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Abstract. OWL (Web Ontology Language) reasoning has been extensively 

studied since its standardization by W3C. While the prevailing research in the 

OWL reasoning community has targeted faster, larger scale and more 

expressive OWL reasoners, only a small body of research is focused on OWL 

reasoning for resource-constrained devices such as mobile phones or sensors. 

However the ever-increasing application of semantic web technologies in 

pervasive computing, and the desire to push intelligence towards the edge of the 

network, emphasizes the need for resource-constrained reasoning. This paper 

presents COROR a COmposable Rule-entailment Owl Reasoner for resource-

constrained devices. What distinguishes this work from related work is the use 

of two novel reasoner composition algorithms that dynamically dimension a 

rule-based reasoner at runtime according to the features of the particular 

semantic application. This reasoner is implemented and evaluated on a 

resource-constrained sensor platform. Experiments show that the composition 

algorithms outperform the original non-composable reasoner while retaining the 

same level of reasoning capability.  

Keywords: Composable Reasoner, Resource-Constrained Reasoning, OWL 

Reasoning, Rule-engine Optimization, OWL. 

1   Introduction 

Quite a few OWL reasoners, using different reasoning technologies, have been 

developed to provide OWL reasoning services for different purposes. For example 

some Description Logic (DL) tableau-based reasoners, e.g. Pellet [12], RacerPro [14] 

and FaCT++ [13], aim to provide sound and complete OWL reasoning services. Some 

reasoners, e.g. KAON2 [16] and QuOnto [17], are designed to support efficient query 

services over large data sets. Reasoners such as CEL [18] are specifically 

dimensioned to provide an efficient subsumption algorithm for some applications 

(e.g. medical or bio-informatics). Yet more reasoners such as OWLIM [19] and 

Oracle 11g [22] provide certain levels of embedded OWL (entailment) reasoning 

services in (large) data stores. 

Much of the existing OWL reasoning research aims to develop faster, larger-scale 

and more expressive OWL reasoners, while there exists only limited work on OWL 



reasoners for resource-constrained devices such as embedded devices, mobile phones 

or sensor platforms. However, as more intelligent embedded systems become 

pervasive, and with the proliferation of smarter mobile devices, the need for “on-

device” semantic reasoning becomes more pronounced, for example, information 

filtering in context-aware mobile personal information system [28], localized fault 

diagnoses in wireless sensor networks [29] and context-addressable messaging 

services in mobile ad-hoc networks [30]. 

This paper presents COROR, a COmposable Rule-entailment Owl Reasoner for 

resource-constrained devices. The key contribution of this work is the use of two 

composition algorithms, i.e. a selective rule loading algorithm and a two-phase RETE 

algorithm. Instead of selecting a static reasoner configuration, or selecting a-priori 

from a set of known reasoners or reasoner configurations, composition algorithms try 

to dimension the OWL entailment rule set and the reasoning algorithm on-the-fly 

during execution by considering the particular semantic features of the ontology to be 

reasoned. Our reasoner COROR is implemented and evaluated on a resource-

constrained sensor platform (SunSPOT). Experiments show our composition 

algorithms result in a large reduction in memory and reasoning time while retaining 

the same amount of reasoning capabilities, freeing up resources on resource-

constrained devices or allowing larger ontologies to be reasoned. 

This work is currently based on OWL (rather than OWL2) since a de-facto 

standard OWL2RL rule-set had yet become available. However, the composition 

algorithms presented in this work are independent of any particular OWL semantic 

level and they can be equally applied to OWL2 without any fundamental 

modifications. This selection of a candidate OWL2RL rule-set is subject of ongoing 

work. 

Section 2 presents background and related work. Section 3 details the two 

composition algorithms implemented in COROR. Details of the implementation are 

given in section 4, while experiment design, setup and results are discussed in detail 

in section 5. Section 6 concludes with a discussion of ongoing and further work. 

2   Background and Related Work 

Background and related work are briefly discussed in this section, including OWL 

and its sublanguages, the RETE algorithm [5] and some of its optimizations, and 

finally other resource-constrained semantic reasoners. 

2.1   OWL and OWL Sublanguages 

OWL is an ontology modelling language standardized by the W3C, consisting of a set 

of formally defined OWL constructs each of which is given a logic-based semantic 

[24]. The formal definition of OWL enables reasoning, e.g. entailment computation, 

to be performed automatically over OWL ontologies. OWL has three standard 

sublanguages, i.e. OWL-Full, OWL-DL and OWL-Lite, varying in the set of 

constructs supported, the semantic expressivity, and the complexity of reasoning 

tasks. Non-standard OWL sublanguages, such as pD* semantics family [4], DL-Lite 



family [23] and DLP [51], are also designed for different usages according to the 

OWL features supported.  

In this research we choose the pD* semantics family due to its provision of a 

definitive entailment rule set and tractable entailment. Some OWL-DL constructs are 

missing, such as cardinality constructs (cardinality, minCardinality and 

maxCardinality), some (in)equality constructs (allDifferent and distinctMembers), 

Boolean combination constructs (unionOf, complementOf and intersectionOf), and 

oneOf, but still a substantial subset of OWL-DL constructs is kept. Given the 

resource-constrained context where this work will be applied, any ontology will be 

generally less complex than OWL-DL. We feel that the pD* family generally have 

sufficient expressivity and semantics to model our domain to an acceptable degree. 

COROR is configured to use the pD*sv entailments that extend the pD* semantics 

with OWL‟s iff semantics for owl:someValuesFrom, but at the cost of possibly 

intractable entailment. Nevertheless, COROR can be configured to use the pD* 

semantics by simply altering the rule set in use for better computational complexity.  

2.2   RETE and RETE Optimizations 

The RETE algorithm is a fast pattern matching algorithm for forward-chaining 

production systems. It forms the basis for most modern production engines, and is the 

underlying algorithm for COROR. In general RETE builds a discrimination network, 

termed RETE network, matching and joining facts in the network. A typical RETE 

network consists of an alpha network and a beta network. The alpha network 

performs intra-condition matching for individual condition elements in the left hand 

side (l.h.s.) of each rule. For each rule, successfully matched facts for each condition 

element, said to partially match the rule, are stored in alpha memory as intermediate 

results and are propagated into the beta network. In the beta network inter-condition 

joins are performed by pairwise checking the consistency of variable bindings for 

intermediate values (i.e. pairwise joins of condition elements). New intermediate 

results are generated for consistent pairs and they are passed down the beta network 

for further matching. The final join results that eventually satisfy all condition 

elements are termed the instantiations of a rule and are added into a conflict set for 

firing (i.e. fire the r.h.s. action of the corresponding rule). Firing rules may 

add/remove facts into/from the fact base triggering another RETE cycle as described 

above.. Multiple RETE cycles are usually required for full entailment of a fact base. 

The RETE algorithm completes when no more new facts are generated. 

Caching intermediate results can substantially speeds up join operations. However 

an inappropriately ordered sequence of joins can cause very excessive unnecessary 

memory usage and processing time in the beta network, in particular when two 

condition elements have no common variables, which leads to a production join. 

Several heuristics, such as „most specific condition first‟, „pre-evaluation of join 

connectivity‟, etc, have been developed to cope with the excessive memory overhead 

from inappropriate join sequences. Direct application of these can result in optimized 

RETE networks, however, they have several shortcomings. Firstly direct application 

of heuristics relies largely on human tuning of the original rule set (e.g. manual order 

of condition elements in rules) according to heuristics. This is a very onerous task 



where reasoners are deployed in an environment with diverse or changing rule sets or 

changing dataset characteristics. For example in sensor networks different sensors 

may have different rule sets, and rules may change over time. Secondly, direct 

application of heuristics [2, 3] usually only considers the rule-set therefore they 

usually cannot produce optimal join structures for different fact bases [1], where 

diversity in fact bases and their structure is commonplace in sensor networks. 

Researchers have proposed some approaches to automatically optimize join 

sequences while taking account of the fact base. These optimizations are usually hard 

to implement and in most cases require modification of the RETE algorithm. 

However they do not require input from humans and can give different optimizations 

for different fact bases. Ishida in [1] proposes to use a trial execution before the real 

execution to collect statistics about the fact set. A predefined cost model is used to 

evaluate a set of candidate RETE structures and the RETE structure with the minimal 

cost is selected. This approach can find an optimal RETE structure however its 

obvious drawback is that a trial execution may not always be practical, particularly 

where memory, processing ability and power are limited. 

Other join structures are also studied to reduce the resource required by RETE 

network. Work in [10] studies the combination of RETE and TREAT [11] such that 

the size of beta network can change automatically. The Gator network [50] is 

proposed as a generalized RETE join network. However Gator and TREAT are not 

considered as at this stage for COROR as it designed as an experimental reasoner for 

investigating composition algorithms on rule-entailment OWL reasoners, where the 

adoption of RETE in rule-entailment OWL reasoners is prevalent.  

2.3   Mobile Reasoners 

Other work has been devoted to porting semantic reasoning capability onto resource-

constrained devices. MiRE4OWL [25] is a resource-constrained rule-entailment OWL 

reasoner developed using C++ for PPC. It adopts two mechanisms to reduce the 

memory usage of the RETE engine. One is to restrict the number of facts of the same 

type and the other is to use a primary key to detect duplication of facts and to use an 

update key to specify the operation to take for duplications. These mechanisms are 

useful for keeping a light-weight and up-to-date fact base with continuously incoming 

facts. However its RETE implementation is not optimized and therefore it is likely 

that inefficient production joins may occur if rules are not tuned by rule experts. 

μOR [26] is a resolution-based OWL-DL reasoner for ambient intelligent devices 

(J2ME CDC compliance). A dynamic rule generation mechanism (similar to the one 

used in [7]) is used to automatically generate specific inference rules for all 

concepts/properties/individuals. This approach can construct small specific rules 

leading to a small (or no) beta network, and scales well for large ABoxes. The 

drawback, however, is obvious: the size of rule set will increase rapidly with the 

increase on the size of the TBox. 

Bossam [21] is a forward-chaining OWL reasoner for the J2ME CDC platform. 

However rather than on reducing the runtime memory footprint, Bossam concentrates 

on providing web-friendly and distributed reasoning.  



The above reasoners are the most relevant research to COROR, however their 

target platform is much less constrained than that of COROR, i.e. SunSPOT (CLDC 

1.1 conformant). Some other less related work exists. They are mostly mobile DL 

tableaux reasoners. Pocket KRHyper [27] is a mobile DL reasoner based on hyper 

tableaux algorithm. Work in [8] introduces an ontology-based context fusion 

framework for context-aware computing using a sequential rule matching algorithm. 

Work in [9] discusses mTaleaux, a tableaux algorithm for resource-constrained 

devices. However, they are not directly comparable to our work and due to space 

considerations will not be discussed in detail here. 

3   Composition Algorithms 

This section briefly presents our composition algorithms, i.e. the selective rule 

loading algorithm and the two-phase RETE algorithm that are implemented in 

COROR. 

3.1   Selective Rule Loading Algorithm 

The selective rule loading algorithm automatically composes a reasoner rule-base 

depending on the reasoning capabilities required. It dimensions a selected entailment 

rule set by estimating which entailment rules are required or desired for reasoning 

specific ontologies and then selectively loading only these rules into the reasoner. 

Estimation is performed by comparing OWL constructs used in the ontology against 

OWL constructs in the l.h.s. of each entailment rule. All OWL constructs used by the 

ontology are inserted into a construct set. Each rule is then individually checked for 

usefulness. A rule is considered as useful if all OWL constructs used in its l.h.s. are 

included in the construct set, and it is selected as it could be fired for reasoning this 

ontology. OWL constructs used in the right-hand side (r.h.s.) of each selected rule are 

then inserted into the construct set as its firing could lead to the insertion of these 

OWL constructs into the ontology. This process iterates over the remaining 

unselected rules until all useful rules are identified, while the remaining rules are not 

used, resulting in a resource saving. 

Note that not all selected rules will be fired as the existence of a rule‟s OWL 

constructs in the target ontology does not necessitate successful instantiation of that 

rule. However, unselected rules cannot be fired even if they were loaded due to the 

absence of relevant OWL constructs in the ontology. A prototype desktop-based 

implementation and an initial evaluation of this algorithm can be found in [6]. 

Experiment results show a moderate amount of memory usage reduction but scarcely 

any reduction in reasoning time in this implementation. 

3.2   Two-Phase RETE Algorithm 

Rather than optimizing based on reasoning capabilities, as per the selective rule 

loading algorithm, the two-phase RETE algorithm composes the reasoner at the 



RETE algorithm level. A novel interrupted RETE network construction mechanism is 

adopted that performs only the first RETE cycle immediately after the construction 

the alpha network (first phase). This enables some information about the ontology to 

be collected without requiring a full pre-match or traversal of the fact-base. The 

construction of the beta network resumes after the first-phase matching and a 

customized RETE network can be composed for the second-phase, tuned for the 

particular ontology by taking collected information into account. The first RETE 

cycle resumes after the construction of entire RETE network and the following cycles 

are performed as in the normal RETE algorithm. The following subsections discuss 

each phase in detail. 

 

First Phase. In the first phase a shared alpha network is built and the first RETE 

cycle starts by matching triples against individual rule condition elements in the alpha 

network. Matched triples are cached in alpha memory awaiting further propagation 

into the beta network (which is not yet constructed at this stage). A variety of 

informative statistics about the ontology, e.g. the size of each alpha memory node, the 

join selectivity factor, etc., can be collected during or after this phase without 

introducing extra efforts such as specific traversal of the ontology or pre-matching all 

rules. In our prototype only the number of matched triples for each condition element 

is gathered. This helps to order beta network join sequences later. An alpha node 

sharing mechanism is also used to allow condition elements common across different 

rules to share the same alpha node, thereby reducing the size of the alpha memory and 

also fact matching time to 1/n for an alpha node (condition element) shared by n rules. 

As multiple RETE cycles may be required for reasoning a fact base, information 

collected at this stage can only be used to optimize the first RETE cycle. However, we 

notice that for most ontologies that we experimented on (see section 5), the majority 

of (alpha network) matches and (beta network) joins occur in the first RETE iteration: 

15 of a total of 19 ontologies have an average of 75% joins performed in the first 

iteration (for the remaining 4 ontologies this is still above 50%). Furthermore an 

average of 83% inferred facts are generated in this iteration. Hence it is appropriate to 

optimize the RETE network by applying first-cycle optimization heuristics. 

 

Second Phase. In the second phase a beta network is constructed heuristically and the 

first RETE cycle resumes propagating partially matched intermediate results down 

through the beta network as condition elements are pairwise joined. However 

information collected in the first phase enables the application of heuristics to rely not 

only on characteristics of rules but also on characteristics of the ontology such that a 

customized beta network (rather than a generally optimized one) can be composed for 

the particular ontology. Two join sequence optimization heuristics, i.e. the most 

specific condition first heuristic and the connectivity heuristic, are implemented in the 

beta network construction. Their applications are discussed in detail in the following 

paragraphs.  

The most specific condition first heuristic orders join sequences according to their 

specificity to avoid long chain effects [3], i.e. where the absence of successful joins is 

only detected after a large amount of expensive join operations have been performed, 

leading to a waste of computational resources, in particularly beta network memory. 

In a previous study [2] Özacar et al assert that using the number of matched facts of a 



condition element as a criterion to estimate its specificity can guarantee to find the 

most specific condition elements. However, this metric can only be calculated after 

matching, which makes it useless in normal RETE implementations. However we 

argue that this information can be collected in the first phase of our novel interrupted 

RETE construction mechanism without introducing extra effort and thereafter it can 

be used here as a straight forward criterion to estimate the specificity: the more facts 

matched for a condition element‟s alpha-network node the less specific that condition 

element is for the particular ontology. A corollary presents where fewer triples match, 

a condition is more specific. Although the following RETE cycles may affect this 

specificity ordering (i.e. number of matching facts), it is still sufficient as most joins 

and intermediate values are generated in the first RETE cycle.  

More sophisticated criteria can be introduced for specificity estimation, for 

example including the cardinality of values to be joined. At this stage we did not 

implement such heuristics, but the approach taken is equally applicable and, as 

described later, the approach taken substantially reduces memory and reasoning time. 

The connectivity heuristic ensures that all joining condition elements have 

variables in common. This prevents product joins and thus can further reduce the 

amount of intermediate results in the beta network. The connectivity test is performed 

after the „most specific condition first‟ join ordering heuristic: if a condition Cuncon is 

found to be not connectable to all previous conditions Cpre, then Cuncon is swapped with 

the first condition after Cuncon in the join sequence that is connectable to Cpre, say Ccon. 

As the join sequence has already been ordered by the most specific condition first 

heuristic, Ccon is then the one that connects with Cpre and with the least specificity of all 

later connectable conditions. This ensures connectivity in the join sequence and also 

maintains the specificity ordering of joins where possible. 

3.3 Analytical Comparisons between Composition Algorithms 

In this section analytical comparisons between the two composition algorithms are 

presented from three aspects, including reasoning algorithm independence, semantic 

independence and flexibility in handling changes. Empirical analyses and 

comparisons can be found in section 5.  

As the selective rule loading algorithm constructs a selective ruleset only by 

analyzing the constructs used in the entailment rules themselves, it is completely 

independent of reasoning algorithm or ruleset used. This feature enables it to be 

applied in all forward-chaining rule-entailment reasoners regardless the reasoning 

algorithms such as RETE or DBMS. Furthermore its application does not need to 

change the reasoning algorithm and hence it is relative easy to be applied. The two-

phase RETE algorithm can only be applied for the RETE algorithm and therefore is 

not reasoning algorithm independent. In addition its implementation involves changes 

to the reasoning algorithm i.e. interrupting RETE construction, so is harder to 

implement compared to the selective rule loading algorithm. Both algorithms are 

semantic independent. Both the two-phase RETE algorithm and the selective rule 

loading algorithm are completely independent of the particular ontology or entailment 

rule set in use. 



Addition and deletion are discussed separately with respect to flexibility of 

handling dynamic changes in the fact-base. Additions can be handled incrementally 

by the two-phase RETE algorithm due to the intrinsic capability of RETE to handle 

addition incrementally. Simple deleting facts may lead to logical errors (e.g. deleting 

facts with different justifications) and therefore may require truth maintenance 

mechanisms. As truth maintenance is not yet implemented on COROR re-reasoning 

the entire ontology is required for every deletion. However given that many existing 

semantic applications only need to reason on static ontology rather than changing 

KBs, COROR is still sufficient for them. Additions may introduce previously unseen 

OWL constructs which may cause a problem with the selective rule loading 

algorithm. In this case re-execution of the selective rule loading algorithm and re-

reasoning of the entire ontology are required. 

The semantic independence feature of both composition algorithms enables the 

extension of COROR to support OWL 2 RL without any fundamental modification. 

Given growing adoption of OWL 2 the extension of COROR to support OWL 2 RL is 

considered as an important task in future work. 

4   Implementation 

COROR is implemented on the SunSPOT [48] sensor board emulator with SDK 

v4.0 (blue). The μJena framework [49], a cut down J2ME version of Jena [15], is 

used to read and handle OWL ontologies. It provides a powerful interface for 

ontology access and modification, e.g. parse ontology definitions, support to 

assert/retrieve OWL axioms, query resources and so on. Rule handling and reasoning 

are not supported by μJena. Given the close connection between μJena and Jena we 

ported the Jena RETE engine (and relevant modules) into μJena rather than 

implementing them from scratch. As the SunSPOT is only conformant with CLDC 

1.1, a subset of J2ME, substantial modifications were required to port the Jena rule 

engine onto μJena and SunSPOT. 

The selective rule loading algorithm is implemented as a Java class 

(RuleSetComposer) outside of the RETE engine. To enable faster OWL construct 

identification, instead of analyzing entailment rules at runtime using μJena APIs, we 

manually analyze them beforehand: OWL constructs from both l.h.s. and r.h.s. are 

identified and coded as rule-construct mappings in a text file which will be loaded and 

analyzed by the selective rule loading algorithm. A drawback of this approach is it 

requires different rule-construct mappings to be created manually for different 

entailment rule sets. The checking for OWL constructs in any ontology is performed 

automatically at load-time by enumerating the OWL constructs using the μJena 

ontology manipulation API. 

The two-phase RETE algorithm is implemented inside the RETE engine 

(RETEEngine class). One problem encountered in the implementation is Jena‟s 

extensive use of Java arrays as variable binding vectors where bound values are stored 

in the corresponding positions in the array as in the rule. This hampers the sharing of 

common conditions between rules, thereby requiring extensive code refactoring. Four 

composition modes, i.e. NonComposable mode, Selective Rule Loading mode, Two-



Phase RETE mode, and Hybrid mode, are implemented corresponding to the use of 

no, one or both composition algorithms. In the Hybrid mode both composition 

algorithms are used and the selective rule loading algorithm first dynamically 

constructs a selective entailment ruleset for use in the two-phase RETE algorithm.  

Entailment is the key reasoning task implemented by COROR. However, some 

common reasoning tasks can be realized by querying the ontology with all 

entailments calculated, coined entailment closure (at the moment COROR supports 

only single-triple-based query). For example, subsumption between two classes C and 

D can be reduced to querying the entailment closure with the triple C rdfs:subClassOf 

D, instantiation of C as querying with the triple ?x rdf:type C, where ?x is a variable 

and satisfiability of a class C as querying with the triple C rdfs:subClassOf 

owl:Nothing, checking if x is an instance of class C as querying for the triple x 

rdf:type C, and so on. Some other reasoning tasks are not directly supported by this 

approach. For example, realization of an instance a requires finding the most 

specialized class that a instantiates, which requires pairwise subsumption checking for 

all classes retrieved using a rdf:type ?x. 

A configuration file is used where users can specify the composition mode, the 

ruleset to be used, and specify the ontology to be reasoned. Rules are encoded in the 

Jena rule format in a separate rule file, giving users flexibility to modify the rule set, 

in particular providing simple support for application-specific reasoning.  

5   Experiments and Discussions 

This section presents and discusses two experiments carried out to evaluate COROR 

from both the performance and the correctness perspectives.  

5.1   Design and Execution 

Experiments were performed to investigate the performance impacts of composition 

algorithms on rule-entailment reasoners.  

The memory usage and execution time required to fully calculate entailments of a 

selected set of ontologies on the SunSPOT emulator (v 4.5.0) is compared for 

different composition algorithms. These metrics were selected since they directly 

represent changes in reasoning performance. Some other metrics used to evaluation 

other OWL reasoners were not selected here as they are not quite suitable for 

COROR. For example, conjunctive query answering time is not yet implemented in 

the current version of COROR; reasoning speed on ever enlarging KB is also omitted 

here as COROR performs load-time reasoning for resource-constrained devices and 

therefore small or medium ontologies with static sizes are the target of this work. The 

separate evaluation of individual reasoning tasks such as classification are also not 

performed in this work as entailment is the key reasoning task in COROR and all 

other tasks are reduced to querying the entailment closure (as discussed in Section 4).  

The memory usage and execution time of COROR (configured to use the hybrid 

mode) were also compared with other OWL reasoners. As MiRE4OWL and μOR are 

not accessible, Bossam and three other desktop rule-entailment reasoners, i.e. Jena 



2.6.3, BaseVISor 1.5.0 [20], and swiftOWLIM v3.0.1, were selected in this 

comparison due to their similarity with COROR in terms of expressivity and 

reasoning algorithm. Note that although Bossam supports J2ME CDC we failed to 

port it onto SunSPOT as java.util.List is widely used in Bossam while not supported 

by CLDC 1.1. Jena was configured to used RETE engine only and also the pD*sv rule 

set. Pellet was also included in this comparison giving readers an intuition of the 

performance of COROR comparing to a full fledged DL tableau reasoner. As it has 

proved time prohibitive to port these reasoners onto SunSPOT platform this second 

evaluation step was performed using a J2SE platform on a desktop computer with 

Dual Core CPU @ 2.4GHz, Java SE 6 Update 14, and maximum heap size as 128MB 

(the SunSPOT emulator ran on the same desktop machine). 

In total 17 ontologies varying in size and expressiveness were used in our 

experiments, including: teams [31], owls-profile [32], koala[33], university [34], beer 

[35], mindswapper [36], foaf [37], mad_cows [38], biopax [39], food [40], 

miniTambis [41], atk-portal [42], wine [43], amino-acid [44], pizza [45], tambis-full 

[46] and nato [47]. These ontologies are of small or medium size and are from 

different domains therefore their usage can avoid any unintentional bias where some 

OWL constructs are over- or under-used by some ontology designers in different 

application domains. They are well known and commonly used, and so are relatively 

free from errors. Due to the low memory and processing power available on 

SunSPOT only 11 of the 17 ontologies were used in the experiment on the SunSPOT 

platform while all 17 ontologies were used in the comparison with other reasoners. 

5.2   Results and Discussion 

The memory usage and reasoning time required by different composition modes on 

SunSpot COROR implementation are illustrated in figure 1 and 2. Results show that 

all composition modes use less memory and reasoning time than the NonComposable 

mode. Note that some tests produced no data e.g. the memory usage required to 

reason the food ontology in the NonComposable mode, required manual termination 

before completion due to a long reasoning time (over 30 minutes).  

Fig. 1. Memory usage for different composition algorithms (KB). 
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Fig. 2. Reasoning execution time for different composition algorithm (second). 

Different composition algorithms vary in their performances. The two-phase RETE 

algorithm outperforms the selective rule loading algorithm for all tested ontologies. In 

addition the time/memory reductions in hybrid mode are also limited (comparing to 

the two-phase RETE mode). We can conclude the reasons for these performance 

differences by analysing the algorithms, rulesets and ontologies used. The selective 

rule loading algorithm reduces memory and time by unloading rules. Loaded rules are 

not optimized. Heuristics used in the two-phase RETE algorithm, however, apply to 

all rules, even rules that could have been omitted. The two-phase RETE algorithm 

reorders join sequences of rules according to the number of matched facts of each 

condition, so any condition element from an unneeded rule with no matching OWL 

facts is placed at the start of the join sequence. In this way join sequences of unneeded 

rules can be reordered such that no join operation is needed, as if they are “unloaded”. 

Despite this, some shared alpha network nodes may still be created for the other 

condition elements of these unneeded rules reducing the size of alpha network, which 

is not in the selective rule loading algorithm. Hence the two-phase RETE algorithm 

can have better performance than the selective rule loading algorithm. This also 

explains the limited benefit in hybrid mode beyond the two-phase mode. 

In depth investigations into composition algorithms are performed to identify the 

sources for the time/memory reductions. Several metrics are selected. As join and 

match are respectively the two major operations in alpha and beta network, changes 

on the number of matches (#M) and the number of joins (#J) are used to respectively 

represent changes on the reasoning time in alpha and beta network. Similarly changes 

on the number of intermediate results (#IR) generated by matches/joins (#IRM/#IRJ) 

are used to represent changes on memory in the corresponding network. By 

enumerating the #M, #J and #IR values by rule for each ontology under the selective 

rule loading mode we find that these metrics all drop to zero for unneeded/unloaded 

rules leading to the reduction of memory usage and reasoning time. For loaded rules 

these metrics remains the exact same as for the NonComposable mode. These metrics 

and a close comparison of the results of all modes show that the optimizations applied 

do not in any way change the results of the entailment process, so the correctness of 

the process is not affected.  

Insights into the two-phase RETE algorithm show that the alpha node sharing 

mechanism in alpha network contributes most memory reduction in this experiment as 
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the reduced #IRM occupies the majority of the total reduced #IR (an average of 95% of 

the intermediate result reductions occur in the alpha network for all tested ontologies). 

However, it is reductions in both the #M and #J values (in both the alpha- and beta-

networks) that contribute to the decrease in reasoning time, but due to the differences 

in the processing time required for different per match/join operations it is difficult to 

conclude which contributes more.  

Close investigation of the rule set explain the limited memory reduction resulting 

from the join-reordering in the beta network. The selected pD*sv ruleset is already 

manually optimized in terms of condition ordering and therefore nearly no automatic 

optimization is required for this ruleset. This leads to only small reductions in the #IRJ 

(and therefore small contribution to the memory reduction). To show that the two-

phase RETE algorithm is able to greatly reduce the reasoning time and memory the 

pD*sv rule set was re-processed to re-order conditions elements for each rule in a 

sub-optimal manner (as would be typical for user-authored or application specific 

rules). Tests performed in figure 1 and 2 were re-executed for the rearranged non-

optimized rule set and results show that the NonComposable mode required 

substantially more time and memory than it required before. However the two-phase 

RETE algorithm required the exact same amounts of time and memory as shown in 

figures 1 and 2, which shows the ability of two-phase RETE algorithm to greatly 

reduce reasoning time and memory with sub-optimal ordering of rule conditions. 

These results show that the approach and heuristics selected for COROR are capable 

of automatically optimizing rules condition ordering to an extent comparable to that 

of a rule authoring expert. 

The comparisons of reasoning time and memory usage between COROR and other 

state of the art reasoners are given in Figures 3 and 4. The time-based performance 

COROR is comparable to Jena and BaseVISor. For some small ontologies it runs 

slightly faster than BaseVISor. Generally Jena requires a longer time to finish its 

reasoning mainly due to its complicated design to enable flexible ontology 

manipulation rather than fast reasoning. However, the reasoning execution time of 

COROR is substantially worse than OWLIM and Bossam.  

Fig. 3. Comparison of reasoning execution time with other OWL reasoners 
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Fig. 4. Comparison of memory usage with other OWL reasoners 

On the other hand the memory performance of COROR is much better than the 

other reasoners. It uses the least memory for all tested ontologies, which indicates 

much smaller memory footprint can be gained when COROR is applied on resource-

constrained devices. Bossam failed for some ontologies so there are no values for 

them. BaseVISor hides its reasoning process from external inspection so we cannot 

accurately measure its memory usage and it is omitted from the memory comparison.  

The correctness of algorithms (in terms of the pD* semantics) were tested by 

comparing results of the mode based on the original Jena RETE engine 

(NonComposable mode) with results from the other composition modes. All the four 

composition modes generate identical results for all 17 ontologies. Given the tight 

relationship between the NonComposable mode and Jena RETE engine, we can 

conclude that our algorithms do not affect correctness. 

6   Conclusion and Future Work 

We present COROR, a composable reasoner for resource constrained devices. It 

implements two novel complementary algorithms to compose a custom OWL 

reasoner at the entailment ruleset level and at the RETE algorithm level. The selective 

rule loading algorithm establishes a perfect-fit entailment rule subset for the target 

ontology by selecting only the entailment rules required for that ontology and then 

loading them into the reasoner. The two-phase RETE algorithm dynamically collects 

optimization statistics during the reasoning process and uses them to optimize the 

RETE network building process. This reasoner was implemented on the SunSPOT 

platform. Experiments show that all combinations of the composition algorithms 

require less memory and time than the non-optimized version of the reasoner, and 

require substantially less memory than other off-the-shelf rule-based reasoners. 

Further work is actively addressing a number of outstanding topics. First different 

types of statistics can be collected in the first phase and more sophisticated heuristics 
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can be designed or selected. For example, as mentioned earlier the heuristics we are 

currently using to evaluate the specificity of a condition is relatively simplistic, 

despite its good performance. Secondly the capability to process conjunctive queries 

needs to be included. This allows richer queries, characteristic of sensor applications. 

Thirdly, indexing and other join methods, e.g. merge-join, can be studied and tested 

for better efficiency. Finally, consideration of the recently published W3C OWL2 

standard, and the selection of a candidate OWL 2 RL rule set is ongoing. 
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