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Abstract 

In this paper we describe a new high speed method for 
the calculation of UHF propagation over irregular terrain 
which is considered to be a homogeneous dielectric. The 
method, given that it is rigorous and includes both forward 
and back scattering, is very fast. The antenna pattern, tilt 
etc. may be specified arbitrarily. As expected, results 
compare very well with measurements in the case when 
the terrain conductivity is high. Moreover, we explore the 
variation in the predicted fields with varying constitutive 
parameters. 

I. Introduction 

Whilst the treatment of terrain as perfectly electrically 
conducting, gives good results at UHF when compared to 
measurements [l], it is natural to consider the effect of fi- 
nite conductivity. In this paper we build upon the recent 
development of fast integral equation techniques for electri- 
cally massive perfect electrical conductors by Moroney and 
Cullen [2] and similar work on large scatterers by Aberegg 
and Peterson [3], and James [lo]. In particular we con- 
sider how the idea in [2] may be extended to the dielectric 
problem in two dimensions. 

The fast electric field integral equation (EFIE) employed 
in [2] was developed by choosing a basis function based on 
the phase of the incident field which leads to a moment 
method with an impedance matrix of substantially reduced 
rank (compared to that obtainable using standard pulse 
basis functions). The required density of unknowns has 
been demonstrated to be as few as one every 50m at a 
frequency of 1900MHz, or roughly one unknown per 300 
wavelengths . 

In this paper our starting point is the full combined field 
integral equation CFIE [4]. The combination of the basis 
functions with the CFIE is not a trivial task, and will be 
discussed later in depth. The numerical formulation of the 
high speed CFIE will be thoroughly described. When cal- 
culating elements of the kernel (moment) matrix there are 
two main types of approximation to consider. The for- 
ward scattering integrals are approximated by quadrature 
rules while the back scattering integrals are approximated 
by asymptotic expansions, due to the fact that the former 
terms results in slowly varying functions while the latter 
results in a quickly varying function which cancels almost 
everywhere. Also, derivatives must be approximated by 
backward differencing so that the method remains implicit. 

For the purpose of verification it is important to consider 
three cases, namely: good dielectrics, lossy dielectrics and 
good conductors. The different cases are defined using a 
well known dimensionless quantity defined as the electric 
loss tangent (see Balanis [5]). The case of good conductors 
is easily verified since this is directly comparable with [ 2 ] .  
In the other cases the results are not easily verified on 
massive problems since it appears that no other practical 
solution technique exists. For the other cases we can verify 
our method using a known solution to the scattering from 
canonical problems such as a flat plate. 

Fig. 1. The geometry of the problem, the source S, contour C and origin 
0. 

11. Formulation of method 

The formulation which follows is outlined for a two- 
dimensional scattering medium which is lossy, linear, ho- 
mogeneous, non-dispersive and isotropic embedded in free 
space with fields oriented as transverse magnetic in z .  

Starting with a well known CFIE formulation [4], the 
objective is to adapt this method to find a numerically ef- 
ficient solution for irregular terrain by introducing a com- 
plex basis function [a ,  31 and solving the problem by use 
of the point collocation method [2]. 

It will suffice to begin with the CFIE equations of 141 
namely (1) and (2),  as a way to develop the fast CFIE. 
The equations are defined as follows: 
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where E: is the incident electric field, Hf is the inci- 
dent magnetic field, J ,  is the electric current, M,  is the 
magnetic current, p is an observation point on the contour 
C ,  p’ is an integration point, s is the arc length along the 
contour C and the components are defined as: 

where 

R = IP-P ’ I  
U 

E ;  = ~ 2 ( 1  -j-), k2 = d m  
WE2 

H1 = H,$2)(k1R), H2 = Hi2)(/c2R) 

Hi = H,$’)‘(klR), H6 = Hi2)’(R2R) 

1 @ ( X I  y) = [ (z - z‘)cosR + (y - y’)sinR 

1 @’(X, y) = [(. - z’)cosR’ + (y - y’)sinR’ 

where HA2) is the hankel function of the second kind, 
Hi2)‘ is the derivative of hankel function of the second 
kind, € 1  , €2 are the permittivities on region 1 and 2 ,  ,u1 , p2 
are the permeabilities, ti is the effective permittivity, le1 
is the real phase constant of region 1, kz is the complex 
phase constant of region 2 ,  w is the angular frequency, Cl is 
the angle that a point p not necessarily on C makes with 
the positive x-axis, and u2 is the conductivity of region 2 
(See Fig. 1). 

A point collocation method describes a discrete set of 
equations which are obtained by expressing the current J,  
and M,  as piecewise polynomials each with N unknowns. 
So, the currents J ,  and M,  are expressed as independent 
basis sets, as follows: 

N 

n = l  
2N 

n=N+l 

where I ,  is the unknown currents and g,(p’) is a cho- 
sen basis function. As in the case of [2] ,  the problem can 

then be solved numerically, once a suitable choice of ba- 
sis function is assumed. Substituting (8) into (1) and (2) 
results in a set of equations defined as the point-matching 
(collocation) met hod. 

The problem arising; from all conventional collocation 
methods, is that the discretization interval for a satisfac- 
tory solution must be ai; least one quarter of the wavelength 
(X/4) shown in [6]. This sampling rate is infeasible for most 
realistic propagation problems and hence the use of a fast 
CFIE is necessary for any reasonably sized problem. The 
approach therefore is to remove the quickly varying phase 
of the problem by the use of a suitable basis g,. In [2] 
a method is described whereby the phase of the incident 
field can be used as a b<asis. This method assumes that the 
phase of the incident field approximates the phase of the 
current J ,  for the EFIE. Assuming this result is true for 
the CFIE, the suitable basis function is defined by: 

where p ,  is the pulse basis function defined on the in- 
terval 1, = [p:, - Ap;, p; + Ap;], and ps is the position 
of the antenna relative to the origin. These points are 
positioned in the center of each piecewise line segment to 
preserve the consistency of the problem. It is unwise to po- 
sition a match point at s% turning point , since this will affect 
the stability of the results obtained from such a method, 
since there will occur i t  severe change in slope within the 
region of integration. If points are positioned at turning 
points, then p ,  must be a quadratic basis function. 

Fig. 2. Match point locations. 

For a collocation method with N match-points ( 2 N  si- 
multaneous equations) the pulse basis functions are defined 
as: 

Note also that p ,  = p,+~ for n = 1 , 2 , .  . . , N ,  assuming 
that the magnetic current integration points are located at 
the same points as the electric current integration points. 
This is a different orientation to that of [4], and was found 
to have no ill effects. In fact , it is necessary for the match- 
points to be chosen in tlhis manner, if the fast CFIE is to be 
applied including the pulse basis function p ,  for the rea- 
sons stated earlier. Fig. 2 shows the required positioning 
of these points for a sample terrain profile. 
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111. Numerical algorithm The off-diagonal terms are calculated assuming hankel 
function approximations as in the following case: 

The resulting system obtained by the substitution of (9) 
into (1) to (2) is defined as follows: 

(16) 
H i 2 ) ( k 1 R )  = / m e - j ( k l R - z )  2 

A B  
2 N x 2 N  where it is assumed that the far field approximation of 

The above integrals can be approximated by an Euler 
rule. The partial derivatives of the last term Dmn can be 
approximated either numerically or analytically. In this 
case the analytical derivatives would result in a H i 2 )  term 
which is singular divided by the distance R which results 
in a function which is complicated to integrate. For this 
reason the derivatives are calculated numerically by cen- 
tral difference formulates. No instability will occur since 
central difference formulae are implicit methods and hence 
stable (see Lambert [7]). 

the hankel function HA2) is valid at any point where m # n. 
In the case of the self-terms it is necessary to avoid the 

well known log expansion [5]. 
singularity (Yo (2)  (0) = co). This is achieved by use of a 

which when numerically integrated gives 

When considering the back-scattering contribution to 
the terms of the matrix, it is not necessary to calculate 
the integrals by an euler method. An asymptotic expan- 
sion with the first two leading terms will suffice. This will 
speed up the computation of the matrix filling consider- 
ably. 

IV. Numerical results 

Choosing a pulse basis function gn = pn  , it can be shown 
as in [6] that a moment method requires a point-match 
every quarter of a wavelength (X/4) for satisfactory nu- 
merical convergence. Choosing the phase of the incident 
field as a basis function as in (9), it can be shown that 
the terms of the matrix kernel as defined by (12)-( 15) are 
slowly varying in amplitude. This is very important, since 
the integrals can then be approximated by something as 
simple as an trapezoidal rule. Since the integrals are slowly 
varying, a discretization rate as high as 50X or 80X is pos- 
sible. This means that, exact numerical computations can 
be used to obtain electric current, and scattered and total 
fields. Previously the size of the matrices involved, made 
it impossible to calculate UHF solutions over terrain of 
a few kilometres in length. Until recently only forward 
propagation solutions were possible for exact result calcu- 
lations and required at least a day of computational time. 
With this CFIE method it is now possible to calculate the 
path-loss for undulating terrain in less than a few minutes. 

When choosing examples, it is imperative that a wide 
variety of results be presented which will confirm conver- 
gence and stability of the outlined method. Three cases 
worth consisting spring to mind: good dielectrics, lossy di- 
electrics and good conductors. The dimensionless quantity 
T namely the electric loss tangent describes these 3 classes 
of problems. We define T as follows: 

2 

?-= (2) (19) 
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Upon definition of r ,  the problem can be broken into the 
three categories: 

T << 1 Good dielectrics 
T = 1 LOSSY dielectrics 

r >> 1 Good conductors 

Results are now presented for the flat plate problem and 
for various slowly undulating danish terrain profiles. 

A .  The Flat plate 

FastCFIE - 
Clemmow ----. - 
Fast EFIE ...... 

m 

-70 

-90 

-100 

-1  10 
0 500 1000 1500 2000 2500 3000 3500 4ooo 4500 5000 

Metredm 

Fig. 3. The flat plate configuration. 

The results calculated over a flat plate are compared 
with the approximate solution defined by Clemmow [8] 
(See Fig. 3 for a diagramatic representation of the region). 
The scattered field formula is defined by: 

Fig. 4 shows the results obtained for a typical dry soil 
problem. The chosen constitutive parameters are U = 
9.8 x cf = 2.8, T = 7 x f = SOOMHz, h = 10.4 
and L = 5000. It can be seen that there is a slight discrep- 
ancy between the solutions, in the region were they fall off 
quickly. This can be corrected by adaptive meshing about 
this region. The number of point-matches required by a 
conventional CFIE method with a point-match every one 
quarter wavelength would be 60,000 points. In this case we 
assume a point match every 50 metres (100 points). This 
result was calculated in 13.2 minutes on a 125MHz Power 
PC. Note that the results are identical to that of the PEC 
case. 

To obtain results which deviate from that of the PEC 
solution, the constitutive parameters are chosen to be U = 
9.8 x lop6 ,  c p  = 1.001, T = 1.92 x lop4,  f = 900MHz ,  
h = 10.4 and L = 5000. The result in Fig. 5 deviated by 
about 4 decibels from the PEC result. 

Fig, 4. Flat plate solution with f = SOOMHz,  U = 9 . 8  x IOm3, E,” = 2.8. 
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Fig. 5. Flat plate solution with f = SOOMHz, U = 9.8x10-6, c,” = 1.001. 

B. Terrain Results 

We consider slowly undulating terrain profiles, obtained 
from [l]. The chosen constitutive parameters are U = 
9.8 x cf = 2.8, J’ = 9OOMHz and h = 10.4. The 
point-matching rate was chosen to be every 50 metres. 
Fig. 6 shows the results obtained. It can be seen that 
the results are almost identical to that of the PEC case. 
The calculation required 15.7 minutes of computation on 
a 125MHz Power PC. Results are also presented for the 
case were the solution deviates from the PEC result (See 
Fig. 7). The method has been concluded to be conver- 
gent based on the assumption that continually halving the 
point-matching and integration discretization leads to a 
solution which is both numerically stable and consistent. 

For the Jerslev terraiin profile in Fig. 6, the time for 
computation of the result is less than 10 seconds using the 
method of [a]. Fig. 8 shows that the EFIE is quite sufficient 
for obtaining results in agreement with the measurement 
data. The EFIE result a t  970MHz was calculated in 6 
seconds. All results contain a -& correction allowing for 
conversion from the 2D problem to the 3D problem. 
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Fig. 6 .  Jerslev profile with f = QOOMHz, o = 9.8 x E? = 2.8. 
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Fig. 7. Jerslev profile with f = SOOMHz, o = 9.8 x = 1.001 

V . Conclusions 

Clearly, for realistic values of and U at UHF the CFIE 
agrees (almost perfectly) with the PEG method and the 
latter should be used since the speed of computation is far 
superior. 

At lower frequencies this may not be the case. Only by 
using unrealistic values of 6: can we obtain a significant, 
difference in path-loss. This shows that deviations between 
measurements and predictions for terrain are due mainly to 
topographical factors such as the neglect of surface rough- 
ness and buildings and vegetat'ion. In cases where the ter- 
rain is very irregular lateral variation in terrain height and 
scattering are also important. 

There is really no point in using the complex permit- 
tivity in the CFIE as our empirical fit parameters, if this 
dubious procedure is to  be applied. It makes more sense 
to use the impedance integral equation (Jones [ll]) where 
the natural basis method of [2] can also be used. 
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