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The non equilibrium Green function formalism is today the standard computational method for
describing elastic transport in molecular devices. This can be extended to include inelastic scattering
by the so called self-consistent Born approximation (SCBA), where the interaction of the electrons
with the vibrations of the molecule is assumed to be weak and it is treated perturbatively. The
validity of such an assumption and therefore of the SCBA is difficult to establish with certainty.
In this work we explore the limitations of the SCBA by using a simple tight-binding model with
the electron-phonon coupling strength α chosen as a free parameter. As model devices we consider
Au mono-atomic chains and a H2 molecule sandwiched between Pt electrodes. In both cases our
self-consistent calculations demonstrate a breakdown of the SCBA for large α and we identify a
weak and strong coupling regime. For weak coupling our SCBA results compare closely with those
obtained with exact scattering theory. However in the strong coupling regime large deviations are
found. In particular we demonstrate that there is a critical coupling strength, characteristic of the
materials system, beyond which multiple self-consistent solutions can be found depending on the
initial conditions in the simulation. We attribute these features to the breakdown of the perturbative
expansion leading to the SCBA.

I. INTRODUCTION

Central to the field of molecular electronics are phe-
nomena involving the interaction between the electron
current and the internal degrees of freedom of the
molecule investigated. In scanning tunnel microscopy
(STM)1,2,3 the molecular vibrational modes (phonons)
have been exploited to desorb or to move a molecule on
a surface, paving the way for phonon assisted surface
chemistry. At the same time, STM inelastic tunnelling
spectroscopy uses the fingerprints of vibrations in the
I-V curve to probe the orientation and/or to identity
molecules on surfaces4,5,6,7. Switching devices exploiting
phonons have also been reported8.

Broadly speaking, in molecular devices phonons are
important for two reasons. Firstly, they play a role
in transport9,10 by opening new conductance channels
through which the itinerant electrons can propagate,
and by suppressing the transmission of purely elastic
channels11. More dramatically, for large electron-phonon
coupling the charge carriers become quasi-particles con-
sisting of coupled electrons and phonons12. Secondly,
from a technological point of view, phonons limit the effi-
ciency of molecular devices because of energy dissipation.
This causes heating, power loss and instability.

Transport experiments at the nano-scale are difficult
to interpret since the atomically precise device geometry
is rarely known. Therefore one usually relies on atom-
istic simulation techniques in order to understand the
results. For elastic transport, when electron-phonon in-
teraction is not considered and the electron-electron in-
teraction is treated at the mean field level, methods of
note for predicting the current flowing through devices
include the non-equilibrium Green function formalism
(NEGF)13,14,15,16,17 and scattering theory (ST)12,18,19,20.
Some of these methods have been adapted to include

electron-phonon interaction, notably an extension of
scattering theory (EST)11,21,22,23 and the self consistent
Born approximation (SCBA)24,25 within the NEGF for-
malism. In addition time-dependent methods for describ-
ing correlated electron-ion dynamics have been recently
proposed26.

The focus of this paper is the SCBA. This is attractive
from a practical point of view since it has moderate com-
putational requirements and it has been used extensively
for calculating transport properties of a number of differ-
ent material systems24,25. However, it is a perturbative
approach appropriate only for weak electron-phonon (e-
p) coupling. As the e-p coupling strength increases the
SCBA will eventually breakdown, however it is unclear
whether such breakdown is either sharp or smooth with
the e-p coupling strength. Our work explores this ques-
tion in detail.

The paper is organized as follows. We begin by pre-
senting the NEGF formalism for a two probe device27,28,
and by recalling the foundations of the SCBA. We then
consider a 1D tight-binding model where the e-p inter-
action in the scattering region is described by the Su-
Schrieffer-Heeger (SSH)29,30 Hamiltonian. The parame-
ters for the model Hamiltonian are chosen for mimicking
two systems which have been studied experimentally: H2

molcules sandwiched between Pt electrodes (H2-Pt)9,31

and Au monatomic chains10 comprising R atoms (RC’s).
The parameters for H2-Pt are the same as those used
by Jean and Sanvito11, who previously employed exact
scattering theory (EST) to describe phononic effects. In
contrast to the SCBA, EST is valid for both strong and
weak coupling and therefore it is a good benchmark for
the SCBA. Accordingly we compare the SCBA results
directly with EST over a range of different e-p couplings
to establish the limit of validity for the SCBA and to
investigate its breakdown.

http://arxiv.org/abs/0804.3389v1
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II. METHODOLOGY

A. Non Equilibrium Green Function Formalism

A two probe device consists of two crystalline elec-
trodes attached on either side of a scattering region,
which is in general a collection of atoms breaking the elec-
trodes translational symmetry. The leads are also charge
reservoirs, so that the device may be viewed as two charge
reservoirs bridged by the central region. Thermodynam-
ically we characterise the left-hand side (L) and right-
hand side (R) lead by defining their chemical potentials
µLand µR. If µL = µR, equilibrium is established and no
current flows. When µL 6= µR the system is dragged out
of equilibrium, and net charge will move from the reser-
voir with the higher chemical potential across the central
region to the reservoir of lower chemical potential in an
attempt to re-establish equilibrium. If a battery is at-
tached to the two reservoirs keeping µL − µR = eV (V
is the bias and e the electron charge) the system cannot
return to equilibrium and will eventually reach a steady
state with a constant current flow.

At the Hamiltonian level the problem can be formu-
lated by using a basis set comprising a linear combination
of atomic orbitals (LCAO). It is convenient to write the
Hamiltonian of the semi-infinite periodic leads in term of
principal layers (PLs)27,32. These are cells that repeat
periodically and constructed in such a way that the in-
teraction between PLs extend only to nearest neighbours
(see figure 1). Thus the N × N matrices H1 and H0
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FIG. 1: Schematic representation of a system composed of
two semi infinite leads and a scattering region (rectangular
dashed box). The matrices H0 and H1 describe the lead prin-
cipal layers, HM describes the scattering region and HLM,
HRM the interaction between the scattering region and the
last principal layers of the leads.

describe respectively the interactions between PLs and
within a PL. The scattering region in general is described
by M basis functions. The M×M matrix, HM, describes
its internal interaction, while the matrices HLM (N ×M)
and HRM (M × N) contains the interaction between the
PLs of the leads adjacent to the scattering region and
the scattering region itself. The entire system is thus

described by the infinite tri-diagonal Hamiltonian H

H =



















. . . . . . . . . . .

. 0 H−1 H0 H1 0 . . . . .

. . 0 H−1 H0 HLM 0 . . . .

. . . 0 HML HM HMR 0 . . .

. . . . 0 HRM H0 H1 0 . .

. . . . . 0 H−1 H0 H1 0 .

. . . . . . . . . . .



















.

Time reversal symmetry sets H−1 = H†
1 , HML = H†

LM,

and HMR = H†
RM. The retarded Green function, GR

associated to the entire system (leads plus scattering re-
gion) is defined as

[ω′I −H]GR(ω) = I, (1)

where ω′ = limδ→0+ (ω + iδ), ω is the energy and I is
the infinite dimensional identity matrix.43

For transport calculations however one does not need
the Green’s function of the entire system but only that
relative to the scattering region, GM, in presence of the
leads. This can be written as44

GM(ω) = [ω′IM − HM − ΣL(ω) − ΣR(ω)]−1 , (2)

where the presence of the leads have been accounted via
the introduction of the self-energies for the left- and right-
hand side lead ΣL(ω) and ΣR(ω). IM is the M × M
identity matrix. The self energies are M × M matrices
defined as

ΣL = HML gL HLM , ΣR = HMR gR HRM , (3)

where gL(ω) and gR(ω) are the retarded surface Green
functions of the leads, namely the retarded Green func-
tions of the isolated semi-infinite leads evaluated at the
PLs adjacent to the scattering region. These are calcu-
lated by considering the retarded Green function of the
corresponding infinite system (periodic) and by applying
appropriate boundary conditions20. External bias volt-
age is introduced under the assumption that the leads are
good metals maintaining local charge neutrality. The ef-
fect of a bias is therefore only that of shifting rigidly in
energy the leads electronic structure, so that

ΣL/R(ω, V ) = ΣL/R(ω ± eV/2, 0) . (4)

We now proceed to evaluate the non-equilibrium
charge density in the scattering region and the two-probe
current by using the NEGF scheme32. The lesser (<) and

greater (>) Green functions G
≶
M(ω) are defined as

G
≶
M(ω) = GM(ω)Σ≶(ω)G†

M(ω), (5)

with self-energies

Σ≶(ω) =
∑

α=L,R

Σ≶
α (ω) , (6)

Σ<
α (ω) = i nα

F(ω)Γα(ω) , (7)

Σ>
α (ω) = i [nα

F(ω) − 1]Γα(ω) . (8)
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Here nα
F(ω) = nF(ω−µα) is the Fermi function evaluated

at ω − µα and temperature T , µα = EF ± eV/2 with
EF the leads Fermi energy, and we have introduced the
coupling matrix for the α lead (α = L/R)

Γα(ω, V ) = i[Σα(ω, V) − Σ†
α(ω, V)] . (9)

The non-equilibrium charge density matrix for the scat-
tering region is

ρ =
1

2πi

∫ ∞

−∞

dω′G<
M(ω′) . (10)

If HM has a functional dependence on ρ the equations (2)
and (10) can be solved self-consistently. The net current
flowing through the device is then

Junp(V ) =
2e

h

∫ ∞

−∞

dω Tr[ΓLG†
MΓRGM](nL

F −nR
F) , (11)

where the subscript “unp“ stands for “unperturbed”,
meaning that no e-p interaction is included. The term

T (ω, V ) = Tr[ΓLG†
MΓRGM] is the standard Landauer

Büttiker transmission coefficient, although in this case
it is explicitly bias dependent. The conductance G in
the linear response limit is

G =
2e2

h
T (EF, 0), (12)

while more generally at a given bias V one has

G(V ) =
dJunp

dV

∣

∣

∣

∣

V

. (13)

B. Self Consistent Born Approximation

We now discuss the main concepts associated with
introducing e-p scattering into the NEGF transport
scheme. In general, inelastic scattering produces loss of
phase coherence, similarly to what happens when an elec-
tron is absorbed by a reservoir. In fact one may think
of inelastic processes as resulting from the coupling of
the scattering region to a “fictitious” charge reservoir33

that does not exchange a net current. Thus e-p interac-
tion can be introduced via a self-energy Σph(ω) and the
retarded Green function becomes

GM(ω) = [ω′IM−HM−ΣL(ω)−ΣR(ω)−Σph(ω)]−1. (14)

The exact form for Σph(ω) is unknown, however conve-
nient approximations can be derived from the perturba-
tive expansion over the e-p coupling strength16,24,25,28,34.
In this work we consider the SCBA where only the
Hartree and Fock diagrams of the perturbative expansion
are retained (see figure 2). This is equivalent to evaluat-
ing the first order diagrams at the interacting electronic
Green function. Thus the phonon self-energy reads

Σph(ω) = ΣF(ω) + ΣH, (15)

where the retarded Hartree (H) and Fock (F) contribu-
tions to the self-energies are respectively28,35

ΣH = i
∑

λ

4

Ωλ

∫ ∞

−∞

dω′

2π
MλTr[G<

M (ω′)Mλ] ,(16)

ΣF(ω) =
∑

λ

[

1

2
[Σ>

λ (ω) − Σ<
λ (ω)]

− i

2
Hω′{Σ>

λ (ω′) − Σ<
λ (ω′)}(ω)

]

. (17)

In equation (17) Hω′ is the Hilbert transform

Hx{f(x)}(y) =
1

π
P
∫ ∞

−∞

dx
f(x)

x − y
, (18)

and P stands for the principal part of the integral. The
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FIG. 2: Diagrammatic representation of the Hartree-Fock ap-
proximation. (a) the self-consistent proper self-energy (the
shaded circle) is obtained from the first-order Hartree-Fock di-
agrams evaluated using the interacting Green’s function (dou-
ble line). This is equivalent to re-summing all the diagrams36

in (b).

phonon energy and e-p coupling matrix for a particular
mode λ are respectively Ωλ and Mλ. Finally the e-p
lesser and greater self-energy are given by

ΣF≶(ω) =
∑

λ

Σ
≶
λ (ω), (19)

Σ
≶
λ (ω) = Mλ

[

(Nλ + 1)G
≶
M(ω ± Ωλ)

+ NλG
≶
M(ω ∓ Ωλ)

]

Mλ , (20)
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which is simply a sum of the lesser self-energies over all
the possible modes λ. The occupancy of each phonon
mode is Nλ.

We assume that the phonons are in thermal equilbrium
with a bath so that for a given temperature Nλ is simply
the Bose-Einstein distribution Nλ = (eΩλ/KBT − 1)−1,
with KB the Boltzman constant. From equation (20) we
note that the lesser (greater) self-energy contains con-
tributions from two scattering processes: electrons with
energy ω − Ωλ may absorb (emit) a phonon and/or elec-
trons with energy ω + Ωλ may emit (absorb) a phonon
of energy Ωλ. When T ∼ 0, electrons may only emit
phonons since Nλ ∼ 0, i.e. no phonons are present in
the scattering region provided that the phonon lifetime
is much smaller than that of the electrons. The total
lesser self-energy of equation (6) must be adjusted to in-
clude the phonon lesser self-energy,

Σ≶(ω) =
∑

α= L,R

Σα≶(ω) + Σ
≶
ph(ω) (21)

and G≶(ω) from equation (5) are now evaluated using
the perturbed Green function and lesser self-energy from
equations (14) and (21). The general expression for the
interacting (including e-p coupling) current37 through
lead β may be written as the sum of an elastic and an
inelastic contribution

Jβ(V ) = Jβ
el(V ) + Jβ

inel(V ),

where

Jβ
el =

2e

h

∫ ∞

−∞

dω Tr[ΓβGMΓαG†
M](nβ

F − nα
F) (22)

and

Jβ
inel =

2e

h

∫ ∞

−∞

dω Tr

[

Σ<
β GMΣ>

phG†
M − Σ>

β GMΣ<
phG†

M

]

.(23)

III. NUMERICAL METHOD

A. Model Hamiltonian and Coupling Matrices Mλ

The systems under investigation are 1D linear atomic
chains described by a s-orbital nearest-neighbour tight-
binding model. The scattering region comprises R atoms
plus one PL (one atom) from each lead, so that it contains
M = R + 2 orbitals. Henceforth we refer to this system
as RC. Furthermore, we assume that the two leads are
identical. The matrices H0, H1 for a 1D tight-binding
model reduce to c-numbers: ǫL = H0 and γL = H1, where
ǫL, γL are the lead onsite energy and hopping parameter
respectively. The leads’ Hamiltonians thus read

HL = ǫL

−1
∑

i=−∞

c†ici + γL

−2
∑

i=−∞

[c†ici+1 + c†i+1ci] , (24)

HR = ǫL

∞
∑

i=R+2

c†ici + γL

∞
∑

i=R+2

[c†i ci+1 + c†i+1ci] ,(25)
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Site R R+1 R+2 R+3 R+4−3 −2 −1 0 1 2

FIG. 3: Schematic diagram of the simple monatomic systems
considered here. It is composed of two semi infinite leads and
a scattering region. The scattering region is marked with a
dashed rectangle. Inelastic scattering is effective only in the
scattering region.

where {c†i , ci} are the electronic creation and annihilation
operators at site i. The interaction Hamiltonian between
the leads and the scattering region is

HLM = γLM[c†−1c0 + c†0c−1] (26)

HRM = γLM[c†R+1cR+2 + c†R+2cR+1] , (27)

where for our setup γLM = γL.
For a 1D system the lead self-energies are analytical

ΣR
L(R)(ω) = ∆(ω) − i

Γ(ω)

2
, (28)

where

∆(ω) = Γ0

{

x, |x| ≤ 1

x −
√

x2 − 1 |x| > 1
, (29)

Γ(ω) = −2Γ0θ(1 − |x|)(
√

1 − x2) (30)

and Γ0 =
γLM

2

γL
, x =

(ω − ǫL)

2γL
.

Finally e-p interaction is included into the scattering re-
gion in the form of an SSH Hamiltonian29,30, comprising
three terms

HM = He + Hep + Hph , (31)

with

He =

R+1
∑

i=0

ǫic
†
i ci +

∑

i6=j

γ0
ij(c

†
i cj + c†jci), (32)

Hph =

λmax
∑

λ=1

(b†λbλ +
1

2
)~ωλ, (33)

Hep =

λmax
∑

λ=1

∑

i6=j

Mλ
ij(b

†
λ + bλ)(c†i cj + c†jci). (34)

He is the electronic Hamiltonian of the scattering re-
gion with onsite energies ǫi and the unperturbed hop-
ping parameters γ0

ij (we assume γ0
ij = 0 for j 6= i ± 1).

Hph is the non-interacting phonons Hamiltonian, writ-
ten in terms of the phononic creation and annihilation

operators {b†λ, bλ} and the phonon energies Ωλ = ~ωλ,
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with the index λ running over all the modes45. The final
term, Hep, is the Hamiltonian describing the e-p inter-
action within the scattering region. The details of such
interaction are included in the e-p coupling matrices Mλ

ij .

In order to calculate the matrices Mλ
ij and the longi-

tudinal phonon frequencies we consider a simple nearest
neighbours elastic model23,24,38 in which

Mλ
ij = αij

{

ei
λ√
mi

− ej
λ√
mj

}

√

~

2ωλ
. (35)

In equation (35) the orthonormal vectors eλ represent the
ionic displacement associated to each mode λ, mi is the
mass of the atom at site i, and the constants αij are the
e-p coupling parameters. These latter are defined as the
first order coefficient of the expansion of the tight-binding
hopping parameter γij about the atomic equilibrium po-
sitions

γij = γ0
ij + αij(ui − uj) , (36)

where ui is the displacement vector of the atom at site
i. From equation (36) it follows that αij = −αji. In
the nearest neighbour approximation the interaction is
restricted to electrons moving between sites i and i ± 1.
Finally, we note that the eigenvectors eλ are real. This
implies that the matrices Mλ

ij are real and symmetric

with non-zero matrix elements for i = i ± 1, so that Mλ
ij

has a tri-diagonal form for longitudinal phonons. We
note that, although it is possible calculate the coupling
parameters αij using first-principles electronic structure
methods, here we set αij = α and α is taken as a free
parameter.

B. Numerical Integration and Self Consistency

The flowchart in figure 4 outlines the numerical pro-
cedure used to calculate the interacting current Jβ(V )
and the differential conductance G(V ). Each simulation
can be partitioned into three steps. The first two consist
of two self-consistent loops which calculate the phonon
self-energies ΣH and ΣF respectively. These are used in
the third step to evaluate Jβ(V ) by using the equations
(22) and (23).

Let us now discuss the three steps in some detail. We
start by writing ΣH as an explicit function of the density
matrix ρ

ΣH(ρ) = −4
∑

λ

Tr

[

ρ
Mλ

Ωλ

]

Mλ , (37)

where we assume that all the elements of G<
M are inte-

grable. ΣH is thus nothing but a weighted sum of the
matrices Mλ. This can be written in the form

ΣH =

M
∑

λ=1

rλRλ , (38)

n r1
n, r2

n, r......n , rR
n
}{

E
Numerical Parameters

THM
i)(ωΣ

L(R)

ΩλMλ

System Parameters

nc1

(ωi)G
0

(ωi)G
><,0

(ωi)
F,Σ 0

(ωi)Σ
>< ,0

ph

(ωi)
F,Σ n >< ,n

(ωi)Σph
(ωi)G
n

(ωi)G
><,n

nc2

( )VJ(ωi)G (ωi)G
><Converged

Hartree s−c loop

Fock s−c loop

ρ

NF
p dE( )F tFFock: , ,

VfinalVinit dV, ,Bias:

dE( )H tH,
rp1cp1 cp2B Poles, ,,,Hartree: , ,

FE ,

,
c c−e[k  ,k   , m]

Initialisation

rλ{ } init

tH< ?

M M
,ΣH=0, =0,

M M
,,

?tF<

β

M M
,

1

2

3

G(V)

V=V+dV

Outputs

FIG. 4: Scheme of our numerical procedure for self-
consistency.

where the ratio matrices Rλ and their weighting coeffi-
cients rλ are given by

Rλ =
|γ0|min

|Mλ|max
Mλ. (39)

rλ = −4|Mλ|max

Ωλ|γ0|min

M−1
∑

i=1

Rλ
i,i+1(ρi,i+1 + ρi+1,i), (40)

For a given mode λ, the largest matrix element of the
matrix Mλ is denoted as |Mλ|max. |γ0|min is the smallest
among the hopping parameters of the unperturbed sys-
tem (no e-p coupling), which, by construction, is equal
to |Rλ|max. The matrices Rλ are independent of the e-p
coupling α and simply reflect the symmetry of the specific
phonon mode considered. Thus rλ measures the maxi-
mum fractional modification of the elements γ0

ij in the
electronic Hamiltonian as the result of e-p coupling.

The first self-consistent loop of figure 4 begins by
choosing initial values for the weighting coefficients,
{rλ}init = {r0

1 , r
0
2 , ..., r

0
R}, which are used to construct

the density matrix at the first iteration, ρ1. Then both
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{rλ} and ρ are varied until the convergence condition

cn
1 =

∑

λ

(

|rn
λ − rn−1

λ |
|rn−1

λ |

)

< tH (41)

is met for the chosen tolerance tH. The density matrix
ρ is obtained by integrating G< as in equation (10). In
order to perform this integral we first take ΣF = 0 under
the assumption that this has little effect of the conver-
gence of ρ (first self-consistent loop). Following previous
works27,39 we write ρ = ρeq + ρV, where

ρeq = − 1

π

∫ ∞

−∞

dω Im[GM] nL
F , (42)

and

ρV =
1

2π

∫ ∞

−∞

dω GMΓRG†
M (nR

F − nL
F) . (43)

At equilibrium (µL = µR = µ) one has ρ = ρeq.

EBEF FE +V/2−V/2

nF nF

EF−V/2

(R) (L)

cp1
cp

2

Polesrp
1

[  ]ωRe

[  ]ωIm

[  ]ωRe

1

a) b)

FIG. 5: Schematic representation of the integrals in equations
(43) and (42) respectively. In a) the integration of ρV is bound
between EF + eV/2 and EF − eV/2 by the Fermi functions.
rp1 is the number of points of the real axis energy grid. For
ρeq in b) the number of grid points along the circular path
(cp1) and the path in the complex plane parallel to the real
axis (cp2) must be chosen, as well as the poles in the Fermi
functions.

As shown in figure 5a, the integral of ρV (Eq. (43)) is
along the real axis and it is bound between the chemical
potentials µL and µR. This is carried out over a numerical
grid of sufficient fineness (dE)H. The calculation of ρeq

involves an unbound integral. This is performed over a
coarse grid in the complex plane using a contour integral
method40, since GM is analytical41 and smooth in the
imaginary energy plane. As shown in figure 5b a number
of numerical parameters must be chosen. First the lower
limit of integration EB must lie below the lowest lying
molecular states and below the lowest electrode bands.
Secondly, the poles of the Fermi functions (Matsubara
frequencies) which lie within the contour must be taken
into account. The integration is then performed by using
Gaussian quadrature42 .

The second self-consistent loop begins by calculating
{G0

M, G≷,0} using equation (14), where the converged ΣH

from the first loop is used and ΣF = 0. We then proceed

to iterate {ΣF, Σ
≷
ph} and {GM, G≷} until a second con-

vergence condition is met

cn
2 =

1

NF
p

Max

{

|[Gn
M(ωi) − Gn−1

M (ωi)]|
}

< tF . (44)

Note that the condition is over the largest of the ma-
trix elements and runs over the NF

p energy points ωi of
the entire grid. Note also that the tolerance used, tF,
is in general different to that used for the Hartree term.
The Hilbert transform required for calculating the imag-
inary part of ΣF (eq. (17)) is done by using a convo-
lution method combined with a fast Fourier transform
algorithm24. In order to avoid end-point corrections we
choose a grid of sufficient range while the grid fineness
(dE)F must be sufficiently fine to resolve phononic fea-
tures which lie in the meV range.

Table I shows the numerical and system parameters
used in our simulations. The parameters for the H2-Pt
junctions are identical to those used by Jean11 within the
EST treatment of phonons. This set produces the same
unperturbed G(0) ∼ .97G0. The spring constants and
masses are chosen to give longitudinal phonon modes of
energies 63 meV (CM mode) and 432 meV respectively
while the ratio matrices for these two modes are

R1 =







0 3.2 0 0
3.2 0 0 0
0 0 0 −3.2
0 0 −3.2 0






(45)

and

R2 =







0 1.6 0 0
1.6 0 −3.2 0
0 −3.2 0 1.6
0 0 −1.6 0






. (46)

The e-p coupling α remains a free parameter.
The parameters for the Au RC’s match closely those

used by Frederiksen of24. The atoms in the leads are
chosen as identical to the atoms in the scattering region,
thus that a single onsite energy and hopping parameter
characterise the electronic Hamiltonian. These parame-
ters and the equilibrium potential µeq are chosen so that
the differential conductance for the unperturbed system
is G0 = 2e2/h (perfect transmission).

IV. RESULTS: H2-Pt JUNCTIONS

A. self-consistent simulations

The self-consistent G(V ) in the range 0-200 meV for
α ranging between 0 and 3.1 eV/Å are presented in fig-
ure 6. For this system the characteristic signature of e-p
interaction is a drop in the conductance at a threshhold
voltage Vthr. This signals the onset of inelastic electron



7

System parameter H2 − Pt Au RC

Symbol Value Value Units

EF 0.00 0.00 eV

ǫM (molecule) -6.0 0.0 eV

ǫL (leads) 0.00 -1.00 eV

γL (leads) 5 -1.00 eV

γM (molecule) 6.0 -1.00 eV

γLM 3.2 -1.00 eV

T 4.0 4.0 K

m (atomic mass) 1 197 amu

Kc 21.82 2.00 eV/Å2

Kc−e 0.91 1.00 eV/Å2

Numerical parameter Value Value Units

[Vini, Vfinal] (Bias Range) [0,200] [0,31] meV

Number of Bias points 250 120 –

(dE)F (Fock) 0.1 0.1 meV

NF
p (Fock) 12600 12600 –

rp1, (Hartree) 4000 4000 –

(dE)H (Hartree) .1061 .0215 meV

cp1 (Hartree) 400 200 –

cp2 (Hartree) 400 200 –

EB (Hartree) -28.0 -5.0 eV

Poles (Hartree) 80 80 –

tF (Tolerance) 9.10−8 9.10−8 eV−1

tH (Tolerance) 1.10−8 1.10−6 –

TABLE I: Parameters used to simulate the H2-Pt junctions
and Au RC’s. The parameter Kc is to the spring constant
between the atoms in the chain, while Kc−e is to the spring
constant between the molecule and the electrodes. The Fock
grid and real Hartree grid are symmetric about EF.

processes involving the emission of phonons with ener-
gies Ω ≈ eVthr. We quantify this effect by defining the
conductance drop (in units of G0)

∆thr = G(0) − G(Vthr) . (47)

Numerical simulations are carried out in two differ-
ent ways. First, we follow the exact numerical pro-
cedure of figure 4 (“full SCBA”), but we run simula-
tions starting with different initial conditions, namely
{rλ}init = + 0.003125 and {rλ}init = − 0.003125. In
figure 6a ∆thr is plotted versus α demonstrating good
agreement between the full SCBA and EST for low
α. However, the two methods disagree for α beyond
αcrit ∼ 1.8 eV/Å. ∆thr peaks sharply above αcrit, be-
yond which it becomes dependent on the initial condi-
tion {rλ}init. This last situation is shown in figure 6c for
α = 2.0 eV/Å where two different G(V ) curves are pre-
dicted for different {rλ}init and a low-bias conductance
of 0.0125 G0 is observed in stark disagreement with the
unperturbed value of ∼ 0.97 G0.

Since the Hartree self-consistent loop is performed be-

1.6 1.7 1.8 1.9 2 2.1 2.2
α [eV/Å]

-0.05

0

0.05

0.1

0.15

0.2

∆ th
r [G

0]

{r λ} init
= -0.003125

{r λ} init
= +0.003125

EST

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
α [eV/Å]

0

0.05

0.1

∆ th
r [G

0]

EST

SCBA (ΣH
 = 0)

0 0.025 0.05 0.075 0.1
V [eV]

0.005

0.01

0.015

0.02

0.025

G
(V

) 
[G

0]

{r λ} init
 = -0.003125

{r λ} init
 = +0.003125

0 0.05 0.1
V [eV]

0.945

0.95

0.955

0.96

0.965

0.97

0.975

G
(V

) 
[G

0]

EST

SCBA (ΣH
 = 0)

a)

c)

b)

d)

α = 2.00 eV/Å α = 2.00 eV/Å

FIG. 6: Differential conductance and conductance drop at
threshold for the H2-Pt junctions - Vthr is taken at 68.5 meV.
Results obtained using the full SCBA are given for the dif-
ferent initial conditions (panels a and c). In panels b) and
d) we also show results obtained by setting ΣH = 0. In this
second case ∆thr and G(V ) agree well with the EST11(EST)
up to α ≈ 4.0 eV/Å. The full SCBA disagrees with the EST
at a considerably lower α ≈ 1.8 eV/Å. Above such a coupling
strength G(V ) depends on the initial conditions.

fore the Fock one, the dependence on the initial condi-
tions suggests that ΣH may be responsible for the be-
haviour observed for α > αcrit. Stronger evidence to
support this hypothesis is provided in figures 6b and 6d
where the results for our second set of simulations in
which ΣH is set to zero, are presented (“partial SCBA“).
Figure 6b shows good agreement between the partial
SCBA and the EST to the much higher coupling of
α ∼ 4.0 eV/Å. Moreover there is no evidence of any αcrit.
This is confirmed by the G(V ) curve obtained for α = 2.0
eV/Å and presented in figure 6d.

B. Contribution from the individual modes

We now analyze the origin the breakdown of the full
SCBA. For V ≪ Vthr the inelastic current Jinel is strongly
suppressed by Pauli exclusion principle. At low temper-
ature (T=4.0 K) we can approximate the Fermi distribu-
tions in Jel by step functions to obtain

Jβ(V) ≃ 2 e

h

∫ µR

µL

T (ω)dω .

We can now easily probe the contribution of the Hartree
term to the conductance by considering the test Green
function

Gλ
M(ω) = [ω′IM − HM − ΣL − ΣR − rλRλ]−1 . (48)
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This is used to evaluate the transmission coefficient at
V = 0 and it is useful to understand the influence of the
individual modes λ over the transmission. In figure 7 we
show T (ω) as a function of rλ for the two longitudinal
modes available in the H2-Pt system (see figure 8). In
the case of the rigid translational mode (λ = 1 and fig-
ure 7a) T (ω) is reduced in the region around EF as |r1|
increases. However the general shape of T (ω) is little af-
fected. This is somehow expected from the shape of the
matrix R1 (eq. (45)), which indicates that mode 1 causes
simply a change in the hopping parameters γ0

12 and γ0
34

connecting the molecule to the leads. Importantly when
γ0
12 is increased, γ0

34 is reduced by the same amount and
vice-versa. Moreover there is a symmetry r1 → −r1.

-10 -5 0 5 10
ω -E

F
 [eV]

0
0.2
0.4
0.6
0.8

T
(ω

) 
[G

0]

r
1

r
2

b)

a)

r
2
 = -0.4|γ0

min
|

r
2
 = 0

r
2
 = +0.4|γ0

min
|

0
0.2
0.4
0.6
0.8

T
(ω

) 
[G

0] r
1
 = 0

r
1
 = 0.2|γ0

min
|

r
1
 = 0.4|γ0

min
|

FIG. 7: Transmission coefficients calculated using the Green
function Gλ

M of Eq. (48) for λ = 1 (a) and λ = 2 (b). The
matrices R1 and R2 are fixed and a range of values for rλ has
been chosen.

The results for the symmetric mode λ = 2 are pre-
sented in figure 7b. This time the peak in transmission
is shifted in energy either to the left or to the right de-
pending on the sign of r2. When shifted to the left, the
peak is broadened while a shift to the right narrows it.
In either case the transmission around EF is reduced.
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FIG. 8: The longitudinal vibration modes of H2-Pt junctions.
The λ = 1 mode of energy 63 meV is the rigid translational of
the H2 centre of mass, while the λ = 2 mode is the symmetric
mode of energy 432 meV. The atoms of the leads are fixed.

From the figures 6c, 7a, and 7b one can conclude that
the deviation of the zero bias differential conductance
from its unperturbed (no e-p interaction) value is a mea-
sure of the magnitude of the e-p perturbation. We define

this deviation as

∆G = G0 − G(0) ∼= G0 − T (EF) , (49)

where the last equality is valid for T → 0. Figures 9a and
9b show the estimated deviation (in units of G0) versus
the weighting coefficients rλ. The maximum deviation,
∆G = 1, occurs when the chain actually breaks as for
mode 1 and r1 = 1. As expected, the curve in figure 9a
for mode 1 is symmetric about 0 while figure 9b for mode
2 is not.

-6 -4 -2 0 2 4 6
rλ [arb. units]

0

0.2

0.4

0.6

0.8

∆G
 [G

0]

a)

b)

λ = 1

λ = 2

mode 2

0

0.2

0.4

0.6

0.8

1

∆G
 [G

0]

mode 1

-0.2 -0.1 0 0.1 0.2
rλ [arb. units]

0
0.05
0.1

0.15
0.2

∆G
 [G

0]

-0.2 -0.1 0 0.1 0.2
rλ [arb. units]

0
0.05
0.1

0.15
0.2

∆G
 [G

0]

FIG. 9: Estimate of the deviation ∆G caused by an individual
mode λ as a function of rλ. The insets shows the region of
small perturbation.

C. Discussion of the self-consistent results

We finally re-analyze our self-consistent results in the
light of the discussion in the previous section. Figure
10a and 10b show the self-consistently calculated rλ as a
function of α for V = 0, while figure 10c shows ∆G as de-
fined in equation (49). The critical point αcrit ∼1.8 eV/Å
marks a sharp transition in the behaviour of the weight-
ing coefficients. This is evident in the abrupt change
of magnitude and behaviour of ∆G (in figure 10c). In
fact while for α < αcrit the full SCBA agrees well with
the EST, the two differ sharply as soon as α > αcrit.
Going into more details we note that r1 is identically
zero (∼ 10−14) for α < αcrit, while r2 is small and neg-
ative. Importantly both r1 and r2 are independent of
{rλ}init. By contrast, for α > αcrit, r2 remains indepen-
dent of {rλ}init but this is not the case for r1. In fact
we obtain a strong dependence over the initial condi-
tions with positive (negative) r1 for positive (negative)
{rλ}init. Importantly none of these features are found in
the case when we neglect the Hartree self-energy.

Since |r1| is two orders of magnitude larger than |r2|,
it will largely determine ΣH. As figure 10a shows, r1
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 > 0)
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 < 0)

0
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] mode 2 ( {rλ} init

 > 0)

mode 2 ( {rλ} init
 < 0)

0 0.5 1 1.5 2 2.5 3
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0.4
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0.8

∆ 
G

 [G
0]

a)

b)

c) SCBA

SCBA (ΣH
 = 0)

EST

FIG. 10: Converged self-consistent values of rλ and deviation
∆G (Eq. (49)) as a function of the e-p coupling strength α for
V = 0. A transition is apparent at α = 1.865 ± 0.005 eV/Å
for the full SCBA. Panels a) and b) show respectively r1 and
r2 for the full SCBA for different initial conditions, while in
c) results for the partial SCBA and EST are also included.

varies roughly linearly with α above αcrit, therefore the
self-consistent ∆G follows the estimated curve of figure
9a in this region of α. The magnitude of r1 for α > αcrit

suggests that the interaction with phonons becomes a
strong perturbation of the electronic system. We define
the region α < αcrit as the weak coupling regime and the
region α > αcrit as the strong coupling regime.

Figure 10 adequately explains the causes of the mas-
sive reduction of G(V ) with respect to its unperturbed
value observed in figure 6c at V = 0. Notably, as figure
6a shows, ∆thr calculated with the full SCBA starts de-
viating from the EST result for α ≃ 1.75 eV/Å, i.e. at a
value lower that αcrit = 1.865±0.005 eV/Å calculated for
V = 0. This seems to suggest that the critical value of
α for the breakdown of the full SCBA somehow depends
on the bias. Moreover at finite bias αcrit is character-
ized by a peak in ∆thr(α) for positive {rλ}init and by a
discontinuity for negative {rλ}init (see figure 6a).

In order to explore the onset of the breakdown of the
SCBA at finite bias in figure 11a we present G(V ) for
α = 1.84 eV/Å i.e. just below the zero-bias critical value.
In addition, in figure 11b we plot the dominant coefficient
r1 for a small range of α about αcrit at three different
bias, V = 0, V = 0.1 and V = 0.2 Volt. A clear result
from figure 11a is that the presence of ΣH introduces
a reduction of G(V ) with bias not present at V = 0.
For α < αcrit figure 11b shows that |r1| is a function of
bias whose value increases as the bias increases. The
difference between r1 at V = 0 and at finite V explains
the deviation below αcrit and also the origin of the peak
above it.

The discontinuity in ∆thr for {rλ}init > 0 of figure 6a is
explained by the discontinuities observed in r1 (Fig. 11b)
and in the current Jβ(V ) (Fig. 11c). In fact at V = 0,
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 =+0.003125

0 0.05 0.1 0.15
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0.825
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0.95
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1
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SCBA 

SCBA (ΣH
 = 0)

a)

c)
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α = 1.84 eV/ Å

α = 1.885 eV/ Å

FIG. 11: Behaviour of the SCBA in the region above and be-
low the zero-bias αcrit. For α < αcrit, G(V ) for the full and
partial SCBA are compared in panel a), showing that the con-
tribution arising from ΣH is bias-dependent. For α > αcrit,
Jβ calculated with the full SCBA is presented in c) for two
different initial conditions. In panel b) the functional depen-
dence of the weighting coefficient r1 upon bias is investigated
for a range of coupling strengths and bias. Finally, in panel
d) we show the magnitude |r1| obtained from two full SCBA
simulations with different initial conditions and α > αcrit.

r1 is single valued as long as α < αcrit. For α > αcrit

instead r1(α) has a parabolic shape symmetric about
r1 = 0: the {rλ}init < 0 solution traces out the lower arm
of the parabola and the {rλ}init > 0 solution follows the
upper arm as α increases. For V > 0, it is seen that
the two solutions for r1 are identical, and asymptotically
approach the lower arm of the V = 0 curve from be-
low for α > αcrit. However, as α is further increased the
{rλ}init > 0 solution jumps discontinuously above zero
and then asymptotically approaches the upper arm, again
from below.

The discontinuity in r1(α, V ) is determined by both
the bias and the initial conditions. Generally, it is
found that such discontinuity occurs for lower bias first;
r1 jumps discontinuously for V = 0.1 Volt before it
does for V = 0.2 Volt. This explains the behaviour of
the {rλ}init = +.003125 solution for Jβ(V ) in figure 11c
which leads to a peak in its derivative (the conductance
G(V )) and explains the discontinuity of ∆thr.

We note that after the discontinuity in r1 for V > 0,
the two solutions are no longer symmetric about r1 = 0
and do not converge to the V = 0 solutions of either
arm until α ≈ 3.0 eV/Å. This is highlighted in figure 11d
where |r1| for the two solutions is plotted in a range of
α just above αcrit at V = 0.2 Volt. Such differences
explain why ∆thr is not independent of the initial con-
ditions beyond the discontinuity and also the different
curves observed for G(V ) in figure 6c.
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FIG. 12: G(V ) for the 4C illustrating the onset of in-
elastic processes at threshhold voltages. These are associ-
ated to the symmetric modes of energy Ω2 = 6.5 meV and
Ω4 = 12.2 meV. The rigid and anti-symmetric modes of en-
ergies respectively Ω1 = 3.1 meV and Ω3 = 9.8 meV have
no effect for chains comprising an even number of atoms. No
overall shift in G(V ) is observed as α lies below the critical
coupling αcrit which is clearly determined from the inset in
panel b.

We make a final comment about the discontinuities
seen in figure 11a. The value of α at which these occur is
dependent on the initial conditions as mentioned already.
Thus for a particular {rλ}init it may be possible to reach
the upper solution at αcrit for all bias, so that r1 has a
parabolic shape for bias while being asymmetric about 0.
We have not observed this and regard αcrit as uniquely
defined for V = 0 only.

V. RESULTS: Au Chains

By using the procedure outlined in section III and the
parameters of table I, the full SCBA is used to calculate
the transport of the Au RC’s. In general we observe
a behaviour similiar to that of the H2-Pt system. For
3C, 4C, 5C, and 6C a weak coupling regime is identified
where the shift ∆G and the weighting coefficients are
zero. A critical coupling strength αcrit for V = 0 was
discovered for each of the chains investigated with values
αcrit ≈ 0.85, 0.9, 0.82, 0.83 eV/Å respectively for 3C, 4C,
5C, and 6C. For weak coupling ∆G matches closely the
values calculated in previous works24,35. As an example,
in figure 12 we present G(V ) and ∆G(α) for 4C. It is seen
that the modes symmetric with respect to the centre of
the scattering region (even numbered) induce drops in
G(V ) at threshhold voltages corresponding to the energy
of the modes. In general, only the symmetric modes are
active in RC’s containing an even number of atoms and
conversely the rigid and anti-symmetric modes are active
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Mode 4(S)

FIG. 13: Vibration modes of Au 4C. Modes 2 and 4 are sym-
metric modes (S) about the centre of the scattering region.
Mode 1 is the rigid translational mode (R) while mode 3 is
anti-symmetric (A). For all chains considered, the mass of the
lead atoms are taken sufficiently larger than that of the chain
atoms so that they do not vibrate.
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FIG. 14: Test of the convergence of the weighting coefficient
r4 for the 4C and α > αcrit using a range {rλ}init where n is
the number of iterations. Results for the calculations with
positive starting values are indicated with dashed lines while
those with negative initial values are shown with solid lines.
A single negative and positive solution for the converged r4 is
found.

for an odd RC.
The transition from weak to strong coupling can be ap-

preciated for the 4C by looking at the inset of figure 12b,
where for α > αcrit two different initial conditions lead to
two different ∆G. The 6C shows the same behaviour of
the 4C, while the 3C and 5C show a single curve for ∆G
due to the symmetry of the weighting coefficients in the
strong regime. Beyond αcrit, for all the RC’s simulated
G(V ) is reduced to zero as α increased and the shift ∆G
rises to G0 .

Finally we want to investigate further the existence of
multiple solutions depending on the initial conditions in
the self-consistent loops. As an example of how conver-
gence is achieved in figure 14 we show the coefficient r4

as a function of the iteration number n for the 4C plotted
for a single bias V = 0.02 Volt and coupling 0.902 eV/Å
(α > αcrit). A number of simulations were run with dif-
ferent initial conditions. The figure indicates the exis-
tence of two stable minima: simulations which start at
{rλ}init > 0 (dashed lines) converge to the same positive
final value, while simulations initialised with {rλ}init < 0
converge to the same r6 < 0 value. We note that the min-
ima are not symmetric about r6 = 0. The solution rλ = 0
appears to be a minima in the weak coupling regime, but
becomes unstable and evolves to a local maximum in the
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FIG. 15: Convergence test. The zero-bias r6 is plotted versus
the iteration number n for {rλ}init = −0.09 and α > αcrit.
Here the lower bound for the integration of the charge density
ρ, EB, is varied. The lower band-edge of the leads lies at -
2 eV. Clearly when EB ≥ −2 eV r6 does not converge fully,
i.e. it depends on EB.

strong coupling regime.

In figure 15 r6 is plotted versus the number of itera-
tions n for α > αcrit. This time we run different simula-
tions in which the lower bound of the energy integration
grid, EB, is changed. In particular we explore situations
where EB is not below the lower band-edge of the leads,
that for our choice of parameters lies at -2 eV (see table
I). The figure indicates that if EB ≥ −1 eV r6 converges
to zero so that the sixth mode gives no contribution to
ΣH. For −2 ≤ EB < −1 r6 is nonzero, however the con-
verged value differs for EB= -1.5 eV and EB= -2.0 eV,
i.e. it is sensitive on the grid lower bound. Finally for
EB < −2.0 eV the bands of the leads are entirely included
in the integral and r6 converges to a value of approxi-
mately −0.25 eV which is independent of our choice of
EB. From this simple analysis it appears that cutting the
integration grid can result in the erroneous suppression
of the Hartree self-energy, i.e. in a drastic underestimate
of its contribution. This produces a fortuitous suppres-
sion of the SCBA breakdown, since the agreement be-
tween SCBA and EST is usually improved when ΣH is
neglected.

Finally we test the robustness of our integration
method. Figure 16 shows the transmission coefficients
T (ω) for a 6C at a bias of V = 1 mV where only the
sixth mode is considered. We run two simulations. In
the first case, the full SCBA is used with the numer-
ical parameters taken from table I and initial condi-
tion {r6}init = −0.00975. In the second case, the in-
tegration method outlined in section III B is replaced
by Simpson’s rule along the real axis. The integra-
tion range used is [-3.093,0.1] eV with a grid fineness
(dE)H = 2.129 × 10−5 eV. The Hartree self-consistent
loop is started with {r6}init = 0.0 and finished when
cn
1 < tH = 10−12 (this tolerance was also used in the first

case). All other parameters of the calculations are iden-
tical in the two cases. The figure shows that the two
numerical methods produce the same T (ω), specifically
in the range of applied bias shown in the inset.
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α = 0.96 eV/Å

FIG. 16: T (ω) for a 6C simulation where only the sixth
mode of energy Ω6 = 12.6 meV is included. The curves
show results obtained when ΣH is calculated using the Simp-
son’s rule ({r6}init = 0 in the legend) or the contour method
({r6}init = −0.00975 in the legend).

VI. CONCLUSIONS

By using a simple 1D tight binding model we have
investigated the breakdown of the SCBA as a function
of the e-p coupling strength α. We have identified two
regimes. In the weak coupling regime there is a unique
solution for both ΣH and ΣF, independently of the ini-
tial conditions. In particular the Hartree self-energy is
small and has little effect on the final conductance. In
this weak coupling regime the characteristic conductance
drops at voltages corresponding to the various phonon en-
ergies compare well with those calculated with the EST
method.

As the coupling parameter α is increased beyond some
critical value αcrit a sharp transition to the strong cou-
pling regime occurs. In this limit the self-consistent ΣH

becomes unstable with respect to the initial conditions
and exhibits multiple values for the same voltage. This
results in a conductance that sharply deviates from that
obtained with the exact EST. Such a sharp transition
suggests a breakdown of the SCBA, indicating that the
electron-phonon interaction cannot be treated perturba-
tively for α > αcrit. Interestingly such a breakdown
is suppressed when the Hartree self-energy is neglected
completely from the calculation, as routinely done in
practice. Our results however set a warning to quantita-
tive calculations based on e-p parameters extracted from
density functional theory. For these, no information is
available on whether or not the obtained e-p coupling
strength is either below or above the critical value for
the SCBA to breakdown. Therefore, strictly speaking,
one rarely knows whether the SCBA is applicable.
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