
A Service Oriented Policy Architecture for Managing Services

Provided by Web-Application Frameworks

Kevin Feeney, Dave Lewis, Declan O Sullivan

Abstract

Policy Based Management technologies represent a potentially important tool in the

management of user services provided by web application frameworks. Current policy

management systems are, however, a poor fit for the domain due to their lack of support for

decentralised management in open environments. The Community Based Policy Management

System is a policy framework designed to facilitate management of services in domains

where relationships are highly dynamic and flexible, where policy specification is distributed

and may use multiple languages, and where management decision-making is shared between

communities of users and service providers. This article describes the CBPMS schema and

architecture and uses an example to show how it provides flexible, dynamic and extensible

policy based management capabilities to the providers of user-services on the web.

Introduction

In the era of web 2.0, the Internet can increasingly be considered to consist of a network of

web-application frameworks, providing a wide range of services1 to users, who consume

services from a wide range of providers. The increasing availability of open web-service

interfaces provided by these frameworks has created potential for the composition of these

services into dynamic compositions - “mashups” that draw information from multiple

independently-provided services to better serve user-requirements. However, from a

management point of view, web-application frameworks largely remain isolated islands.

They lack facilities to apply management rules, such as differentiated pricing models and

access control rules, to the individual services used in compositions, in combination with

rules that apply to the overall composed services, which may be collaboratively managed.

This limits the ability of service providers to take advantage of the opportunities for

collaboration that the increasingly rich world of open web-services provides.

1 By "service", we mean any service that is provided to a user - email, social networking, photo-sharing, etc, not
to be confused with "web-services" which are generally understood to have a much narrower definition.

Policy Based Management (PBM) is an increasingly popular method for combining

flexibility and efficiency in systems and network administration. In PBM systems, decisions

about the behaviour of the system are specified as rules, often expressed in a high level

language, which are then mapped into concrete behaviours by the policy system. The

Community-Based Policy Management System (CBPMS) is a policy framework that is

uniquely designed to manage policies in situations where services are owned by a potentially

dynamic network of different organisations, communities and individuals. It is designed as a

suite of open Internet services, with all elements addressed by URIs. Its architecture enables a

wide range of independently managed application frameworks to be seamlessly integrated

into its management model.

We first introduce a scenario to illustrate the management problems that service providers

face in deploying collaborative services. We use this scenario to show how the decentralised

model of the CBPMS facilitates the collaboration of a wide range of actors in specifying

policy rules to solve management problems. We then describe the CBPMS service oriented

architecture and show how its design supports PBM approaches in an open Internet

environment. The practicalities of policy integration are illustrated by examples drawn from

our implementation of this service based on the Drupal web-application framework2.

Application Scenario

Imagine a company providing a service called AboutMe, which aggregates information about

groups and individuals from a wide range of Internet services3. It traces their social networks,

press releases, blog postings, favourite books, latest photographs, share prices and so on.

Each user can choose what personal information the AboutMe service has access to, by using

the addSource and removeSource capabilities that it provides.

Our company would like to make the service available to third-party service providers who

might offer additional indexing, collation and analysis of the data. However, this would

inevitably give rise to privacy concerns among users. As an example of the pitfalls of

aggregating and sharing personal information, the Facebook beacon system, which shared

details of users’ online purchases with their network of contacts, was turned off by default in

November 2007 in response to user-protests [1]. The problem is that groups and individuals

2 www.drupal.org
3 www.spokeo.com website provides a somewhat similar service

often have very different requirements or preferences in how their information should be used

in different web applications, but are rarely provided with a suitable means for flexibly

controlling and monitoring this.

There is no problem in finding ways to express precise and expressive rules about the sharing

of data. A very wide range of policy specification languages have been proposed [2]. Some of

these languages are capable of expressing sophisticated rules in a wide range of application

domains, such as the eXtensible Access Control Markup Language (XACML) [3] and Ponder

[4]. Others are tightly focused on a specific application domain. For example, the Web-

Services Policy Framework [5] and Web-Services Security Policy Language [6] define an

extensible policy model and a concrete language designed to express SOAP message security

assertions respectively. The problem is, however, that most PBM systems are designed

primarily for application within large organisations and depend on a carefully analysed,

centrally-defined set of roles. They lack abstractions for modelling the fluid relationships and

distributed management that is characteristic of open Internet services – where each actor has

their own view of the world and defines their own policy for the use of their services. PBM

systems also tend to be tightly-coupled to policy languages, with architectures that depend

upon the language’s semantics. Given the heterogeneity of service compositions and their

policy requirements and the wide variety of policy languages available, it is not clear that it is

desirable for a management system to impose a single, system-wide policy specification

language. Also, in practice, service management systems tend to be components of

proprietary management systems. For example, IBM’s SOA governance products [7] are

designed for deployment within IBM’s enterprise management suites. Such proprietary

systems tend to be difficult to deploy in open environments across multiple independent

organisations.

The CBPMS, by contrast, is a policy framework designed to facilitate the application of PBM

to domains where relationships are highly dynamic and flexible, where policy specification is

distributed and may use multiple languages, with management authority shared between

independent groups and individuals. Instead of using centrally defined roles, the CBPMS

maintains a distributed map of the relationships between individuals, groups and the services

that each manages, with each collaborating individual and group defining their own part of

the map - their own community. This distributed community map is used as the basis for the

delegation of management rights and access to services across the network. The web

application framework is modelled as a set of managed services, each of which is sub-divided

into sets of capabilities, to create a hierarchical resource model. The model can be sub-

divided along any axis that partitions the services' capabilities into well-defined subsets - and

the system uses this model to enable communities to delegate the right to write rules about

well-defined subsets of the capabilities offered by their services to third parties. Service

owners still retain ultimate control of delegated services due to the fact that the policy rules

which they specify have precedence over those specified through delegation.

So how does the CBPMS help solve the AboutMe provider’s problem?

First we must create a hierarchical resource model of the AboutMe service, with each node

representing a well defined subset of its capabilities. In this case the service’s capabilities

can be neatly sub-divided into a tree of actions and a tree of targets as shown in Figure 1. The

CBPMS uses this resource model to manage the controlled distribution of service capabilities

across the community map. Each community in the map can grant access to a well-defined

subset of the capabilities that it owns by delegating a resource authority to another

community. Resource authorities are secure tokens which contain a reference to nodes on the

resource model. For example, in figure 1 [View, Contact Details] is a resource authority

representing the capability to view any of the contact details that AboutMe can provide.

[View, Social Networks]

[V
ie

w,
 P

ho
to

s]

Figure 1. The CBPMS model of the AboutMe service, with capabilities sub-divided into a

hierarchical resource model for each user. Pictured below is an example of a user’s

relationships in the community map and three examples of service-capabilities being

delegated.

Because each part of the community map is managed by the user or group that it represents,

each community can create its own individualised view of the world, while also interacting

with communities defined by others. Each segment of the community map is itself a service

and, like any other service, its capabilities can be delegated to other communities. This

enables the formation of collaborations with complex governance relationships. Each

community can own services and can create its own policy rules to apply to the services that

it owns or has been delegated. Thus, we can allocate ownership of a personalised AboutMe

service, through the CBPMS, to each community. Each community can then make this

service available to third-parties with policies specifying precise constraints on how its

capabilities may be used. For example, an individual may be happy to delegate their personal

information, contact details and CV to a job-matching service, but only allow their close

friends to view the detailed history of their online purchases and social networking activity.

Third parties can add their own policy rules to the capabilities they have been delegated,

specifying further constraints on what information will be available to their users. This

decentralised policy authoring model allows each individual and group to exercise fine-

grained control over their “owned” services.

We now turn to a discussion of the CBPMS architecture and how its design supports

extensible and flexible PBM capabilities. This discussion is accompanied by examples drawn

from our work integrating the popular Drupal web application framework with the CBPMS.

CBPMS Service Oriented Architecture

Due to the heterogeneous nature of the services provided by web-application frameworks, we

must assume that they will have varied requirements in terms of what policies need to be

expressed, what contextual information these policies depend upon and how the policies are

specified. Therefore, flexibility, extensibility and the ability to adapt policy specification

approaches to the semantics of particular services are desirable. The CBPMS architecture

supports flexibility by decomposing the policy system into a number of component services,

as shown in figure 2.

Figure 2. CBPMS service-oriented architecture. The arrows numbered 1 to 8 show the

sequence of service invocations in providing a policy decision to a managed service (the state

information exchanged is in brackets). The arrows marked A to D show the sequence of

invocations in providing a policy management service.

Community Record Management Service

The CRMS maintains the system’s community map, ownership and delegation records and

policies. The map may be spread across multiple, independently managed CRMS servers. It

provides 13 operations to allow individuals and groups to manipulate their part of the map,

add policy rules and delegate authority. The operations were originally derived from long-

term observation of the dynamics of internet communities and are designed allow the system

to flexibly capture highly dynamic relationships, including major changes such as mergers

and splits.

Community Policy Management Service

The CPMS serves three basic functions. Firstly, it enforces access control policy on the

CRMS operations. Secondly, it provides a REST interface, with PUT and GET operations,

and a common XML interchange format defined by the CBPMS XML Schema. Thirdly, as

the community map may be distributed, the CPMS manages the routing of requests and

assembles views of the community map across multiple, distributed CRMS servers.

Resource Authority Information Service

The role of the RAIS in the CBPMS architecture is to provide information pertaining to each

service’s hierarchical resource model. Technically, a resource model is a product-ordering of

the Cartesian product of a set of partial orders, each of which corresponds to a dimension on

which the managed service can be sub-divided into capabilities. In less technical terminology,

each service is modelled as a set of trees and a resource authority is formed from a single

node from each tree. Resource authorities are the units of delegation. They represent

authority to access the capabilities represented by all the nodes on the trees beneath them.

The RAIS provides the following function which the CBPMS uses to compare capabilities as

part of its decision algorithm.

boolean result = impliesAuthority (ResourceAuthority ra1, ResourceAuthority ra2)

Two examples of the function being invoked for our AboutMe service and their results are

shown below.

impliesAuthority ([View, Social Networks], [View, Facebook]) => true

impliesAuthority ([Edit Sources, Social Networks], [View, Contact Details]) => false

The RAIS logically encapsulates all information about the structure of the managed service.

This allows the impliesAuthority function to be provided by the managed service itself. Many

services have dynamic capabilities and their models need to be dynamic to reflect changes to

the functionality offered by the service. For example, if we use the addSource function of

our AboutMe service to add a new source of personal information to our profile, we need to

add another node to the target tree of the service’s resource model. By implementing the

impliesAuthority function itself, the AboutMe service provider ensures that there is no

possibility of the resource model losing synchronisation with the service’s capabilities while

also retaining direct control of how the service is sub-divided into capabilities.

However, in many other cases, services are sub-divided on relatively static dimensions and

can be adequately captured by static models or simple algorithms. In these cases, there is no

real advantage in requiring the provider of the managed service to go to the trouble of

implementing a new function. All that is needed is an adequate means of representing the

hierarchy of capabilities and an implementation of the impliesAuthority function. As part of

the CBPMS implementation we have provided an extensible RAIS server supporting a range

of representation approaches. It provides several generic types suitable for describing a wide

variety of service sub-divisions and these can be extended through inheritance. As an

example, one representation supported is the XGMML graph interchange standard. We can

use it to specify the AboutMe action tree as follows:

<graph directed="1" id="42" name="AboutMe Actions">
<node id="1" label="All Actions"/>
<node id="2" label="View"/>
<node id="3" label="Edit Sources"/>
<node id="4" label="Add Source"/>
<node id="5" label="Remove Sources"/>
<edge source="1" target="2"/>
<edge source="1" target="3"/>
<edge source="3" target="4"/>
<edge source="3" target="5"/>
</graph>

Community Policy Decision Service

The CPDS is the CBPMS service that managed services invoke directly. Its interface

consists of a single function, specified as follows:

result = decision(resource_authority, context)

In order for a service to be managed by the CBPMS, it must invoke this function whenever it

faces a choice that is driven by policy. The CPDS then evaluates the policies that apply to

the service in the given context and returns a decision. Since the CBPMS is policy-language

neutral, the owner of the service can choose whatever policy language or encoding is

convenient for expressing decisions for their service. As part of our Drupal implementation,

we have developed a PHP client which provides convenient access to the CPDS. A snippet

of PHP code, showing an example of using the CPDS to provide access control decisions to

our AboutMe service, is shown below.

$AboutMe = new AboutMeListing($user_id);
$pc = new PolicyClient(“http://chewy.cs.tcd.ie/cpds.php”);
$pc->setAccess(“View”, “CV”);
$pc->setContext(“user_id”, $user_id); //the users id is considered context
$result = $pc->decision();
if($result->isPermitted()){
 $AboutMe->includeData(“CV”);
}

The CPDS is decomposed into three distinct services in order to facilitate the easy integration

of new functionality into the system. The following sections describe these services in turn.

Policy Reasoning Service

One of the design goals of the CBPMS architecture was to enable the management of policies

expressed in a wide range of specification languages and to allow new policy specification

languages and reasoning engines to be added seamlessly into the system. This goal has been

achieved by encapsulating the actual evaluation of policies into a Policy Reasoning Service

(PRS). The rest of the component services within the CBPMS treat policies and policy

decisions as sealed envelopes – the PRS is the only part of the system which needs to

understand the semantics of the policy language. We can thus incorporate new policy

languages into the system without affecting any other components, if they can provide the

required service-interface, which consists of the following operations.

policyResult evaluatePolicy(policy, context)

boolean evaluateResult(policyResult)

boolean isSemanticallyEqual(policyResult1, policyResult2)

The evaluatePolicy operation tells the engine to evaluate the policy against the context and

return a result. Policy evaluations may return results which signify that evaluating the policy

did not produce a decision. For example, the XACML NotApplicable result signifies that no

decision has been reached. The PRS provides the evaluateResult function to allow the

CBPMS to distinguish such results from results that actually contain a decision that could be

transmitted back to the consumer. The isSemanticallyEqual function allows the CBPMS to

identify when two policy results are equivalent.

As part of our CBPMS implementation, we have developed a generic PRS platform which

enables the rapid integration of new policy reasoners through extending simple templates.

Context Mapping & Discovery Service

A basic requirement of any policy system is that the entity evaluating the rules must have

access to the context in which the decision is being made. Thus, when a managed service

invokes the decision service, the system must ensure that whatever contextual information is

required in order to evaluate the relevant policy rules is available. To give a simple example

of what this means: if you write policy rules which depend upon a user’s past actions, such as

“three consecutive failed log-ins will result in the account being locked”, your policy system

must have access to information about the user’s past actions – in this case whether they have

previously failed to authenticate themselves twice in a row. What amounts to relevant

contextual information, however, is very much dependant on the particular service being

managed and the policy requirements of its owner. Some services may base all access control

policy on the identity of the user accessing the service, while others may depend upon the

state of complex, structured data drawn from a wide range of distributed services.

Not only do services’ context models vary widely, but the context may depend on

information of widely varying scope. Some of the required context may be application

specific, depending on state information embedded in the managed service, while other

aspects may depend on the wider environment and organisation in which the policy system is

deployed. For example, in many environments, user ids and authentication certificates are

managed by independent services and are relevant across multiple managed systems. To

make context modelling as flexible as possible, the CBPMS does not define any specific

context model - it provides support for the definition of application-specific context models,

specified by consumers, and application independent models specified within its CMDS

component.

As part of our CBPMS implementation, we have developed an extensible CMDS framework,

which eases the integration of managed services by providing a suite of extensible templates,

which can be composed to produce a context model suitable for each service’s policy

requirements. For example, we have developed CMDS handlers which add support for

sessions, database queries and several user authentication and identification schemas. They

serve as building blocks from which a structured context model can be dynamically

composed. When the CMDS receives a request from a consumer, it launches context

mapping handlers of the types associated with the service. These handlers integrate the

system-wide contextual model into the consumer’s context map to provide a custom context

model tailored to the needs of each application.

There are many situations in which it may not be desirable for the policy system to attempt to

fully populate the context model in advance of policy evaluation. Certain rarely-evaluated

policies may require access to large volumes of information and it may not be practicable to

populate this context in every situation. The contextual information that some policy rules

depend upon may also only become clear when the rule is actually evaluated. Therefore, the

CMDS also provides a discovery function to allow policy reasoning engines to discover

information when some required contextual information is missing.

Community Policy Selection Service

The Community Policy Selection Service (CPSS) implements the core policy selection and

conflict resolution algorithms that the CBPMS depends upon. It serves as the hub of the

architecture, orchestrating the distributed component services that are involved in reaching a

decision. It uses the CRMS and RAIS to identify which policy rules in the system are

relevant to any particular service invocation. It first retrieves policies from the community

that owns the service, and sends them to the PRS to be evaluated. If one or more of the

evaluated policies produces a decision, according to the evaluateResult function of the PRS,

the search ends. Otherwise relevant policies are retrieved from communities that have been

delegated a resource authority for the service and sent to the PRS for evaluation in turn. The

process continues until a decision is produced or no more delegations or policies remain to be

evaluated. This algorithm is responsible for a key feature of the CBPMS model – policy

precedence mirrors the delegation chain for each service. The system takes a pragmatic

approach to avoiding cyclical delegations and network failures, by allowing policies to be

specified which limit delegation chains or define timeouts.

The CPSS is also responsible for the resolution of policy conflicts. An example of a policy

conflict, would be if we specified a deny access control policy to apply to the [View, Personal

Details] capability of the AboutMe service and a permit access control policy to apply to the

[View, CV] capability. The CPSS uses the isSemanticallyEqual function of the PRS to

identify such conflicts and it allows a wide range of algorithms to be applied to resolve them

– particular communities, policy rules and delegations can all be given relative precedences.

If no conflict resolution algorithm is specified, the CPSS can identify the community in

which the conflict must be resolved and alert its owner.

Policy Management Front End

The CBPMS is composed of the services described above and does not include a user

interface. Nevertheless, the viability of the system depends, to a large extent, on the

availability of tools to help users and service managers to translate their high level goals into

concrete policy rules, while helping them to understand the consequences of policy changes.

Presenting such potentially complex information to users in an accessible way is a difficult

problem. To address it, we have taken a two-pronged approach. As part of our Drupal

integration, we have developed a module which provides a graphical map of the chain of

delegations of each service. Management policies for each community are set through

Drupal’s standard management interfaces, using templates consisting of checkboxes and

other simple user interface elements that map to parameterised rule sets. This allows us to

progressively increase the complexity of the choices offered to trial-users and to monitor how

this impacts upon their use of the system.

In parallel with our Drupal development, we have been exploring the user interaction

concerns of more complex rule authoring. This research is based on creating prototype

models using the Graphical Modelling Framework (GMF) on the Eclipse platform to perform

user-centred studies using the underlying CBPM services and data, but with different direct

graphical manipulation designs to capture the complexities of policy authoring. Ultimately

we aim to port the more successful designs to a rich web application interface using Ajax and

advanced graphical capabilities, such as those offered by the 'Processing' graphics library

from processing.org.

Figure 3. Twin-pronged approach to HCI, with the simple graph interface of our Drupal

module pictured alongside the Eclipse-based GMF model prototyping system. Both depict the

same underlying delegation chain.

Conclusions & Future Work
This article has described how the CBPMS can be employed to provide a flexible and

extensible framework for the dynamic management of user-services provided by web

application frameworks. We have developed a fully-featured CBPMS system and integrated a

range of services which are driven by CBPMS policy decisions. Work on integrating the

Drupal web application framework with the CBPMS is proceeding through progressively

examining how the addition of various plug-ins, new services and new more complex policy

authoring forms to the system affects its resource model, with the aim of developing an

extensible suite of service resource-model templates. This platform is a test-bed for the

evaluation of the limits of management decentralisation. We are also examining how

semantic enrichment of resource models can be used to model and help constrain the dynamic

nature of service capabilities and context models.

Acknowledgements
This work is partially supported by Science Foundation Ireland under Grant 03/CE3/1405 as

part of the Centre for Telecommunications Value Chain Research (CTVR).

Links
More about the CBPMS: http://kdeg.cs.tcd.ie/cbpms

References

[1] Story, L. and Stone, B. “Facebook Retreats on Online Tracking”, New York Times, November 30, 2007
retrieved from http://www.nytimes.com/2007/11/30/technology/30face.html

[2] Boutaba, R. and Aib I. "Policy-based Management: A Historical Perspective", Journal of Network and
Systems Management, vol. 15, no. 4, November 2007, Springer Netherlands.

 [3] Moses, T. (Ed), “eXtensible Access Control Markup Language (XACML), Version 2.0”, OASIS Standard, 1
Feb 2005. Retrieved from: http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[4]Damianou, N., Dulay, N., Lupu, E. and Sloman, M.: "The Ponder Specification Language", Proceedings of .
Policy 2001: IEEE Workshop on Policies for Distributed Systems and Networks, Bristol, UK, 29-31 Jan. 2001,
Springer-Verlag LNCS 1995, pp. 18-39.

[5] IBM, BEA, Microsoft, SAP, Sonic Software, & VeriSign. (2004). “Web Services policy frame-work (WS-
Policy)”. Retrieved from http://www-128.ibm.com/developerworks/library/specification/ws-polfram/

[6] Della-Libera, G. et al. (2002). Web Services security policy language (WS-SecurityPolicy). Retrieved from
http://www-106.ibm.com/developerworks/library/ws-secpol/

[7] Brown, W., Moore, G., Tegan, W. “Soa Governance – IBM’s approach” IBM White Paper, August 2006.
Retrieved from ftp://ftp.software.ibm.com/software/soa/pdf/SOA_Gov_Process_Overview.pdf

	A Service Oriented Policy Architecture for Managing Services Provided by Web-Application Frameworks
	Kevin Feeney, Dave Lewis, Declan O Sullivan

	Abstract
	Introduction
	Application Scenario
	CBPMS Service Oriented Architecture
	Community Record Management Service
	Community Policy Management Service
	Resource Authority Information Service
	Community Policy Decision Service
	Policy Reasoning Service
	Context Mapping & Discovery Service
	Community Policy Selection Service
	Policy Management Front End
	Conclusions & Future Work
	Acknowledgements
	Links
	References

