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Preface 

 

 

 

This thesis describes original work that has not been submitted for a degree at any other 

university. 

 

The investigations were carried out at the Department of Civil Engineering, University 

College Dublin, during the period from September 1994 to September 2000, under the 

supervision of Dr Tom Widdis. 

 

The main part of this thesis describes the development of a new automated hollow 

cylinder apparatus which facilitates accurate measurement of soil constitutive 

behaviour, from its quasi-elastic region, to failure, during stress path testing. A 

complementary sample preparation apparatus was developed to reconstitute hollow 

cylindrical test specimens of sand, to a prescribed density. 

 

 

This thesis is presented in two volumes. The first volume contains the body of the text 

and is 126 pages long. The second volume contains ninety A3 size component and 

assembly drawings for the new HCA and its sample preparation apparatus. 
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DEVELOPMENT OF A NEW APPARATUS 

FOR HOLLOW CYLINDER TESTING 
 

 

 

The Hollow Cylinder Apparatus (HCA) is the only soil test device that can facilitate 

independent control of both the magnitudes and directions of the principal stresses. The 

stress history and loading conditions at a point in a soil deposit can be reproduced on a 

Hollow Cylindrical (HC) specimen, and its constitutive behaviour and pore-pressure 

response measured. However, shortcomings in the equipment, instrumentation and the 

procedural approaches can potentially invalidate the test results obtained from existing 

HCAs. Measurement and process control limitations confine their operation to static 

testing over the strain range from 410  to 0.20. Many of the existing HCAs are incapable 

of generalised stress path testing. 

 

A new HCA that can simulate the complex loading conditions at a point in a soil 

deposit, on a hollow cylindrical test specimen, was developed. It facilitates accurate 

measurements of the specimen’s constitutive and pore-pressure responses over the 

complete strain range during stress path testing or displacement-controlled loading. Test 

specimen dimensions, which limit the stress non-uniformity during testing to an 

acceptable level, were identified. A sample preparation apparatus was also developed 

and a technique was perfected to reconstitute saturated sand specimens in the new 

apparatus. 

 

The research and development of the new HCA’s cell, its pressure systems, the servo-

mechanisms, which displace and rotate the loading piston, their instrumentation and 

ancillary equipment, are described. Linear actuators control the hydraulic systems, 

which apply the inner and outer confining pressures and the back-pressure to the 

specimen. Innovative servo-mechanisms, which induce an axial force and a torque 

across the specimen, are mounted beneath the cell so that it can be readily assembled 

and disassembled by an operator. The cell’s tie bars are located inside its acrylic 

cylinder and the load path through it is extremely stiff. The servo-mechanisms can 

quasi-statically or dynamically load specimens of all soil types, weak rock and pavement 

base materials in direct compression, extension or pure torsion, to failure. They can also 

apply tensile normal stresses to the test specimen to facilitate investigations into the 

engineering properties of materials other than soil. The mechanisms have a low inertia, 

zero backlash and insignificant compliance values. 

 

The axial force, torque and the confining pressures that are applied and the specimen's 

polar deformational, pore-pressure and volume change responses can be accurately 

measured. Its static deformational response can be measured over the specimen’s zone 

of uniform stress, near its mid-height using instruments located inside the cell. These 

instruments can be remotely relocated during a test to accommodate the specimen’s 

deformational response. The control sensitivity of the pressure systems and servo-

mechanisms and the instruments' resolution and accuracy values are sufficient to 

facilitate low amplitude cyclic testing in order to determine the soil’s quasi-elastic 

constitutive properties. The specimen's boundary displacements can also be measured 

using instruments located outside the cell. They facilitate dynamic measurements over 



 

 

the reduced strain range from the order of 10
-4

 strain, to failure. A hollow-shaft type 

encoder was uniquely incorporated in this instance to measure the specimen's twist. The 

servo-mechanisms can readily produce the high-speed response, which is necessary to 

facilitate accurate dynamic testing. A complementary control system was integrated in 

the new HCA with the aim of developing a fully automated stress path and 

displacement-controlled test device. 

 

Test specimens of 71 mm inner diameter, 100 mm outer diameter and 200 mm high 

were selected in view of theoretical and practical considerations. These dimensions also 

facilitate the testing of undisturbed samples. The development of the sample preparation 

apparatus and the technique, which employs the wet-pluviation method followed by 

tapping that was perfected, is described. This technique can consistently reconstitute 

specimens with a uniform controlled density and their dimensions have excellent 

repeatability. 
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