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Abstract— Existing approaches for selecting the most appropriate 
reasoner for different semantic applications mainly relies on 
discussions between application developers and reasoner experts. 
However this approach will become inadequate with the 
increasing adoption of Semantic Web technologies in applications 
from different domains and the rapid development of OWL 
reasoning technologies. This work proposes RESP, a computer 
aided reasoner selection process designed to perform reasoner 
selection for different applications and so reduce the effort and 
communication overhead required to select the most appropriate 
reasoner. Preliminary evaluation results show that RESP 
successfully helps application developers to select the most 
appropriate reasoner, or at least narrow down the number of 
candidate reasoners to consider. Contributions of this work are 
two folds: (1) the design of a (relatively simple but useful) 
computer aided OWL reasoner selection process, and (2) the 
identification and discussion of a set of example application 
characteristics that can affect the OWL reasoner selection. 

Keywords- Reasoner Selection, Application Characteristics, 
Reasoner Characteristics, Semantic Application Development 

I.  INTRODUCTION 
The formal definition of the Web Ontology Language (OWL) 
enables automated reasoning or entailment to be performed 
over the contents of OWL ontologies revealing hidden 
knowledge. Owl has been adopted in ever more applications 
from various domains, such as bioinformatics [5], 
publish/subscribe systems [3, 7, 21], configuration 
management [15], sensor networking [2, 4, 14, 16] and so on. 
This, conversely, has stimulated extensive studies on OWL 
reasoning technologies, with an ever growing number of new 
OWL reasoners and reasoning technologies emerging. 

However specific reasoners are designed to solve different 
problems, such as: complete OWL-DL classification, efficient 
conjunctive query answering, reasoning over large datasets and 
so on, and reasoners may need to trade off one reasoner 
characteristic (RC) against another, depending on their 
specialisation. For example a reasoner designed for efficient 
and scalable ABox query answering may not compute 
complete OWL-DL classification therefore is not suitable for 
applications requiring complete OWL-DL classification. 
Similarly an in-memory reasoner capable of effectively and 
completely classifying ontologies may not natively support 
file-backed storage therefore is not suitable for applications 
with large datasets when used on its own. It is clear from the 
above examples that interplays between RCs and the 

application characteristics (AC) determine the suitability of a 
reasoner for a specific application. 

The existing reasoner selection approach relies largely on 
consultation between application developers and reasoner 
experts, and until recently this approach was straightforward 
and sufficient because of the relatively small number of OWL 
reasoners and RCs. However, the ever widespread adoption of 
semantic web technologies for applications in different 
domains and the rapid development and emergence of new 
OWL reasoning technologies cause this approach to become 
increasingly inadequate in the future. Firstly, as semantic 
applications grow more complicated and move beyond initial 
prototyping stages, these applications will be developed and 
extended by dedicated application developers with little or no 
knowledge of the intricacies of ontology reasoning. 
Furthermore reasoner experts may not always precisely 
understand some ACs expressed in domain specific languages. 
All these could result in a considerable amount of effort to be 
devoted before an agreement is reached, or even a wrong 
reasoner to be selected. Secondly the existing approach 
requires that a reasoner expert is accessible to application 
developers, which will not always be the case. These 
inadequacies motivate an automated approach to help 
application developers to limit consultation requirements or 
even to independently select a suitable reasoner for their 
semantic applications. 

This paper describes RESP, a computer aided OWL 
REasoner Selection Process, to select an appropriate reasoner 
for applications, based on the particular ACs of the application. 
RESP matchmakes between ACs and RCs. Application 
developers input the set of ACs for their application, and by 
matching them to the RCs of registered candidate reasoners, 
according to a set of predefined AC/RC connections, RESP 
evaluates and ranks the suitability of candidate reasoners. A 
prototype implementation of RESP, termed TARS, is described 
for demonstration and evaluation purposes.  

A usability experiment is carried out to evaluate RESP 
using TARS. RESP helps participants with little knowledge of 
ontology reasoning to automatically select an appropriate 
reasoner or reduce the number of candidate reasoners to 
consider. Analysis of post experiment questionnaires indicates 
that with some further development it is likely that most 
participants could have independently identified the appropriate 
reasoner. (Note: this work is based on OWL 1, and extensions 
of this work for OWL2 are ongoing and will be presented in 
future work.) 



This paper is organized as follows. Section 2 presents work 
related to this research. Section 3 details RESP and a set of 
example ACs. TARS is presented in section 4, followed by 
evaluation and discussion in section 5. This work concludes in 
section 6 with a discussion of ongoing and future work. 

II. RELATED WORK 
To the best of our knowledge there is no similar research on 
this topic. Therefore related work of this research is comprised 
of a discussion of sources where ACs/RCs are identified, 
including a survey of ontology-based applications from four 
candidate domains and a categorization of OWL reasoners. 

A. Survey of Ontology-based Applications 
This section briefly discusses how OWL and its reasoning 
technologies are applied in applications from four areas: 
publish/subscribe (pub/sub) systems, sensor network systems, 
configuration management systems, and bioinformatics/ 
medical systems. 

1) Semantic Publish/Subscribe Systems: In pub/sub 
systems subscribers register subscriptions in a broker (or 
networked brokers) and publishers present publications to the 
broker. A conventional pub/sub broker syntactically matches 
the content of publications against registered subscriptions and 
successfully matched publications are propagated to the 
corresponding matched subscribers. Semantic pub/sub systems 
extend this approach by matching based on the semantics of 
message contents, informed by an associated ontology and 
facilitated by an ontology reasoner in the broker.  

Research conducted in [7] presents a document retrieval 
service based on a (centralized) semantic pub/sub system, 
implemented using the Racer system [6]. This research points 
out the importance of closed-world queries in information 
retrieving systems and uses set operations to simulate a local 
closed world in an open world environment. In addition an 
incremental ABox query answering mechanism is adopted to 
avoid continuous querying evaluation. Later work in [3] points 
out the scalability problem of DL tableau reasoners when 
applied in semantic pub/sub systems [7, 18], i.e. re-checking 
consistency of the knowledge base (KB) from scratch and re-
evaluating subscriptions for each update. It proposes to use 
incremental consistency checking and incremental query 
answering as a solution. Work in [21] presents a series of use-
cases for semantic publish/subscribe systems, demonstrating 
that even for a single middleware system, different reasoners 
may be appropriate for different deployments. 

2) Semantic Sensor Network Systems: Semantic Web 
technologies are widely applied in sensor network systems. A 
typical usage is annotating sensor readings (or sensors 
descriptions) using semantically rich tags enabling more 
intelligent data processing [2, 24, 36] and better 
interoperability [14, 16, 35]. Another usage could be the use of 
ontology and ontology reasoning technologies to perform 
complex management tasks, e.g. sensor tasks assignments [4] 
or fault correlation [41]. 

Work in [2] describes a coastal ecosystem monitoring 
application using wireless sensor networks for data collection 
and delivery, and an OWL reasoner for data validation and 
inference. Other than standard OWL reasoning services several 
other features are also required in this system, including the use 
of rules to model domain specific knowledge and numeric 
comparison/computation. This research also extracts two 
reasoning requirements for sensor network systems, including 
the requirement for distributed reasoning and the provision of a 
user-friendly graphical interface for domain knowledge 
authoring. Research in [4] presents a semantic sensor task 
assignment approach for the intelligence, surveillance and 
reconnaissance domain. This work observes the high degree of 
variability in such environment and therefore requires any 
solutions to sensor task assignment in this domain should be of 
high agility against changes. In addition they also point out that 
explanation of assignments is required. The Semantic Sensor 
Web (SSW) [16] suggests enriching sensor observations with 
semantic metadata to enhance interoperability, with some of 
the semantic processing taking place on embedded devices 
with limited resources. Web-aware approaches are necessary 
for both management and data processing and rule-based 
reasoning should be used to derive new knowledge based on 
application-specific semantics. Work in [20] surveys over a set 
of 12 sensor ontologies and points out, conjunctive queries, 
rules and OWL reasoning were key technologies to provide 
semantics support at different layers in semantic sensor 
networks.  

3) Configuration Management Systems: Configuration 
management is another area that adopts ontology and ontology 
reasoning techniques. Work in [15] proposes using OWL 
inconsistency checking to deduce the validity of software 
configuration. The DL ALCO subset is found to be sufficient 
for their modelling, however a full-fledged OWL-DL reasoner 
is still used in order to completely deduce inconsistencies. In 
addition justification of validity is also required. Work in [52] 
also shows the need to support domain-specific rules in this 
application area. 

4) Bioinformatics and Medical Systems: Ontology-based 
approaches are widely applied in bioinformatics for 
knowledge access, modelling, and reasoning. Two well-known 
applications are the Gene project1, which provide a controlled 
vocabulary of terms (concepts) for describing genes and gene 
product attributes [5], and the SNOMED ontology2, to provide 
a scientifically validated set of terms for practitioners to share 
health care knowledge. 

Research in [11] identifies nine requirements that OWL-
based bio-ontologies may have on OWL reasoning. They are: 
supporting the ontology development process; classification; 
model checking; finding gaps in an ontology and discovering 
new relations; comparison of ontologies; reasoning with 
mereological parthood and other (part-whole) relations; using a 
hierarchy of relations; reasoning across linked ontologies; and 
complex queries. Some of these, e.g. classification, can be 

                                                                                                                                                                                                                                                                                                             

1 http://www.geneontology.org/ 
2 http://www-calit2.nbirn.net/research/ontology/snomed.shtm 



solved by existing OWL reasoners, whereas some others, e.g. 
finding gaps and new relations, were quite specific to life 
science and were not yet feasible for existing OWL reasoners. 

B. OWL Reasoner Categorization 
We selected a subset of available OWL reasoners and 
categorized them into four types according to their reasoning 
algorithms: forward-chaining rule-entailment reasoners, 
resolution-based reasoners, DL tableaux reasoners, and hybrid 
reasoners. The first two types together are referred to as rule-
based reasoners in this paper as they are (horn) rule-based. 
Resolution-based reasoners are further divided into two 
subtypes, semantic reduction reasoners and syntactic reduction 
reasoners, according to the way OWL is reduced.  

In the following subsections example reasoners are listed 
for each reasoner type. Although some of the selected reasoners 
are not currently in active development, they are included as 
they are well-documented and are typical reasoners of the type, 
and their source code is publically accessible. 

1) Forward-Chaining Rule-Entailment Reasoners: rule-
entailment reasoners reason over OWL ontologies using a set 
of entailment rules. Rules are evaluated in forward chaining 
paradigm using algorithms such as RETE [22] or RDBMS. 
Reasoners of this type usually have the intrinsic capability to 
process rules and usually have support for closed-world 
assumption (CWA). Furthermore some reasoners of this type 
are designed to enable (relatively) scalable data stores to be 
built and reasoned, e.g. OWLIM3 is able to process ontologies 
as large as billions of triples. However rule-entailment 
reasoners cannot provide complete OWL DL reasoning. Other 
rule entailment reasoners include Jena4 and BaseVISor5. 

2) Backward-Chaining Resolution-Based Reasoners: 
Resolution-based reasoners reduce OWL ontology to First 
Order Logic (FOL) programs or FOL fragments (e.g. horn 
clauses), and delegate OWL reasoning to a resolution engine 
such as FOL theorem prover or (disjunctive) Datalog engine. 

The reduction from OWL ontology to FOL programs can 
follow either a semantic or a syntactic approach. The former 
approach reduces OWL to FOL by following their semantic 
connections. For example the OWL axiom subclassOf(C,D) is 
reduced to FOL clause as ¬CT(x)∨DT(x), where CT and DT are 
the FOL predicates for C and D. Reasoners adopting this 
approach include KAON2 [12] and Hoolet [17]. The latter 
approach syntactically translates OWL constructs into FOL, 
e.g. the above axiom is reduced to subclassOfT(C, D) where 
subclassOfT is a syntactic FOL-translation of subclassOf. 
Entailment rules are still required to ensure reasoning. 
Reasoners of this type include Orel [51] and F-OWL [19]. 

3) DL tableaux reasoners: DL tableaux reasoners convert 
OWL ontology into Description Logic (DL) formulae and then 
perform reasoning by checking KB satisfiability [1]. Some DL 

                                                                                                                                                                                                                                                                                                             

3 http://www.ontotext.com/owlim/ 
4 http://jena.sourceforge.net/ 
5 http://vistology.com/basevisor/basevisor.html 

Tableaux reasoners, such as Pellet6, FaCT++7 and RacerPro8, 
are able to perform complete OWL DL reasoning. Some DL 
tableaux reasoners such as Pellet are also extended to support 
rules and CWA. 

4) Hybrid Reasoners: some reasoners combine more than 
one reasoning algorithms. DLEJena [28] combines the DL 
tableau reasoning algorithm with rule-entailment algorithm by 
using the former to perform efficient and complete TBox 
reasoning while using the later to perform scalable ABox 
reasoning. Hermit [50] tries to limit the or-branching by using 
a bybrid of resolution and tableau.  

There are some other reasoners using algorithms other than 
any of the above mentioned are not included in this 
categorization. Some examples include CEL [37], a classifier 
using a special subsumption algorithm to compute classify the 
EL++ subset of OWL [31], QuOnto [33] that reformulates 
users’   queries by incorporating TBox information, and SPIN9 
that use SPARQL to model and evaluate OWL 2 RL rules.  

Other reasoner categorizations also exist. A categorization 
can be found in [19], where three types are derived: reasoners 
using specialized DL engines, reasoners using full FOL 
theorem provers, and reasoners using a reasoner designed for 
FOL subsets. This categorization does not distinguish rule-
entailment reasoners from resolution-based reasoners (it is 
included in the third type due to the use of horn rules). 
However reasoners may vary in some RCs, which may affect 
their selection in the context of this research. For example 
semantic-reduction reasoners, e.g. KAON2, can perform query-
time reasoning enabling faster response time for changes in KB 
while rule-entailment reasoners, e.g. Jena, require pre-
reasoning before a query is answered. 

III. THE RESP REASONER SELECTION PROCESS 
This section describes RESP, and identified a set of example 
ACs. In-depth discussion is provided for each AC. 

A. Overview of RESP 
Before RESP starts functioning some prerequisites are required 
(Figure 1). A set of candidate ACs need to be identified and 
reasoners are registered as sets of RCs. Connections between 
ACs and RCs are analyzed and modelled in RESP allowing the 
selection process to function. Reasoner selection in RESP is 
performed in three steps (Figure 1). (1): ACs for the target 
application are identified and input into RESP. (2): Matching is 
performed between ACs/RCs according to the predefined 
connections. (3): Reasoners are ranked according to the number 
of matched ACs (satisfaction rate). A reasoner that matches all 
input ACs is a suitable reasoner for this application. If no 
suitable reasoner is found users can revise the previously input 
ACs and re-run RESP.  

                                                                                                                                                                                                                                                                                                             

6 http://clarkparsia.com/pellet/ 
7 http://code.google.com/p/factplusplus/ 
8 http://www.racer-systems.com/ 
9 http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-
sparql-using-spin.html 

http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-sparql-using-spin.html
http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-sparql-using-spin.html


RESP is designed to be an abstract process without 
specifying any technical details for ACs, RCs and the matching 
algorithm. This enables a domain-specific RESP to be 
constructed for each domain of applications. Therefore more 
accurate domain specific vocabularies can be used to describe 
ACs allowing more targeted use by application developers. In 
this research we identify and discuss a set of example candidate 
ACs based on the semantic application survey conducted in 
section II to evaluate and demonstrate RESP. 

 
Figure 1.  An overview of the RESP reasoner selection process. 

B. Example Candidate ACs 
In this section we discuss the how reasoner selection can be 
affected by ACs from a selected set of eleven aspects, as listed 
below. Four things need to be clarified. First this set of ACs is 
still at its early stage and therefore it is not trying to be 
complete and definitive. Moreover ACs may vary from 
domains with different priorities. In this research only some 
generally applicable ACs are investigated. Thirdly we aim to 
make only some suggestive connections between ACs and how 
reasoners can satisfy them. The relative priorities and 
weightings of different ACs are dependent on the domain and 
the priorities of the application developer. Lastly connections 
between ACs and RCs are studied only in analytical rather than 
empirical means. Therefore performance-related and non-
functional issues are not discussed in this research. However 
we do not deny their importance in selecting an appropriate 
reasoner for semantic applications and taking the performance 
of reasoners as an AC is part of the future work.  

1) Reasoning Over Frequently Changing KB 

Many applications, such as semantic pub/sub systems [3, 7, 
8] and semantic sensor network systems [4, 24], need to reason 
over frequently changing KBs rather than static KBs. Therefore 
the ability to handle changing KBs is important for the 
underlying reasoners. Most state of the art DL reasoners are 
designed to reason over static KBs. Some dedicated approaches 
are proposed allowing the incremental handling of updates of 
different types. Incremental consistency checking algorithms 
[8] are proposed to incrementally update tableau completion 
graphs for ABox updates in DL SHIQ and SHOQ, subsets of 

OWL DL without nominals (for SHIQ) and inverse properties 
(for SHOQ). Later work in [3] addresses the continuous query 
answering on KBs in DL SHI. Incremental classifications 
algorithms are also proposed to handle TBox updates [13, 23]. 
Despite the extensive research of incremental reasoning for DL 
tableaux algorithms, its application is quite limited. Pellet 
supports incremental classification but only though OWL API10 
(or Jena) via a specialized reasoner interface. This interface 
only supports queries about classes and not instance related 
queries. Pellet’s  incremental consistency checking is not stable 
or well tested. Some other reasoners, FaCT++ and CEL claim 
undocumented support for incremental classification.  

Maintaining materialization incrementally for frequently 
changing KB is a vital issue for rule-based reasoners when 
reasoning over changing KBs. Work in [25] investigates an 
approach to compute a complete and correct materialization for 
rule-based reasoners when streaming data arrive and change 
KBs. Some reasoner independent technologies are also studied. 
For example a cascading reasoner structure is proposed in [24] 
where complex reasoners such as DL tableaux reasoners are 
layered on top to handle less frequently changing data and 
relatively simple but efficient rule-based reasoners are layered 
beneath for maintaining materialization or instantiating certain 
goal predicates.  

2) Concept- vs. Individual-Centric Reasoning Tasks 

The required reasoning tasks may vary from applications: 
some bioinformatics/medical applications such as the Gene 
ontology and SNOMED ontology require TBox classifications 
while some applications such as semantic sensor network 
systems need to reason over KBs mainly consisting of (large 
numbers of) individuals. This feature may largely impact on the 
selection of an appropriate reasoner as the distinct design goals 
of different reasoners. Concept centric applications often 
require a complete concept hierarchy to be constructed and 
therefore the selected reasoner need to be able to completely 
classify the ontology. Many DL Tableaux reasoners are 
designed to provide complete classification reasoning services 
for OWL DL semantics, such as Pellet, Fact++, and RacerPro. 
Some other reasoners such as CEL can compute a complete 
classification for some subsets of OWL.  

However DL Tableaux reasoners usually perform poorly 
when handling large volumes of individual data [26], which is, 
however, an important feature for individual centric 
applications. Therefore for individual centric applications rule-
based reasoners show better suitability due to their superiority 
in scale and speed when handling large ABoxes [12, 28, 29]. 

3) Required Expressivity 

The level of expressivity required by a semantic application 
can affect the reasoner to be selected. For example reasoning 
an SHOIN(D) ontology as expressive as the wine ontology11 
will usually require a full-fledged reasoner that covers the 
entire OWL DL semantics, e.g. Pellet or FaCT++, whereas an 
ALN ontology can be classified using a relatively simple 

                                                                                                                                                                                                                                                                                                             

10 http://owlapi.sourceforge.net/ 
11 http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine# 



structural subsumption algorithm [1]. This characteristic can 
also be embodied when the ontology expressivity fall into some 
specifically designed OWL sublanguages: some rule-
entailment reasoners such as OWLIM and BaseVISor use the 
pD* semantics family [30]. CEL classifies on DL EL++ (into 
which many bioinformatics ontologies fall). Owlgres [32] and 
QuOnto supports efficient query answering over the OWL DL-
lite family [34]. Furthermore the expressivity of the ontology is 
also an important characteristic for composable reasoners to 
compose its reasoning capability to reduce resource usage [27]. 

4) Query-Related Issues 

The means in which applications query ontologies vary. 
Some applications/ontologies pose complex queries in query 
languages [14, 20, 35, 36, 40] while some others only need 
simple queries [21]. This characteristic limits the selection of 
some reasoners. Reasoners such as Pellet, KAON2, RacerPro, 
Jena (with ARQ), OWLIM and so on support conjunctive 
queries to be evaluated. However some reasoners, e.g. CEL and 
FaCT++, only allow ontologies to be queried atomically using 
either pre-defined directives at the command line or from its 
API. They are not suitable for cases where complex queries are 
required. In addition the syntax and functionality are also 
distinct for different query languages. SPARQL, one of the 
most widely used query languages, uses a RDF-based triple 
syntax. It is (partly) supported by many state of the art 
reasoners such as Pellet, KAON2, Jena (with ARQ) and 
RacerPro and so on. Some reasoners also use their own query 
languages. The nRQL is an axiom-based ABox conjunctive 
query language specifically designed for RacerPro. OWLIM 
supports SeRQL, a RDF query language. KAON2 enables 
queries to be formulated using F-logic. Bossam uses 
Buchingae. Thea [38] supports queries to be authored using 
Prolog rules. Some query languages, such as C-SPARQL [39], 
are implemented however not yet incorporated into state of the 
art reasoners so they are not discussed here.  

5) Rules 

Other than OWL semantics the ability to model application 
specific semantics is also an important feature for many 
applications [2, 16, 20, 41]. Therefore the ability to process 
rules is important for these applications to function properly. 
Although varying in the syntax and expressivity of rule 
languages rule-based reasoners have intrinsic support to model 
and process rules. Many tableaux reasoners are also extended 
to support rules, e.g. Pellet and RacerPro partly supports 
SWRL. However there is no evidence that FaCT++ can process 
rules and therefore it is not appropriate for such applications. 
The expressivity and syntax differences among rules supported 
by different reasoners can also affect the selection of reasoners. 
For example in some cases the requirement of negation as 
failure in rules could invalidate reasoners supporting only 
SWRL rules. Details of differences are not discussed here.  

6) Concrete Domains 

It is widely accepted many real-world applications such as 
sensor network systems need to handle concrete objects such as 
strings, numeric numbers, and time. Therefore the ability to 
reason over concrete domains will play an important role in the 
selection of an appropriate reasoner for these applications. 

OWL-DL supports datatypes, a restricted concrete domain. 
Datatype reasoning has been studied for reasoning algorithms 
[42, 43, 44, 45] and most state of the art OWL reasoners 
support reasoning over (part of) the XSD datatypes defined in 
OWL. However only several of them, including Pellet and 
Jena, support reasoning over user-defined datatypes.  

Another form of concrete domain is algebraic comparison 
and computations. The extension of DL tableaux algorithm and 
resolution to support them has been extensively studied [42, 43, 
44, 45]. However as OWL does not support modelling 
predicates over concrete domains (i.e. how concrete objects are 
related, e.g. comparison, math operations) these features cannot 
be directly used with OWL. In fact many rule languages have 
(limited) support through defining built-ins. SWRL provides 
predefined built-ins to handle algebraic comparison and 
computations. Therefore a SWRL enabled reasoner is (to some 
extent) able to process algebraic comparison and computation. 
Some rule-entailment reasoners, e.g. Jena and Bossam, support 
user-defined built-ins and therefore allow arbitrary algebraic 
computations to be modelled.  

7) Closed-World Features 

Some applications, e.g. database-based systems, usually 
believe the knowledge they possess is a complete modelling of 
the domain and some reasoning can be performed based on the 
CWA, e.g. negated queries, checking integrity constraints and 
so on, where missing information is considered as false. 
However OWL is based on the open world assumption (OWA), 
where missing information is treated as unknown, therefore, 
(may) leading to inferences rather than violation. Much 
research is devoted to extending OWL with closed-world 
features [46, 47] and indeed many state of the art reasoners 
choose to include CWA mainly by two means. First some 
closed-world features such as negation as failure are introduced 
through rules or query sub-systems, such as SPARQL, nRQL, 
SeRQL or Jena rules and so on. Therefore closed-world queries 
or integrity constraints can be achieved using queries or rules 
while OWL retains OWA. Second (part of) OWL is modified 
or extended to use alternative closed-world semantics so it can 
be used as a language for integrity checking, e.g. Pellet ICV. 
There is no evidence that reasoners such as FaCT++ and CEL 
have internal support for closed-world features. However they 
can be connected to Protégé where SPARQL queries are posed.  

8) Database 

The requirement to store and reason over large datasets is 
often required by data-centric applications such as sensor 
networks and bioinformatics applications (e.g. Gene ontology) 
where in-memory ontology reasoning could exhaust available 
memory. Many OWL (RDF) stores are available, such as Jena 
TDB, OWLIM, AlegroGraph, KAON2, Oracle database 11g 
and PelletDB. Many in-memory reasoners also support 
database-backed reasoning by connecting to database enabled 
OWL frameworks. For example, FaCT++ and CEL can be 
plugged into OWL API for which OWLDB [48] is a de facto 
database backend. 

9) Ontology Manipulation 



Applications that need to modify ontologies (i.e. 
add/remove axioms), e.g. ontology editing tools, may benefit 
from a set of powerful ontology manipulation interfaces in the 
underlying reasoner. Many state of the art reasoners either have 
a native rich set of ontology manipulation interfaces, e.g. 
KAON2, or can be integrated with an ontology manipulation 
framework, e.g. OWL API and Jena, providing a well-
integrated ontology manipulation/reasoning environment. 
Some other reasoners, such as Bossam, have relative simple (or 
even no) native ontology manipulation interfaces and are also 
not integrated into any ontology manipulation frameworks, so 
they are not quite suitable for this characteristic. 

10) Explanation of Deductions, Debugging 

Explanation of deductions and debugging are required by 
some applications such as ontology engineering tools, 
configuration management tools [1, 15] or bioinformatics 
applications. Some reasoners, such as Pellet, and Jena, 
implement native explanation components enabling 
justifications to be derived for inferences. OWL API also 
implements black-box debugging mechanisms [49], which 
therefore allows explanations to be generated for all pluggable 
reasoners even without built-in explanation components.  

11) Miscellaneous 

There are some other characteristics may affect the 
selection of an appropriate reasoner such as UI (e.g. command-
line, API, GUI), remote interface (DIG, self-defined), operating 
platforms (J2SE, J2ME CDC, J2ME CLDC, C++, prolog), 
open source support, pricing, in active development, and so on. 
They are not discussed in detail in this paper. However, we 
assert that the RESP process provides native support to be 
extended to support additional or alternative ACs and RCs.  

IV. THE TARS REASONER SELECTION TOOL 
A prototype implementation of RESP, termed TARS (Tool for 
Automatic Reasoner Selection), is constructed as a desktop 
application. The above identified candidate ACs are 
incorporated into TARS and can be selected on an AC 
selection interface. A hint is provided for users to view an 
explanation for each AC. Five candidate reasoners, i.e. 
FaCT++, KAON2, Pellet, Jena and COROR [27], are 
registered in TARS and stored locally so they can be re-used. 
Their selection is motivated by the fact that they are from 
different reasoner categories and therefore have different RCs. 
Results are displayed using traffic light notation. For each AC 
users can examine why each reasoner is / is not suitable. The 
matching process is currently hard coded in Java, however 
ongoing work is focussing on using a generalized rule-based 
approach to perform the matching. 

V. EVALUATION 
This section discusses the design and results of the usability 
experiment of RESP. 

A. Overview 
Two different tasks, i.e. a reasoner selection task and a reasoner 
registration task, are designed to allow evaluation participants 
to experience both distinct facets of RESP. The reasoner 
selection task requires participants to select a most appropriate 

reasoner for a given application scenario using the RESP 
process with TARS. In this task participants are provided with 
an application scenario, from which they must identify the 
ACs, and then input them into TARS to select an appropriate 
reasoner. For the given scenario successful identification of all 
ACs leads to the selection of Pellet and an incomplete (but 
correct) AC set will limit the number of candidate reasoners. 
Participants can iteratively refine the selected ACs until the 
complete set of ACs is achieved. The aims of this experiment 
are (1) to investigate the difficulties for participants to identify 
the complete correct set of ACs, and (2) to support participants 
using the RESP process to select a reasoner for the given 
application scenario and collect feedback on its usability. A 
second task requires participants to analyze a description of an 
existing reasoner implementation authored by reasoning 
experts, and register its RCs using TARS.  

In total 22 participants with software engineering 
experience took part in the experiment. They were divided into 
two groups according to specialities: an application-aware 
group with 17 participants experienced in ontology-based 
applications and a reasoning-aware group with 5 participants 
with stronger backgrounds in OWL reasoners and reasoning 
algorithms. The small size of the reasoning-aware group is 
reasonable as the reasoner registration task aims to collect 
expertise rather than large volumes of feedback. The reasoner 
selection task was assigned to the application-aware group and 
the reasoner registration task to the reasoning-aware group. 
Two questionnaire types were used to gather feedback and 
comments: a RESP evaluation questionnaire to gather feedback 
on RESP and TARS, and a SUS questionnaire as a generally 
accepted approach to evaluate the usability. 

B. Results and Discussions 

Figure 2.  Background of participants in application-aware group 

Self-assessment questions were used allowing participants in 
the application-aware group to rate their expertise in ontology-
based applications and ontology reasoning (Figure 2). 12/17 
participants (71%) had good knowledge of ontology-based 
applications (expert and average users) and nearly half of the 
group (8, 47%) were expert users. However most (14, 82%) 
participants had little or no knowledge on the specifics of 
ontology reasoning and only 3 participants (18%) had good 
reasoning-specific knowledge. 

Results of the reasoner selection task indicates all 
participants successfully identified the most appropriate 
reasoner for the given application scenarios in two iterations 
despite most having little knowledge of the specifics of 
ontology reasoning. Among them, 12/17 participants limited 
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the reasoner selection results to only 2 candidate reasoners in 
the first iteration, and with just a little help refined their ACs to 
identify the correct reasoner in the second iteration. The other 5 
participants selected the correct reasoner in the first iteration.  

AC entry iterations were tracked and causes for mis-
selections were gathered. Investigations reveal two major 
findings as follows. Firstly most participants were not familiar 
with the DL approach to expressing ontology expressivity 
leading to failures identifying the correct reasoner. It is then 
reasonable to infer that with this issue solved, e.g. by carefully 
explaining DL expressivity notations, using OWL 
sublanguages to represent ontology expressivity, or by 
automatically determining the expressivity of a given 
application knowledge base, more participants can pinpoint the 
correct reasoner using only one iteration. Secondly, the AC 
described   as   “reasoning over databases” was erroneously 
selected by 10 participants due simply to presentation 
inconsistencies in the scenario. This problem can be easily 
rectified by providing some additional assistance to determine 
if this is necessary (e.g. based on the size of the data store). For 
both of these issues no change of the RESP process is required. 

Results of the RESP evaluation questionnaire show positive 
feedback. Most participants agree that RESP is easy to 
understand, the given set of ACs can precisely capture most 
applications, and that the TARS interfaces were easy to use. 16 
out of the 17 participants from the application-aware group 
agree that RESP is useful in helping them to choose the most 
appropriate gold-standard reasoner for their given application. 
SUS Scores from the questionnaires were calculated using the 
approach given in [9]. The mean score was 79/100 for the 
application-aware group and 81/100 for the reasoning-aware 
group. According to [10] such SUS scores indicate the usability 
of RESP is between good (71.4) and excellent (85.5). 

The above discussion indicates that in spite of deficiencies 
and shortcomings of the TARS prototype, the RESP process 
still shows its usefulness in helping users with little knowledge 
of ontology reasoning to choose a most appropriate reasoner 
for applications. Results show even without the identification 
of a full set of ACs RESP is still able to greatly reduce the 
number of candidate reasoners. Therefore it can serve as a pre-
selection tool of the consultation-based approach thereby 
reducing cost and effort.  

For the reasoner registration task all participants 
successfully identified the complete set of RCs and registered 
them using TARS. However most of them thought the reasoner 
registration UI of TARS was too cumbersome to use, therefore 
requiring further work. However it is envisioned that the 
reasoner registration interface will not be frequently used. 

Comments mainly focused on difficulties understanding 
and identifying some ACs, and the relatively immature 
prototype TARS interface. However these issues can be partly 
solved using more detailed explanation notes and better 
organized UI layout. Comments and suggestions for 
improvements of RESP and TARS include: using pre-defined 
profiles for applications to reduce the efforts required to 
identify ACs, using a more complex selection mechanism such 
as a case-based selection mechanism which takes ontologies, 
queries, and expected results as inputs to perform selection. 

VI. CONCLUSION AND FUTURE WORK 
This paper aims to address the problem that the rapid 
development of both the OWL reasoning technologies and 
semantic applications will require more efforts to select an 
appropriate reasoner for semantic applications. To address this 
we present RESP, a computer aided process to assist 
application developers to select an appropriate OWL reasoner 
for their application. Furthermore a set of example ACs is 
identified and discussed to demonstrate and evaluate this 
process. A prototype implementation of RESP, TARS, was 
built enabling users to select the most appropriate reasoner by 
following RESP, and to register new candidate reasoners. 

Although a relatively simple match-based approach was 
used in RESP, the usability experiment shows good usability. 
All participants (most of whom have little knowledge of 
ontology reasoning) can limit the set candidate reasoners to a 
small subset and some participants independently selected the 
gold-standard reasoner. Further analysis indicates that with a 
better interface and tool support more participants are likely to 
independently identify the appropriate reasoner. Feedback in 
the RESP evaluation questionnaire indicates 94% of 
participants agree that RESP is useful in helping them to 
choose an appropriate reasoner. SUS scores of 79/100 and 
80/100 indicates its good usability. 

This research is still at a preliminary stage and future work 
includes five aspects. First the identified ACs and RCs are still 
relatively simplistic and incomplete for real world scenarios. 
Secondly a more complex and extensible selection mechanism 
can be designed to complement the existing match-based 
selection. Thirdly the performance aspect of ACs needs to be 
considered as well. Fourthly as a possible way to extend this 
approach profiles for different applications can be constructed 
reducing the effort required for to identify ACs, and finally, 
making RESP web-accessible and extending it to support OWL 
2 reasoners and applications. 
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