 shows the results of our simulation of the shadow price and the generation costs (bids)
and Table 2 compares the characteristics of the simulated and historical series.

The difference between simulated and historical shadow prices is partially due to the use of the
Weibull distribution to model wind. Although this distribution is widely used in the literature to
model wind, the simulated series has a lower variance than its historical counterpart. Therefore,
the historic mean of the wind distribution is matched by shifting the whole simulated distribution
downward instead of just increasing the frequency of the downward spikes. As a result, the simulated
prices shift downwards with respect to their historical values.

Note however that the specific distribution chosen to simulate wind affects the magnitude of
the shadow price mean, but not the direction the changes we measure in the rest of the analysis.

This scenario is designed to provide an appropriate baseline for our analysis. By focusing on
the difference of the results from the baseline, we are able to eliminate any effect of the simulation
methodology and therefore isolate the genuine effect of increasing wind generation.

Figure 2: Electricity and energy prices (2009-2014), €/MWh

(a) shadow price (b) cost for PP with gas

(c) cost for PP with coal (d) cost for PP with distillate

Note: historical series in blue, simulated series in red.

The simulated series for natural gas and coal bids have means that are comparable to their
historical levels, but a slightly higher standard deviation. This result is typical for this type of
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studies (see e.g. Benth et al. (2012)). The bid of the distillate-fuelled plant is simulated as a
non-stationary geometric brownian motion and increases over time, so the mean of the simulations
is going to be larger than the historical base. In Table 2 we compare the simulated period with the
most recent historical month of observations (i.e. 720 observations). As expected, the simulation
bid is larger, due to the ongoing positive trend. If we focus on the standard deviation in the
historical and simulated periods, Table 2 suggests that they are very similar.

Table 2: Summary statistics: historical and simulated, €/MWh

(a) Shadow price

Simulated Historical ∆
Mean 40.96 41.77 -1.9%

St. Dev 16.91 16.39 3.2%
Skewness 5.35 6.47 -17.3%

(b) Marginal costs : mean

Simulated Historical ∆
Mean Gas 31.04 31.39 -1.1%

Mean Coal 46.26 46.24 0.0%
Mean Distillate 233.31 203.82 14.5%

(c) Marginal costs : standard deviation

Simulated Historical ∆
St.Dev Gas 4.24 8.44 -49.8%

St.Dev Coal 5.79 10.33 -44.0%
St.Dev Distillate 11.50 11.00 4.6%

(d) Marginal costs : skewness

Simulated Historical ∆
Skew Gas 0.67 -0.06 -1147%

Skew Coal 0.62 0.75 -17%
Skew Distillate 0.08 -13.73 -101%

5.1.2 Scenario 2: 3000MW of wind capacity installed in the system

In this scenario, we assess the effect of a large investment in wind capacity on the Irish system. The
wind capacity target in 2020 is close to 6000MW, so we investigate the effect of wind increasing to
3000MW by 2014.
Table 3 reports the results of our analysis. The presence of wind consistently reduces average
shadow prices. As wind has priority dispatch, the increase in installed wind capacity reduces
the number of profitable hours for thermal power plants. A problem also arises in terms of system
reliability. Baseload thermal plants need several hours to turn on and shut off. As mentioned earlier,
wind is variable over time. These two facts mean that in order to maintain system reliability, if a
system operator foresees increases in demand at times of low wind availability, it will have to allow
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unflexible baseload plants (and specifically coal-fuelled plants) to continue generation during times
of high(er) wind generation.

There are thus two possible cases: i. the system operator exports any excess wind or curtails it
in order to leave coal power plants running at their minimum stable capacity even at times of high
wind generation. In this case, coal plants’ cycling costs will be based on hot start costs; ii. wind
is forecast to generate consistently for more than 8 hours, and coal plants are turned off. In this
scenario, coal plants’ cycling costs will be larger, and equal to their warm start costs.
Wind has a direct effect on the shadow price and an indirect effect on the costs of thermal power
plants. When wind blows, the shadow price decreases, as wind generation displaces more expensive
plants: thermal power plants reduce their production on average. The indirect effect arises since
additional wind increases power plants’ ramping costs, even if less then proportionally. Troy et al.
(2010) highlight that ramping costs vary for different power plants. In particular, these costs are
quite large for baseload gas and coal power plants, whereas an OCGT can easily ramp up and
ramp down following variations in electricity prices and wind generation. However, the OCGT is
the most expensive power plant on the system, in terms of marginal cost, and is therefore not an
efficient substitute for baseload plants.

Table 3 compares the characteristics of the series in the 3000MW scenario with those emerging
in the baseline, focusing on the baseload power plants: coal and CCGT. As expected, Table 3
shows that the shadow price in this scenario decreases by 1.4%. Table 3b reports the changes in
the ramping costs between the baseline and the 3000MW scenario for coal and gas plants. Ramping
costs increase, as expected, but minimally. Note that ramping costs do not include other costs that
plants might incur when changing their output, such as wear and tear costs that tend to be larger
for less flexible plants Denny and O’Malley (2009). Finally Table 3 calculates the change in the
number of generating periods for coal and gas plants respectively. The last line summarises the
results by aggregating the hourly periods into days. It shows that in all scenarios the coal plant
generates for fewer periods than the natural gas plant. However, the number of generation periods
decreases less for coal than for gas plants with increased wind penetration.

It is particularly interesting to observe the behavior of the coal plant, the least flexible plant we
consider. As mentioned earlier, it has technical constraints that limit its ability to ramp frequently.
Given the SEM operating rules discussed in Section 2.1, when wind sets the shadow price (i.e.
there is sufficient wind to meet all the demand), the System Operator (SO) is still forced to keep
less flexible plants in operation if their output is needed when demand increases and/or wind dies
down. The coal plant runs for a relatively short number of periods overall, but this is mostly driven
by the set of fuel and carbon dioxide simulated costs.
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Table 3: Summary statistics: historical and simulated

(a) Shadow price, €/MWh

Simulated Baseline
Mean 40.38 40.96

St.Dev 16.91 16.91
Skewness 5.34 5.35

(b) Cost changes due to ramping,
€/MW h

Gas Coal
Baseline 31.0425 46.2629

3000MW 31.0533 46.2601
∆ 0.011 - 0.003

(c) Generation periods

Gas Coal
Baseline 19671 6838

3000MW 19196 6557
∆ - 475 - 281

(number of days) -20 -12

5.1.3 Scenario 3: no wind capacity installed

In the scenario without wind generation the shadow price is higher than in the baseline, as expected.
Table 4 shows that the gas power plant’s ramping costs are lower. Somewhat counterintuitively,
the coal plant’s ramping costs are marginally higher. This result emerges because in this scenario
coal plants generate more often and consequently turn on and off a (slightly) increased number of
times.

In general the results of this section are the mirror image of the ones presented for the case
where wind capacity is set to 3000MW.

Table 4: Summary statistics: historical and simulated

(a) Shadow price, €/MW h

Simulated Baseline ∆
Mean 42.03 40.96 2.6%

St.Dev 17.20 16.91 1.7%
Skewness 5.39 5.35 0.9%

(b) Cost changes due to ramping, €/MW h

Gas Plant Coal Plant
Baseline 31.043 46.263

Simulated 31.022 46.269
∆ -0.1% 0.0%

(c) Generation periods

Gas Coal
Gen. periods Baseline 19671 6838

Gen. periods 0MW 20491 7379
∆ 820 541

(number of days) 34 23

5.2 Profits

In this section we compare future estimated profits with their historical levels and evaluate how
investment incentives change as wind generation grows. In order to investigate the choices made by
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investors, we determine the necessary condition under which a power plant must run. We then add
the ramping costs that derive from generation patterns of each plant and calculate future expected
profits for each representative power plant type, assuming a yearly discount rate of 2 per cent
(nominal) per year.

The expected profits ado not include fixed costs, but are calculated as the difference between
the electricity price and power plants’ simulated costs (inclusive of ramping costs) plus the capacity
payments, as stated in Equation 6. They should therefore be interpreted as short-run profits.

Future capacity payments are estimated on the basis of the capacity payments paid out per MWh
of available plant from 2008 to 2011. We use the yearly average of these amounts to approximate
the level of capacity payments for future years. We follow a similar procedure to determine uplift
costs. Di Cosmo and Malaguzzi Valeri (2012) show in their analysis that there is no statistical
relation between the amount of wind generation and uplift costs. We therefore assume here that
uplift costs are fixed and equal to their average between 2008 and 2011.

The present value of the profit stream is calculated according to the following expression for
each plant type:

E(πFuture) =
T∑
i=0

( 1
(1 + r)i

)
πi (16)

in which T is the number of simulation periods, πi represents profits in period i, and r is the
discount rate. We compare these results to the profits realised in the baseline by the same power
plants. Future profits are calculated from 1 January 2012 for approximately 3 years. Presenting
the results as differences from the simulated baseline allows us to clearly identify the effect of wind.

5.2.1 Comparing 3000MW of wind capacity installed in the system with the baseline

When installed wind capacity increases, all power plants face lower profits. As shown earlier, they
face a lower shadow price and generation costs that are (marginally) higher. The other generation
revenue sources, capacity payments and uplift, are unaffected by wind. Overall, profits decrease by
the amounts displayed in Table 5. Note that profits should be interpreted as the profits for each
MW of installed capacity for the thermal plants.

Table 5: Realised and expected profits, present value in €(thousands)/MW

Gas Coal Distillate
Profit Baseline 476.13 282.36 219.56

Profit Future 464.90 278.26 219.59
Difference -2.36% -1.45% 0.01%

All profit streams refer to a 3-year period

The profitability of CCGT gas power plants with respect to the calibration period decreases
by 2.36%, and the profitability of a coal power plant decreases by 1.45%. The situation does not
vary for the distillate-fueled OCGT power plant, as it is the peaking plant and we assume that its
ramping costs are negligible.
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Profits of the fairly unflexible coal power plant decrease less than the profits of the CCGT
power plant. This result is driven by the constraints imposed on the system in order to guarantee
its reliability. WIth more wind, traditional plants will not generate as much. At the same time, to
maintain system reliability, thermal plants remain on standby in case wind stops blowing. In our
model, we impose that power plants get zero profits for all the periods in which wind generation
is high enough to determine the marginal price, as during these periods the power plants only
receive constraint payments (equal to their marginal costs). This also means that the least flexible
power plant (coal) is less affected by the high wind penetration than the CCGT power plants, as
it continues generating due to its ramping inability and low marginal costs. This in turn limits the
losses that this power plant faces in the high wind scenario with resect to the CCGT plant.

5.2.2 Scenario 3: no installed wind

In the scenario without wind generation results are symmetric: the shadow price is higher and
generation costs are lower. Thermal power plants therefore realise higher profits, compared to the
simulated baseline.

As the distillate power plant doesn’t benefit from lower ramping costs, its profits are not sta-
tistically different.

The following Table summarises these results:

Table 6: Realised and expected profits, present value in €(thousands)/MW

Gas Coal Distillate
Profit Baseline 476.13 282.36 219.56

Profit Future 498.47 290.89 219.58
Difference 4.69% 3.02% 0.01%

All profit streams refer to a 3-year period

6 Conclusions

In this paper we have analysed the effect of increased wind generation on the incentives to invest in
new thermal plants in the context of a deregulated market. In a deregulated market, the decision
to build new plants rests with private investors, who will decide on the basis of expected profits. To
measure how profits change with more wind we build three different scenarios in which the installed
capacity of wind varies.

We set the correlation coefficient between wind and shadow price equal to -0.002, as this is the
value that minimizes the difference between the historical and the simulated shadow price. The
profits of the power plants are calculated by simulated future fuel costs, ramping costs, uplift costs
and capacity payments.

We build a baseline where we assume that the wind in the system is the same as in 2011.
The difference in the results between this scenario and the past can be ascribed to differences
introduced by the specific simulation methodologies used here. In particular the use of the Weibull
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wind distribution lowers the simulated shadow price in the baseline with respect to its historical
record. Comparing the increasing wind generation scenario to the baseline allows us to abstract
from these problems.

In the second scenario we consider the effects of 3000MW of installed wind capacity. This
is associated with lower shadow prices, slightly higher generation costs for baseload plants and
consequently lower profits for all generators. The third scenario considers no wind on the system;
this induces higher electricity prices and lower ramping costs than in the baseline. As a result,
power plants’ expected profits are higher.

Interestingly, changes in the natural gas baseload plant’s profits are higher than the changes for
the coal plant. In our analysis this outcome arises because the system operator keeps the cheaper
and less flexible plants in the system to guarantee supply reliability. However a similar result could
hold under different market rules, for example if plants bid their overall costs, including the wear
and tear costs associated with ramping and switching on and off.
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