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We present a theoretical study on the response properties to an external electric field of strongly correlated
one-dimensional metals. Our investigation is based on the recently developed Bethe ansatz local-density
approximation �BALDA� to the density functional theory formulation of the Hubbard model. This is capable of
describing both Luttinger liquid and Mott-insulator correlations. The BALDA calculated values for the static
linear polarizability are compared with those obtained by numerically accurate methods, such as exact �Lanc-
zos� diagonalization and the density-matrix renormalization group, over a broad range of parameters. In
general BALDA linear polarizabilities are in good agreement with the exact results. The response of the exact
exchange and correlation potential is found to point in the same direction of the perturbing potential. This is
well reproduced by the BALDA approach, although the fine details depend on the specific parameterization for
the local approximation. Finally we provide a numerical proof for the nonlocality of the exact exchange and
correlation functional.
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I. INTRODUCTION

Material systems, whose electronic structure cannot be
described at a mean-field level, are conventionally named
strongly correlated. These display an enormous variety of
properties, which all originate from the interplay between
Coulomb repulsion and kinetic energy, and from their dimen-
sionality. Phenomena related to electron-electron correlation
include metal-insulator transition, Tomonaga-Luttinger liq-
uid behavior, and superconductivity, just to name a few.1,2 In
particular, electron correlations play a fundamental role in
one dimension �1D�. In 1D confined structures, electrons
cannot avoid each other and collective excitations emerge
over the ground state so that the Fermi-liquid picture breaks
down. In fact one can demonstrate that the ground state of an
interacting 1D object is always a Luttinger liquid regardless
of the strength of the electron-electron interaction.1,2 Al-
though some aspects are still controversial, experimental evi-
dence supporting the existence of Luttinger liquids in 1D has
been provided for carbon nanotubes3 and for atomic wires
built of surface terraces.4,5

Strongly correlated systems are regularly modeled by
means of effective Hamiltonians, which usually lack all the
details of an ab initio description, but capture the relevant
physical properties arising from electron correlation. The ad-
vantage of dealing with effective Hamiltonians is that they
are commonly mathematically tractable and general enough
to be applied to a variety of problems. Among the many
effective Hamiltonians that one can construct, the Hubbard
model6–8 has enjoyed a vast popularity since it is simple and
still can capture the subtle interplay between Coulomb repul-
sion and kinetic energy.

Although exact solutions of the Hubbard model are
known in particular limits,9 a general one for an arbitrary
system, which can be finite and inhomogeneous, requires a
numerical treatment. This however represents a severely de-
manding task since the Hilbert space associated to the Hub-
bard Hamiltonian for L sites is 4L dimensional so that exact

�Lanczos� diagonalization �ED� can only handle a relatively
small number of sites. Other many-body approaches, such as
the density-matrix renormalization group �DMRG�,10,11 ex-
tend the range to a few hundred sites but little is possible
beyond that limit. It would be then useful to have a method
capable of describing accurately the ground state and still
having the computational overheads of a mean-field ap-
proach. Such a method is provided by lattice density func-
tional theory �LDFT�.

LDFT was initially proposed by Gunnarsson and
Schonhammer12,13 as an extension of standard, ab initio,
DFT �Refs. 14 and 15� to lattice models. The theory essen-
tially reformulates the Hohenberg-Kohn theorem and the
Kohn-Sham construction in terms of the site occupation in-
stead of the electron density. Although originally introduced
with a pedagogical purpose, LDFT has enjoyed a growing
success and it has been already applied to a diverse range
of problems. These include fundamental aspects of DFT
and of the Hubbard model, as the band-gap problem in
semiconductors,12 the dimerization of 1D Hubbard chains,16

and the formation of the Mott-Hubbard gap.17 LDFT has also
been employed for investigating effects at the nanoscale
traceable to strong correlation, such as the behavior of
impurities,18 spin-density waves19 and inhomogeneity,20 as
well as more exotic aspects like the phase diagram of har-
monically confined 1D fermions,21 and that of ultracold fer-
mions trapped in optical lattices.22–24 More recently LDFT
has been extended to the time-dependent domain,25 to quan-
tum transport,26 and to response theory.27

As in standard DFT also LDFT is in principle exact. How-
ever, its practical implementation is limited by the accuracy
of the unknown exchange correlation �XC� functional, which
introduces the many-body effects into the theory. The con-
struction of an XC functional begins with choosing a refer-
ence system, for which some exact results are known. These
impose a number of constraints that the XC functional must
satisfy, as for example, its asymptotic behavior or its scaling
properties. Then the functional is built by interpolating and
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fitting to known many-body reference results. Such a con-
struction for instance has been employed in the case of the
local-density approximation �LDA� in ab initio DFT. The
reference system in two and three dimensions is usually an
electron gas of some kind since one aims at reproducing a
Fermi liquid. However in 1D, the known ground state has a
Luttinger-liquid nature so that the reference system should be
chosen accordingly. In the case of the Hubbard Hamiltonian
in 1D, a powerful result is that obtained by Lieb and Wu28

for the homogeneous case by using the Bethe Ansatz. This is
the basis for constructing an XC functional for the Hubbard
model in 1D.17,18

In this work, we evaluate the ability of a range of known
approximations to the XC functional for the 1D Hubbard
model at predicting the electrical response to an external
electric field of finite 1D chains away and in the vicinity of
the Mott transition. This is relevant not just as a test for
Hubbard LDFT but also for understanding real materials,
whose electrical response can be mimicked in terms of the
Hubbard model.29,30 The 1D case, in particular, can provide
important insights into the nonlinear optical properties of
polymers.31 Our strategy is that of constantly comparing the
DFT results with those obtained with highly accurate many-
body schemes. For these we use ED for small chains and the
DMRG method for larger systems. Our calculations reveal a
substantial good agreement between LDFT and exact results
for both the polarizability and the XC potential response of
finite 1D chains. The paper is organized as follows. In Sec. II
we will briefly review the Hubbard LDFT and the approxi-
mations used for constructing the XC functional. Then we
will discuss results, first for the electrical polarizabilities and
then for the response of the XC potential to an external elec-
tric field. Finally we will carry on a numerical investigation
on the validity of the local approximation to the XC func-
tional and then we will conclude.

II. THEORETICAL FORMULATION

One-dimensional correlated metals can be described by
the homogeneous Hubbard Hamiltonian, HU. For a 1D chain
comprising L sites HU writes

HU = − t �
i=1,�

L−1

�ci+1�
† ci� + hc� + U�

i=1

L

n̂i↑n̂i↓, �1�

where the first kinetic term describes the hopping of elec-
trons with spin � ��= ↑ ,↓� between nearest-neighbor sites
with amplitude t�0 while the second accounts for the elec-
trostatic repulsion U�0 of doubly occupied sites. In the Eq.
�1� ci�

† �ci�� is the fermion creation �annihilation� operator for
an electron at site i with spin � and the site-occupation op-
erator is written as n̂i�=ci�

† ci�. Clearly there is only one en-
ergy scale in the problem so that the ratio U / t determines all
the electronic properties. Note that a second energy scale can
be included in the problem by adding to the Hamiltonian an
on-site energy term �i=1,�

L �in̂i� mimicking a ionic lattice.
As discussed in the introduction the fundamental quantity

of LDFT is the site occupation, ni, which is calculated by
solving the equivalent Kohn-Sham problem. This can be
generally written as

�
j=1

L

�− t��i+1j + �i−1j� + vKS
i �� j

��� = �����i
���, �2�

where vKS
i is the general Kohn-Sham potential. The occupied

Kohn-Sham eigenvectors, �i
���, define ni

ni = �
�

w�����i
����2, �3�

where w��� are the occupation numbers, which satisfy
��w���=N with N being the total number of electrons. By
following in the footsteps of standard ab initio DFT the
Kohn-Sham potential can be written as the sum of three
terms

vKS
i = �vH

i + vext
i + vXC

i � , �4�

where vH=Uni /2 is the Hartree potential and vext
i is the ex-

ternal one. The last term in Eq. �4� is the XC potential, which
needs to be approximated.

The Kohn-Sham equations simply follow by variational
principle from the minimization of the energy functional.
Thus the total energy of the system, E, can be defined as

E��ni�� = �
�

w������� − �
i

vXC
i ni − �

i

Uni
2

4
+ EXC��ni�� ,

�5�

where the last term is the XC energy. Note that different
values of U and t define completely the theory so that one
has a different functional for every value of U / t.

We now review the strategy used for constructing a suit-
able local vXC

i .17–19 The guiding idea is that of defining vXC
i

as the local counterpart of the Bethe Ansatz potential for the
homogeneous Hubbard model �for an infinite number of
sites�, i.e.,

vXC
i �BALDA = vXC

hom�n,t,U��n→ni
. �6�

Here BALDA stands for Bethe Ansatz local-density approxi-
mation and vXC

hom�n , t ,U� is the XC potential for the homoge-
neous Hubbard model, which is defined only in terms of the
band filling n=N /L �note that for the homogeneous case
ni=n for every site i�. Formally, and in complete analogy
with ab initio DFT, vXC

hom�n , t ,U� is obtained by functional
derivative of the exact energy density, e�n , t ,U�, of the ref-
erence system �in this case the homogeneous Hubbard
model�, after having subtracted the kinetic-energy density of
the noninteracting case e�n , t ,U=0� and the Hartree energy
density, eH�n ,U�. This gives us

vXC
hom�n,t,U� =

�

�n
�e�n,t,U� − e�n,t,U = 0� − eH�n,U�� .

�7�

The question is now how to obtain e�n , t ,U�. Two alter-
native constructions have been proposed in the past and here
we have adopted and numerically implemented both. The
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first one consists in using the analytical parameterization
proposed by Lima et al.,18,19 which interpolates the known
exact results for: �1� U→0 and any n�1, �2� U→� and any
n�1, and �3� n=1 and any U. The resulting XC potential
can then be written as

vXC
hom�n,t,U� = t		2 cos

k


��U�
− 2 cos

k


2
+

kU

2

 , �8�

where k=1− �n−1�, 	=sgn�n−1� and ��U� is a U-dependent
parameter, which can be determined by solving a transcen-
dental equation. The alternative route is that of employing a
direct numerical solution of the coupled Bethe Ansatz inte-
gral equations. This approach has been already used for the
study of ultracold repulsive fermions in 1D optical lattices.22

The first parameterization is known as BALDA/LSOC
�Ref. 32� and the second as BALDA/FN �fully numerical�. In
Fig. 1, the XC potentials as a function of the electron
filling for the two schemes are shown for different
values of U. In the picture �and in the calculations� we
always use the particle-hole symmetry, which imposes
vXC

hom�n�1, t ,U�=−vXC
hom�2−n , t ,U�. From the figure one can

immediately observe that the potential in both cases has a
discontinuity in the derivative at half filling �n=1, N=L�.
This reflects the fact that the underlying homogeneous 1D
Hubbard model has a metal-insulation transition for n=1.
Such a discontinuity in the derivative of the potential, as in
standard ab initio DFT, is responsible for the opening of the
energy gap. The second observation is that the two param-
eterizations always coincide by construction at n=0 and
n=2 but that their agreement over the entire n range
depends on the value of U. In particular, one can report a
progressively good agreement as U increases. This is not a
surprise since the BALDA/LSOC potential is constructed to
exactly reproduce the U→� limit.

III. POLARIZABILITIES

We calculate the electrical polarizability of linear chains
with the finite difference method, i.e., as numerical deriva-
tive of calculations performed at different external electric
fields. An external electric field enters into the problem by
adding to the Hubbard Hamiltonian HU the term

HE = eEx̂ = eE�
i=1

L

�i − x̄�ci
†ci, �9�

where x̄= 1
2 �L+1� is the middle site position of the chain, e is

the electronic charge �e=−1�, and E is the electric field in-
tensity �the electric field is applied along the chain�. In gen-
eral, the electrical dipole, P, induced by an external electric
field can be calculated simply as the expectation value of the
dipole operator over the ground-state wave function ��0�E��
�note that this is a general definition so that ��0�E�� is not
necessarily the Kohn-Sham ground-state wave function�, i.e.,

P = e��0�E�
�
i=1

L

�i − x̄�ci
†ci
�0�E�� =

dE0�E�
dE

, �10�

where E0 is the ground-state energy. For small fields P can
be Taylor expanded about E=0 so that the linear polarizabil-
ity, �, is defined as

P � �E + 
E3 + O�E5�, � =
d2E0�E�

dE2 . �11�

Our calculation then simply proceeds with evaluating E0�E�
for different values of E and then by fitting the first deriva-
tives with respect to the field to the Eq. �11�, as indicated in
Ref. 31 We have also performed a number of numerical tests
and verified that the polarizabilities calculated from the site
occupation �intermediate formula in Eq. �10�� essentially co-
incides with those obtained from the total energy. We note
that our finite difference scheme is not accurate enough for
calculating the hyperpolarizability, 
, which then is not in-
vestigated here.

It has been already extensively reported that BALDA-
LDFT gives a substantial good agreement with exact calcu-
lations in terms of ground-state total energy.17,18 The polar-
izability however offers a more stringent test for the theory
since it involves derivative of E0. Hence it is important to
compare the various approximations with exact results.

For small chains, L�18, these are obtained by simply
performing ED. However for the longer chains ED is
no longer feasible and we employ instead the DMRG
scheme.11,33 DMRG has been widely used to investigate one-
dimensional and quasi-one-dimensional quantum systems. It
usually performs best with open boundary conditions and
utilizes appreciable computational resources depending on
the number of states that are kept for the calculation. Our
DMRG calculations are performed by employing the Algo-
rithms and Libraries for Physics Simulations �ALPS� �Ref.
34� package for strongly correlated quantum-mechanical sys-
tems. The DMRG results are obtained by using a cutoff of
m=350, i.e., by retaining the dominant 350 density-matrix
eigenvectors.
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FIG. 1. �Color online� Exchange-correlation potential
vXC

hom�n , t ,U� of the 1D Hubbard model as a function of the electron
filling, n, for different values of interaction strength, U. Here we
report data for both BALDA/LSOC and BALDA/FN. Note that the
agreement between the two schemes improves as U increases.
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Let us start our analysis by looking at the polarizability as
a function of the energy scale U / t. Selected results for quar-
ter filling, n=1 /2, and for n=1 /3 are presented in the vari-
ous panels of Fig. 2. Note that throughout this work we
always stay away from the half-filling case �n=1�, where the
derivative discontinuity of the potential makes the LDFT
convergence problematic. As a test of our numerical accu-
racy in the panel �a� of the figure we also report results
obtained by calculating � from the site occupation instead
then from the total energy �these calculations are labeled
with “BALDA/FN�b�”�. One can then observe that the two
methods return practically indistinguishable polarizabilities

In general we find that the polarizability decreases mono-
tonically with increasing the on-site repulsion U. This is in-
deed an expected result since an increase in on-site repulsion
means a suppression of charge fluctuations and consequently
a reduction in �. Away from U=0 the dependence of � on
U / t can be fitted with

��U/t;L,n� = �0�L,n��U

t
�−��L,n�

, �12�

where all the parameters have a dependence on the length of
the chain and on the band filling. The results of such a fitting
procedure are reported in Table I. Note that in the fit we did
not impose any constraints and we have included only points
with U / t�1.

From the fit and from Fig. 2 one can immediately note
that both the BALDA flavors of the exchange and correlation
functional reproduce rather well the exact results, in good
agreement with previously published calculations.27 The
agreement is particularly good for the FN functional, which
matches the ED/DMRG results almost perfectly over the en-

tire range of U / t’s and filling investigated. A quantitative
assessment of goodness of the BALDA results is provided in
Fig. 3 where the relative error, �, from the reference exact
calculations is presented. In general, and as expected, we find
that the error grows with U / t, i.e., with the system departing
from the noninteracting case. However, there is also a satu-
ration of the error as the interaction strength increases, re-
flecting the fact that both the BALDA potential are exact in
the limit of U→�. As a further consequence of the U→�
limit, we also observe that the relative error between
BALDA/LSOC and BALDA/FN reduces as U grows.

Given the accuracy of the BALDA/FN scheme we have
decided to use the same to investigate in more details the
scaling properties of ��U / t ;L�. First we look at the scaling
as a function of the interaction strength U / t. In this case we

TABLE I. Scaling parameters for ��U / t ;L� as obtained by fit-
ting the data of Fig. 2 to the expression of Eq. �12�. Note that the fit
has been obtained without any constraints and by including data
only for U / t�1.

Method L N n �0 �

ED 12 6 1/2 59.69 0.23

BALDA/LSOC 62.06 0.27

BALDA/FN 59.50 0.25

ED 16 8 1/2 142.88 0.27

BALDA/LSOC 135.07 0.31

BALDA/FN 143.56 0.30

DMRG 60 30 1/2 8939.5 0.32

BALDA/LSOC 8673.1 0.33

BALDA/FN 8837.8 0.31

DMRG 60 20 1/3 6931.6 0.29

BALDA/LSOC 6401.0 0.30

BALDA/FN 6920.7 0.29
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FIG. 2. �Color online� Linear polarizability, �, as a function of
the Coulomb repulsion U / t. Results are presented for BALDA/
LSOC and BALDA/FN and they are compared with those obtained
with either ED or DMRG calculations. In the various panels we
show: �a� L=12 at quarter filling �n=1 /2�, �b� L=16 at quarter
filling, �c� L=60 and N=20, and �d� L=60 at quarter filling. In
panel �a� we also show results for BALDA/FN �labeled with
“BALDA/FN�b�”� where � is calculated from the site occupation
and not from the total energy.
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FIG. 3. �Color online� Relative error between BALDA calcu-
lated polarizabilities and those obtained with exact methods �either
ED or DMRG�. In the panels we show: �a� L=12 at quarter filling
�n=1 /2�, �b� L=16 at quarter filling, �c� L=60 and N=20, and �d�
L=60 at quarter filling.
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always consider a chain containing L=60 sites for which the
deviation from the DMRG results is never larger than 2%.
Furthermore this is a length which allows us to explore a
rather large range of electron filling so that it allows us to
gain a complete understanding of the scaling properties.

Our results are presented in Fig. 4 where we show � as a
function of U / t for different filling factors, we list the values
of � obtained by fitting the actual data for U / t�1 to the
expression in Eq. �12� and we provide �inset� the dependence
of � on n.

In general the fit to our data is excellent, suggesting the
validity of the exponential scaling of the polarizability with
the interaction strength �away from half filling�. In particular,
we find that � decreases monotonically with n for n�0.2 but
it increases for smaller values. This means that ��n� has a
maximum just before n=0.2, which appears rather sharp �see
inset of Fig. 4�. We are at present uncertain about the precise
origin of such a nonmonotonic behavior. However, as we
will see in details later on, we notice that the response of the
exchange and correlation potential to the external electric
field has an anomaly for small U and n. We believe that such
an anomaly might be the cause of the nonmonotonic behav-
ior of �.

Next we turn our attention to the scaling of � with the
chain length. In Fig. 5 we present ��L� for two different
filling factors �n=1 /3 and 1/2� and different values of U / t.
Data are plotted both in linear and logarithmic scale, from
which a clear power-law dependence of � on L emerges. A
fit to our data provides the following scaling

��U/t;L� = �1L
. �13�

Importantly this time we find essentially no dependence of
both �1 and 
 on either U / t or n. The fit reveals a value for
the exponent of 
�3 �the range is from 
=2.93 to 
=2.98�.
This is what expected for free electrons in 1D,31 and it is

substantially different from the predicted linear scaling at
n=1. Our results thus confirms that away from n=1 the elec-
trostatic response of the Hubbard model is similar to that of
the noninteracting electron gas. Going in more details we
find a rather small monotonic dependence of 
 on U / t. This
however depends also on n since for n=1 /3 we find that 

reduces as U / t is increased �from 2.98 for U / t=0.5 to 2.93
for U / t=100� while the opposite behavior is found for
n=1 /2 �
=2.94 for U / t=0.5 and 2.96 for U / t=100�.

IV. RESPONSE OF THE BALDA POTENTIAL TO THE
EXTERNAL FIELD

In ab initio DFT the failures of local and semilocal XC
functionals in reproducing accurate linear polarizabilities are
related to the incorrect response of the XC potential to the
external electric field,35,36 which in turn originates from the
presence of the self-interaction error.37,38 In particular, for ab
initio DFT the exact XC potential should be opposite to the
external one while the LDA/generalized gradient approxima-
tion returns a potential which responds in the same direction.
In order to investigate the same feature for the case of the
Hubbard model LDFT we calculate the potential response

�vXC = vXC
E �ni� − vXC

E=0�ni� , �14�

where vXC
E �ni� is the exchange and correlation potential at

site i in the presence of an electric field E. Also in this case
we adopt the finite difference method and we use E=0.01,
after having checked that the trends remaining unchanged
irrespectively of the field strength.

In order to provide a benchmark for our calculations we
also need to evaluate the potential response for the exact
Hubbard model. We construct the exact potential by reverse
engineering, a strategy introduced first by Almbladh and
Pedroza39 and by von Barth40 and then applied to both static
and time-dependent LDFT by Verdozzi.25 This consists in
minimizing about the Kohn-Sham potential the functional F
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FIG. 4. �Color online� Polarizability as a function of U / t for a
chain of 60 sites and various filling factors, n. The figure legend
reports the fitted values for the exponent � �see Eq. �12��. The
symbols represents the calculated data while the solid lines are just
to guide the eyes. In the inset we present the exponent � as a
function of the filling factor n.
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�in reality here this is just a function� defined as

F�vXC� = �
i

L

�ni
KS − ni

exact�2, �15�

where ni
exact is the exact site occupation at site i as obtained

by either ED or the DMRG method while ni
KS is the Kohn-

Sham one.
Our results are summarized in Figs. 6 and 7, where we

show �vXC / t as a function of the site index for a 60 site
chain occupied, respectively, with 10 �n=1 /6� and 30 �n
=1 /2� electrons. The external electrostatic potential here de-
creases as the site number increases, i.e., it has a negative
slope. Results are presented for DMRG, BALDA/LSOC, and
BALDA/FN and for different values of U.

In general and in contrast with ab initio DFT, we find that
the response of the exact Hubbard-LDFT XC potential is in
the same direction of the external perturbation for both the
filling factors investigated and regardless of the magnitude of
U. The response however becomes larger as U is increased
�the slope of �vXC / t is more pronounced�, a direct conse-
quence of the fact that for large U’s small deviations from an
homogeneous charge distribution produce large fluctuations
in the potential. Such a behavior is well reproduced by both
the BALDA functionals with the BALDA/FN scheme per-
forming marginally better than the BALDA/LSOC one, and
reflecting the same trend already observed for the polariz-
abilities.

There is however one anomaly in the potential response
for the BALDA/LSOC functional, namely, at n=1 /2 and for
small U �respectively, 2 and 4� the potential response is ac-
tually opposite �positive slope� to that of the DMRG bench-
mark. This means that in these particular range of filling and
interaction strength the BALDA/LSOC potential erroneously
opposes to the external perturbation. The anomaly originates

from the particular shape of the BALDA/LSOC potential as
a function of n for small U �see Fig. 1�. In fact, vXC

i / t for
BALDA/LSOC has a minimum for both U=2 and U=4 at
around n=1 /4, which means that its slope changes sign
when the occupation sweeps across n=1 /4. Therefore for
those critical interaction strengths the response is expected to
be along the same direction of the external potential for
n�1 /4 and for 3 /4�n�1 and opposite to it for
1 /4�n�3 /4 �at n�3 /4 there is a second change in slope�.

In the case of the BALDA/FN functional such an anomaly
is in general not expected, except for small U and n close to
the discontinuity at n=1 �see Fig. 1�. This, however, is in the
range of occupation not investigated here. Nevertheless we
note that for n=1 /2 and U=2 the BALDA/FN vXC / t
is almost flat. This feature is promptly mirrored in the
potential response of Fig. 7, which also shows an almost flat
�vXC / t, although still with the correct negative slope.

Given the good agreement for both the polarizability and
the potential response between the exact results and those
obtained with the BALDA �in particular, with the FN fla-
vour�, one can conclude that the local approximation to the
Hubbard-LDFT functional is adequate. Still it is interesting
to assess whether the remaining discrepancies have to do
with the particular local parameterization of EXC��ni��, or
with the fact that the exact XC functional may be intrinsi-
cally nonlocal. In order to answer to this question we have
set a numerical test. We consider a 60 site chain with
n=1 /2 �this should be long enough to resemble the infinite
limit� and we introduce a local perturbation in half of the
chain. This is in the form of a reduction in the on-site energy
of the first 30 sites by �. We then calculate the deviation of
the XC potential per site, �v /L, as a function of the deviation
of the total energy �E0. These two quantities are defined,
respectively, as
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FIG. 6. �Color online� The difference, �vXC / t, between the XC
potential calculated at finite electric field and in absence of the field
as a function of the site index. Results are presented for a 60 site
chain with N=10 �n=1 /6�. The dots are the calculated data while
the lines are a guide to the eye. The external potential has a negative
slope.
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FIG. 7. �Color online� The difference, �vXC / t, between the XC
potential calculated at finite electric field and in absence of the field
as a function of the site index. Results are presented for a 60 site
chain with N=30 �n=1 /2�. The dots are the calculated data while
the lines are a guide to the eye. The external potential has a negative
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�v
L

=
1

L
�
i=1

L

�vXC
� �ni� − vXC

�=0�ni��, �E0 = E0��� − E0�0�

�16�

with vXC
� and E0���, respectively, the XC potential at site i

and the total energy calculated for ��0. One then expects
for a local potential that �v→0 as �E0→0.

Our results are presented in Fig. 8. These have been ob-
tained for a relatively small U / t=2 by varying � in the range
0���0.1 in steps of 10−5 �this range is used only for small
� while a coarse mesh is employed for large ��. Interestingly
we note that, after a steady decrease in �v /L with reducing
�E0, the deviation of the potential starts to fluctuate indepen-
dently on the size of �E0. We have carefully checked that
such fluctuations are well within our numerical accuracy so
that they should be attributed to the breakdown of the local
approximation.

In order to rule out possible local effects we have evalu-
ated �v /L by: �i� summing over all the site in the chains
�case A in Fig. 8�, �ii� summing only over the first three sites
in the left-hand side of the chain and the last three in the
right-hand side �case B�, and �iii� summing over the first
three sites on each side adjacent to the potential discontinuity
�case C�. We find the rather remarkable result that, although

for large �E0 the three methods give a rather different �v /L,
they provide the same deviation as the total-energy differ-
ences approaches zero.

We then conclude that part of the failure of BALDA/FN
in describing the polarizability of finite 1D chains must be
ascribed to the violation of the local approximation. We note
that this feature does not seem to be specific of the one-
dimensional case and that a similar numerical test has been
already provided in three dimensions.41

V. CONCLUSIONS

In conclusion, we have reported a systematic study of the
electrical response properties of homogeneous one-
dimensional metals described by the Hubbard model. This is
solved within LDFT and local approximations of the ex-
change and correlation functional. Whenever possible the
calculations are compared with exact results obtained either
by exact diagonalization or with the density-matrix
renormalization-group approach. In general we find that
BALDA functionals perform rather well in describing the
electrical polarizability of finite one-dimensional chains. The
agreement with exact results is particularly good in the case
of numerically evaluated functionals. A similar good agree-
ment is found for the exchange and correlation potential re-
sponse. In this case we obtain the interesting result that the
potential response is always along the same direction of the
perturbing potential, in contrast to what happens in ab initio
DFT. Furthermore for small electron filling and weak Cou-
lombic interaction the commonly used LSOC parameteriza-
tion is qualitatively incorrect due to a spurious minimum in
the potential as a function of the site occupation.

We expect our results to be largely maintained even in the
presence of impurities, i.e., when the external potential �the
on-site energy� is not uniform across the chains. In this case
deviations between the exact results and LDFT are expected
for small U / t, where the potential has a qualitative incorrect
response and for any U / t at an average site occupation close
to half filling, where the potential derivative discontinuity
appears.

Finally we have also provided a numerical test of the
breakdown of the local approximation being the source of
the remaining errors.
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