
MDDSVsim: An Integrated Traffic Simulation
Platform for Autonomous Vehicle Research

Niall O’Hara, Marco Slot, Dan Marinescu, Jan Čurn, Dawei Yang,
Mikael Asplund, Mélanie Bouroche, Siobhán Clarke and Vinny Cahill

Distributed Systems Group, School of Computer Science and Statistics, Trinity College Dublin, Ireland
{niohara,slotm,dan.marinescu,jan.curn,yangda,asplunda,melanie.bouroche,siobhan.clarke,vinny.cahill}@scss.tcd.ie

Abstract—Research and development in the field of intelligent
transportation systems (ITS) can be costly in terms of both
time and money. A significant initial and ongoing investment
is often required in order to obtain a physical platform from
which experimentation and results may be gained. Simulation
of entities, their dynamics and interactions can provide an
appropriate and cost effective method for the development of
vehicular applications.

When simulating traffic behaviour, it is modelled either at
a microscopic level, where the individual characteristics and
behaviours of each vehicle are reproduced, or at a macroscopic
level where the traffic behaviour is aggregated and represented
in terms of density, flow and speed. A difficulty with macroscopic
simulation it that it often simplifies certain aspects of a scenario
under investigation. Non-realistic vehicle dynamics, simplified
communication models and idealistic localisation can all detract
from the credibility of evaluations carried out. While microscopic
simulation can alleviate these concerns, the computational re-
sources required to simulate a large scale scenario, such as a
highway, become prohibitive.

This paper demonstrates that the integration of a number
of simulation platforms can help alleviate the aforementioned
concerns. Based on this premise we present MDDSVsim, the
integration of (i) VISSIM - a microscopic simulation program
for multi-modal traffic flow modelling, (ii) Microsoft Robotics
Developer Studio (MRDS) - a robotics simulation platform, (iii)
OPNET - a discrete event simulation engine and finally (iv) The
World Model, a framework for building perception systems for
robots and intelligent vehicles.

I. INTRODUCTION

Self-driving cars and automated motorways have long been
considered to be the ultimate solution to traffic congestion,
while also cutting the number of accidents and being better for
the environment. This concept was first envisaged by General
Motors’ Corporation in their exhibit at the 1939 New York
World’s Fair. Futurama was their notion of what the world
would look like 20 years’ later [1]. In this vision, vehicles
would cooperate with each other and be equipped with radio
controls that would allow them to maintain closer distances
to each other, akin to modern collaborative adaptive cruise
control.

Much progress has been made since General Motors vi-
sion from 1939. In March 2004, DARPA, the United States’
government’s Defense Advanced Research Projects Agency,
came up with an initiative to help unman front-line combat
operations. Part of this plan was to race autonomous robotic
ground vehicles. The challenge was a disaster - out of the
fifteen entries, mainly teams from US universities, the best any

of the vehicles could do was 12 km out of the 240 km course.
However, it did result in waking the industry up to the idea,
efforts to win the competition were significant and it attracted
much attention. So much so, that when the competition was
run again the following year it was a far more successful affair.
With larger budgets and more experience, five vehicles were
able to stay the course and complete the entire 240km with
the winning team from Stanford University completing the
course in just under seven hours [2]. However, it was very
clear that the vehicles’ autonomy was still very limited and
the algorithms were still not sophisticated enough for urban
driving.

With this in mind, the 2007 Grand Challenge focused on
urban driving. The controlled urban environment of an army
base was the location for the Urban Challenge. Participants
were tasked with ensuring complex interactions between the
vehicles while also adhering to traffic regulations [3]. In just
three years, technology had been sophisticated to a level that
vehicles which once crashed into each other in the desert could
now successfully drive autonomously on city streets.

In May 2011, Helmond in the Netherlands was the location
for the first Grand Cooperative Driving Challenge (GCDC)
[4], [5]. An open competition between research groups, it
tasked them with creating cooperative, autonomous driving
via wireless technology. The aim was to create a vehicle
controller that could communicate with other vehicles, perform
longitudinal control and maintain a stable platoon formation.
The vehicles transmitted speeds, accelerations and locations
over a wireless link and showcased the possibilities for future
co-operating vehicles.

All of the aforementioned challenges showed that research
and development of autonomous vehicles can be both costly
and extremely challenging. The domain in which these ve-
hicles must perform is highly dynamic, consisting of high
speed movements and unpredictable events. Due to the sheer
number of interacting subsystems involved and the volatile
nature of the environment designing algorithms to deploy on
these vehicles is a highly complex design problem from a
software engineering point of view. Simulators are an essential
tool in development of such systems, but unfortunately lacking
in the key area of cooperative autonomous driving.

This paper outlines our contribution, MDDSVsim, which
provides a platform for the development and evaluation of
algorithms to enable vehicular technologies such as collabora-



tive autonomous driving. The paper is laid out as follows.
Section II looks at related works in the field. In section
III we introduce the scenario under investigation. Section
IV describes the operation of MDDSVsim and section V
discusses the challenges we faced. Finally Section VI draws
conclusions from our findings.

II. RELATED WORK

Whether it be providing real-time traffic forecasting to aid in
future road network planning or complex scenarios involving
smart vehicles that can communicate and collaborate, large
scale microscopic (per vehicle) traffic simulation models are
required when developing vehicular applications [6]. On the
one hand, when simulating such large scale scenarios the com-
putational resources required can quickly become prohibitive.
On the other hand, when simulating individual vehicles non-
realistic vehicle dynamics, simplified communication models
and idealistic localisation can all detract from the credibility
of evaluations carried out.

In order to increase the realism of the scenario under inves-
tigation combining multiple simulation platforms is a route
often taken. The computational resources required can also be
more easily distributed, for example, through the combination
of a microscopic simulation engine and an external application
domain specific engine, such as a communications network
simulator. Mylonas [7] and Bhakthavathsalam [8] presented
inter-vehicle communication protocols and applications that
required realistic volumes of network traffic to evaluate.
Through the integration of microscopic simulation programs
(VISSIM, SUMO), that perform vehicular traffic flow mod-
elling, and discrete event simulation engines (OPNET, NS2),
that analyse communication networks and applications they
demonstrated that the approach was valid when developing
such applications. The authors were not concerned with the
driver models in use as they were investigating the commu-
nication between the vehicles. MOBYSIM [9], an integrated
simulation platform, combines a number of tools including
PreScan and OPNET. STRAW [10], a vehicular mobility
model written for the JiST/SWANS discrete-event simulator,
provides accurate simulation results based on the operation
of real vehicular traffic. Genereally time steps of microscopic
traffic simulators are several orders of magnitude more coarse
than wireless network simulators.

PreScan [11] is a simulator used for the development of
advanced driver assistance systems. PreScan has a graphical
tool that can be used to define a scenario, one or more
vehicles, and their equipment. From the scenario, PreScan
generates a Simulink model that can be modified to define
custom vehicle behaviour. PreScan targets improvements to
vehicles that involve a combination of human-machine in-
terfaces and customized vehicle behaviour, particularly in
terms of speed. PreScan can be interfaced with a number of
external software applications such as CarSIM, which provides
advanced vehicle dynamics. PreScan performs a fixed time-
step simulation rather than real-time simulation. In principle,
this allows PreScan to scale to a large number of vehicles

Fig. 1. Two lane scenario modelled in MRDS.

without loss of accuracy but at the expense of a potentially
long computational time, with makes it impractical.

Another drawback of fixed time-step simulation compared
to real-time simulation is that many events happen at exactly
the same time, while this would not be the case in real-
ity. This can lead to peculiar side-effects, especially in co-
operative scenarios in which the vehicles are not expected to be
synchronized in terms of their actions, sensor measurements,
and communication. An advantage is that the accuracy of the
results is independent of the performance of the host machine.
A real-time simulation may need to revert to more coarse
grained time steps in case it has difficulty keeping up with
the clock.

III. SCENARIO

The scenario under investigation in order to validate the
operation MDDSVsim consisted of two vehicles positioned
side by side on a two lane stretch of road with a lane closure
at a distance of 120 meters from their starting point (Fig. 1,
Fig. 2). Traffic cones were placed along the route at intervals
of 10 meters, the cones acted as points of reference to allow
The World Model to localise each vehicle.

Initially both vehicles are configured to set off at the same
speed, the vehicle in the left lane will detect that there is an
obstruction ahead and notify the vehicle in the right lane of
the obstruction and its intention to change lane. Both vehicles
will then co-ordinate their behaviour to safely merge lanes and
pass the obstruction.



Fig. 2. Two lane scenario modelled in VISSIM.

Fig. 3. MDDSVsim: The integration of three simulators and an application
framework.

IV. DESIGN AND IMPLEMENTATION

MDDSVsim is the integration of three separate software
simulators VISSIM, a microscopic simulation program for
multi-modal traffic flow modelling, MRDS, a robotics sim-
ulation platform, OPNET, a discrete event simulation engine
and a perception system framework The World Model (Fig. 3).

A. Initialisation

Initially the system is bootstrapped by loading a con-
figuration file representing the scenario under investigation.
The configuration contains the parameters required to launch
an instance of each simulator. Because of the differences
in platform, we run each of the simulators as their own
processes that communicate over TCP (in case of MRDS-
OPNET) and HTTP (in case of MRDS-VISSIM) and have
some fairly extensive code to appropriately synchronize each
simulator. Once each of the simulators has launched and have
synchronised the participating vehicles are then instantiated
along with any environmental models.

B. Car Drive Service

Each instance of a vehicle has a corresponding trajectory
controller process (MRDS) which indicates the path that the
vehicle plans to take (Fig. 4). A custom driver model we
created for VISSIM subscribes to a car drive service which
allows the vehicles’ movement in MRDS to be reflected in
VISSIM.

Fig. 4. Vehicle Trajectory Controller.

Fig. 5. View from inside a vehicle within MRDS.

C. Localisation Service

In order for the vehicles to navigate their environment safely
they rely on sensor data processed by The World Model [12], a
modular framework for building vehicular perception systems.
There are three main components (aka processes) deployed
in this particular application: the map generator, the laser
analyser, and the cone matching process. The map generator
process simply registers the known map of the environment
into the World Model, represented as a set of point geometric
features corresponding to the absolute positions of the cones.
The laser analyser process uses the Point Cloud Library [13]
to identify the cones in the raw laser measurements, using
the RANSAC algorithm, and registers them in the World
Model also as point geometric features. Finally, the cone
matching process uses both the fixed map and cone point
features generated by the previous two processes to estimate
the relative displacement of the reference frames of the laser
scanner and the fixed map, by applying a custom genetic



Fig. 6. Output from The World Model.

algorithm. The relative displacement is then used to estimate
the global position of the vehicle in the map. The output from
The World Model can been seen in (Fig. 6).

D. Communications Service

Cooperative autonomous vehicles communicate over an ad-
hoc network. Within the MDDSVsim framework, communi-
cation is provided by a MRDS service. To communicate with
other vehicles, application code can use a library that sends
messages through the communication service, and receives
messages by subscribing to it. The interface provided by the
service exposes MAC-layer broadcast and unicast. Network
layer protocols can be implemented as libraries that are called
by the application code or as separate services. Two different
implementations of the communication service are available
for simulated communication. The first implementation uses
an external network simulator. The second implementation
uses a more lightweight, local implementation based on a
free-space path loss model. In both cases, the same service
instance is used for all vehicles. The communication service
becomes aware of which vehicles use communication when
they subscribe to receive messages. The service can then
inspect the state of the physical world in the simulator to obtain
the actual positions of vehicles, which are used to determine
whether the vehicles can communicate.

The communication service implementation that uses an
external network simulator uses a custom TCP/IP protocol to
connect to it. In principle, it is possible to run the network
simulator on a different machine and communicate with it over
a LAN or the Internet. However, the added network latency
would directly influence the result of the simulation so this
is not a set-up used in practice. The main reason for using
TCP/IP is to improve re-usability in different simulators, since
TCP/IP is available in nearly every language and platform and
the protocol is simple to implement.

We have implemented a single-user server capable of start-
ing OPNET and passing messages between OPNET and the
client. This implementation is reused from [14], in which
the server is used to integrate directly with VISSIM. The
protocol has 3 types of client to server message, and 2 types
of server to client messages. The runto(time) message tells
the server to execute events up until the given time, or the
client that the server is done running an its next event is
at the given time. The msg(source, destination, arrival time,
payload) message from client to server triggers a unicast
of the payload from source to destination or a broadcast

Fig. 7. OPNET.

from source if destination is -1. For every vehicle able to
receive the unicast or broadcast, the server sends a msg(source,
destination, arrival time, payload) message to the client, with
destination set to the identifier of the receiver and arrival time
to the point in time at which OPNET computed the reception.
A reception will also result in the server sending a runto
message, which serves to give back control to the client. The
reception might result in new events at the client that are to
be executed before the next OPNET receive event. Finally,
the client constantly sends move(node, enabled, x, y, speed,
orientation, time) events to the server to update the position of
the given node used in the network simulator and whether the
node is still enabled. Speed and orientation are mainly used
to extrapolate the position from the last position update.

The node identifiers used by OPNET are different from
those in the main simulator. OPNET does not support dynam-
ically creating a new node. Instead, there is a pre-defined pool
of nodes that are enabled and disabled by move messages.
In a simulation where vehicles are continuously created and
removed, the same OPNET node identifier might be used mul-
tiple times for vehicles that exist in different, non-overlapping
periods of time. The translation between identifiers in OPNET
and the main simulator is implemented on the client. The
identifiers used in message (’source’, ’destination’, ’node’)
correspond to those in OPNET. A future implementation
might use a second translation on the server-side and use an
intermediary format for identifiers, to simplify transitioning to
other network simulators.

In a real-world setting, the communication service imple-
mentation can be replaced by one that uses an actual 802.11p
adapter. In this case, every vehicle has its own instance of the
communication service.

V. LESSONS LEARNED

We have found it to be highly challenging to integrate
different simulators. Some necessary integration steps can
reduce the scale or accuracy that is achievable using the
simulators, or the ease of developing new protocols.

A. Positioning and control

Each of the simulators keeps its own representation of
position and speed and has a different measure of control.
MRDS simulates the physics of robots, or vehicles in our
case. The vehicles move forward through rotation of the 4



wheels over a surface with friction. The resulting movement
and position of the vehicle depends on the accuracy of the
physics simulation, which in part depends on the performance
of the computer, and is thus non-deterministic. While MRDS
does offer the possibility of making absolute position updates,
doing so can interfere heavily with the physics simulator.
Controlling vehicles in MRDS can be somewhat challenging,
as it ultimately involves setting the speed and rotation of
individual wheels, though utility libraries with higher-level
abstractions such as trajectories are available. We therefore use
the MRDS positions as authoritative throughout the simulators
and replicate them to VISSIM (to the extent possible given
the limited API), and OPNET. The control over position in
OPNET is relatively straight-forward as it calls a user-defined
function that returns a position of a node whenever it needs
one. However, position updates to OPNET are periodic, so the
function uses extrapolation of the last position, which may lead
to slight inaccuracies. In general, those lie in the millimetre
range and should not have a significant effect on the outcome
of simulations.

B. Synchronisation of events

The simulators also use a fundamentally different model of
time and events. VISSIM updates the positions of all vehicles
in iterations that move simulation time forward by a fixed
amount of at least 100ms. The driver model of vehicles in
VISSIM is invoked at each 100ms time-step. This means that
any event that leads to a change in a vehicle’s behaviour
may have to wait up to 100ms of simulation time to be
passed to VISSIM by the driver model, and another 100ms
to be reflected in the position of the vehicle computed by
VISSIM. OPNET is a discrete-event simulator. Simulation
events are ordered by pre-set execution times, and events are
generated by other events. OPNET uses 64-bit floating point
numbers to represent time, allowing for extremely fine-grained
time steps. MRDS is executed in real time. The positions of
vehicles are updated as fast as the computer can update the
graphical display and perform physics simulation for each of
the vehicles, which leads to variable time steps. When the time
steps in between iterations become large, the fidelity of physics
simulation degrades substantially, which means it is imperative
that the software and the hardware on which it runs allow for
a reasonably high iteration (frame) rate. We found 20Hz to
be reasonably safe. Another implication is that VISSIM and
OPNET will have to keep up with MRDS, meaning the rate
at which simulation time needs to move forward in both of
these simulators is at least as fast as real time. This limits the
scale of the simulation that can be performed. The accuracy of
OPNET’s fine-grained model of time is partly lost in real-time
synchronization, since events are executed in small batches
in order to keep up with the rate of execution of MRDS.
Positions in VISSIM cannot always be correctly kept in sync
with the other simulators due to the inherent delay in updating
the driver model.

C. Application design

The application logic is primarily implemented within the
MRDS framework, which means the that application is ex-
ecuted as an instance of a service that communicates with
other services for sensing and communication. This has the
benefit of making logic in the simulator portable to real
robots, but also comes with some drawbacks inherent to the
MRDS platform. Application logic can either be executed in
response to incoming sensor results, received messages, or
as events scheduled at a particular time. However, MRDS
does not give any real-time guarantees and uses multiple
threads, so events may be late and out-of-order. Robotics or
vehicle controllers are typically real-time systems with precise
control over timing. There is currently no way to simulate that
behaviour within the MRDS framework. The World Model
library was relatively straight-forward to integrate and was
implemented as a library that is exposed as another MRDS
service. The benefits of using a service interface is that the
world model can easily replace existing MRDS sensors, but
the drawback is that the complex data structures of the world
model need to have serialisable wrapper classes defined to
translate them into a service interface.

D. Software integration

A more practical problem when integrating different sim-
ulators is their platforms, programming languages, and APIs,
which represent 3 different generations of Windows runtime
environments. MRDS is programmed in C#, which runs in
the .NET Common Language Runtime. All MRDS logic is
executed as a set of services, which can communicate over
HTTP. VISSIM is programmed in C++ and can either load
a DLL for the driver model, or be accessed by an external
process over the Windows COM interface. However, only
the former gives direct control over vehicles, and has the
previously mentioned limitations. OPNET is programmed in
C and compiles to Native Win32 code. While it is straight-
forward to program new protocols in OPNET using its GUI,
the API for interacting with OPNET from the outside is
highly restrictive. Code that is linked to the OPNET binary
needs to re-implement the main event loop and can then
generate OPNET events that can read from a pointer. This
is sufficient to pass arbitrary information between OPNET
and other simulators, but makes it difficult to perform deeper
integration.

Integrating different simulators proves to be highly complex.
The properties of one simulator impact what can be achieved
in other simulators and complete synchronization is not always
feasible, particularly given real-time time constraints and lim-
ited APIs.

VI. CONCLUSION

Cooperative autonomous vehicles is a promising area of
research, but there are few tools for evaluation. Real-world
evaluations are typically too expensive, restricted in their
scope, and dangerous when evaluating experimental software.
Simulators are available for different aspects of cooperative



autonomous driving, but none address the combination of
traffic, sensing, control, and wireless communication in a
rigorous fashion. We have integrated a microscopic traffic
simulator (VISSIM), with a robotics simulator (MRDS), a
communication network simulator (OPNET), and a sensor data
processor (World Model), and developed a basic cooperative
autonomous driving scenario using the integrated simulation
environment. Each simulator provides visibility into a different
aspect of the scenario. We have identified a set of design
challenges that we ran into during the development process,
some of which limit the scale and accuracy of the simulations.
We present this as a case-study in moving towards practical
evaluation of cooperative autonomous driving scenarios.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software Engi-
neering Research Centre (www.lero.ie)

REFERENCES

[1] G. Automotive. (2009, june) Gm futurama pt 1. YouTube. Accessed 19-
September-2012. [Online]. Available: http://www.youtube.com/watch?
v=eNlgfkE9nWA

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot
that won the darpa grand challenge,” The 2005 DARPA Grand Challenge,
pp. 1–43, 2007.

[3] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart,
P. Vernaza, J. Derenick, J. Spletzer, and B. Satterfield, “Little
ben: The ben franklin racing team’s entry in the 2007 darpa
urban challenge,” pp. 231–255, 2009. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-03991-1\ 6

[4] E. van Nunen, M. R. J. A. E. Kwakkernaat, J. Ploeg, and B. D. Netten,
“Cooperative competition for future mobility,” Intelligent Transportation
Systems, IEEE Transactions on, vol. 13, no. 3, pp. 1018 –1025, sept.
2012.

[5] K. Lidstrom, K. Sjoberg, U. Holmberg, J. Andersson, F. Bergh,
M. Bjade, and S. Mak, “A modular cacc system integration and design,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 3,
pp. 1050 –1061, sept. 2012.

[6] M. Jha, G. Gopalan, A. Garms, B. Mahanti, T. Toledo, and M. Ben-
Akiva, “Development and calibration of a large-scale microscopic traffic
simulation model,” Transportation Research Record: Journal of the
Transportation Research Board, vol. 1876, no. -1, pp. 121–131, 2004.

[7] Y. Mylonas, M. Lestas, A. Pitsillides, and P. Ioannou, “Speed adaptive
probabilistic flooding for vehicular ad-hoc networks,” in Personal In-
door and Mobile Radio Communications (PIMRC), 2011 IEEE 22nd
International Symposium on, sept. 2011, pp. 719 –723.

[8] R. Bhakthavathsalam, S. Nayak, and M. Srikumar, “Expediency of
penetration ratio and evaluation of mean throughput for safety and com-
mercial applications in vanets,” in Ultra Modern Telecommunications
Workshops, 2009. ICUMT ’09. International Conference on, oct. 2009,
pp. 1 –5.

[9] M. van Noort, B. van Arem, and B. Park, “Mobysim: An integrated traf-
fic simulation platform,” in Intelligent Transportation Systems (ITSC),
2010 13th International IEEE Conference on, sept. 2010, pp. 1301 –
1306.

[10] D. R. Choffnes and F. E. Bustamante, “An integrated mobility and
traffic model for vehicular wireless networks,” in Proceedings of the
2nd ACM international workshop on Vehicular ad hoc networks, ser.
VANET ’05. New York, NY, USA: ACM, 2005, pp. 69–78. [Online].
Available: http://doi.acm.org/10.1145/1080754.1080765

[11] F. Hendriks, M. Tideman, R. Pelders, R. Bours, and X. Liu, “Develop-
ment tools for active safety systems: Prescan and vehil,” in Vehicular
Electronics and Safety (ICVES), 2010 IEEE International Conference
on, july 2010, pp. 54 –58.

[12] J. Curn, D. Marinescu, and V. Cahill, “A flexible approach to man-
agement and processing of collaborative vehicular perception data,” in
Proceedings of the Workshop on Emergent Cooperative Technologies
in Intelligent Transportation Systems at the 2010 IEEE Intelligent
Transportation Systems Conference 2010, Sept. 2010.

[13] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Shanghai, China, May 9-13 2011.

[14] M. Slot and V. Cahill, “A reliable membership service for vehicular
safety applications,” in Intelligent Vehicles Symposium (IV), 2011 IEEE,
june 2011, pp. 1163 –1169.


