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We demonstrate that a quantum spin Hall current, spontaneously generated at the edge of a two-dimensional
topological insulator, acts as a source of spin pumping for a magnetic impurity with uniaxial anisotropy. One
can then manipulate the impurity spin direction by means of an electrical current without using either magnetic
electrodes or an external magnetic field. Furthermore we show that the unique properties of the quantum spin
Hall topological state have profound effects on the inelastic electron tunneling spectrum of the impurity. For low
current densities inelastic spin-flip events do not contribute to the conductance. As a consequence the conductance
steps, normally appearing at voltages corresponding to the spin excitations, are completely suppressed. In contrast
an intense current leads to spin pumping and generates a transverse component of the impurity spin. This breaks

the topological phase yielding to the conductance steps.

DOI: 10.1103/PhysRevB.87.245410

I. INTRODUCTION

The quantum spin Hall (QSH) state is a new topological
phase of matter, which has attracted growing attention over the
past few years. Itis time-reversal invariant and characterized by
both a bulk gap and gapless helical edge states with opposite
spins counterpropagating at a given edge. In a pathfinding
work by Kane and Mele' it was shown that at low energy
a QSH effect can be generated in a sheet of graphene
subject to spin-orbit interaction. A topological invariant, Z,,
distinguishes such a QSH insulator from an ordinary one.’
Unfortunately, spin-orbit interaction in graphene is too small
to practically realize the QSH state at a realistic temperature;
however, a few other options are available. Bernevig et al.
predicted that HgTe/CdTe quantum wells might exhibit this
novel phase,* a prediction soon confirmed by experiments.*>
Three-dimensional analogs of the QSH state have also been
found and are generically termed topological insulators (TIs).
More recently, evidence for helical edge modes in InAs/GaSb
quantum wells has also been found.® Interestingly, both
silicene and two-dimensional Ge have been predicted to exhibit
the QSH state at experimentally accessible temperatures,’
and there are theoretical proposals to realize the same in
graphene by using nonmagnetic adatoms.” These last two
options would yield a material with a low-energy electronic
structure identical to that proposed by Kane and Mele.

Given the peculiar spin structure of the QSH state it
becomes natural to ask ourselves whether this can be used
to manipulate magnetic objects.'” In particular, the question
we address in this paper is whether spin pumping at the
single spin level can be achieved without using spin-polarized
electrodes or an external magnetic field. In a nutshell we wish
to propose an analog to the numerous recent investigations
concerning spin-flip inelastic electron tunneling spectroscopy
(SF-IETS) for magnetic adatoms on insulating surfaces,'!
either in equilibrium or in spin-pumping conditions.'?

Here we demonstrate that a magnetic impurity deposited
at the edge of a Z, TI and presenting a uniaxial magnetic
anisotropy, which makes it non-Kondo active,'? can be manip-
ulated by the QSH current. Furthermore we show that the topo-
logical nature of the QSH state has profound consequences on
the SF-IETS conductance spectrum. At low current intensity
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there is a complete suppression of the conductance steps
appearing at the critical biases characteristic of the activation of
an inelastic spin-scattering channel.'! In contrast, for currents
large enough to produce spin pumping the spin of the magnetic
impurity is driven away from the anisotropy axis. This breaks
the topological protection of the helical edge states and the
conductance steps reappear. Intriguingly, in this situation there
is a strong dependence of the SF-IETS conductance spectrum
on the bias polarity. Our calculations are conducted by using
the nonequilibrium Green’s function method for transport
combined with a perturbative approach to spin scattering from
magnetic impurities.'+16

II. MODEL AND COMPUTATIONAL METHODS

The device that we have in mind is schematically presented
in Fig. 1 and consists of two semi-infinite current/voltage
electrodes sandwiching a Z, TI ribbon in which a magnetic
impurity is absorbed at one of the two edges. Our working
hypothesis is that one can construct such a device with either
a strong or a weak electronic coupling between the electrodes
and the ribbon, i.e., that the interface resistance can be
engineered. The entire system is described at the tight-binding
level and for the electrodes we use a simple square lattice with
hopping parameter ¢, (n = L,R).

The TIribbon has a honeycomb lattice structure with zigzag
edge geometry and it is described by the two-dimensional
Kane-Mele (KM) Hamiltonian, Hgy, Which reads

Hxm = & Zéicit,cia +1n Z CiaCjo
ia (ij).o
+it Z VijC,Ta[GZ]aﬁCja- (D
({ij))ap

The first term describes a staggered sublattice potential with
on-site energy &y and &; being & = +1 for the A sublattice
and & = —1 for the B one. Here cja (ciq) creates (annihilates)
an electron at site { with spin «. The second term is the
nearest-neighbor hopping with strength #; (| sets the energy
scale of the problem). Finally the third term, which drives
the topological phase, is a second-nearest-neighbor hopping
with strength 1, (i = +/—1). This describes the coupling of the

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.87.245410

AARON HURLEY, AWADHESH NARAYAN, AND STEFANO SANVITO

(b) Top Edge

e'® 3 Clmpurity
V2| |4V/2 ¢® «— -V/2

Top Edge

Impurity

+V/2

FIG. 1. (Color online) Schematic representation of the device
considered in this work (a), comprising a TI with honeycomb lattice
structure and a magnetic impurity adsorbed at one of the two edges. In
the transport calculations the electronic structures of the electrodes
are described by the self-energies, X, (n = L,R). In panel (b) the
cartoons describe a spin-flip scattering event. A right-going electron
with up-spin direction (left panel) is inelastically backscattered by the
magnetic impurity. In the process both the electron and the impurity
spins are reversed (right panel). Note that, given the topological nature
of the ribbon, spin flip forbids electron transmission as the edge
presenting a right-going spin-up state does not possess a right-going
spin-down one.

electrons orbital motion to their spins via the z component
of the Pauli matrices (0°). The parameter v;; is +1 for
counterclockwise hopping and —1 for clockwise.

If we now attach an impurity at site /, the total electronic
Hamiltonian will become

He = Hxm + €51 Zchcla + 1 Z C}aciou 2
o (li),a

where in addition to Hgy one has the on-site potential of
the impurity, ¢;, and the hopping between the impurity site
I and its neighbor i on the honeycomb lattice (with strength
t7). Finally there are two other terms related to the magnetic
impurity spin, S:

Hsp = DSZZs Hel—sp = Ju Z C}La[a]aﬂclﬂ -S. (3)
af

The first, Hgp,, describes the uniaxial anisotropy (along z)
with D being the zero-field splitting parameter. The second,
He1sp, couples the current-carrying electrons to the local
impurity spin with interaction strength Jy (o is a vector of
Pauli matrices). This is usually known as the s-d model for
magnetism.'”

Electron transport is investigated within the Landauer-
Biittiker approach'® implemented by the nonequilibrium
Green’s function method.!® The central quantity to evaluate
is the retarded electronic Green’s function for the scattering
region (the TI ribbon) in the presence of the electrodes, G" =
[(E +i0")] — Hq — X1 — Zg]~!, where £, (n =L,R) are
the electrodes self-energy, which can be computed with
standard techniques.?’ These depend on the hopping parameter
between the ribbon and the electrodes, #,sc, whose magnitude
sets the intensity of the current.

When the conducting electrons couple to the impurity spin
(Jsa # 0), the problem becomes intrinsically many body in
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nature. This is made treatable by constructing a perturbation
theory in the electron-spin Hamiltonian, which allows us to
incorporate the effect of the electron-spin interaction in an
additional self-energy, Xj,. In this work we truncate the
perturbation expansion to the second order'*!® in both the
electron and the impurity spin propagator. The latter contains
information about the state of the magnetic impurity spins,
through the population, P,, of the eigenvectors of the spin
Hamiltonian, Hg,. In particular it is possible to show that the
P,’s satisfy a master equation of the form

P,
dr

D 1Py(1 = PYWi, = P(1 = PYWul + (P} — P) /B,
!

“

where the detailed expression for the transition rates, Wj,,, can
be found in Ref. 16, and 8 = kg T with kg being the Boltzmann
constant and 7 the temperature. In Eq. (4) the populations
P? are those of the ground state. With this at hand we can
compute the current, /, and hence by numerical derivative the
conductance, G = dI/dV.

III. RESULTS AND DISCUSSION

We start our discussion by first looking at the transport
properties of the ribbon in absence of the magnetic impurity.
The relevant quantity here is the spin-resolved total transmis-
sion coefficient along a particular edge,”! which is given by

Too (ep) = Tr, [TLG'TRG], &)

oo’

where « is the spin index (¢ = 1,]), s labels the edges (s =
top, bottom) and G* is the advanced Green’s function. The
trace is over the number of atoms, n,, along the given edge
and the transmission coefficient is evaluated at the Fermi
energy, €r. As a matter of notation a (n,,n,) ribbon contains
n, atoms in the direction of transport and n, along the
transverse one. When the Fermi level is fixed at the half-filling
point the ribbon is insulating in the bulk, but presents edge
topological protected states (here t, =t; = 1, and ©, = 1;/3,
which ensures that the KM Hamiltonian describes a QSH
state). In this situation we find for an (11,6) ribbon, T;(%p =0.9,

Tfip =0.1, Tﬁm"m =0.1, and Tff“"m =0.9. Such values
demonstrate that the current along the QSH edges is spin
polarized, although not completely because of the finite size of
the ribbon. Calculations for a (7,4) ribbon give us Tﬁp =0.85,
7T =0.15, "™ = 0.15, and T{"™ = 0.85.

We now switch on the magnetic interaction between an
S =1 local spin and an (11,6) ribbon. In general we place
the impurity at the center of the edge and choose a coupling
parameter #; and an on-site energy &, to ensure that the density
of states localized at the impurity site p;(E) is approximately
constant for energies E around the Fermi level (this ensures
the convergence of the perturbation scheme'#). The exchange
coupling Jg is chosen so that the perturbation parameter
p1Jsq is approximately 0.1. These conditions are satisfied for
&1 = Jq = t1/2 and t; = t; /4. The spin degeneracy is lifted
by an axial anisotropy D = —1073 #;, which corresponds to
D = —2.0 meV, if the nearest-neighbor hopping in the ribbon
is fixed at a reasonable value of #; =2 eV (kgT = 0.05).

245410-2



SPIN-PUMPING AND INELASTIC ELECTRON TUNNELING ...

The uniaxial anisotropy gives us a degenerate ground state
with the two spin states |—1) and |+1) separated from the
first excited state |0) by |D|. As a result we do not expect
a Kondo-like behavior since no allowed transition between
the degenerate ground state may occur. The second order
perturbation expansion is then well justified. The values #, =
4t,sc = t; ensure that the spin system remains in equilibrium,
i.e., in its ground state, throughout the spin-scattering process.

Figure 2 shows the calculated conductance spectra, G(V),
normalized to the V = 0 conductance, G, for three values of
the parameter governing the QSH state, #,. For t, = 0 there are
no topologically protected edges and we observe the charac-
teristic inelastic conductance step at a voltage V. = D /e, when
the transition from the ground state to |0) becomes possible
(e is the electron charge). However, as 1, is increased and we
enter into the topological phase, we reveal a suppression of the
inelastic contribution to the conductance, with an almost full
suppression at the maximum value of #, = ¢;/3. The cartoon
in Fig. 1(b) helps one to understand the mechanism for such
a suppression. At a positive bias, the right-going current is
up-spin polarized. This means that the |[—1) — |0) transition
scatters out spin-down electrons. These cannot propagate
towards the right electrode since there is no right-moving
spin-down state in the upper edge and, as a consequence, they
are completely reflected. Hence, as spin-flip events can only
lead to backscattered electrons, the inelastic channel does not
contribute to the current. Note that the residual conductance
increase in Fig. 2 for t, = #; /3 is simply due to the finite size of
the ribbon.

We now investigate the possibility of manipulating the im-
purity spin direction. This is achieved by increasing the overall
conductance, i.e., by increasing the average current density.
When one works with a scanning tunneling microscopy setup
bringing the tip closer to the impurity'? does the job, while
here our control parameter is the electronic coupling between
the leads and the ribbon, #,sc. As such all the calculations that
follow have been performed with #,sc = 1;.
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FIG. 2. (Color online) Spin-polarized IETS conductance spec-
trum for a TI (11,6) ribbon with an S = 1 magnetic impurity attached
at the upper edge. Note that the conductance step at the voltage
characteristic of the inelastic excitation gets suppressed as the #,
parameter is increased, i.e., as the ribbon is brought well inside the
topological region of the phase diagram.
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FIG. 3. (Color online) (a) Nonequilibrium population as a func-
tion of bias of the § = 1 impurity spin states for a (7,4) (broken lines)
and an (11,6) ribbon (solid lines). In panel (b) we show the average
magnetization of the impurity for the same ribbons.

The calculated populations of the various spin states are
plotted as a function of bias in Fig. 3(a) for both an (11,6)
and a (7,4) ribbon. An § =1 spin in a uniaxial anisotropy
field and in thermal equilibrium with an electron bath presents
an equal probability to occupy the |+1) and the |—1) states,
i.e.,, for V=0 one has Py = P_; = 1/2. As soon as the
bias is increased at and above |D|/e, excitations to the |0)
state become possible due to spin-flip backscattering. In this
case, however, the current is intense, so that in between two
scattering events the impurity spin does not have the time to
relax back to the degenerate ground state. This means that
now a spin-up electron (the majority specie in the upper
edge right-going channel) can also induce the transition
|0) — |+1). The consequence is that the electronic current
flowing at the upper edge, in virtue of its spin polarization and
its intensity, produces a net flow of population between the
two degenerate ground states, i.e., for V > +|D|/e one has
P, > P_;. In other words the impurity spin is driven by the
current away from its uniaxial anisotropy axis. This can be
fully appreciated by looking at Fig. 3(b), where we show the
average magnetization (S%) = > P, S% as a function of bias.
Such spin pumping is essentially identical to what happens for
spin-polarized tips*? except that now one does not need either
a magnetic electrode or an external magnetic field. Note that
at a negative bias the effect is reversed, i.e., for V. < —|D|/e
one has P_; > P, and that placing the impurity on the lower
edge is equivalent to reversing the bias polarity.

The effects of the spin pumping on the shape of the
conductance spectrum are finally presented in Fig. 4. This time
the G (V) trace presents a step at the voltage corresponding to
the [£1) — |0) transition, i.e., the electron transport becomes
sensitive to spin-flipping events. Such an appearance of the
conductance step signals the suppression of the topological
helical states induced by the transverse magnetization of the
spin impurity.”? Intriguingly, the magnitude and sign of the
conductance step depends on the bias polarity. In particular we
note that there is an inelastic contribution, which is symmetric
with respect to the sign of V, and always contributes to
enhance the conductivity. In contrast the elastic contribution
is antisymmetric with respect to the bias polarity, i.e., the
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FIG. 4. Spin-polarized IETS conductance spectrum for a TI
(11,6) ribbon with an S = 1 magnetic impurity attached at the upper
edge. In this case the current is intense and drives the impurity spin
away from the uniaxial anisotropy axis (see Fig. 3). Notably now there
is a step in the differential conductance at the voltage corresponding
to the inelastic transition |£1) — |0). The magnitude and sign of
such step depends on the bias polarity. The inset shows the inelastic
contribution to the conductance.

elastic current increases for V > |D|/e and decreases for
V < —|D|/e. Placing the impurity on the opposite edge yields
a mirror symmetric situation. This time the magnetization is
driven toward (S;) = —1 ((S;) = +1) and the conductance
decreases (increases) for a positive (negative) bias voltage.
Overall we can summarize our results by noting that the sign
of the change in the conductance trace at the onset voltage
|V| = |D]/e is proportional to (v X o) - (S), where v is the
group velocity of the edge state. Thus, the antisymmetry of
the conductance is related to the helicity of the edge state,
VX0.

When one looks at the perturbative expansion of the
conductance it can be realized that the term giving rise to
the bias asymmetry is the magnetoresistive elastic term of the
s-d Hamiltonian. Its contribution to the self-energy reads
2
mag-elas

(Bt NP ¢ =I2 3" G (E % Q) PS5y (6)

mn

where GO2 is the electronic Green’s function, €2,,, is the energy
difference between the two spin states |n) and |m), and S,,,, =
(m|S;|n) is the spin transition matrix elements. Since the term
includes §,,, there is only an elastic contribution (£2,, = 0),
which involves no spin-flip events.'® Such term is proportional
to S%,, and thus reverts its sign as the direction of impurity spin
is reversed. Note that the elastic and inelastic contributions to
the conductance are calculated by partitioning the current into
two parts, obtained respectively from the elastic and inelastic
energy-dependent self-energies. These, however, are evaluated
from the same self-consistent electronic Green’s function,
meaning that the elastic and inelastic contributions are not
completely disentangled. As such, it should not be surprising
that the onset of inelastic scattering is evident also in the elastic
contribution to the conductance.
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FIG. 5. (Color online) Spin-polarized IETS conductance spec-
trum for a TI (11,6) ribbon incorporating a magnetic impurity with
various spin (S = 1,3/2,2,3) attached at the upper edge, in the intense
current regime. The step in the differential conductance increases in
magnitude with increasing the spin value of the adatom. Note that the
spectra have been aligned vertically for clarity of comparison. The
inset shows the average magnetization of the impurity for different
values of S. Note that spin pumping persists for the larger values of
the impurity spin.

Finally we investigate how the conductance profile changes
as we increase the value S of the total spin of the magnetic
impurity. This is done by rescaling the anisotropy parameter
D and the electron-spin coupling strength Jgg respectively to
D/|S| and Jy/|S], so that the effective interaction strength and
the total spin anisotropy do not change in the comparison. Our
results are plotted in Fig. 5. The figure reveals that, as the total
spin increases, the height of the differential conductance steps
gets larger. In the figure we also plot the average magnetization
as a function of bias, which indicates that the spin pumping is
present for larger values of S and that for voltages exceeding
the energy of the inelastic transition the average value of S,
approaches its maximum value.

IV. CONCLUSION

In conclusion we have demonstrated that a QSH current
flowing at the edge of a Z, TI can be used to manipulate the spin
of a magnetic impurity. This does not require either an external
magnetic field or magnetic electrodes, i.e., it allows one to
implement spintronics without magnetism. Importantly the
fingerprint of the manipulation can be found in the conductance
profiles themselves, making SF-IETS a tool for preparing,
manipulating, and reading a quantum spin in the solid state.
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