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Dynamical exchange interaction from time-dependent spin density functional theory
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We report on ab initio time-dependent spin-dynamics simulations for a two-center magnetic molecular complex
within the framework of the time-dependent noncollinear spin-density functional theory. In particular, we discuss
how the dynamical behavior of the ab initio spin-density in the time domain can be mapped onto a model
Hamiltonian based on the classical Heisenberg spin-spin interaction JS1 · S2. By analyzing individual localized-
spin trajectories, extracted from the spin-density evolution, we demonstrate a practical method for evaluating the
effective Heisenberg exchange coupling constant J from first-principles simulations. We find that J , extracted
in such a dynamical way, agrees quantitatively with that calculated by the standard density functional theory
broken-symmetry scheme.
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I. INTRODUCTION

In magnetic recording the typical time scale for magne-
tization reversal is in the nanosecond range, and it is now
believed that the ultimate limit for magnetization switching
by magnetic field pulses may approach the picosecond mark.1

Down to the picosecond scale, the exchange interaction is
constant in time and so is the magnetic anisotropy. This allows
the dynamics of magnetization to be modeled in terms of the
continuous Landau-Lifshitz-Gilbert equation,2 usually solved
with micromagnetic techniques.3 The spatial resolution of
such techniques is chosen in view of the problem at hand
and numerical considerations, but the equation of motion is
always the same. At the most finely resolved and microscopic
end of the modeling spectrum there are atomistic spin models,4

which have been proved to be a powerful tool for approaching
the extreme phenomenology of the ultrafast magnetization
dynamics.5,6 In these one associates individual classical spin
vectors Si to all magnetic atoms, which are then coupled
through a time-independent Heisenberg Hamiltonian,

H = −
∑
i>j

Jij Si · Sj , (1)

where Jij are the pairwise Heisenberg exchange parameters.
The state of the art for the theory is then represented by
performing atomistic dynamical simulations in which the
Heisenberg Hamiltonian is completed by additional terms
to include the spin-orbit interaction (or effective anisotropy
terms), the dipole-dipole interaction, and the interaction with
an external magnetic field. In order to account for thermal
fluctuations, stochastic fields are added to the internal magnetic
field in the equations of motion,5–7 in the spirit of the Langevin
dynamics. The discretized stochastic Landau-Lifshitz-Gilbert
equation has been used in earlier works, for instance, to
model thermally assisted magnetic relaxation in classical spin
chains.8

The parameters of the theory, the exchange integrals and the
anisotropy, are usually fitted to experiments or calculated
from static density functional theory (DFT).7 In this second
case usually the exchange is obtained with the so-called
broken-symmetry approach, proposed first by Noodleman.9 In
its DFT variant broken symmetry refers to an unrestricted-spin
calculation for open-shell complexes, where opposite spin

densities are allowed to localize at different atomic sites. This
broken-symmetry or low spin (LS) state, unlike the state with
the highest spin (HS), is not an eigenstate of the full spin
operator (hence the name). The exchange parameters are then
determined by the difference between the total energy, Eα

(α = LS, HS), of the two spin states,

Jij = f (Si,Sj )(ELS − EHS) , (2)

where various formulations of the spin-dependent function f

are possible, depending on the choice of basis and level of
localization, and where Si is the expectation value of the spin
operator acting locally at the atomic site i (see, for instance,
Refs. 10 and 11).

The first demonstration of laser-induced ultrafast
demagnetization12 in transition metals, however, opened a
new frontier, namely, the possibility of manipulating and
controlling the magnetization with ultrashort intense laser
pulses.13 Here one reaches the femtosecond time resolution,
where both the exchange interaction and the anisotropy may
become time-dependent. Most importantly, in this limit the
approximation of associating a classical spin of constant
magnitude to an atom may break down. It makes sense that at
a time scale where the electronic degrees of freedom evolve
in time in a nonadiabatic way (the local magnetic moment
changes in time), spin dynamics needs to be addressed at
the electronic level. Yet, in order to interpret the results in
a simple and transparent way, it is desirable to be able to
map the electronic time-dependent simulations onto classical
atomistic models based on the Heisenberg Hamiltonian. How
to perform such a mapping, and whether this is at all possible,
is the subject of the present paper. In particular, we will discuss
how the evolution in time of the spin density in time-dependent
DFT15 (TD-DFT, or, to be more specific, its extension to
noncollinear spin,16 the TD-SDFT17) simulations can be used
to extract an effective spin dynamics, which in turn can be
mapped onto a Heisenberg Hamiltonian. As a byproduct of
such analysis we will be able to extract exchange parameters,
whose values are quantitatively very close to those calculated
with the broken-symmetry approach.

The paper is organized as follows. In the next section we will
discuss the most technical aspects of our work. In particular,
we will present the classical solution of the time-dependent
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Heisenberg model for a diatomic molecule. This will be useful
to interpret our TD-SDFT results. In the same section we will
describe the general aspect of the TD-SDFT simulations and
explain how to integrate the instantaneous electron density in
order to map the TD-SDFT results onto the Heisenberg model.
Then, in the following two sections, we will present results for
both a stretched H2 dimer and a hypothetical H-He-H trimer.
These are qualitatively different systems with respect to the
spin-spin interaction: while in H2 the spins of the two H atoms
are coupled via direct exchange, the exchange interaction in
H-He-H is indirect, a superexchange,14 mediated across the
closed-shell He atom. Finally, we will conclude.

II. MAGNETIC DIMER: THEORETICAL ASPECTS

A. Implementation of the TD-SDFT method

Ab initio spin dynamics is simulated in the time domain
with the state-of-the-art TD-SDFT code OCTOPUS.18 This is an
open-source (GPL) package capable of simulating excitations
of molecules or clusters to custom-designed electromagnetic
fields beyond the linear response regime, i.e., by the explicit
time propagation of the TD Kohn-Sham equations in a basis-
free real-space representation. OCTOPUS provides an ideal
environment for examining fundamental processes in the time
domain. As such, our starting point towards understanding ab
initio spin dynamics has to be through the simplest complexes
of non-spin-singlet atoms. In fact, the simplest possible real
system, for which the Heisenberg spin Hamiltonian of Eq. (1)
was originally conceived, is the hydrogen molecule. In its
ground state H2 is closed shell (diamagnetic), but in the
stretched dissociating state local spins can be defined for each
of the hydrogen atoms (e.g., in the broken-symmetry LS state,
the electrons localized on the opposite protons have particular
and opposite spin expectation value, sz

1,2 = ±1/2). Hence the
stretched H2 provides the simplest physical realization of a
molecular spin dimer.

In order to excite spin dynamics in collinear spin dimers,
we have introduced a spatial inhomogeneity into the magnetic
field pulses available in OCTOPUS. Thus, an inhomogeneous
transverse magnetic field pulse of a few femtosecond duration
is used to generate a spin misalignment in the dimer. In
order to quantify such misalignment, we need a measure
for the spin of overlapping atoms. Although the TD-SDFT
spin-density distribution is well defined at every instant, the
spin state (and the charge) of an individual atom in a molecule
or solid is not an observable. This, of course, prevents us
from rigorously mapping the TD-SDFT dynamics onto a
classical Heisenberg model. In fact, computing expectation
values of local spin operators (e.g., 〈Ŝ1 · Ŝ2〉) from ab initio
wave functions is not a trivial task,19 and it has been recently
shown that a continuum of valid definitions of the local spin
operator Ŝi exists.20 In order to overcome such difficulty we
have implemented an intuitive rotating spin approximation for
decomposing the spatial spin-density distribution into atomic
contributions, which is based on defining an appropriate linear
transformation. The idea is to use the two extreme states,
the HS and LS spin-density distributions, as reference points
for decomposing the spin density of any given noncollinear
spin state obtained through TD-SDFT evolution, assuming

that it is simply a result of rigid rotation in space of the
spin density in certain continuous regions surrounding the
atoms. We will demonstrate that such a method allows us to
practically eliminate from the definition of the local spins the
dependence on the particular spatial volume around the atom
and that this can be done for a wide range of interatomic
distances. This gives us the opportunity to define, with a
unique criterion, the local spin dynamical trajectories, and
thus to extract an effective exchange parameter J for the spin
dimer. Interestingly, the results agree quantitatively with those
obtained by the broken-symmetry method.

All the TD-SDFT simulations are performed at the level
of the adiabatic local spin-density approximation (ALSDA)21

with the modified parametrization of the correlation functional
by Perdew and Zunger.22 The electron density and all the
observables are represented over a dense real-space grid (with
a spacing of 0.1 Å), and the entire simulation box is a paral-
lelepiped of square cross section (typically with a 12-Å side)
and a length (along the axis of the molecule) ranging between
20 Å and 30 Å, depending on the length of the molecule
considered (in the dissociating limit). The time propagation of
the Kohn-Sham equation is performed via the Crank-Nicolson
(implicit midpoint) rule and the Lanczos approximation of the
propagator is used, as implemented in OCTOPUS.23 The typical
time step used in the simulations is 0.004 fs.

We consider first a generic two-center magnetic molecular
complex, a spin dimer, as illustrated in Fig. 1(a). The
ground-state DFT calculation is initialized in either the HS
or the LS collinear configuration. In order to generate spin
noncollinearity, a spatially inhomogeneous external magnetic
field pulse Bext(r,t) is applied to the TD-SDFT Hamiltonian:24

ĤKS(r,t) =
N∑
i

[
− h̄2∇2

i

2m
− μB σ̂ i · Bs(ri ,t)

]

× δ(r − ri) + vs(r,t), (3)

where the sum runs over all (N ) electrons in the system,
Bs = Bxc + Bext is the effective magnetic field for the
Kohn-Sham (KS) orbitals, σ̂ i is the electronic spin operator,
μB is the Bohr magneton, and vs is the Kohn-Sham effective
electrostatic potential. We have implemented Bext(r,t) =
B0(r) exp[−(t − t0)2/τ 2

B] with a Gaussian time dependence
and a variance τB typically between 2 and 5 fs. This is applied
soon after the beginning of the time-dependent simulation
[t0 is chosen such that Bext(t = 0) is sufficiently close to zero
so that the discontinuity in the potential introduced at t = 0
is negligibly small]. For the spatial dependence B0(r), we
have experimented with a few simple continuous integrable
functions and found that, as long as they are not symmetric with
respect to the center of the molecule, there is little qualitative
difference in the resulting spin dynamics. In other words,
the sought outcome of spin noncollinearity in the electronic
structure is readily obtainable for a wide range of B0(r). In
particular, we have found that there is no qualitative difference
between a divergence-free solenoidal field, for instance,

B0(x,y,z) = B0e[−(x−x0)2/ξ 2]

× [ex + (x − x0)y/ξ 2ey + (x − x0)z/ξ 2ez],

(4)
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FIG. 1. (Color online) (a) Spin dynamics is excited by a transverse
magnetic field pulse (as illustrated by the vector field schematic).
The ring represents a hypothetical solenoid with its center lying on
the bond axis (x axis) and offset from the midpoint towards one of
the atoms. (b) Illustration of the definition of local spin S1,2 [see
Eq. (11)] and the definition of the angle ϕ. (c) Results from the ab
initio time-dependent simulations for H2 and two different durations
of the magnetic field pulse (shaded area): trajectories of the local
spins’ z component Sz

1,2, angle ϕ between them (broken purple line),
and the expectation value of the total TD-SDFT energy of the system
(solid green line). The radius of the sphere defining S1,2 is rsph = d/2
and the bond length is d = 2.6 Å.

and the simplified B0(x,y,z) = B0 exp[−(x − x0)2/ξ 2]ex .
Hence, in most of the simulations we have used the latter,
where (typically) x0 = −2 Å with respect to the center of
the molecule, ξ = 1 Å, and ex is a unit vector along the x

axis (aligned with the spin-dimer axis). This corresponds to a
magnetic field transverse to the direction of the initial (ground-
state) spin polarization of the molecule, chosen as the z axis
[see Fig. 1(a)]. We have used values of B0 ranging from 0.5 to
10 kT in order to generate the desired misalignment for short
enough simulation times. We note that these short, intense, and
very localized magnetic field pulses are only to be taken as a
tool for producing the misalignment, which onsets the spin dy-
namics. They typically produce excitation of the system in the
millielectronvolt range [see Fig. 1(c), right-hand-side panels].

Below we analyze the classical version of this problem, i.e.,
the dynamics of two noncollinear classical angular momenta,
S1 and S2, interacting according to Eq. (1), and the possibility
of mapping the TD-SDFT spin-density evolution onto that.

B. Classical Heisenberg model solution for a spin pair

First, we examine the case of two rigid classical angular
momenta S1,2 interacting according to a Heisenberg spin
Hamiltonian:

Hcl = −2JclS1 · S2 . (5)

Since we choose to have |S1| = |S2| = S = 1/2, the factor 2
in Eq. (5) is introduced in order for Hcl to produce the same
difference between the energies of the parallel and antiparallel
alignment of the classical spin pair as the triplet-singlet energy
difference (or, equivalently, the broken-symmetry result for
spin 1/2),

�EBS = 〈↑↑|Ĥ |↑↑〉 − 〈↑↓|Ĥ |↑↓〉
= EHS − ELS = −J, (6)

for the corresponding quantum spin Hamiltonian

Ĥ = −J Ŝ1 · Ŝ2 . (7)

In the classical spin Hamiltonian [Eq. (5)] we include the
physical dimension of the angular momenta (h̄) in the coupling
constant Jcl , which has a dimension of energy in analogy to
the exchange parameter J . Hence, the classical equation of
motion for each spin, say S1, is

Ṡ1 = {S1,Hcl}
= −2Jcl

∑
l

Sl
2

{
S1,S

l
1

}

= 2Jcl

h̄
S1 × S2, (8)

where we have used the Poisson bracket for the corresponding
classical angular momenta {Skh̄,Smh̄} = εklmSmh̄, with εklm

representing the fully antisymmetric Levi-Civita tensor. For
classical spins, forming an arbitrary angle ϕ, Eq. (8) describes
a precessional motion about the total spin, Stot ≡ S1 + S2, with
an angular velocity of

ω = 4JclS cos (ϕ/2)/h̄ . (9)

Finally, we note that the precessional motion is stable
against the application of any homogeneous external magnetic
fields, which in the case of the quantum system can be used to
define the quantization axis. In other words, if a homogeneous
external magnetic field is applied, say along the z axis, the
total spin Stot is driven into a precession about the field, but
the individual classical spin components precess about the
total spin with the same angular velocity ω given by Eq. (9).
Hence, the trajectories of Sz

1 and Sz
2 in an external field are still

harmonic oscillations at the field-free ω.

C. Qualitative results from the ab initio spin-dynamics
simulations

We will demonstrate below that the harmonic behavior,
characteristic of the classical Heisenberg spin pair described in
the previous section, is also easily obtainable in the TD-SDFT
simulations of several spin dimers excited by inhomogeneous
magnetic field pulses. In fact, any component of the TD-SDFT
spin density, integrated over any finite volume within the simu-
lation box, shows a sinusoidal trajectory to a good accuracy for
a significant number of periods.25 [See, for instance, the bottom
panel of Fig. 1(c). Our longest simulations have confirmed
that observation for up to 10–12 periods; deviations from
the ideal sinusoidal behavior in terms of higher-frequency
oscillations have been observed only in the case of small
bond lengths and very small angles ϕ, and these have been
in the form of higher-frequency noise over the main harmonic
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precession.] This seems to be the case for a range of different
two-center spin-polarized molecules, ranging from H2 in
a stretched (dissociating) configuration, to the hypothetical
H-He-H trimer, and even to much more electronically complex
high-spin entities like Mn2 (not discussed here).

The global spin precession is very prominent and is by
far the leading component in the long-time response of the
spin dimers to the short inhomogeneous magnetic field pulses,
which we use to generate spin noncollinearity in the system.
It is stable, harmonic, and very weakly dependent on the
particular shape of the external pulse. Although it is likely that
ALSDA plays a role in the onset of such a stable dynamical
regime (for instance, by damping possible spatial and temporal
instabilities), it is also likely that, because of its collective and
low-energy nature, the global precession will dominate the
spin dynamics also in more accurate first-principles treatment
of these systems. We note that we are working in a regime of
moderate-strength excitations that are far below the ionization
threshold.

In order to analyze in a quantitative way this numerical
observation, we consider first the most intuitive definition of
local atomic spins: a local spin is obtained by integrating the
spin density over nonoverlapping spheres centered around each
ion. In this way, from the instantaneous expectation value of the
spin density, a pair of Cartesian vectors, {S1(t),S2(t)} can be
extracted. As an example, the trajectories of the z component
of the spins obtained by integrating over spheres of radius
half of the bond length are presented in Fig. 1(c). We find
these [e.g., Sz

1(t)] to be sinusoidal after the extinction of the
pulse (t > τpulse = t0 + nτB , with typically n = 3), and we are
able to extract the angular velocity of precession ωfit. Then, a
characteristic dynamical exchange parameter can be evaluated
from Eq. (9) as

Jdyn = ωfith̄

4S cos (ϕ/2)
, (10)

where ϕ = �{S1(t),S2(t)}t>τpulse
is the angle between the local

spins after the pulse and S = |S1(t)|t>τpulse
= |S2(t)|t>τpulse

is
the averaged long-time local spin magnitude (which in all
our simulations is practically identical between the two sites).
These averaged quantities are very stable and independent of
the length of the simulation. As is evident from the right-hand
side panels of Fig. 1(c), after the decay of the pulse the angle
ϕ and the total TD-SDFT energy, both saturate to a constant
(noise for ϕ is typically in the fourth decimal place of the value
in radians).

D. Defining the local spin

Local (atomic) spins in DFT calculations are usually
estimated through some sort of partitioning of the total density,
for instance, the Mulliken population analysis for calculations
based on localized orbital basis sets. This practically consists
of projecting the real-space density distribution over the
particular atomic orbitals from the basis. The local spin
expectation values are then extracted from the corresponding
elements of the density matrix, contracted in spin space by
the Pauli matrices. In the case of nonorthogonal bases, these
are also weighed by the corresponding matrix elements of the
square-rooted overlap matrix.11

In OCTOPUS, a readily available implementation exists for
evaluating local magnetic moments directly as integrals of the
spin-density distribution σ (r),

S i =
∫


i

σ (r)dr , (11)

over individual spherical volumes 
i of radius rsph centered
around each atom i. We call this definition direct and the
correspondent spins apparent. Because of the overlap of the
atomic wave functions associated with the individual atoms
in the interstitial region, the value of the local spin at site 1,
defined as Eq. (11), contains a contribution from site 2. This
undesired contribution depends strongly on the radius rsph [see
Fig. 1(b)]. Hence, for instance, the apparent interspin angle
ϕ between two overlapping atoms is smaller than the actual
angle between the overlapping atomic spin densities.

In order to decouple the contributions from the electrons
localized around the two sites, a simple linear transformation
can be devised to eliminate the spatial dependence in the
local spin definition. This is exactly true in the case of
a unidirectional spin-density distribution of the individual
overlapping sites. In order to clarify that, let us assume that in
the case of the dissociating hydrogen molecule, the ith electron
(i = 1,2), predominantly localized on site Ri , contributes si(r)
to the total spin density, such that:

σ (r) =
∑

i

si(r) =
∑

i

fσ (r − Ri)σ i , (12)

where fσ (r − Ri) is integrable and confined to a compact (con-
nected) spatial region. Note that this does not necessarily imply
a minimal basis model where only the two 1s atomic orbitals
are considered. The function fσ (r − Ri) is the probability
density distribution of the ith electron, which does not need
to be spherically symmetric. The vectors σ i are dimensionless
and represent the actual spin direction (expectation value) of
that electron, which in general is not directly observable from
the DFT calculation. We can then choose a sphere 
1 that
encloses most of that volume as simplistically depicted in
Fig. 1(b). Then the apparent local spins can be expressed as

S1 = ασ 1 + βσ 2, S2 = βσ 1 + ασ 2, (13)

where (α,β) = ∫

1

fσ (r ± d/2)dr = ∫

2

fσ (r ∓ d/2)dr (the
top signs are for α and the bottom ones for β) and d ≡ d x̂
is the bond length, which is chosen along the x axis. In other
words, σ i can be determined from the inverse of the above
linear transformation as(

σ l
1

σ l
2

)
= A

(
S l

1

S l
2

)
, (14)

where

A ≡
(

α β

β α

)−1

=
(

a b

b a

)
(15)

for any Cartesian component l ∈ {x,y,z}. As α and β are in
principle unknown, A can be determined from the calculated
apparent spins in the collinear configurations. Let S↑↓ and
S↑↑ be the apparent local spin values in the singlet (broken
symmetry) and in the triplet state, respectively, and we consider
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normalized σ i , i.e., A needs to fulfill the following equation:

S↑↓A

(
1

−1

)
=

(
1

−1

)
and S↑↑A

(
1

1

)
=

(
1

1

)
. (16)

The matrix elements of A that satisfy this requirement are

a = S↑↓ + S↑↑
2S↑↓S↑↑

, b = S↑↓ − S↑↑
2S↑↓S↑↑

. (17)

Hence, through A the individual electronic (and atomic in
the case of hydrogen) spin polarization directions σ 1,2 can be
worked out from the apparent (sphere-integrated) local spin
quantities S1,2. The practical applicability of this definition
to the dynamically generated noncollinear spin configurations
depends on how small the actual redistribution of electron
charge between the HS and LS collinear states is, that is, how
close the individual electron charge distribution fσ (r) is to a
constant of motion for the particular ab initio spin-dynamics
simulation. In other words, if the dynamics can be locally
described by an inter-rotation of overlapping spin-density
kernels without a variation of the spin-density norm, the spatial
factor in the definition of the local spins can be completely
eliminated. This might also be considered as an approximation,
providing grounds for an alternative density-based definition
of local spin expectation values, which significantly reduces
the effects of overlap inherent to the directly space-integrated
atomic quantities. We will call σ 1,2 the transformed local
spins. It will be demonstrated in the following sections that,
for the purposes of extracting the Heisenberg interaction, this
constitutes a good approximation for the simplest spin-dimer
systems, even down to considerably small bond lengths where
the atomic overlap is substantial.

III. IMPLEMENTATION AND CALCULATIONS FOR H2

In this section we will consider a stretched H2 molecule with
a fixed bond length of d = 2.6 Å (protons are always frozen
during simulation). The typical outcome of the described
above TD-SDFT simulation scheme is presented in Fig. 2
in the form of two-dimensional contour plots representing the
stacked-together snapshots of the one-dimensional distribution
of a dynamical observable (its instantaneous expectation value)
along the molecular axis as a function of the simulation
time (in the horizontal direction). This can also be seen as
a space-time visualization of a set of trajectories. For instance,
it shows that the inhomogeneous magnetic field pulse, used to
generate noncollinearity from the LS ground state, produces
a localized spin and charge redistribution. A comparison
between the pulse geometry in Fig. 2(a) and the charge and
spin currents in the panels below shows little direct spatial
correlation (e.g., the pulse is centered at −2 Å while the
excitation is centered at −1.3 Å where the proton sits), and
this demonstrates further the freedom available in the choice
of the actual magnetic field distribution.26 It also shows that
the relatively small charge and spin redistribution in the dimer
closely follows the temporal shape of the pulse. After the the
pulse dies out, only a tiny amount of charge sloshing between
the two sites at very high frequency remains, as evident from
Fig. 2(b). The figure represents the charge current as the sum
of the up-spin and down-spin components (with respect to the
quantization axis set by the initial spin polarization at t = 0)
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FIG. 2. (Color online) Contour plots of the time evolution (early
time) of the distribution along the direction of the bond (x) of
(a) the external magnetic pulse, in units of 3 kT; (b) the charge
current density; (c) the z component of the spin-current tensor [see
Eq. (18)] in the same arbitrary unit scale; and the variations with
respect to the ground state of (e) the charge density �ρ(x,t) ≡
ρ(x,t) − ρ(x,0), in units of 0.03e/Å

3
; and (d) the magnitude of the

spin density (Euclidean norm) |�σ (x,t)| = |σ (x,t)| − |σ (x,0)|, in
units of 0.3(h̄/2)/Å

3
. Note that soon after the magnetic pulse dies

out, the system becomes nearly stationary with respect to charge
transfer between the two sites.

of the expectation value of spin-current tensor in the direction
of the bond (x axis). The later currents are defined by only two
scalar components J

↑
x ≡ J↑↑

x and J
↓
x ≡ J↓↓

x of the Kohn-Sham
spin-current tensor,

Jμν

l (r) =
∑
n,m

〈
σ̂μν

n,m ⊗ ĵ l
n(r)

〉
KS

, (18)

where l and m ∈ {x,y,z}, μ and ν ∈ {↑, ↓}, ĵn(r) = h̄
2mi

[∇nδ(r − rn) − c.c.] is the orbital current operator for the nth
electron, σ̂ n is its spin operator, and we have omitted the
implicit time dependence for simplicity. Note that while the
charge current drops down close to zero after the pulse, the
spin current builds up. After the pulse-coherent depletion of
the longitudinal spin in the site more exposed to the pulse (the
site at −1.3 Å), a unidirectional spin current is established.
This corresponds to a transfer of spin-up along the positive
x direction and of spin-down along the negative x direction.
Hence, the the up-spin localized at the left site starts turning
downward, while the down-spin on the right starts turning up.
Figures 2(d) and 2(e) show that while this spin-rotation process
is taking place, the distribution of the both the charge and the
magnitude of the spin density after the pulse tend to remain
stationary in space.

In the long-time limit, as a result of the so-generated
noncollinearity, a regular pattern of rigid spin precession is
established throughout space (spin density at every point in the
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entire simulation time for (a) the z component of the spin current
density tensor (arbitrary units, as in Fig. 1) and (b) the z component
of the spin density, in units of 300(h̄/2)/Å

3
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simulation box precesses about the total spin of the dimer with
the same frequency). This is also evident from the sloshing
of pure spin currents between the two atoms (see Fig. 3).
The corresponding trajectories of the spin density integrated
over atomically centered spheres are similar to those depicted
in Fig. 1 (for a different pulse strengths) and are typically
sinusoidal to a great level of accuracy within the duration of
simulation (up to 200–250 fs).

The properties of the linear transformation A with respect
to the mapping of the H2 spin-dimer dynamics onto classical
degrees of freedom are demonstrated in Fig. 4. A set of
noncollinear quasistationary dynamical states with angles ϕsph

between the apparent local spins ranging from 0 to π are
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FIG. 4. (Color online) Left-hand-side panels—Constants of mo-
tion (i.e., showing only negligible numerical fluctuations after the
pulse) as a function of the achieved apparent spin-misalignment angle
ϕsph for three different radii of the sphere: (a) the magnitude of the
apparent local spin S; (b) the difference between the transformed
and the apparent angles �ϕ = ϕ − ϕsph; and (c) the transformed
local-spin magnitude |σ 1,2|. Right-hand-side panels—As a function
of the sphere radius: (d) the apparent local-spin magnitude S in
the two stationary collinear states and in the noncollinear state, and
the transformed noncollinear spin magnitude (|σ 1,2|) for the largest
sphere; and (e) corresponding Heisenberg constants Jdyn, as defined
by Eq. (10).

produced by applying pulses of different strengths from either
the LS or the HS initial state. We find a systematic variation
of the apparent local spin norm S, which depends only on
ϕsph alone, irrespective of the particular collinear initial state
(whether LS or HS). The effect of the sphere radius on that
dependence is significant [see Fig. 4(a)]. In contrast, for the
transformed spins the level of the normalization of σ i , achieved
by the transformation, is quite high regardless of the angle ϕ

(even when this is close to π/2), and is practically the same
for any size of integration sphere [Fig. 4(c)]. The magnitude of
the transformed local spin varies by less than 1% for a range of
rsph. Hence, it is practically constant on the background of the
variation of the apparent spin magnitude S at the two extreme
HS and LS states as a function of rsph [see Fig. 4(d)]. At the
same time the transformation of the angle shows a small but
systematic dependence on the sphere radius [see Fig. 4(b)].
The larger the spheres, the more of the overlap they capture
and the greater the correction in the angle ϕ achieved by the
transformation. The calculated ϕ between transformed local
spins for any value of rsph is always above the upper asymptotic
limit of the apparent ϕsph as a function of decreasing rsph.
We find that ϕsph always tends to a saturation maximum for
decreasing rsph. In fact, for the particular excitation depicted
in the right-hand-side panels of Fig. 4, ϕ varies just between
2.648 and 2.650 rad for rsph ranging between 0.2d and 1.2d,
while the change in the apparent angle ϕsph is massive, i.e.,
it changes from 2.626 rad down to 0.789 rad (this data is not
presented on the graph).

Figure 4(e) shows the resulting correction in the corre-
sponding exchange parameter Jdyn, defined as in Eq. (10). It
demonstrates that the usage of the apparent local spins for
evaluation of Jdyn is rather arbitrary: the dependence on the
sphere radius is very strong (for instance, in the large radius
limit Jdyn understandably tends to 0). In contrast, by using the
transformed quantities, Jdyn as a function of rsph is practically
constant with a variance of less than 0.15% (for the case
depicted in Fig. 4, Jdyn = 0.3413 ± 0.0005 eV averaged for
the 11 values of rsph in the range from 0.2d to 1.2d). Note
that the linear transformation does not change the observed
angular frequency of local spin precession ωfit. This is because
any spatial portion of spin density in the noncollinear state
precesses at the same rate.

In order to gain more insight into the dynamically achieved,
quasistationary, noncollinear state of the spin dimer, we can
look at the snapshots of the long-time-limit electron density
distribution as we systematically increase the strength of the
excitation. In Fig. 5(a) the long-time charge density along
the bond axis is presented as a function of the (transformed)
interspin angle ϕ (relative to the density of the HS state with
ϕ = 0). In this, an obvious visual evidence for the action of
the Pauli exclusion principle and the corresponding exchange-
correlation hole can be seen. The contour plot shows that the
HS state (ϕ = 0) bond is depleted with respect to the LS state
(ϕ = π ). The dependence of the averaged charge density in
middle of the dimer as a function of ϕ is shown in Fig. 5(b).
This nearly fits to a cosine function but not exactly. In fact, by
including even only a second-order harmonic (∝cos2ϕ) from
the Fourier series or a term proportional to sin2 ϕ (the two are
the same up to an additive constant), a significant improvement
of the fit is obtained.
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function: A cos ϕ + B sin2 ϕ (green curve). The units for ρ and �ρ
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We now move to analyze the corresponding results for
the exchange parameter Jdyn, calculated from the dynamical
simulations initiated with different magnetic pulses, giving rise
to different angles ϕ. In Fig. 6(a) we present the precession
frequency ωfit, while in Fig. 6(b) is Jdyn, as calculated from
Eq. (10). Clearly both ωfit and Jdyn depend sensitively on the
angle between the two spin moments. The tendency towards
zero for ωfit for ϕ → π is also present in the classical model
[see Eq. (9)]. Unlike what is subsumed in the latter, the
reversely calculated Jdyn is not constant with ϕ, indicating
that our quantum system, simulated with TD-SDFT, deviates
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same for the apparent as well as the transformed spins.) (b) Jdyn

extracted from the spin trajectories [Eq. (10)]. (c) The total TD-
SDFT energy (long-time value) with respect to the average Etot value
between the LS and the HS states, i.e., Etot(ϕ) − (EHS + ELS)/2.
(d) Consecutive approximations to Jdyn(ϕ = 0) from Eq (19) using
the series

∑n

i=0 cicosi(ϕ) of increasing order up to n = 9 as a fitting
function for Etot(ϕ). Marked in panel (b) is also �EBS = EHS −
ELS = 143.4 meV and the results for the exchange constant based
on Etot(ϕ) derivatives as in Eq. (19) (colored symbols at ϕ = 0 and
ϕ = π ).

from the classical one. Intriguingly, however, the dynamical
exchange seems to agree perfectly with that calculated by
Eq. (6) (the broken-symmetry approach) for ϕ = π/2, i.e.,
when the two local spins are orthogonal to each other. Note
also that, once again, the apparent local spins cannot be used
here, since the variations in Jdyn with the choice of integration
radius are very large.

A deviation from the classical Heisenberg model is found in
the dependence of the total energy Etot on the angle ϕ between
the transformed local spins. Note that here we consider Etot

in the long-time limit, i.e., long after the external field pulse
has extinguished. In this limit Etot is a constant of motion with
numerical fluctuations after the first 100 fs, being typically
smaller than 10−6 eV. The dependence of the total energy
Etot(ϕ) clearly deviates from the characteristic cosine form
of the classical Heisenberg model [Fig. 6(c)]. However, as
we have found for the charge density [see Fig. 5], also for
Etot the best fit of the dynamical quantities is obtained by
including higher-order harmonics, with already a remarkably
good agreement at the level of the second harmonic (∝sin2ϕ,
note that with the use of sin2 ϕ the offset of the fit is
0). The deviation of the total energy from the Heisenberg
model (∝cosϕ) can be attributed to a combination of factors.
The Heisenberg model returns the energy of two localized
electrons as the scalar product of their corresponding local spin
operators.14 Clearly, any definition of the local spins in terms of
the expectation values of spin density and the corresponding ϕ

is an approximation. In addition, the total energy of the system
in the noncollinear spin state is approximated here with the
choice of the LSDA for the exchange-correlation potential.

A similar deviation from the Heisenberg model was found
also by Peralta and Barone11 for several different spin-dimer
complexes. They noticed that a systematic improvement of the
agreement between the DFT results and the classical Heisen-
berg model is achieved as the approximation for the exchange
and correlation functional improves. In particular, a more
Heisenberg-like behavior is found for hybrid functionals, such
as B3LYP.27 This could be anticipated, since in hybrid func-
tionals the spurious self-interaction, which is present in LSDA,
is partially removed and the electron charge gets more local-
ized at the nuclear sites.28 In brief, hybrid functionals return
an electronic structure closer to that underpinning the classical
Heisenberg model. In any case, a variation of J (evaluated from
the second derivative of the total energy with respect to ϕ) be-
tween the values calculated around the LS state or those around
the HS state was found for all functionals. This variation has
the same sign as our corresponding quantity, calculated as

JE(ϕ) ≡ 1

2S2

d2Etot(ϕ)

dϕ2
cos(ϕ) . (19)

From Fig. 6(c) it appears that |JE(0)| > |JE(π )|, since the
total energy as a function of ϕ lies above the Heisenberg
cos-type dependence (the dashed curve), both approaching
ϕ = 0 and ϕ = π . We now demonstrate that this variation
is consistent quantitatively with the exchange couplings Jdyn

extracted from the dynamical trajectories via Eq. (10). In
fact, if we use just the cosine part of the Fourier series∑n

i=0 cicosi(ϕ) as a fitting function to Etot(ϕ) and increase
n from 2 to 9, the match between the values of JE and Jdyn

calculated at the LS and HS states improves systematically
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[see Fig. 6(d), inset of Fig. 6(c)]. This is a direct evidence that
the spin dynamics of the molecule, excited and mapped out
as described, indeed probes the spin-dependent energy surface
of the system. In the vicinity of the HS and LS state, the
agreement of Jdyn and the Heisenberg model approximation of
the total energy is remarkable. Furthermore, the fact that Jdyn

closely matches the broken-symmetry result at ϕ = π/2 can
be understood by using the fitting cosine series to define the
corresponding JE(π/2) through dE(ϕ)/dϕ at π/2. Clearly, the
latter is zero for the higher-order terms in the cosine series and
hence JE(π/2) = c1. This is also by definition the broken-
symmetry result for J . In conclusion, we find that the
Heisenberg spin interaction is the governing mechanism for the
ab initio spin dynamics of stretched H2. There are, however,
obvious deviations over the whole span of ϕ from 0 to π . In
particular, Etot(ϕ) contains higher-order contributions from the
cosine-only Fourier series over ϕ, besides the Heisenberg-type
cos ϕ dependence.

A. Variation with distance

The hydrogen molecule has had a special role in quantum
chemistry as a basis for understanding the chemical bond. It
is well known that the Heitler-London theory of molecular
bonding incorrectly produces a spin-triplet ground state in the
dissociation limit,14 because it omits the electron correlations.
In the other limit, the Hartree-Fock molecular-orbital wave
function fails due to an overestimation of the ionic contribu-
tion. The ground state of the dissociating H2 has a significant
multiconfigurational character and it is still an unsolved
problem for DFT.29 Furthermore, the problem for the exchange
coupling in H2 is the one for the spin-flip excitation energy
1
+

g →3 
+
u . The standard ALDA in TD-DFT is found to have

severe weaknesses and it badly underestimates the excitation
energies in the dissociation limit.30,31 Limiting ourselves to
the noncollinear ALDA, the aim of our work is not to offer
an accurate alternative evaluation of the exchange coupling in
H2, but to demonstrate a first attempt to relate the Heisenberg
J to the actual spin trajectories calculated from TD-SDFT.
It is well known that LSDA has serious shortcomings in
describing long-distance exchange and correlation effects29

and our dynamical analysis cannot improve on these. For
the sake of completeness in demonstrating our method’s
applicability to H2, in Fig. 7 we present our results for the
distance dependence of the exchange coupling in H2 at medium
distances (2–3 Å) and compare those to a number of previously
published results, obtained at different levels of approximation.

Our static broken-symmetry LDA result lies nearly in the
middle between the leading term in the perturbative calculation
of J obtained with the surface integral method32 and the exact
variational result for the first spin-flip excitation energy.33

As discussed above, the value of our dynamical Heisenberg
parameter Jdyn depends strongly on the angle ϕ. We show
the entire span of Jdyn values between some of the smallest
and some of the largest angles obtained (pulses are purposely
chosen as to produce angles of nearly the same magnitude for
all d). The variation in Jdyn is significant on the background
of the method-dependent variation, but it is systematic and the
relative magnitude of the variation with respect to the mean
value is nearly constant for all the bond lengths. Notably,
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FIG. 7. (Color online) Comparison of the distance dependence
of the exchange coupling in H2 calculated as (a) broken-symmetry
energy difference from Eq. (6) obtained by static LSDA calculations;
(b and c) Jdyn from Eq. (10) for angles ϕ very close to 0 and to π ,
respectively; (d) ab initio variational calculation of ground state and
first excited-state total energies by Kolos and Wolniewicz (Ref. 33);
and (e) the leading term in the surface integral method by Herring
and Flicker (Ref. 32).

the broken-symmetry LSDA value at any distance is always
rather well reproduced by our dynamical calculation for angles
ϕ ≈ π/2.

IV. RESULTS FOR THE H-He-H TRIMER

We now apply the dynamical scheme discussed so far to
another system, namely, the hypothetical H-He-H molecule.
This is the simplest possible model system presenting a higher-
order spin-spin interaction, e.g., the two H electrons interact
via the superexchange mechanism14 across the closed-shell He
atom. There are no experimental observations for H-He-H, but
it is a good test case for new quantum chemistry methods,10

as full configuration interaction calculations exist34,35 for
comparison. Here, as in many other works in the literature, we
consider the most-widely-studied H-He distance of 1.625 Å.

In general, our results for H-He-H are similar to those for
H2. Again, after the application of the spatially asymmetric
magnetic field pulse, the spins of the hydrogen electrons
become misaligned by an angle ϕ and start to precess about
the total spin at a steady angular frequency. Figure 8 shows the
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J  − J σ

FIG. 8. (Color online) Exactly analogous graphs to those in
Fig. 3 but for H-He-H with dH−He = 1.625 Å. Note that the exciting
magnetic pulse is strong enough to nearly reverse the spin of the
H atom it is applied to. This results in ϕ = 0.33π and σ z at both
hydrogen sites remains negative. Units are the same as in Fig. 3.
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FIG. 9. (Color online) Exactly the same graphs and units as in
Fig. 5 but for H-He-H with dH−He = 1.625 Å.

long-time oscillations of the spin density and the oscillating
z-polarized spin currents along the bond axis. The spin-current
distribution is qualitatively different from that of H2 in Fig. 3,
since it now peaks at the He atom instead of the sites bearing
the localized spins. This provides a certain insight into the
indirect exchange mechanism in H-He-H. Similarly to the
case of H2, we extract the local spins at the hydrogen sites
by using the linear transformation of Eq. (14). Also, in this
case the transformation seems to work well since it produces
consistent results and integration-volume-independent local
spins (expectation values), angles ϕ, and corresponding Jdyn.
The variation of electron density along the bond axis as a
function of ϕ obtained in the long-time limit is shown in Fig. 9.
This reveals a density-level signature of the superexchange.
As the spin state goes from LS to HS, the charge density at
the He atom splits spatially and the two He electrons show a
tendency to pair up with the uncoupled hydrogen electrons in
the interstitial regions. The profile of the local charge density
variation with ϕ at the center of symmetry (the He site) is
again an approximate cosine [Fig. 9(b)]. Note that the phase
here is reversed with respect to that of Fig. 5(b). In fact,
this exact profile, characteristic of the spin-pair formation,
appears throughout the simulation box, albeit with different
phase or amplitude. It appears that the deviation from a perfect
cosine is much less pronounced here compared to the case
of H2 (although we find again some higher-order harmonic
contributions). Similarly, the profile of Etot(ϕ) fits to cos ϕ

better than that for H2. In fact, by using only one additional
harmonic to the fitting function, namely, A cos ϕ + B cos2 ϕ,
we find that the corresponding JE [see Eq. (19)] agrees
extremely well with the extrapolated values of Jdyn at ϕ = 0
and ϕ = π (see Fig. 10). The relative variation of both JE and
Jdyn, calculated either near the LS or the HS state, with respect
to their average values, is also much smaller than that found
in H2 [see Fig. 6(b)].

There can be two factors for the improved agreement
to the Heisenberg law, namely, the increase of the H-H
distance in this case (2.6 Å for H2 versus 3.25 Å for H-
He-H), offering the possibility for a better localization of the
spins, and the contribution of the superexchange spin-spin
coupling.14 Concerning the first factor, clearly the presence
of the He produces a different localization for the H-He-H
trimer with respect to H2 for the same dH−H. A measure for
such localization is the integral of the spin density over a
hydrogen-centered sphere of radius dH−H/2. Hence, for the
HS state of H2 at 2.6 Å we find 0.849h̄/2 and for H-He-H

0 0.5 1
ϕ /π

75

80

85

90

95

J d
yn

   
 (

m
eV

)

transformed

0 0.5 1
ϕ /π

-40

-20

0

20

40

E
to

t( ϕ
) 

 -
  (

E
to

t(0
)+

E
to

t(π
))

/2
   

 (
m

eV
)

0.5ΔEBScosϕ
Fit: 
Acosϕ +Bsin2ϕ

0

0.1

0.2

ω
fi

t  
 (

fs
-1

)

Local spin 
definition:

(a)

(b)

(c)

FIG. 10. (Color online) Same graphs as in Fig. 6 but for H-He-
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squares correspond to JE from Eq. (19) with the fitting function in
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at 3.25 Å the apparent spin is 0.931h̄/2, which suggests the
latter should indeed be more Heisenberg-like. However, at
small distances, H-He-H shows much larger deviations from
the Heisenberg model compared to H2 for the same dH−H.
(See, for instance, Fig. 13 in the Appendix, where the case of
H-He-H with dH−H = 2.6 Å is discussed.)

As a quantitative measure of the deviation from the
Heisenberg model, we take the variation of Jdyn between the
HS and the LS spin on Fig. 10(c). This has the same sign and
is comparable in magnitude to the constrained-spin DFT result
of Peralta and Barone.11 It is further suggested in Ref. 11 that
a significant portion of the J variation is related to the LSDA
approximation, because JE(π ) − JE(0) can be reduced from
about 6% of the average J value to less than 1% with the use
of a hybrid exchange correlation functional such as B3LYP.

We finally present results for the dependence of Jdyn on
the He-H distance, dH−He. In Fig. 11 the calculated Jdyn in the
vicinity of the two collinear spin states are compared to broken-
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FIG. 11. (Color online) Distance dependence of the exchange
parameters for H-He-H calculated by various methods. Here Ruiz,
Hart, and Bencini correspond, respectively, to Refs. 10, 35, and 34.
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symmetry DFT10,34 and the exact configuration interaction
results available in literature.35 Similarly to Fig. 7, the average
Jdyn (or approximately its value for ϕ = π/2) agrees well with
the LSDA broken-symmetry result. Here we find that at very
large distances the relative variation of Jdyn with ϕ decreases
and it converges towards our LSDA broken-symmetry value
as dH−H increases. Such convergence is not found for the
case of H2 for the range of separations presented in Fig. 7.
Hence, at very large distances our dynamical measure of the
spin-spin interaction Jdyn suggests that the superexchange part
of the spin-spin interaction in H-He-H becomes increasingly
more Heisenberg-like as bond length increases. In fact, we
find that for the same dH−H, while the relative variation
[Jdyn(π ) − Jdyn(0)]/Jdyn(π/2) for H-He-H is about 20%
larger at dH−H = 2.6 Å than that for H2, it becomes nearly
3 times smaller than the latter at dH−H = 3.2 Å. At the same
time, the absolute deviation Jdyn(π ) − Jdyn(0) for H-He-H is
always significantly larger than that for H2 for the same dH−H.

V. CONCLUSIONS

We have demonstrated that the spin dynamics of two simple
spin dimers, as calculated on the basis of TD-SDFT within the
adiabatic LSDA, is rather simple and understandable through
a classical model. A noncollinear spin state can be created
with inhomogeneous magnetic field pulses and this retains
the noncollinearity in the long-time limit. The long-time
spin dynamics is thus a harmonic precession in which the
noncollinear spin density rigidly revolves about the total spin
of the dimer and all the relative angles remain constant in
time. Hence, the trajectories of the localized atomiclike spins,
independently from their particular definition, map well onto
the classical Heisenberg model. In order for this mapping to
be used for the extraction of Heisenberg exchange parameters,
the actual definition of local spins is important.

We have showed how a linear transformation, based on the
HS and the LS collinear states and the direct integration of spin
density over atomically centered spheres, can be used to extract
the directions of two localized spins. When defined in this way
the latter are, to a good degree, independent of the integration
sphere used for their definition. This also remains valid for
the corresponding dynamically defined exchange parameter
Jdyn, even for a range of distances where the overlap of the
atomic wave function is significant. Such defined exchange
parameters agree well with the results from constrained DFT
around the LS and the HS states and with broken symmetry
based on the total LSDA energy. We do acknowledge that
the actual form of the exchange parameter depends on the
choice of exchange and correlation functional used and that
our dynamical method does not remedy the shortfall of local
and semilocal functionals. We believe that the dynamical
method highlighted in this paper, together with generating
a quantitatively relevant estimate of J , could potentially
provide a straightforward verification for the applicability
of the Heisenberg spin model to a range of spin-polarized
nanoscaled systems accessible to TD-SDFT calculations (a
few hundreds of atoms). Furthermore, it offers a possible
strategy for mapping ab initio simulations on the widely used
atomistic Landau-Lifshitz-Gilbert micromagnetic models for
spin dynamics.
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APPENDIX: DEPENDENCE OF THE CALCULATED J’s ON
THE LOCAL SPIN DEFINITION: THE H-He-H CASE

We elaborate here on the procedure for extracting the local
spins and the exchange parameters for the H-He-H molecule.
The leading exchange mechanism in this system is not the
direct one but the superexchange, which depends on the kinetic
energy matrix element between the atomic orbital at the two
magnetic sites. It is then not clear a priori whether the linear
transformation used to eliminate the dependence on the wave-
function overlap in H2 is transferable to this case. Indeed,
for H-He-H the spin-density snapshots in the long-time limit
show a complex texture with multiple peaks and valleys around
the He site and the interstitial regions (see Fig. 9). The main
approximation, subsumed in the linear transformation, that
the HS and LS state have approximately the same single-
electron density distributions (but not spin direction), seems
likely to be violated if one looks at the transformation of the
spin distribution between the HS and the LS state as illustrated
in Fig. 12(a). This, however, is not the case, and we find that
the average variation between the actual density distributions
of the LS and HS collinear states at any point in the simulation
box is below 5% for dH−He = 1.3 Å. With this result at hand, we
verify numerically that the linear transformation, described in
Sec. II D, is still an adequate choice for the local spin definition
even at relatively small interatomic distances.

Our first criterion for assessing the adequacy of the local
spin definition is the fact that the absolute values of the spins
and the angles, obtained through the linear transformation,
do not depend on the choice of the sampling spatial volume,
e.g., on the radius rsph of the sphere used to integrate the
spin density. We find numerical evidences that this criterion is
fulfilled even for small H-He distances where the overlaps are
significant. In the top panels of Fig. 13 we compare the total
energy profiles as a function of the angle ϕ between the two
hydrogen local spins, for ϕ determined directly from the ap-
parent spins in an extremely small sphere (rsph = 0.05dH−He),
in an extremely large sphere (rsph = dH−He), and the case of
ϕ determined after the linear transformation (the blue squares
in the graphs). For instance, in the more problematic case of
small separation dH−He = 1.3 Å, the average relative variation
in the calculated ϕ (after the linear transformation) is below
0.5% for a variation of rsph between 0.05dH−He and dH−He.
This constitutes a tiny horizontal error bar of the blue square
data points in Fig. 13(a), smaller than the symbol size and
clearly insignificant on the background of the sphere-radius
variation of the apparent local-spin definition. The fact that
the transformed curve deviates most from the Heisenberg law,
in the direction already set by the small-sphere result, can be
attributed to the improved local spin definition and a resulting
tendency to capture better higher-order spin-spin interaction.
The local spins, which are based on the large sphere, behave
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FIG. 12. (Color online) (a) Snapshots of the long-time spin
density along the axis of H-He-H for dH−He = 1.3 Å. (Note that
individual illustrations are rigidly rotated about the molecular axis
so that the leftmost spins in all snapshots are parallel to each
other.) (b) The carrier functions of the two spin-density distributions
s1(r) and s2(r) [see Eq. (12)], based on the HS and the LS
collinear states. (c) Variation of the magnitude of the local spin,
defined as |σ i | ≡ |Ci |

∫
fσi

(x)dx (which is identical for i = 1,2
because of the symmetry), as a function of the angle ϕ when the
linear combination C1fσ1 (x) + C2fσ2 (x) instead is used to fit the
noncollinear distributions in panel (a). This result matches exactly
|σ 1,2| obtained through the linear transformation of Eq. (14).

much more classically. In the case of a large bond length all the
Etot(ϕ) curves (for different local sphere definitions) collapse
onto one, which tends towards the ideal Heisenberg cosine law
[see Fig. 13(b)].

A second relevant criterion could be how well the definition
preserves the magnitude of the local spin in the various
noncollinear states. Ideally, if the spin-density distributions
si(r) [Fig. 12(b)], determined from the sum and the difference
of spin density between the LS and HS collinear states, are
preserved in the noncollinear state (they only rotate), the linear
transformation in Eq. (14) will not affect the spin magnitudes in
the noncollinear states (σ i are normalized by definition). The
result of the linear transformation for d = 1.3 Å is presented
in Fig. 12(c). Clearly, the variations from the norm of 1 are
relatively small, with a peak at about ϕ = 2/3π , where the
local spin is about 11% larger than its value at ϕ = 0 or ϕ = π .

As a final criterion, we consider how well the exchange
coupling JE extracted from the total energy [Eq. (19)] agrees
with the dynamical exchange Jdyn defined in Eq. (10). This
comparison is presented in the bottom panels of Fig. 13.
Here we also take into account the fact that different local
spin definitions result in different values of the angle ϕ. The
magnitude of the local spins in Eq. (10) are assumed to be
always S = 1/2. When analyzing such a direct comparison,
we need to keep in mind that the values of JE are associated
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FIG. 13. (Color online) Comparison to an ideal Heisenberg
cosine law (solid black curve) of Etot(ϕ) (total TD-SDFT energy
in the long-time limit) profiles with angles {ϕ} corresponding to
different definitions of the local spins for two different bond lengths:
(a) d = 1.3 Å and (b) d = 1.625 Å. Corresponding JE values at the
two collinear spin limits [see Eq. (19)], for three different definitions
of the local spins, are compared to the dynamical results for Jdyn

(the area shaded in gray). The straight lines are just guides to the
eye between the two values. The type of line is matched to the
corresponding dynamical result (in or at the border of the gray-shaded
region) for the same definition of ϕ.

with substantial inaccuracy, as they rely on a numerical second
derivative. The error bars represent the standard deviation of
a set of results (of about 20 entries) obtained by using either
different forms of local interpolation (polynomial) around the
end points (0 and π ) or global fits of Etot(ϕ) to Fourier cosine
series of up to ninth order.

We find that the worst-performing definition is the one
based on a large sphere. This systematically produces an
incorrect slope of JE(ϕ) [see Figs. 13(c) and 13(d)]. Reducing
the radius of the sphere improves the agreement, particularly
for the larger distance. The result of the linear transformation
is rather surprising in the small separation case. It significantly
corrects the apparent angles and gives rise to a larger variation
of Jdyn between the two collinear limits. This variation is a
signature for the unfitness of the Heisenberg model in this
case. At the same time, JE, based on the second derivatives
of Etot(ϕ), is also showing a similar variation. This suggests
that the classical mapping of the TD-SDFT spin dynamics
seems to capture the same term in the Hamiltonian as the
total energy second derivative. Based on this comparison, it
is difficult to argue whether the small sphere or the linear
transformation is more suitable for the local spin definition in
this molecule. However, the comparison allows us, without
analyzing microscopic details, to dismiss some definition
(the large sphere, in this case) on the basis that it leads
to inconsistent results between the dynamical and the total-
energy-based method for evaluating the Heisenberg exchange
coupling J .
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J. Stöhr, G. Ju, B. Lu, and D. Weller, Nature (London) 428, 831
(2004).

2A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford
University Press, Oxford, 2001).

3J. Miltat, G. Albuquerque, and A. Thiaville in Spin Dynamics
in Confined Magnetic Systems I, edited by B. Hillebrands and
K. Ounadjela (Springer, Berlin, 2003).

4S. V. Halilov, A. Y. Perlov, P. M. Oppeneer, and H. Eschrig,
Europhys. Lett. 39, 91 (1997); S. V. Halilov, H. Eschrig, A. Y.
Perlov, and P. M. Oppeneer, Phys. Rev. B 58, 293 (1998).

5N. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, U. Atxitia,
and O. Chubykalo-Fesenko, Phys. Rev. B 77, 184428 (2008).

6U. Atxitia, O. Chubykalo-Fesenko, R. W. Chantrell, U. Nowak, and
A. Rebei, Phys. Rev. Lett. 102, 057203 (2009).

7B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson, J. Phys.:
Condens. Matter 20, 315203 (2008).

8D. Hinzke and U. Nowak, Phys. Rev. B 61, 6734 (2000).
9L. Noodleman, J. Chem. Phys. 74, 5737 (1981).

10E. Ruiz, J. Cano, S. Alvarez, and P. Alemany, J. Comp. Chem. 20,
1391 (1999).

11J. E. Peralta and V. Barone, J. Chem. Phys. 129, 194107
(2008).

12E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev.
Lett. 76, 4250 (1996).

13A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731
(2010).

14K. Yosida, Theory of Magnetism (Springer-Verlag, Heidelberg,
1996).

15E. K. U. Gross and W. Kohn, Adv. Quantum Chem. 21, 255
(1990).

16L. M. Sandratskii, Adv. Phys. 47, 91 (1998).
17Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 (2002).

18A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade,
F. Lorenzen, M. A. L. Marques, E. K. U. Gross, and A. Rubio,
Phys. Status Solidi B 243, 2465 (2006).

19A. E. Clark and E. R. Davidson, J. Chem. Phys. 115, 7382 (2001).
20E. Ramos-Cordoba, E. Matito, I. Mayer, and P. Salvador, J. Chem.

Theory Comput. 8, 1270 (2012).
21M. A. L. Marques and E. K. U. Gross, in A Primer in Density

Functional Theory, edited by C. Fiolhais, F. Noqueira, and
M. Marques, Lecture Notes in Physics (Springer, Berlin, 2003),
Vol. 620.

22J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
23A. Castro, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 121,

3425 (2004).
24K. Capelle, G. Vignale, and B. L. Györffy, Phys. Rev. Lett. 87,

206403 (2001).
25Note that this is valid for any component of the spin density, if there

is no static homogeneous magnetic field applied. If there is, say, a
homogeneous field Bh = (0,0,Bh), the result remains valid only for
the spin-density component along the field, i.e., the z axis, in this
case.

26We find that as long as the magnetic field is not symmetric with
respect to the center of the dimer, this qualitative result persists.

27A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
28A. Akande and S. Sanvito, J. Chem. Phys. 127, 034112 (2007).
29E. J. Baerends, Phys. Rev. Lett. 87, 133004 (2001).
30O. V. Gritsenko, S. J. A. van Gisbergen, A. Görling, and E. J.

Baerends, J. Chem. Phys. 113, 8478 (2000).
31F. Wang and T. Ziegler, J. Chem. Phys. 121, 12191 (2004).
32C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964).
33W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
34A. Bencini, F. Totti, C. A. Daul, K. Doclo, P. Fantucci, and

V. Barone, Inorg. Chem. 36, 5022 (1997).
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