
RESP: A Computer Aided OWL REasoner Selection
Process

Wei Tai, John Keeney, Declan O’Sullivan
Knowledge and Data Engineering Group, School of Computer Science and Statistics,

Trinity College Dublin, Dublin 2, Ireland
{TaiW, John.Keeney, Declan.OSullivan}@cs.tcd.ie

Abstract— Existing approaches for selecting the most appropriate
reasoner for different semantic applications mainly relies on
discussions between application developers and reasoner experts.
However this approach will become inadequate with the
increasing adoption of Semantic Web technologies in applications
from different domains and the rapid development of OWL
reasoning technologies. This work proposes RESP, a computer
aided reasoner selection process designed to perform reasoner
selection for different applications and so reduce the effort and
communication overhead required to select the most appropriate
reasoner. Preliminary evaluation results show that RESP
successfully helps application developers to select the most
appropriate reasoner, or at least narrow down the number of
candidate reasoners to consider. Contributions of this work are
two folds: (1) the design of a (relatively simple but useful)
computer aided OWL reasoner selection process, and (2) the
identification and discussion of a set of example application
characteristics that can affect the OWL reasoner selection.

Keywords- Reasoner Selection, Application Characteristics,
Reasoner Characteristics, Semantic Application Development

I. INTRODUCTION
The formal definition of the Web Ontology Language (OWL)
enables automated reasoning or entailment to be performed
over the contents of OWL ontologies revealing hidden
knowledge. Owl has been adopted in ever more applications
from various domains, such as bioinformatics [5],
publish/subscribe systems [3, 7, 21], configuration
management [15], sensor networking [2, 4, 14, 16] and so on.
This, conversely, has stimulated extensive studies on OWL
reasoning technologies, with an ever growing number of new
OWL reasoners and reasoning technologies emerging.

However specific reasoners are designed to solve different
problems, such as: complete OWL-DL classification, efficient
conjunctive query answering, reasoning over large datasets and
so on, and reasoners may need to trade off one reasoner
characteristic (RC) against another, depending on their
specialisation. For example a reasoner designed for efficient
and scalable ABox query answering may not compute
complete OWL-DL classification therefore is not suitable for
applications requiring complete OWL-DL classification.
Similarly an in-memory reasoner capable of effectively and
completely classifying ontologies may not natively support
file-backed storage therefore is not suitable for applications
with large datasets when used on its own. It is clear from the
above examples that interplays between RCs and the

application characteristics (AC) determine the suitability of a
reasoner for a specific application.

The existing reasoner selection approach relies largely on
consultation between application developers and reasoner
experts, and until recently this approach was straightforward
and sufficient because of the relatively small number of OWL
reasoners and RCs. However, the ever widespread adoption of
semantic web technologies for applications in different
domains and the rapid development and emergence of new
OWL reasoning technologies cause this approach to become
increasingly inadequate in the future. Firstly, as semantic
applications grow more complicated and move beyond initial
prototyping stages, these applications will be developed and
extended by dedicated application developers with little or no
knowledge of the intricacies of ontology reasoning.
Furthermore reasoner experts may not always precisely
understand some ACs expressed in domain specific languages.
All these could result in a considerable amount of effort to be
devoted before an agreement is reached, or even a wrong
reasoner to be selected. Secondly the existing approach
requires that a reasoner expert is accessible to application
developers, which will not always be the case. These
inadequacies motivate an automated approach to help
application developers to limit consultation requirements or
even to independently select a suitable reasoner for their
semantic applications.

This paper describes RESP, a computer aided OWL
REasoner Selection Process, to select an appropriate reasoner
for applications, based on the particular ACs of the application.
RESP matchmakes between ACs and RCs. Application
developers input the set of ACs for their application, and by
matching them to the RCs of registered candidate reasoners,
according to a set of predefined AC/RC connections, RESP
evaluates and ranks the suitability of candidate reasoners. A
prototype implementation of RESP, termed TARS, is described
for demonstration and evaluation purposes.

A usability experiment is carried out to evaluate RESP
using TARS. RESP helps participants with little knowledge of
ontology reasoning to automatically select an appropriate
reasoner or reduce the number of candidate reasoners to
consider. Analysis of post experiment questionnaires indicates
that with some further development it is likely that most
participants could have independently identified the appropriate
reasoner. (Note: this work is based on OWL 1, and extensions
of this work for OWL2 are ongoing and will be presented in
future work.)

This paper is organized as follows. Section 2 presents work
related to this research. Section 3 details RESP and a set of
example ACs. TARS is presented in section 4, followed by
evaluation and discussion in section 5. This work concludes in
section 6 with a discussion of ongoing and future work.

II. RELATED WORK
To the best of our knowledge there is no similar research on
this topic. Therefore related work of this research is comprised
of a discussion of sources where ACs/RCs are identified,
including a survey of ontology-based applications from four
candidate domains and a categorization of OWL reasoners.

A. Survey of Ontology-based Applications
This section briefly discusses how OWL and its reasoning
technologies are applied in applications from four areas:
publish/subscribe (pub/sub) systems, sensor network systems,
configuration management systems, and bioinformatics/
medical systems.

1) Semantic Publish/Subscribe Systems: In pub/sub
systems subscribers register subscriptions in a broker (or
networked brokers) and publishers present publications to the
broker. A conventional pub/sub broker syntactically matches
the content of publications against registered subscriptions and
successfully matched publications are propagated to the
corresponding matched subscribers. Semantic pub/sub systems
extend this approach by matching based on the semantics of
message contents, informed by an associated ontology and
facilitated by an ontology reasoner in the broker.

Research conducted in [7] presents a document retrieval
service based on a (centralized) semantic pub/sub system,
implemented using the Racer system [6]. This research points
out the importance of closed-world queries in information
retrieving systems and uses set operations to simulate a local
closed world in an open world environment. In addition an
incremental ABox query answering mechanism is adopted to
avoid continuous querying evaluation. Later work in [3] points
out the scalability problem of DL tableau reasoners when
applied in semantic pub/sub systems [7, 18], i.e. re-checking
consistency of the knowledge base (KB) from scratch and re-
evaluating subscriptions for each update. It proposes to use
incremental consistency checking and incremental query
answering as a solution. Work in [21] presents a series of use-
cases for semantic publish/subscribe systems, demonstrating
that even for a single middleware system, different reasoners
may be appropriate for different deployments.

2) Semantic Sensor Network Systems: Semantic Web
technologies are widely applied in sensor network systems. A
typical usage is annotating sensor readings (or sensors
descriptions) using semantically rich tags enabling more
intelligent data processing [2, 24, 36] and better
interoperability [14, 16, 35]. Another usage could be the use of
ontology and ontology reasoning technologies to perform
complex management tasks, e.g. sensor tasks assignments [4]
or fault correlation [41].

Work in [2] describes a coastal ecosystem monitoring
application using wireless sensor networks for data collection
and delivery, and an OWL reasoner for data validation and
inference. Other than standard OWL reasoning services several
other features are also required in this system, including the use
of rules to model domain specific knowledge and numeric
comparison/computation. This research also extracts two
reasoning requirements for sensor network systems, including
the requirement for distributed reasoning and the provision of a
user-friendly graphical interface for domain knowledge
authoring. Research in [4] presents a semantic sensor task
assignment approach for the intelligence, surveillance and
reconnaissance domain. This work observes the high degree of
variability in such environment and therefore requires any
solutions to sensor task assignment in this domain should be of
high agility against changes. In addition they also point out that
explanation of assignments is required. The Semantic Sensor
Web (SSW) [16] suggests enriching sensor observations with
semantic metadata to enhance interoperability, with some of
the semantic processing taking place on embedded devices
with limited resources. Web-aware approaches are necessary
for both management and data processing and rule-based
reasoning should be used to derive new knowledge based on
application-specific semantics. Work in [20] surveys over a set
of 12 sensor ontologies and points out, conjunctive queries,
rules and OWL reasoning were key technologies to provide
semantics support at different layers in semantic sensor
networks.

3) Configuration Management Systems: Configuration
management is another area that adopts ontology and ontology
reasoning techniques. Work in [15] proposes using OWL
inconsistency checking to deduce the validity of software
configuration. The DL ALCO subset is found to be sufficient
for their modelling, however a full-fledged OWL-DL reasoner
is still used in order to completely deduce inconsistencies. In
addition justification of validity is also required. Work in [52]
also shows the need to support domain-specific rules in this
application area.

4) Bioinformatics and Medical Systems: Ontology-based
approaches are widely applied in bioinformatics for
knowledge access, modelling, and reasoning. Two well-known
applications are the Gene project1, which provide a controlled
vocabulary of terms (concepts) for describing genes and gene
product attributes [5], and the SNOMED ontology2, to provide
a scientifically validated set of terms for practitioners to share
health care knowledge.

Research in [11] identifies nine requirements that OWL-
based bio-ontologies may have on OWL reasoning. They are:
supporting the ontology development process; classification;
model checking; finding gaps in an ontology and discovering
new relations; comparison of ontologies; reasoning with
mereological parthood and other (part-whole) relations; using a
hierarchy of relations; reasoning across linked ontologies; and
complex queries. Some of these, e.g. classification, can be

1 http://www.geneontology.org/
2 http://www-calit2.nbirn.net/research/ontology/snomed.shtm

solved by existing OWL reasoners, whereas some others, e.g.
finding gaps and new relations, were quite specific to life
science and were not yet feasible for existing OWL reasoners.

B. OWL Reasoner Categorization
We selected a subset of available OWL reasoners and
categorized them into four types according to their reasoning
algorithms: forward-chaining rule-entailment reasoners,
resolution-based reasoners, DL tableaux reasoners, and hybrid
reasoners. The first two types together are referred to as rule-
based reasoners in this paper as they are (horn) rule-based.
Resolution-based reasoners are further divided into two
subtypes, semantic reduction reasoners and syntactic reduction
reasoners, according to the way OWL is reduced.

In the following subsections example reasoners are listed
for each reasoner type. Although some of the selected reasoners
are not currently in active development, they are included as
they are well-documented and are typical reasoners of the type,
and their source code is publically accessible.

1) Forward-Chaining Rule-Entailment Reasoners: rule-
entailment reasoners reason over OWL ontologies using a set
of entailment rules. Rules are evaluated in forward chaining
paradigm using algorithms such as RETE [22] or RDBMS.
Reasoners of this type usually have the intrinsic capability to
process rules and usually have support for closed-world
assumption (CWA). Furthermore some reasoners of this type
are designed to enable (relatively) scalable data stores to be
built and reasoned, e.g. OWLIM3 is able to process ontologies
as large as billions of triples. However rule-entailment
reasoners cannot provide complete OWL DL reasoning. Other
rule entailment reasoners include Jena4 and BaseVISor5.

2) Backward-Chaining Resolution-Based Reasoners:
Resolution-based reasoners reduce OWL ontology to First
Order Logic (FOL) programs or FOL fragments (e.g. horn
clauses), and delegate OWL reasoning to a resolution engine
such as FOL theorem prover or (disjunctive) Datalog engine.

The reduction from OWL ontology to FOL programs can
follow either a semantic or a syntactic approach. The former
approach reduces OWL to FOL by following their semantic
connections. For example the OWL axiom subclassOf(C,D) is
reduced to FOL clause as ¬CT(x)∨DT(x), where CT and DT are
the FOL predicates for C and D. Reasoners adopting this
approach include KAON2 [12] and Hoolet [17]. The latter
approach syntactically translates OWL constructs into FOL,
e.g. the above axiom is reduced to subclassOfT(C, D) where
subclassOfT is a syntactic FOL-translation of subclassOf.
Entailment rules are still required to ensure reasoning.
Reasoners of this type include Orel [51] and F-OWL [19].

3) DL tableaux reasoners: DL tableaux reasoners convert
OWL ontology into Description Logic (DL) formulae and then
perform reasoning by checking KB satisfiability [1]. Some DL

3 http://www.ontotext.com/owlim/
4 http://jena.sourceforge.net/
5 http://vistology.com/basevisor/basevisor.html

Tableaux reasoners, such as Pellet6, FaCT++7 and RacerPro8,
are able to perform complete OWL DL reasoning. Some DL
tableaux reasoners such as Pellet are also extended to support
rules and CWA.

4) Hybrid Reasoners: some reasoners combine more than
one reasoning algorithms. DLEJena [28] combines the DL
tableau reasoning algorithm with rule-entailment algorithm by
using the former to perform efficient and complete TBox
reasoning while using the later to perform scalable ABox
reasoning. Hermit [50] tries to limit the or-branching by using
a bybrid of resolution and tableau.

There are some other reasoners using algorithms other than
any of the above mentioned are not included in this
categorization. Some examples include CEL [37], a classifier
using a special subsumption algorithm to compute classify the
EL++ subset of OWL [31], QuOnto [33] that reformulates
users’ queries by incorporating TBox information, and SPIN9
that use SPARQL to model and evaluate OWL 2 RL rules.

Other reasoner categorizations also exist. A categorization
can be found in [19], where three types are derived: reasoners
using specialized DL engines, reasoners using full FOL
theorem provers, and reasoners using a reasoner designed for
FOL subsets. This categorization does not distinguish rule-
entailment reasoners from resolution-based reasoners (it is
included in the third type due to the use of horn rules).
However reasoners may vary in some RCs, which may affect
their selection in the context of this research. For example
semantic-reduction reasoners, e.g. KAON2, can perform query-
time reasoning enabling faster response time for changes in KB
while rule-entailment reasoners, e.g. Jena, require pre-
reasoning before a query is answered.

III. THE RESP REASONER SELECTION PROCESS
This section describes RESP, and identified a set of example
ACs. In-depth discussion is provided for each AC.

A. Overview of RESP
Before RESP starts functioning some prerequisites are required
(Figure 1). A set of candidate ACs need to be identified and
reasoners are registered as sets of RCs. Connections between
ACs and RCs are analyzed and modelled in RESP allowing the
selection process to function. Reasoner selection in RESP is
performed in three steps (Figure 1). (1): ACs for the target
application are identified and input into RESP. (2): Matching is
performed between ACs/RCs according to the predefined
connections. (3): Reasoners are ranked according to the number
of matched ACs (satisfaction rate). A reasoner that matches all
input ACs is a suitable reasoner for this application. If no
suitable reasoner is found users can revise the previously input
ACs and re-run RESP.

6 http://clarkparsia.com/pellet/
7 http://code.google.com/p/factplusplus/
8 http://www.racer-systems.com/
9 http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-
sparql-using-spin.html

http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-sparql-using-spin.html
http://composing-the-semantic-web.blogspot.com/2009/01/owl-2-rl-in-sparql-using-spin.html

RESP is designed to be an abstract process without
specifying any technical details for ACs, RCs and the matching
algorithm. This enables a domain-specific RESP to be
constructed for each domain of applications. Therefore more
accurate domain specific vocabularies can be used to describe
ACs allowing more targeted use by application developers. In
this research we identify and discuss a set of example candidate
ACs based on the semantic application survey conducted in
section II to evaluate and demonstrate RESP.

Figure 1. An overview of the RESP reasoner selection process.

B. Example Candidate ACs
In this section we discuss the how reasoner selection can be
affected by ACs from a selected set of eleven aspects, as listed
below. Four things need to be clarified. First this set of ACs is
still at its early stage and therefore it is not trying to be
complete and definitive. Moreover ACs may vary from
domains with different priorities. In this research only some
generally applicable ACs are investigated. Thirdly we aim to
make only some suggestive connections between ACs and how
reasoners can satisfy them. The relative priorities and
weightings of different ACs are dependent on the domain and
the priorities of the application developer. Lastly connections
between ACs and RCs are studied only in analytical rather than
empirical means. Therefore performance-related and non-
functional issues are not discussed in this research. However
we do not deny their importance in selecting an appropriate
reasoner for semantic applications and taking the performance
of reasoners as an AC is part of the future work.

1) Reasoning Over Frequently Changing KB

Many applications, such as semantic pub/sub systems [3, 7,
8] and semantic sensor network systems [4, 24], need to reason
over frequently changing KBs rather than static KBs. Therefore
the ability to handle changing KBs is important for the
underlying reasoners. Most state of the art DL reasoners are
designed to reason over static KBs. Some dedicated approaches
are proposed allowing the incremental handling of updates of
different types. Incremental consistency checking algorithms
[8] are proposed to incrementally update tableau completion
graphs for ABox updates in DL SHIQ and SHOQ, subsets of

OWL DL without nominals (for SHIQ) and inverse properties
(for SHOQ). Later work in [3] addresses the continuous query
answering on KBs in DL SHI. Incremental classifications
algorithms are also proposed to handle TBox updates [13, 23].
Despite the extensive research of incremental reasoning for DL
tableaux algorithms, its application is quite limited. Pellet
supports incremental classification but only though OWL API10
(or Jena) via a specialized reasoner interface. This interface
only supports queries about classes and not instance related
queries. Pellet’s incremental consistency checking is not stable
or well tested. Some other reasoners, FaCT++ and CEL claim
undocumented support for incremental classification.

Maintaining materialization incrementally for frequently
changing KB is a vital issue for rule-based reasoners when
reasoning over changing KBs. Work in [25] investigates an
approach to compute a complete and correct materialization for
rule-based reasoners when streaming data arrive and change
KBs. Some reasoner independent technologies are also studied.
For example a cascading reasoner structure is proposed in [24]
where complex reasoners such as DL tableaux reasoners are
layered on top to handle less frequently changing data and
relatively simple but efficient rule-based reasoners are layered
beneath for maintaining materialization or instantiating certain
goal predicates.

2) Concept- vs. Individual-Centric Reasoning Tasks

The required reasoning tasks may vary from applications:
some bioinformatics/medical applications such as the Gene
ontology and SNOMED ontology require TBox classifications
while some applications such as semantic sensor network
systems need to reason over KBs mainly consisting of (large
numbers of) individuals. This feature may largely impact on the
selection of an appropriate reasoner as the distinct design goals
of different reasoners. Concept centric applications often
require a complete concept hierarchy to be constructed and
therefore the selected reasoner need to be able to completely
classify the ontology. Many DL Tableaux reasoners are
designed to provide complete classification reasoning services
for OWL DL semantics, such as Pellet, Fact++, and RacerPro.
Some other reasoners such as CEL can compute a complete
classification for some subsets of OWL.

However DL Tableaux reasoners usually perform poorly
when handling large volumes of individual data [26], which is,
however, an important feature for individual centric
applications. Therefore for individual centric applications rule-
based reasoners show better suitability due to their superiority
in scale and speed when handling large ABoxes [12, 28, 29].

3) Required Expressivity

The level of expressivity required by a semantic application
can affect the reasoner to be selected. For example reasoning
an SHOIN(D) ontology as expressive as the wine ontology11
will usually require a full-fledged reasoner that covers the
entire OWL DL semantics, e.g. Pellet or FaCT++, whereas an
ALN ontology can be classified using a relatively simple

10 http://owlapi.sourceforge.net/
11 http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#

structural subsumption algorithm [1]. This characteristic can
also be embodied when the ontology expressivity fall into some
specifically designed OWL sublanguages: some rule-
entailment reasoners such as OWLIM and BaseVISor use the
pD* semantics family [30]. CEL classifies on DL EL++ (into
which many bioinformatics ontologies fall). Owlgres [32] and
QuOnto supports efficient query answering over the OWL DL-
lite family [34]. Furthermore the expressivity of the ontology is
also an important characteristic for composable reasoners to
compose its reasoning capability to reduce resource usage [27].

4) Query-Related Issues

The means in which applications query ontologies vary.
Some applications/ontologies pose complex queries in query
languages [14, 20, 35, 36, 40] while some others only need
simple queries [21]. This characteristic limits the selection of
some reasoners. Reasoners such as Pellet, KAON2, RacerPro,
Jena (with ARQ), OWLIM and so on support conjunctive
queries to be evaluated. However some reasoners, e.g. CEL and
FaCT++, only allow ontologies to be queried atomically using
either pre-defined directives at the command line or from its
API. They are not suitable for cases where complex queries are
required. In addition the syntax and functionality are also
distinct for different query languages. SPARQL, one of the
most widely used query languages, uses a RDF-based triple
syntax. It is (partly) supported by many state of the art
reasoners such as Pellet, KAON2, Jena (with ARQ) and
RacerPro and so on. Some reasoners also use their own query
languages. The nRQL is an axiom-based ABox conjunctive
query language specifically designed for RacerPro. OWLIM
supports SeRQL, a RDF query language. KAON2 enables
queries to be formulated using F-logic. Bossam uses
Buchingae. Thea [38] supports queries to be authored using
Prolog rules. Some query languages, such as C-SPARQL [39],
are implemented however not yet incorporated into state of the
art reasoners so they are not discussed here.

5) Rules

Other than OWL semantics the ability to model application
specific semantics is also an important feature for many
applications [2, 16, 20, 41]. Therefore the ability to process
rules is important for these applications to function properly.
Although varying in the syntax and expressivity of rule
languages rule-based reasoners have intrinsic support to model
and process rules. Many tableaux reasoners are also extended
to support rules, e.g. Pellet and RacerPro partly supports
SWRL. However there is no evidence that FaCT++ can process
rules and therefore it is not appropriate for such applications.
The expressivity and syntax differences among rules supported
by different reasoners can also affect the selection of reasoners.
For example in some cases the requirement of negation as
failure in rules could invalidate reasoners supporting only
SWRL rules. Details of differences are not discussed here.

6) Concrete Domains

It is widely accepted many real-world applications such as
sensor network systems need to handle concrete objects such as
strings, numeric numbers, and time. Therefore the ability to
reason over concrete domains will play an important role in the
selection of an appropriate reasoner for these applications.

OWL-DL supports datatypes, a restricted concrete domain.
Datatype reasoning has been studied for reasoning algorithms
[42, 43, 44, 45] and most state of the art OWL reasoners
support reasoning over (part of) the XSD datatypes defined in
OWL. However only several of them, including Pellet and
Jena, support reasoning over user-defined datatypes.

Another form of concrete domain is algebraic comparison
and computations. The extension of DL tableaux algorithm and
resolution to support them has been extensively studied [42, 43,
44, 45]. However as OWL does not support modelling
predicates over concrete domains (i.e. how concrete objects are
related, e.g. comparison, math operations) these features cannot
be directly used with OWL. In fact many rule languages have
(limited) support through defining built-ins. SWRL provides
predefined built-ins to handle algebraic comparison and
computations. Therefore a SWRL enabled reasoner is (to some
extent) able to process algebraic comparison and computation.
Some rule-entailment reasoners, e.g. Jena and Bossam, support
user-defined built-ins and therefore allow arbitrary algebraic
computations to be modelled.

7) Closed-World Features

Some applications, e.g. database-based systems, usually
believe the knowledge they possess is a complete modelling of
the domain and some reasoning can be performed based on the
CWA, e.g. negated queries, checking integrity constraints and
so on, where missing information is considered as false.
However OWL is based on the open world assumption (OWA),
where missing information is treated as unknown, therefore,
(may) leading to inferences rather than violation. Much
research is devoted to extending OWL with closed-world
features [46, 47] and indeed many state of the art reasoners
choose to include CWA mainly by two means. First some
closed-world features such as negation as failure are introduced
through rules or query sub-systems, such as SPARQL, nRQL,
SeRQL or Jena rules and so on. Therefore closed-world queries
or integrity constraints can be achieved using queries or rules
while OWL retains OWA. Second (part of) OWL is modified
or extended to use alternative closed-world semantics so it can
be used as a language for integrity checking, e.g. Pellet ICV.
There is no evidence that reasoners such as FaCT++ and CEL
have internal support for closed-world features. However they
can be connected to Protégé where SPARQL queries are posed.

8) Database

The requirement to store and reason over large datasets is
often required by data-centric applications such as sensor
networks and bioinformatics applications (e.g. Gene ontology)
where in-memory ontology reasoning could exhaust available
memory. Many OWL (RDF) stores are available, such as Jena
TDB, OWLIM, AlegroGraph, KAON2, Oracle database 11g
and PelletDB. Many in-memory reasoners also support
database-backed reasoning by connecting to database enabled
OWL frameworks. For example, FaCT++ and CEL can be
plugged into OWL API for which OWLDB [48] is a de facto
database backend.

9) Ontology Manipulation

Applications that need to modify ontologies (i.e.
add/remove axioms), e.g. ontology editing tools, may benefit
from a set of powerful ontology manipulation interfaces in the
underlying reasoner. Many state of the art reasoners either have
a native rich set of ontology manipulation interfaces, e.g.
KAON2, or can be integrated with an ontology manipulation
framework, e.g. OWL API and Jena, providing a well-
integrated ontology manipulation/reasoning environment.
Some other reasoners, such as Bossam, have relative simple (or
even no) native ontology manipulation interfaces and are also
not integrated into any ontology manipulation frameworks, so
they are not quite suitable for this characteristic.

10) Explanation of Deductions, Debugging

Explanation of deductions and debugging are required by
some applications such as ontology engineering tools,
configuration management tools [1, 15] or bioinformatics
applications. Some reasoners, such as Pellet, and Jena,
implement native explanation components enabling
justifications to be derived for inferences. OWL API also
implements black-box debugging mechanisms [49], which
therefore allows explanations to be generated for all pluggable
reasoners even without built-in explanation components.

11) Miscellaneous

There are some other characteristics may affect the
selection of an appropriate reasoner such as UI (e.g. command-
line, API, GUI), remote interface (DIG, self-defined), operating
platforms (J2SE, J2ME CDC, J2ME CLDC, C++, prolog),
open source support, pricing, in active development, and so on.
They are not discussed in detail in this paper. However, we
assert that the RESP process provides native support to be
extended to support additional or alternative ACs and RCs.

IV. THE TARS REASONER SELECTION TOOL
A prototype implementation of RESP, termed TARS (Tool for
Automatic Reasoner Selection), is constructed as a desktop
application. The above identified candidate ACs are
incorporated into TARS and can be selected on an AC
selection interface. A hint is provided for users to view an
explanation for each AC. Five candidate reasoners, i.e.
FaCT++, KAON2, Pellet, Jena and COROR [27], are
registered in TARS and stored locally so they can be re-used.
Their selection is motivated by the fact that they are from
different reasoner categories and therefore have different RCs.
Results are displayed using traffic light notation. For each AC
users can examine why each reasoner is / is not suitable. The
matching process is currently hard coded in Java, however
ongoing work is focussing on using a generalized rule-based
approach to perform the matching.

V. EVALUATION
This section discusses the design and results of the usability
experiment of RESP.

A. Overview
Two different tasks, i.e. a reasoner selection task and a reasoner
registration task, are designed to allow evaluation participants
to experience both distinct facets of RESP. The reasoner
selection task requires participants to select a most appropriate

reasoner for a given application scenario using the RESP
process with TARS. In this task participants are provided with
an application scenario, from which they must identify the
ACs, and then input them into TARS to select an appropriate
reasoner. For the given scenario successful identification of all
ACs leads to the selection of Pellet and an incomplete (but
correct) AC set will limit the number of candidate reasoners.
Participants can iteratively refine the selected ACs until the
complete set of ACs is achieved. The aims of this experiment
are (1) to investigate the difficulties for participants to identify
the complete correct set of ACs, and (2) to support participants
using the RESP process to select a reasoner for the given
application scenario and collect feedback on its usability. A
second task requires participants to analyze a description of an
existing reasoner implementation authored by reasoning
experts, and register its RCs using TARS.

In total 22 participants with software engineering
experience took part in the experiment. They were divided into
two groups according to specialities: an application-aware
group with 17 participants experienced in ontology-based
applications and a reasoning-aware group with 5 participants
with stronger backgrounds in OWL reasoners and reasoning
algorithms. The small size of the reasoning-aware group is
reasonable as the reasoner registration task aims to collect
expertise rather than large volumes of feedback. The reasoner
selection task was assigned to the application-aware group and
the reasoner registration task to the reasoning-aware group.
Two questionnaire types were used to gather feedback and
comments: a RESP evaluation questionnaire to gather feedback
on RESP and TARS, and a SUS questionnaire as a generally
accepted approach to evaluate the usability.

B. Results and Discussions

Figure 2. Background of participants in application-aware group

Self-assessment questions were used allowing participants in
the application-aware group to rate their expertise in ontology-
based applications and ontology reasoning (Figure 2). 12/17
participants (71%) had good knowledge of ontology-based
applications (expert and average users) and nearly half of the
group (8, 47%) were expert users. However most (14, 82%)
participants had little or no knowledge on the specifics of
ontology reasoning and only 3 participants (18%) had good
reasoning-specific knowledge.

Results of the reasoner selection task indicates all
participants successfully identified the most appropriate
reasoner for the given application scenarios in two iterations
despite most having little knowledge of the specifics of
ontology reasoning. Among them, 12/17 participants limited

Novice Users,
5, 29%

Expert Users, 8,
47%

Average Users,
4, 24%

Expert Users, 0,
0%

Novice Users,
14, 82%

Average Users,
3, 18%

Ontology-based applications Ontology reasoning

the reasoner selection results to only 2 candidate reasoners in
the first iteration, and with just a little help refined their ACs to
identify the correct reasoner in the second iteration. The other 5
participants selected the correct reasoner in the first iteration.

AC entry iterations were tracked and causes for mis-
selections were gathered. Investigations reveal two major
findings as follows. Firstly most participants were not familiar
with the DL approach to expressing ontology expressivity
leading to failures identifying the correct reasoner. It is then
reasonable to infer that with this issue solved, e.g. by carefully
explaining DL expressivity notations, using OWL
sublanguages to represent ontology expressivity, or by
automatically determining the expressivity of a given
application knowledge base, more participants can pinpoint the
correct reasoner using only one iteration. Secondly, the AC
described as “reasoning over databases” was erroneously
selected by 10 participants due simply to presentation
inconsistencies in the scenario. This problem can be easily
rectified by providing some additional assistance to determine
if this is necessary (e.g. based on the size of the data store). For
both of these issues no change of the RESP process is required.

Results of the RESP evaluation questionnaire show positive
feedback. Most participants agree that RESP is easy to
understand, the given set of ACs can precisely capture most
applications, and that the TARS interfaces were easy to use. 16
out of the 17 participants from the application-aware group
agree that RESP is useful in helping them to choose the most
appropriate gold-standard reasoner for their given application.
SUS Scores from the questionnaires were calculated using the
approach given in [9]. The mean score was 79/100 for the
application-aware group and 81/100 for the reasoning-aware
group. According to [10] such SUS scores indicate the usability
of RESP is between good (71.4) and excellent (85.5).

The above discussion indicates that in spite of deficiencies
and shortcomings of the TARS prototype, the RESP process
still shows its usefulness in helping users with little knowledge
of ontology reasoning to choose a most appropriate reasoner
for applications. Results show even without the identification
of a full set of ACs RESP is still able to greatly reduce the
number of candidate reasoners. Therefore it can serve as a pre-
selection tool of the consultation-based approach thereby
reducing cost and effort.

For the reasoner registration task all participants
successfully identified the complete set of RCs and registered
them using TARS. However most of them thought the reasoner
registration UI of TARS was too cumbersome to use, therefore
requiring further work. However it is envisioned that the
reasoner registration interface will not be frequently used.

Comments mainly focused on difficulties understanding
and identifying some ACs, and the relatively immature
prototype TARS interface. However these issues can be partly
solved using more detailed explanation notes and better
organized UI layout. Comments and suggestions for
improvements of RESP and TARS include: using pre-defined
profiles for applications to reduce the efforts required to
identify ACs, using a more complex selection mechanism such
as a case-based selection mechanism which takes ontologies,
queries, and expected results as inputs to perform selection.

VI. CONCLUSION AND FUTURE WORK
This paper aims to address the problem that the rapid
development of both the OWL reasoning technologies and
semantic applications will require more efforts to select an
appropriate reasoner for semantic applications. To address this
we present RESP, a computer aided process to assist
application developers to select an appropriate OWL reasoner
for their application. Furthermore a set of example ACs is
identified and discussed to demonstrate and evaluate this
process. A prototype implementation of RESP, TARS, was
built enabling users to select the most appropriate reasoner by
following RESP, and to register new candidate reasoners.

Although a relatively simple match-based approach was
used in RESP, the usability experiment shows good usability.
All participants (most of whom have little knowledge of
ontology reasoning) can limit the set candidate reasoners to a
small subset and some participants independently selected the
gold-standard reasoner. Further analysis indicates that with a
better interface and tool support more participants are likely to
independently identify the appropriate reasoner. Feedback in
the RESP evaluation questionnaire indicates 94% of
participants agree that RESP is useful in helping them to
choose an appropriate reasoner. SUS scores of 79/100 and
80/100 indicates its good usability.

This research is still at a preliminary stage and future work
includes five aspects. First the identified ACs and RCs are still
relatively simplistic and incomplete for real world scenarios.
Secondly a more complex and extensible selection mechanism
can be designed to complement the existing match-based
selection. Thirdly the performance aspect of ACs needs to be
considered as well. Fourthly as a possible way to extend this
approach profiles for different applications can be constructed
reducing the effort required for to identify ACs, and finally,
making RESP web-accessible and extending it to support OWL
2 reasoners and applications.

ACKNOWLEDGMENT
This work is supported by the Irish Government in “Network
Embedded Systems” (NEMBES), under the Higher Education
Authority's Programme for Research in Third Level Institutions
(PRTLI) cycle 4, and by Science Foundation Ireland in
"Federated, Autonomic Management of End-to-End
Communications Services" (FAME) (grant 08/SRC/I1403).

REFERENCES
[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, The Description Logic Handbook: Theory, Implementation
and Applications, 2nd ed.: Cambridge University Press New York, 2007.

[2] M. Calder, R. A. Morris, and F. Peri, "Machine reasoning about
anomalous sensor data," Ecological Informatics, vol. 5, 2010, pp. 9-18.

[3] C. Halaschek-Wiener and V. Kolovski, "Syndication on the Web using a
Description Logic Approach," in J. Web Semantics Science Services and
Agents on the World Wide Web, vol. 6, issue 3, pp. 171-190, 2008.

[4] M. Gomez, A. Preece, M. P. Johnson, G. d. Mel, W. Vasconcelos, C.
Gibson, A. Bar-Noy, K. Borowiecki, T. L. Porta, D. Pizzocaro, H.
Rowaihy, G. Pearson, and T. Pham, "An Ontology-Centric Approach to
Sensor-Mission Assignment," in Proc. Intl. Conf. on Knowledge
Engineering and Knowledge Management, 2008.

[5] M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger,
K. Eilbeck, S. Lewis, B. Marshall, and C. Mungall, "The Gene Ontology

(GO) database and informatics resource," Nucleic acids research, vol.
32, pp. D258 - D261 (2004)

[6] V. Haarslev and R. Möller, "RACER system description," In Proc. Intl.
Joint Conf. on Automated Reasoning, pp. 701-706, 2001.

[7] V. Haarslev and R. Möller, "Incremental Query Answering for
Implementing Document Retrieval Services," in Proc. Intl. Workshop on
Description Logics, pp. 85-94, 2003.

[8] C. Halashek-Wiener, B. Parsia, and E. Sirin, "Description Logic
Reasoning with Syntactic Updates," in Proc. Intl. Conf. on Ontologies,
Databases, and App. of Semantics, pp. 722-737, 2006.

[9] J. Brooke, "SUS-A quick and dirty usability scale," Usability evaluation
in industry, pp. 189-194, 1996.

[10] A. Bangor, P. Kortum, and J. Miller, "Determining What Individual SUS
Scores Mean: Adding an Adjective Rating Scale," J. of Usability
Studies, vol. 4, pp. 114-123, 2009.

[11] C. M. Keet, M. Roos, and M. S. Marshall, "A Survey of Requirements
for Automated Reasoning Services for Bio-Ontologies in OWL," in
Proc. Intl. Workshop on OWL: Experiences and Directions, 2007.

[12] B. Motik and U. Sattler, "A comparison of reasoning techniques for
querying large description logic aboxes," in Proc. Intl. Conf. on Logic
for Programming, Artificial Intelligence, and Reasoning, 2006.

[13] B. Parsia, C. Halaschek-wiener, and E. Sirin, "E.S.: Towards
Incremental Reasoning Through Updates," in OWL DL, in Proc Intl.
Conf. on World Wide Web, 2006.

[14] D. J. Russomanno, C. R. Kothari, and O. A. Thomas, "Building a Sensor
Ontology: A Practical Approach Leveraging ISO and OGC Models," in
Proc. of Intl. Conf. on Artificial Intelligence, pp637-643, 2005.

[15] H. H. Shahri, J. A. Hendler, and A. A. Porter, "Software configuration
management using ontologies," in Proc. Intl. Workshop on Semantic
Web Enabled Software Engineering, 2007.

[16] A. Sheth, C. Henson, and S. S. Sahoo, "Semantic Sensor Web," in IEEE
Internet Computing Magazine. vol. 12, pp. 78-83, 2008.

[17] D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks, "Using
Vampire to Reason with OWL," in Proc Intl. Semantic Web Conf., 2004.

[18] M. Ushchold, P. Clark, F. Dickey, C. Fung, S. Smith, S. Uczekaj, M.
Wilke, S. Bechhofer, and I. Horrocks, "A semantic infosphere," in Proc.
Intl. Semantic Web Conf., pp. 882-896, 2003.

[19] Y. Zou, T. Finin, and H. Chen, "F-OWL: an Inference Engine for
Semantic Web," in Proc. Workshop on Formal Approaches to Agent-
Based Systems (FAABS III), pp. 16-18, 2004.

[20] M. Compton, C. Henson, L. Lefort, H. Neuhaus, and A. Sheth, "A
Survey of the Semantic Specification of Sensors," in Proc. Intl.
Workshop on Semantic Sensor Networks, 2009.

[21] J. Keeney, D. Roblek, D. Jones, D. Lewis, D. O'Sullivan, "Extending
Siena to support more expressive and flexible subscriptions", in Proc.
Intl. Conf. on Distributed Event-Based Systems, 2008.

[22] C. Forgy, "Rete: A Fast Algorithm for the many pattern/many object
pattern match problem," Artificial Intelligence, vol. 19, pp. 17-37, 1982.

[23] B. C. Grau, C. Halaschek-Wiener, Y. Kazakov and B. Suntisrivaraporn,
“Incremental Classification of Description Logics Ontologies, ” J. of
Automated Reasoning, vol. 44, pp. 337-369, 2010.

[24] H. Stuckenschmidt, S. Ceri, E. D. Valle and F. v. Harmelen, “Towards
Expressive Stream Reasoning,” in Proc. the Dagstuhl Seminar on
Semantic Aspects of Sensor Networks, 2010.

[25] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“Incremental Reasoning on Streams and Rich Background Knowledge,”
in Proc. Extended Semantic Web Conference, pp. 1-15, 2010.

[26] S. Bechhofer, I. Horrocks, and D. Turi, “The OWL Instance Store:
System Description,” in Proc. of Intl. Conf. Automated Deduction, 2005.

[27] W. Tai, J. Keeney, and D. O’Sullivan, “COROR: A COmposable Rule-
entailment Owl Reasoner for Resource Constrained Devices,” in Proc.
5th Intl. Symposium on Rules: Research Based and Industry Focused,
2011.

[28] G. Meditskos and N. Bassiliades, “DLEJena: A Practical Forward-
Chaining OWL 2 RL Reasoner Combining Jena and Pellet,” J. Web
Sematnics: Science, Services and Agends on the WWW, vol. 8, 2010.

[29] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev, and R.
Velkov, “OWLIM: A Family of Scalable Semantic Repositories,”
Semantic Web Journal, To be appear, 2011.

[30] H. J. ter Horst, "Completeness, decidability and complexity of
entailment for RDF Schema and a semantic extension involving the
OWL vocabulary," J. Web Semantics: Science, Services and Agents on
the WWW, vol. 3, pp. 79-115, 2005.

[31] F. Baader, S. Brandt, and C. Lutz, “Pushing the EL Envelop Further,” in
Proc. Intl. Workshop on OWL: Experiences and Directions, 2008.

[32] M. Stocker and M. Smith, “Owlgres: A Scalable OWL Reasoner,”in
Proc. Intl. Workshop on OWL:Experiences and Directions, 2008.

[33] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, M.
Palmieri, and R. Rosati, “QuOnto: Querying Ontologies,” in Proc.
National Conf. on Artificial Intelligence, 2005.

[34] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Tractable Reasoning and Efficient Query Answering in Description
Logics: The DL-Lite Family,” J. Automated Reasoning, vol. 39, 2007.

[35] M. Eid, R. Liscano, and A. El Saddik, “A Universal Ontology for Sensor
Networks Data,” in Proc. Intl. Conf. on Computational Intelligence for
Measurement Systems and Applications, 2007.

[36] J.-H. Kim, H. Kwon, D. -H. Kim, H. –Y. Kwak, and S. –J. Lee,
“Building a Service-Oriented Ontology for Wireless Sensor Networks,”
in Proc. Intl. Conf. on Computer and Information Science, 2008.

[37] J. Mendez and B. Suntisrivaraporn, “Reintroducing CEL as an OWL 2
EL Reasoner”, in Proc. Intl. Workshop on Description Logic, 2009.

[38] V. Vassiliadis, J. Wielemaker, and C. Mungall, “Processing OWL2
ontologies using Thea: An application of logic programming,” in Proc.
Intl. Workshop on OWL: Experiences and Directions, 2009.

[39] D. F. Barbieri, D. Braga, S. Ceri and M. Grossniklaus, “An execution
environment for C-SPARQL queries,” in Proc. Intl. Conf. on Extending
Database Technology, 2010.

[40] M. Compton, H. Neuhaus, K. Taylor, K. -N. Tran, “Reasoning about
Sensors and Compositions,” in Proc. Intl. Workshop on Semantic Sensor
Networks, 2009.

[41] R. Brennan, W. Tai, D. O'Sullivan, M. S. Aslam, S. Rea, and D. Pesch,
"Open Framework Middleware for Intelligent WSN Topology Adaption
in Smart Buildings," in Proc. Intl. Conf. on Ultra Modern
Telecommunications & Workshops, 2009.

[42] V. Haarslev, and R. Möller, “Practical Reasoning in RACER with a
Concrete Domain for Linear Inequations”, in Proc. Intl. Workshop on
Description Logics, 2002.

[43] C. Lutz, “Reasoning with Concrete Domains,” in Proc. Intl. Joint Conf.
on Artificial Intelligence, 1999.

[44] U. Hustadt, B. Motik and U. Sattler, “Reasoning in Description Logics
with a Concrete Domain in the Framework of Resolution,” in Proc.
European Conf. on Artificial Intelligence, 2004.

[45] V. Haarslev, and R. Möller, “Description Logic Systems with Concrete
Domains: Applications for the Semantic Web,” in Proc. Intl. Workshop
on Knowledge Representation meets Databases, 2003.

[46] Y. Katz, and B. Parsia, “Towards a Nonmonotonic Extension to OWL,”
in Proc. Intl. Workshop on OWL: Experiences and Directions, 2005.

[47] J. Tao, E. Sirin, J. Bao, D. L. McGuinness, “Integrity Constraints in
OWL,” in Proc. of AAAI Conf. on Artificial Intelligence, 2010.

[48] J. Henss, J. Kleb, S. Grimm, and J. Bock, “A Database Backend for
OWL,” in Proc. Intl. Workshop on OWL: Experiences and Directions,
2009.

[49] A. Kalyanpur, B. Parsia, and E. Sirin, “Debugging Unsatisfiable Classes
in OWL Ontologies,” J. Web Semantics, vol.3, issue 4, 2006.

[50] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau Reasoning for
Description Logics,” J. Artificial Intelligence Research, vol. 36, 2009.

[51] M. Krötzsch, A. Mehdi, and S. Rudolph, “Orel: Database-driven
reasoning for OWL 2 profile,” in Proc. Intl Workshop on Description
Logic, 2010.

[52] D. Cleary and B. Danev, “Using ontologies to simplify wireless network
configuration,” in Proc. of the FOMI Workshop, 2005.

