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Abstract

The number of programming languages is large [1] and steadily increasing [2]. However, little structured
information and empirical evidence is available to help software engineers assess the suitability of a language
for a particular development project or software architecture.

We argue that these shortages are partly due to a lack of high-level, objective programming language feature
assessment criteria: existing advice to practitioners is often based on ill-defined notions of ‘paradigms’ [3, p.xiii]
and ‘orientation’ [4], while researchers lack a shared common basis for generalisation and synthesis of empirical
results.

This paper presents a feature model constructed from the programmer’s perspective, which can be used to
precisely compare general-purpose programming languages in the actor-oriented, agent-oriented, functional,
object-oriented, and procedural categories. The feature model is derived from the existing literature on general
concepts of programming, and validated with concrete mappings of well-known languages in each of these
categories. The model is intended to act as a tool for both practitioners and researchers, to facilitate both
further high-level comparative studies of programming languages, and detailed investigations of feature usage
and efficacy in specific development contexts.

Keywords: programming languages, programming language constructs, actor model, agent-oriented
programming, functional programming, object-oriented programming, feature modelling, C, Erlang, Haskell,
Jason, Java

1. Introduction

Programming languages are traditionally viewed as belonging to particular paradigms, however the no-
tion of a programming paradigm is imprecise [3, p.xiii]. Unlike scientific paradigms [5, p.148], program-
ming paradigms are not necessarily incompatible, as demonstrated by the success of dual- and multi-paradigm
languages such as Mozart/Oz (http://www.mozart-oz.org), Jason (http://jason.sf.net), and Scala
(http://www.scala-lang.org). This paper attempts to identify, define, and organize the central concepts
underlying the actor, agent, functional, object, and procedural programming styles, as they are realised in prac-
tical programming languages.

This paper has three central aims. Firstly, by mapping existing programming languages to a common feature
model, it is hoped that ideas for new language features and new combinations of features will be generated.
Secondly, it is hoped that the resulting feature model will serve as a basis for comparison and generalisation
in empirical studies of multiple programming languages. Finally, in conjunction with this hoped-for empirical

∗Corresponding author
Email addresses: howell.jordan@lero.ie (H.R. Jordan), goetz.botterweck@lero.ie (G. Botterweck), john.noll@lero.ie

(J.H. Noll), andrew.butterfield@scss.tcd.ie (A. Butterfield), rem.collier@ucd.ie (R.W. Collier)

Preprint submitted to Elsevier February 17, 2014



2 FEATURE MODELLING

evidence, the model should eventually become a useful tool to help software engineers in assessing the suitability
of a language for a given development project or software architecture.

With these second and third aims in mind, the languages in this paper were selected as popular examples
of their respective ‘paradigms’. Programming language popularity is hard to measure, however we have used
the listing at http://www.tiobe.com/index.php/content/paperinfo/tpci (accessed February 2013)
as a guide. C [6] is probably the most popular procedural programming language. Erlang (http://www.
erlang.org) [7] is a functional language with a rich industrial heritage [8], based on the actor model of
concurrency [9, 10]. Haskell (http://www.haskell.org) is a purely-functional language. Jason [11] is
an agent-oriented language [12] which implements and extends AgentSpeak(L) [13]. Java (http://www.
oracle.com/technetwork/java) is probably the most popular object-oriented programming language.

The reference versions of each programming language considered here are Erlang R13B03, Haskell 2010
(as implemented by the Glasgow Haskell Compiler version 7.0.4), Jason 1.3.4, and Oracle Java 1.7.0.40. Un-
fortunately, at the time of writing, many of the most popular C compilers do not fully implement the most
recent C standards. In particular, the GCC (http://gcc.gnu.org) and Microsoft Visual Studio (http:
//www.microsoft.com/visualstudio) compilers do not fully implement either C99 [14] or C11 [15]. Con-
sequently, the reference version of C adopted for this paper is C90 [16] (also sometimes known as ANSI C or
C89), which is supported by the above compilers and is the version discussed in the well-known reference by
Kernighan and Ritchie [6]. Due to C’s heritage as a systems programming language, several important features
not included in the core language are provided instead by platform libraries which are defined in the separate
Portable Operating System Interface (POSIX) standards [17]. As implementations of these libraries are provided
‘out-of-the-box’ on many platforms, we have considered them as part of the C language where appropriate.

The remainder of this paper is structured as follows. section 2 introduces feature modelling. section 3
presents some examples of existing feature-based surveys, and provides an overview of comparisons and con-
cepts of programming languages. In section 4, a feature model of actor, agent, functional, object, and procedural
programming languages is developed from the literature and validated against the languages listed above. sec-
tion 5 concludes, discusses the limitations of the feature model, and suggests several directions for further work.

2. Feature Modelling

Feature modelling supports the informal comparison of existing and future systems, by characterising systems
and their features as instances of domain concepts [18, ch.4]. Apel and Kästner [19] identify ten different
definitions of the term feature, reflecting the fact that feature modelling can be applied at many stages of the
software lifecycle, and at levels of granularity ranging from domain analysis [20] to compile-time configuration
of operating systems [21].

Feature modelling is commonly used to manage variability in the context of software product lines [22, 23].
However, the focus of this paper is on the feature-oriented domain analysis of high-level application program-
ming languages, with the objective of defining “the features and capabilities of a class of related software sys-
tems” [20]. Feature modelling is a creative activity [18, p.85]which is often also iterative and community-driven.

Feature-based comparisons incorporate many ideas from earlier classifications and taxonomies, with an
added emphasis on optimising models so as to maximize composability, reduce dependencies between features,
and thus minimise feature interactions [24]. Feature-based and framework-based comparison studies share sev-
eral key characteristics: the central objective of both study types is to integrate selected work within a pre-defined
boundary, to produce a single cohesive model [25]. Unlike reviews, which aim to be comprehensive, framework-
and feature-based comparisons typically focus on higher-level concepts and the relationships between them.

An abstract model of a product family, such as a feature model, can be assessed either by studying one
product instance in its intended context, or by analysing a subset of product instances with respect to the model
[26, p.206]. In this paper, the latter approach is adopted; each product instance is a well-known programming
language. When selecting product instances for model assessment, there are two possible strategies. Typically,
products describing the extremes are selected; alternatively, product popularity may be used as a selection
criterion [26, p.206]. The products selected for inclusion in this study were chosen because they are both
popular and widely spaced within the programming languages landscape.
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3 RELATED WORK

The terms concept, characteristic, and feature are used in this paper as follows. A concept is loosely defined
as any idea or principle, often (but not necessarily) based on or utilised in theory. A feature is a realisation of a
concept within the context of a family of related systems (in this case, programming languages), and a feature
instance is a realisation of a feature in a specific system (in this case, a particular language). A characteristic is
an observable property of a system or feature instance.

3. Related Work

Feature-oriented domain analysis has only recently been applied to the comparison of programming lan-
guages [27]. Consequently this section first discusses some examples of feature-based surveys in related areas.
Then an overview of the literature on comparisons and concepts of programming languages is presented.

3.1. Feature-Based Surveys

Martin et al. [28] studied distributed computing systems using a taxonomic approach that is very similar to
feature modelling. The emphasis of their survey is “breadth rather than depth”, and the focus is on fundamental
system features and their possible combinations. However, while some features are illustrated with examples, a
complete mapping of a real distributed computing system to the taxonomy was not provided.

Krauter et al. [29] classified grid resource management systems for distributed computing according to 11
functional attributes. Each attribute is structured as a small separate sub-taxonomy, resembling a feature model.
Mappings of 15 real resource management systems to this taxonomy demonstrate its applicability, and these
mappings were used to identify feature combinations that have received comparatively little attention.

A taxonomic approach was also employed by Meier and Cahill [30] to survey the features of distributed
event systems. Pseudocode examples or architectural diagrams illustrate each categorisation decision. Complete
mappings of four contrasting systems demonstrate the taxonomy’s wide applicability.

Czarnecki and Helsen [31] surveyed model transformation languages using a feature-based approach. As
in this paper, feature modelling was used to survey and organize a domain, rather than a product family from
a single vendor; however the scope of the survey also includes proposed and prototype approaches alongside
industrial-strength implementations. Due to this wider scope, brief comments on individual languages were
provided in place of comprehensive feature mappings.

3.2. Programming Language Comparisons

The Steelman programming language requirements [32] represent an early attempt to identify desirable fea-
tures of programming languages in general. These requirements were developed collaboratively and iteratively
[33], and are structured as a hierarchy. Some of the requirements represent objectively detectable features, such
as boolean types; however, other requirements such as ‘maintainability’ and ‘simplicity’ are less well defined. By
design, the Steelman requirements’ scope only covers imperative languages. Mappings of Ada, C, C++, and Java
to the Steelman requirements were later provided by Wheeler [34].

Shaw et al. [35] proposed a general method to compare programming languages based on the idea of a
language ‘core’: a subset of features that gives the language its identity and captures its designer’s intent. The
method was used to compare Fortran, Jovial, Cobol, and the Ironman programming language requirements
(a predecessor of the Steelman requirements discussed above). Unfortunately, the process of identifying each
language’s core appears to be partly subjective, as it is based on historical and philosophical considerations. The
language cores are compared according to criteria such as control flow, efficiency, and decomposition of large
systems.

Wichmann [36] compared Pascal and Ada from the programmer’s perspective, with the objective of illustrat-
ing the advantages of Ada for major industrial projects. Facilities discussed include type equivalence of arrays,
function overloading, exception handling, concurrency, and packaging. However, the comparison criteria are
unstructured, and their definitions are specific to the target languages. In a similar style, Feuer and Gehani [37]
compared Pascal with C based on features such as basic and structured types, symbolic constants, assignment
and selection statements, and input/output. Unfortunately these features are also not structured into a reusable
model.
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4 FEATURE MODEL 3.3 Programming Language Concepts

Appelbe and Hansen [38] surveyed the Concurrent Pascal, Pascal Plus, Modula-2, Ada, Mesa, Edison, CLU,
PLZ/SYS, and C systems programming languages using a feature-based technique. Part of the survey is organised
around high-level feature groups, such as typing, sequential control, concurrency, encapsulation, input/output,
and some attributes of modularity; within these groups, further lower-level features are defined. For every
surveyed language, each feature is either present or absent, and in some cases examples of feature usage are
given. The main drawback of this survey is that declarative languages and language features are not considered.

Belkhouche et al. [39] proposed an explicit, systematic method for programming language evaluation, and
used this method to compare Ada and Modula-2. According to this method, the features of the evaluated lan-
guage should first be enumerated, then each feature should be rated according to a set of seven evaluation
criteria. Unfortunately, some of these criteria, such as ‘consistency with commonly-used notations’ and ‘extensi-
bility’, are not well defined. The procedure to enumerate the language features is not described, and the example
comparison used to illustrate the method is based only on type systems and concurrency.

Appeltauer et al. [40] surveyed context-oriented programming languages and language extensions. A set of
core features for context-oriented programming was defined, and implementation approaches for these features
were compared; features unique to particular languages were also listed. The information-hiding modularity
features of Ada, C++, CLU, Eiffel, Fortran, Modula-2, Oberon, and Simula were compared by Calliss [41].

3.3. Programming Language Concepts

Detailed discussions of the general concepts of programming languages are found in several well-known texts
[42, 43, 3, 44, 45]. A classic overview of some fundamentals is provided by Strachey [46], while a more recent
perspective may be found in Van Roy [47]. In specific subject areas, Tratt [48] surveys type system concepts,
and Gabbay et al. [49] present the theoretical foundations of logic programming. The concepts of concurrent
logic programming are discussed in detail by Shapiro [50].

Dennis et al. [51, 52] adopt a theoretical approach to analyse the concepts underlying agent-oriented pro-
gramming. Their framework, based on operational semantics, successfully models the core functionality of the
well-known 3APL [53], AgentSpeak [13], and MetateM [54] languages, and leads to the identification and
abstract specification of some ‘missing’ modularity features.

Hudak [55] introduces the key features of functional programming languages, and the lambda calculus. A
more general theoretical treatment of declarative languages by Hanus [56] describes attempts to unify functional
programming with logic languages and the constraint programming paradigm. Armstrong [57] employs an
empirical method to discover the fundamental concepts (called ‘quarks’) of object-oriented programming, which
are then surveyed.

4. Feature Model

Due to the different terminology used in the actor, agent, functional, object, and procedural programming
literature, the domain concepts on which this feature model is based are drawn where possible from the wider lit-
erature on computer programming. It must be emphasised that the feature model presented here is neither final
nor definitive; it can and should be modified and extended to accommodate new languages and developments.

A programming language may be modelled as one or more feature sets Si , where Si consists of feature
instances I0 . . . In. Each feature instance Ii realises, with a concrete syntax and semantics, one of the abstract
features described in this section.1 A complex programming language which consists of several interrelated
sub-languages, may be better modelled as a set of feature sets S0 . . . Sn.

The feature model takes the form of a tree, with nine first-level nodes which are presented here as separate
sub-trees. Each node represents either a feature or a feature group - a group of related or conceptually similar
features. Features and feature groups are either mandatory (denoted by solid bubbles) or optional (denoted by
hollow bubbles). A solid segment joining the connectors of two or more optional nodes indicates that at least
one of those nodes must be present.

1A single language may offer multiple realisations of the same abstract feature, usually for reasons outside the scope of this paper - for
example to support backwards compatibility or to provide different performance characteristics.
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4 FEATURE MODEL 4.1 Type System

Mappings from the five selected languages to the feature model are described in the accompanying ta-
bles. Lack of explicit support for a particular feature or a feature group is indicated by the ‘�’ symbol. If a
feature is present, a monospace font is used to provide an example of that feature instance where space al-
lows. A greyed-out cell indicates a feature group that is present, because one or more features within the
group are present. Italics indicate language-specific terminology used in Kernighan and Ritchie [6], http:
//www.erlang.org/doc, http://www.haskell.org/onlinereport/haskell2010, Bordini et al. [11],
and http://download.oracle.com/javase/tutorial. Where a language offers multiple instances of the
same high-level abstract feature, and these instances exhibit significant feature differences at a lower level, these
alternatives are presented using additional columns. The colours used in the text, tables, and feature diagrams
carry no semantics; their only purpose is to assist in matching related sections, and thereby improve readability.

An overview of the feature model is given in Figure 1.

Programming 
Language

... ... ... ... ......... ...

Input/OutputModularity
Explicit

Concurrency
Imperative

Control
Declarative
Expressions

Mutable
State

Immutable
State

Type System

...

Meta-
programming

Figure 1: Overview of a feature model of actor, agent, functional, object, and procedural programming languages.

4.1. Type System
Type systems serve three related purposes in programming languages: to classify values, to determine their

applicable operations, and to inform the compiler how much memory to allocate to store a value of the given
type. In the first view, a type is “a constraint which defines the set of valid values which conform to it” [48]. In
the second, types are abstract “specifications of functionality” [45, p.723], which define “legal usage contexts for
the values they describe” [45, p.620]. An attempt to perform an illegal operation on a value is known as a type
error, which may be detected either at compile time or runtime. In a typeless language, “it must be the case that
every value can be used in every context” [45, p.622].

Type Checking Type information may be checked for errors at compile time (‘static’ typing), at runtime (‘dy-
namic’ typing), or both [45, p.623].

Type Inference The information required for compile-time type checks can either be supplied explicitly by the
programmer, or inferred by the compiler or interpreter using type reconstruction techniques [45, ch.13].

Subtyping Subtyping allows two types to be compatible, without being the same [45, ch.12].

Safe Subtyping Under an unsafe type system, the programmer may force (or ‘cast’) values of one type to
be considered as conformant with an incompatible type. Type-safe languages either disallow casting,
or perform runtime checks to ensure that any casts do not subvert the type system [48].

Base Types Base types represent atomic (indivisible) values, and serve as collection members.

Booleans Boolean types represent true or false.

Numbers Number types represent numbers of specified precision, and can be signed or unsigned [44,
p.294].

Characters Character types represent letters in some encoding, such as ASCII or multilingual Unicode
[44, p.295].
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4
FEATU

R
E

M
O

D
EL

4.1
Type

System

C Erlang Haskell Jason Java

Type Checking Compile time Runtime a Compile time Runtime Compile time b

Type Inference � N/A Compile time N/A �

Subtyping �
�

class Eq a => Ord a
�

class A extends B
Safe Subtyping � No casting Casting with runtime

checks
Base Types

Booleans � c � Bool � boolean
Numbers char short, int, long,

float, double
Integer, float Integer, Int, Float,

Double
number byte, short, int,

long, float, double
Characters char ASCII code integer Unicode, Char, String Single-character

string "s"
char

Enumerations enum � data Compass = N |
S | E | W

� enum Compass
{N,S,E,W}

Type Subranges � � � � �

Higher-order Types � Anonymous
function: F=fun()->

“Curried” functions:
f :: a -> b -> c
Anonymous function:
\ x -> ...

Plans are strings:
P="+b <-

� d

Collections
Tuples/Arrays int a[10] T={a,b} (a, b) or data (Ix

a)=> Array a b =
...

� int[] a={4,2} and
List classes

Records/Dictionaries struct -record(r,a,b) e data D = R { f ::
a, ...}

See Table 3 f class D{int a,b;}
also Map classes

Lists � L=[a,b] x:xs, [a,b] L=[a,b] � but defined in
Collection interface

Streams POSIX fmemopen() Ports for external
I/O only

Infinite Lists, xs
where xs = x:xs

� InputStream,
OutputStream

Table 1: Type systems in C, Erlang, Haskell, Jason, and Java.

aErlang code may also be checked at compile time for type errors using Dialyzer (see http://www.erlang.org/doc/man/dialyzer.html), based on type inference techniques.
bSome features of Java, such as reflection, require type checks to be delayed until runtime [45, p.624].
cNo explicit boolean type; in boolean contexts, C coerces values to integers, where zero is treated as false, non-zero as true. Macros to simulate booleans were introduced in C99 [14].
dThe Java reflection API provides a Method type for handling subroutines, however its use has many disadvantages and is officially discouraged.
eErlang records are compiled as tuples; consequently, field names are replaced by integer indices at runtime. A single dictionary is also available to each Erlang process.
fDictionaries can be built using structures in Jason, albeit with little support from the type system.
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4 FEATURE MODEL 4.2 Immutable State

Enumerations Enumeration types represent ordered sets of named elements [44, p.297].

Type Subranges Subranges “compose a contiguous subset of the values of some discrete base type” [44,
p.298]. The compiler may generate code to dynamically check that subrange values lie within their
specified ranges; alternatively, this checking may be performed by the interpreter.

Higher-order Types A language may define higher-order types to represent functions, methods, or proce-
dures, allowing them to be “passed as parameters, returned by functions, or stored in variables” [44,
p.290]. If higher-order types are true first-class language constructs, new values for those types can be
computed at runtime [44, p.508] (see subsection 4.8).

Collections Collections are composites formed from one or more base types. In keeping with the above
definition of type as usage context, they can be divided according to how individual elements are accessed
[3, p.438].

Tuples/Arrays Tuples or arrays are indexed by integers.

Records/Dictionaries Records or dictionaries are indexed by any literal.

Lists Lists are unindexed, and of finite length.

Streams Streams are unindexed and unbounded; they are commonly used for input/output (see sub-
section 4.9) and concurrency (see subsection 4.6).

Figure 2 shows these concepts structured as a feature model, and Table 1 gives an overview of these features
as they are implemented in the selected languages.

Type Checking
Type 

Inference
Subtyping

Safe 
Subtyping

Higher-order
Types

Booleans Numbers Characters Enumerations
Type 

Subranges

Type System

Collections

Tuples/Arrays
Records/

Dictionaries
Lists Streams

Base Types

Stream
Concurrency

Stream 
Input/Output

Figure 2: Type system features, including incoming dependencies from the Explicit Concurrency (see subsection 4.6, Figure 7) and In-
put/Output (see subsection 4.9, Figure 10) feature groups.

4.2. Immutable State

A crucial feature of many programming languages is “the possibility of associating values with symbols and
later retrieving them” [42, p.8]. This feature category is concerned with symbol-value associations which, once
made, cannot be changed.

Constants A constant is defined here as a binding, between a symbol or name and a value, which lasts for the
lifetime of the enclosing element.
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4.2
Im

m
utable

State

C Erlang Haskell Jason Java

Constants const int c=2 a -define(C,2) Everything b Only in plans. C=2 final int c=2 c

Single Assignment � Only in functions.
A=2

� Only in plans. A=2 Only in constructors. final int a;
a=2

Table 2: Immutable state in C, Erlang, Haskell, Jason, and Java.

aConstants in C can also be defined using macros: #define C (2).
bVariation in Haskell arises in two ways: evaluating an expression which transforms its form, but not its value; and state-change that is hidden from view, accessed via a pointer

(IORef) whose own value/address is immutable.
cThe Java final keyword does not protect members of collections and mutable compound types from modification.

C Static
Allocation

C Dynamic Allocation Erlang Haskell Jason Java Java Map Library
Classes

State Cell
Declaration

int a int *a =
malloc(sizeof(int))

� IORef t � int a � a

State Cell
Assignment

By reference
or value. b

a=2

By reference or value.
b *a=2

By value.
put(a,2)

a =
newIORef 2

By value.
+a(2)

By reference or
value. c a=2

By reference or
value.
m.put("a",2)

State Cell
Valuedness

Single Single Single Single Multi. +a(2);
+a(3)

Single Single

State Cell
Retrieval

x=a x=*a get(a) x <-
readIORef a

?a(X) d x=a x=m.get("a")

State Cell
Modification

a=3 b *a=3 b put(a,3) writeIORef
a 3

-a(2); +a(3)
or -+a(3) e

a=3 c m.put("a",3)

State Cell
Deletion

� free(a) erase(a) � f -a(3) or
-a(_)

� f m.remove("a")

Table 3: Mutable state in C, Erlang, Haskell, Jason, and Java.

aState cells in a Java Map are not declared individually, however the map itself must first be initialised: Map<String,Integer> m = new HashMap<String,Integer>().
Some Map implementations (including HashMap) permit null values; effectively, this allows names in the scope of a map to be declared before use.

bAssignment and modification of state cells in C is by value for primitive types (int, double, etc.). Arrays and structures are member copied on assignment and modification.
Literal values can be multiply assigned to arrays on declaration (int a[2] = {1,2}), but subsequent multiple assignment or modification can only be achieved by copying memory
locations, for example using memcpy(). Pointers are only shallow copied; afterwards, both source and target pointers will point to the same underlying data.

cAssignment and modification of state cells in Java is by value for primitive types (int, double, etc.) and by reference for instances of Object.
dThe Jason interpreter attempts to match test goals against the agent’s beliefs in reverse chronological order. The include preprocessor directive (see subsection 4.7) unfortunately

interacts with this feature [58]. If no match is found, a test goal addition event is generated (see subsection 4.5).
eThe Jason -+ operator first removes all beliefs that match the given functor, then the new belief is added.
fState cells in Haskell and Java are not explicitly deleted, but will be garbage collected.
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4 FEATURE MODEL 4.3 Mutable State

Single Assignment A single assignment variable - sometimes known as a ‘declarative variable’ - is initially
an unassigned symbol, but once bound “stays bound throughout the computation and is indistinguishable
from its value” [3, p.42].

Figure 3 shows these concepts structured as a feature model, and Table 2 gives an overview of these features
as they are implemented in the selected languages.

Immutable
State

Constants
Single

Assignment

Figure 3: Immutable state features.

4.3. Mutable State

Van Roy and Haridi [3, p.408] define the named state of a computational entity as “a sequence of values in
time that contains the intermediate results of a desired computation”. While not all programming languages pro-
vide explicit state representation, any entity that is aware of its past must store that knowledge either internally,
or externally in the environment [3, p.410].

State Cell Declaration A declaration introduces a state cell name and indicates its scope [44, ch.3]. The
declaration may also include type information (see subsection 4.1).

State Cell Assignment Assignment associates a state cell name with a value. Some languages allow assign-
ment between two state cells, in which case assignment may be either by value (the value of the second
state cell is copied to the first) or by reference (the first cell is modified to refer to the second) [44, p.225].

State Cell Valuedness A state cell is multivalued if more than one value may be associated with a single name
and index. Otherwise it is single valued.

State Cell Retrieval The mechanism by which the value of a state cell is retrieved, given a name.

State Cell Modification A language may provide special constructs to reassign the value of a state cell.

State Cell Deletion The mechanism by which a state cell, and its contents, are erased.

Figure 4 shows these concepts structured as a feature model, and Table 3 gives an overview of these features
as they are implemented in the selected languages.

Mutable
State

State Cell 
Declaration

State Cell 
Valuedness

State Cell 
Deletion

State Cell 
Assignment

State Cell 
Retrieval

State Cell 
Modification

Shared
State

Figure 4: Mutable state features, including an incoming dependency from the Explicit Concurrency (see subsection 4.6, Figure 7) feature
group.
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M

utable
State

C Erlang Haskell Jason Java

Functions

�

add(A,B) -> A+B. add a b = a + b

�

�

Function Argument
Evaluation

Applicative order Lazy, with strictness
annotations

Declarative Conditional
Expressions

max(A,B) when A>B -> A;
max(A,B) -> B.a

| x < 0 -> ... | x
== 0 -> ...b

Tail Call Optimisation Automatic when last
expression is a function

Automatic

Inference Rules
� �

Horn clause rules. positive(X) :-
.number(X) & X>0.

Inference Rule Resolution Top-down, left to right, depth first c

Constraints � � �

Table 4: Declarative expressions in C, Erlang, Haskell, Jason, and Java.

aIn addition to the guard sequences illustrated here, Erlang also provides familiar if and case expressions.
bIn addition to the definition guards shown here, Haskell has if and case expressions. Haskell conditional expressions may also use pattern matching.
cJason rules are resolved with the agent’s beliefs in reverse chronological order (see subsection 4.3).

C Erlang Haskell Jason Java

Methods/Procedures Function

�

IO/State Monad instances Plan Method
Method/Procedure
Invocation

By name or function
pointer

Standard function call a By triggering event and
context. +!te : ?c <-

By name and matching
parameter types

Method/Procedure
Parameters

Positional, by value. Positional, by value. Positional, by value.
+!b(A,B)

Positional, by reference
or value.b void s(int
a,int b)

Method/Procedure
Return

Explicit, with
termination. return 2

return 2, or last
invocation.

� Explicit, with
termination. return 2

Imperative
Conditional
Expressions

if(x>y) {max=x;}
else {max=y;}, max =
x>y ? x : y c

if x > y then return x
else return y

if(X>Y) {+max(X)}
else {+max(Y)}

if(x>y) {max=x;}
else {max=y;} c

Iteration while, do while, for � d while, for while, do while, for

Table 5: Imperative control in C, Erlang, Haskell, Jason, and Java.

aHaskell “procedures” are pure Haskell functions whose type belongs to a state mutation monad class, e.g. IO.
bJava method parameters are passed by value for primitive types (int, double, etc.) and by reference for instances of Object.
cC and Java also offer a switch statement, which selects between code fragments based on the value of a single variable, and supports fall through.
dIteration constructs (e.g. while) can be defined in Haskell using recursion and the higher-order features.
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4 FEATURE MODEL 4.4 Declarative Expressions

4.4. Declarative Expressions

Finkel and Kamin [43] define declarative programming as a separation of logic and control. The programmer
creates the logic component, consisting of declarative expressions, which “specifies what the result of the algo-
rithm is to be” [43, p.238]. The control component is partly or wholly provided by the compiler or interpreter.

Functions A function is a procedure which computes a mathematical function: two evaluations with the
same arguments will always produce the same result [42, p.230]. This property is known as ‘referential
transparency’ [55, p.362]. A function is distinct from a method or procedure (see subsection 4.5), in that
side-effects are not permitted.

Function Argument Evaluation The result of a function can sometimes depend on how its arguments
are evaluated. A function may be evaluated in applicative order (evaluate the arguments, then apply
the function) or normal order (fully expand the function until only primitive operators remain, then
reduce) [42, p.16].2 Under normal order evaluation, a function may return a value even if evaluation
of some of its arguments would produce errors or not terminate [42, p.400]. However, implemented
naively, normal order evaluation is inefficient and causes unnecessary repeated computations. A third
option, lazy evaluation, avoids these recomputations by ensuring that all arguments are evaluated no
more than once [55, p.383]. The result of a computation under normal order or lazy evaluation may
also depend on the order of function arguments [55, p.390].

Declarative Conditional Expressions Conditional expressions allow discontinuous functions to be de-
fined, and are central to an ‘equational reasoning’ programming style [55, p.388]. The predicate-
consequent pairs of a conditional may be evaluated in a given order, or the language may insist
that the predicates in a conditional are disjoint. A declarative conditional expression is referentially
transparent.

Tail Call Optimisation An expression is known as a ‘tail call’ if no computational work is done between
the termination of the expression and the termination of its enclosing function [45, p.1044]. A tail
recursive language guarantees that recursive tail calls will be optimised to consume no additional
memory resources, thus allowing iteration to be efficiently expressed. Tail call optimisation can only
be activated in some languages using special syntax [42, p.35].

Inference Rules Inference rules allow new knowledge to be derived from existing facts3. Inference rules
are typically (though not necessarily) expressed as Horn clauses, consisting of an antecedent (potentially
containing many terms) and a single-term consequent. Both antecedent and consequent terms may contain
variables, thus allowing general relations to be expressed.

Inference Rule Resolution Inference rule resolution is the runtime process by which new knowledge is
derived from inference rules: antecedent terms are matched (‘unified’) with facts and the consequents
of other inference rules, backtracking on failure, until no unmatched antecedent terms and unbound
variables remain. Since multiple solutions may exist to any given knowledge base query, the order
in which candidate facts and inference rules are selected determines the order in which solutions are
found [43, p.235]. The resolution process is potentially recursive, and therefore must be executed
in a defined order over antecedent terms, to prevent accidental non-terminating queries [44, p.554].
Resolution is usually carried out left to right, and either depth first or breadth first.

2Analogously, a function or individual argument may be described as strict or nonstrict. The value of a strict function is only defined if
the values of all its arguments are defined [44, p.523]; if a particular argument is evaluated before the function body is entered, the function
is strict in that argument [42, p.400]. While evaluation order is a property of the programming language, some languages place strictness
under the programmer’s control, so the former terminology is preferred here.

3A ‘fact’ (in Prolog terminology) is a Horn clause with no antecedent terms and no unbound variables. However, in many newer languages,
facts are instances of mutable state (see subsection 4.3). Efficient resolution in the presence of mutable state requires ‘truth maintenance’
mechanisms to ensure that previously-derived knowledge is only updated when necessary.
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4 FEATURE MODEL 4.5 Imperative Control

Constraints A constraint is a mathematical or logical relation between two or more variables, or a restriction
on the domain of a variable, that must be satisfied.

Figure 5 shows these concepts structured as a feature model, and Table 4 gives an overview of these features
as they are implemented in the selected languages.

Declarative
Expressions

Functions
Inference

Rules
Constraints

Tail Call 
Optimisation

Inference Rule 
Resolution

Declarative 
Conditional 
Expressions

Function 
Argument 
Evaluation

Figure 5: Declarative expression features.

4.5. Imperative Control

Imperative control allows the programmer to explicitly specify the execution or evaluation order of state-
ments or expressions in time. Programmer-specified statement sequences are central to imperative languages
[44, p.220], and are also required to support structured input/output (see subsection 4.9) in declarative lan-
guages [59].

Methods/Procedures A method or procedure encapsulates a sequence of imperative control constructs, so
they may be treated as a single unit [44, p.219]. A method or procedure is distinct from a function
(see subsection 4.4): a method or procedure may change the state of the program (see subsection 4.3) or
its environment (see subsection 4.9) via side effects.

Method/Procedure Invocation The mechanism by which a method or procedure is selected for invoca-
tion.

Method/Procedure Parameters A method or procedure may accept input data by declaring formal pa-
rameters, which are associated with arguments during invocation. Formal parameters and arguments
may be associated by name, or by position [44, p.405]. Parameters may be passed by value (the
argument is copied to the corresponding formal parameter) or by reference (the formal parameter
is a new name for the corresponding argument) [44, p.395]; reference parameters may be used for
output if the argument is mutable.

Return Return values allow a method or procedure to send a result to its invocation context. The return
mechanism may be implicit (the result is simply the value of the method or procedure body), or the
language may offer a formal ‘result’ parameter or an explicit return statement. Use of the return
statement, or assignment of the result parameter, may also immediately terminate the method or
procedure [44, p.408].

Imperative Conditional Expressions Conditional expressions allow choices between two or more code frag-
ments, depending on runtime conditions [44, p.219]. An imperative conditional expression is not neces-
sarily referentially transparent; evaluating the condition may have side effects.

Iteration Iteration allows a code fragment to be executed either a certain number of times, or until a given
runtime condition changes [44, p.219].
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4 FEATURE MODEL 4.6 Explicit Concurrency

Figure 6 shows these concepts structured as a feature model, and Table 5 gives an overview of these features
as they are implemented in the selected languages.

Imperative
Control

Iteration Methods/
Procedures

Method/
Procedure 

Return

Method/
Procedure 

Parameters

Method/
Procedure 
Invocation

Imperative 
Conditional 
Expressions

Figure 6: Imperative control features.

4.6. Explicit Concurrency

Two activities are concurrent if they can be interleaved in any order or executed in parallel, as determined by
the underlying platform according to the number of CPU cores available.4 While declarative programs (see sub-
section 4.4) can often be parallelized automatically by the compiler or interpreter, many languages also define
features to explicitly support the concurrent execution of programs that rely on mutable state or imperative con-
trol. Interaction between explicitly concurrent activities can be supported in several different communication
styles [47].

Concurrency Unit A concurrency unit encapsulates a single explicitly-concurrent activity, programmed in ei-
ther a declarative or imperative style, together with any necessary mutable state (see subsection 4.3).

Stream Concurrency In this communication style, two or more concurrent activities each use one end of a
stream [42, ch.3.5] (see subsection 4.1) to communicate as producer and consumer [3, ch.4]. The use of
a stream guarantees that data is sent and received in the same order.

Shared State In this communication style, concurrent activities communicate by modifying shared data struc-
tures.

State Cell Locking A lock or mutex is a low-level synchronization primitive that, when applied to a
state cell and acquired by an activity, admits no further operations on that state cell until the lock is
released by the same activity [42, p.311].

Transactional State Cells A transactional language offers computations on state cells with guaranteed
atomicity (the intermediate steps are never visible to other activities) and isolation (once initiated,
the result of the computation is unaffected by other activities) [62].

Code Locking Code locking, or serialization, allows a programmer to define “distinguished sets of procedures
such that only one execution of a procedure in each serialized set is permitted to happen at a time” [42,
p.304].

4The neutral term ‘activity’ is used here to mean any executable program fragment. The more usual terms ‘process’ and ‘thread’ are
typically defined in terms of operating system concepts, such as memory management and scheduling, which are outside the scope of this
paper.
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C
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C Erlang Haskell Jason Java

Concurrency Unit POSIX Thread a Process Thread Agent Thread
Stream Concurrency � b � Control.Concurrent.Chan:

getChanContents,
writeList2Chan

� PipedInputStream,
PipedOutputStream

Shared State
� �State Cell Locking � c using MVars � c

Transactional State Cells � STM d Concurrent collections e

Code Locking POSIX pthread_mutex_lock(),
pthread_mutex_trylock(),
pthread_mutex_unlock(); or
using semaphores

� � � Synchronized methods and
blocks, wait(), notify(),
and notifyAll()

Table 6: Explicit concurrency part 1 - units, stream concurrency, shared state, and code locking, in C, Erlang, Haskell, Jason, and Java.

aThe POSIX standard also defines C library functions and system calls for inter-process communication; as these require interaction with the operating system, they are presented
in subsection 4.9.

bPOSIX stream-oriented inter-process communication facilities (such as pipes and sockets) can be used between C threads, but they require interaction with the operating system; they
are presented in subsection 4.9.

cIn C and Java, every state cell is potentially accessible from every thread. Access to Java objects is controlled only by access modifiers (see subsection 4.7). In both languages, state cell
locking can be achieved by disciplined use of code locking primitives; however, a rogue thread that does not observe the locking mechanism can still modify “locked” cells.

dHaskell supports Software Transactional Memory (STM) [60].
eThe Java atomic variable classes also provide some common operations (such as integer addition) with transactional characteristics.
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C Erlang Haskell Jason Java

Message Passing Concurrency

� a � b

Message Addressing Direct, by pid or
registered name

Via channels or MVars Direct: .send or channel: .broadcast

Message Sending
Asynchronous Sending Pid ! {c,2} putMVar, writeChan c .send(Ags, Perf, c(2)) d

Synchronous Sending � � e �

Remote Invocation � � .send(Ags, askOne, c(X), Reply) f

Message Receiving
Asynchronous Receiving � getMVar, readChan ?c(X)[source(s)] g

Synchronous Receiving receive {c,X} ->
do(X) end

� e .wait("+c(X) [source(s)]");
!do(X)

Implicit Receiving � � Subject to social acceptance [11, p.71]

Table 7: Explicit concurrency part 2 - message passing concurrency in C, Erlang, Haskell, Jason, and Java.

aPOSIX message-passing inter-process communication facilities (such as message queues) can be also be used between C threads, but they require interaction with the operating system;
they are presented in subsection 4.9.

bIn Java, method invocation (see subsection 4.5) alone is not sufficient to pass messages between threads; by default, an invoked (“receiving”) method is always executed in the
invoking (“sending”) thread, regardless of where the method is located. Karmani et al. [61] list several third-party libraries which add message passing facilities to Java.

cThe Haskell Chan type is an unbounded FIFO buffer.
dEvery Jason message must include a performative, which describes how the message content is to be interpreted. The available performatives are listed in Bordini et al. [11, p.118].
eFacilities for synchronously sending and receiving messages in Haskell can be easily built on those for asynchronous message passing.
fThe Jason .send and .broadcast internal actions, when used with the askOne, askAll, and askHow performatives, accept a variable parameter which is unified with the

(first) message received in reply.
gExplicit message receipt in Jason is only possible with certain performatives, and relies on the annotations feature, which allows the agent to determine the source (self, percept,

or another agent) of each of its beliefs.
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4 FEATURE MODEL 4.7 Modularity

Message Passing Concurrency In this communication style, concurrent activities communicate by exchang-
ing messages, either synchronously (the activity waits until the message is received), asynchronously (the
activity does not wait), or using a combination of modes [47]. A message can be defined as a data transfer
between activities, or as a request by the sending activity for some action to be carried out by the receiv-
ing activity [57]. The order in which messages are sent is not necessarily preserved by the underlying
platform.

Message Addressing A message may be addressed directly to a receiving activity; to a specific port on
the receiving activity; or to an independent channel, which may have multiple receiving activities
[44, CD p.263].

Message Sending A message-passing programming language can support any of three main message
sending styles:

Asynchronous Sending The sender waits only until the outgoing message has been copied to a
safe location [44, CD p.268].

Synchronous Sending The sender waits until its message has been received [44, CD p.268].

Remote Invocation The sender waits until it has received a reply [44, CD p.268].5

Message Receiving A message-passing activity can receive a message in any of three principal ways:

Asynchronous Receiving Also known as ‘polling’, asynchronous receiving allows an activity to test
if a message (possibly of a particular type) is available [44, CD p.272].

Synchronous Receiving The receiver waits until a message (possibly of a particular type) is re-
ceived.

Implicit Receiving Subject to resource limitations, each received message implicitly triggers the
creation of a new activity [44, CD p.272], which may parse the message parameters and carry
out the requested actions.

Figure 7 shows these concepts structured as a feature model; Table 6 and Table 7 give an overview of these
features as they are implemented in the selected languages.

4.7. Modularity
Modularity features allow a system to be divided into “coherent parts that can be separately developed and

maintained” [42, p.217], and then optionally reused, both internally and externally, for economic gain [64].
Baldwin and Clark [65] propose a general theory of modularity, based on six operators which concisely describe
the possible evolutionary paths for a modular structure.6 For software systems, two of these - splitting and
substitution - appear to require explicit support at the programming language level.7

Modularity Unit A module is a unit to which a responsibility is assigned; it consists of both data structures
and the procedures which access and modify them [68].

5Though some modes of message sending can be implemented in terms of the others, as distinct language features their syntax and
performance characteristics can be separately optimised [44, CD p.271].

6An alternative theoretical treatment of modularity is given by Bracha and Lindstrom [66]. In this approach, the modularity features of
real programming languages can be formally described as combinations of six low-level module manipulation operators: merge, restrict,
project, select, override, and rename. A comparison of the modularity features of C, Erlang, Haskell, Jason, and Java in terms of these
operators is left for future work.

7The other four modular operators are augmenting (adding a new module to an existing system), excluding (removing a module from
an existing system), inversion (making hidden functionality explicitly available as a module), and porting (moving a module to another
system) [65, ch.5]. In practical software development, augmenting and excluding are easily supported either by simple condition flags, or
by substituting null implementations [67, p.734]. Inversion can usually be implemented by splitting; and though porting has historically
been important in language design, it is typically handled in modern languages at the virtual machine level.
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C Erlang Haskell Jason Java

Modularity Unit File Module Module Agent Class, package
Module Description Header files Custom behaviours � � Interfaces
Encapsulation Public unless

static
Private unless exported All exported if no

explicit export
� a Access modifiers:

public, private
Module Splitting

�Module Extension #include "mod.c" -include("mod.hrl") {include("mod.asl")} Single inheritance
Module
Composition

� � � Classes only, as
private fields

Runtime Module
Substitution �

Runtime Module
Replacement

dlopen(), dlsym(),
dlclose()

On fully qualified
function call b

.kill_agent and

.create_agent
With custom
ClassLoader c

Runtime Module
Selection

With function
pointers

Modules are first-class
constructs

With SACI or JADE
directories d

By polymorphism

Table 8: Modularity in C, Erlang, Haskell, Jason, and Java.

aBy default, the implicit receive feature (see subsection 4.6) of the Jason interpreter allows an agent to read and modify the belief, goal, and plan base of any other. This behaviour can
be changed by customising the interpreter’s socAcc method [11, p.146].

bAn Erlang function call of the form module:function() causes module to be replaced. Current and old versions of a module can be active simultaneously; an attempt to load a
third version causes the old code to be purged, and any processes still running it to be terminated.

cJava custom class loaders allow classes, but not objects, to be directly replaced at runtime. To achieve runtime replacement of an object, the application must explicitly re-instantiate
that object and discard the old instance for garbage collection.

dThe SACI and JADE platforms provide yellow pages directories, in the form of directory facilitator agents, which can be used to select at runtime between multiple application agents
offering the same services. However the Jason language itself offers no direct support for service description.

C Erlang Haskell Jason Java

Source Metaprogramming � a Write-only erl_scan,
erl_parse

� b Plan library manipulation:
.add_plan(P)

� c

Abstract Syntax Metaprogramming � Write-only compile � d � Read-only reflection API
Binary Metaprogramming � � � � � e

Table 9: Metaprogramming in C, Erlang, Haskell, Jason, and Java.

aC code can be compiled at runtime using 3rd-party libraries such as libtcc and clang, however the ability to manipulate currently-executing C code is platform dependent.
bTemplate Haskell can be used for compile-time metaprogramming [63].
cJava source code can be compiled at runtime with the javax.tools.JavaCompiler library, however manipulation of currently-executing source code is not explicitly supported.

Java annotations can be used for compile-time metaprogramming.
dThe haskell-src and haskell-src-exts packages give Haskell programmers access to parsing and compiler representations of programs.
eJava class files (but not objects) can be read and modified at runtime using external libraries such as ASM or the Apache Byte Code Engineering Library. Limited runtime modification

of classes and objects is also provided by the instrumentation API.
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Figure 7: Explicit concurrency features, including outgoing dependencies on the Type System (see subsection 4.1, Figure 2) and Mutable
State (see subsection 4.3, Figure 4) feature groups.

Module Description Separating module descriptions from their implementations allows modules to specify
the services they require, without explicitly naming the modules that provide those services.

Encapsulation The general purpose of a module is to “hide some design decision from the rest of the system”
[68]. Some languages provide encapsulation features to enforce this hiding of information.

Module Splitting Features in this category support the splitting of a monolithic software design, or an existing
software module, into separate modules.

Module Extension Module extension features allow a programmer to create a new module by adding
functionality to an existing module [44, p.468]. The namespaces of both modules are combined in
the new module; a language offering this feature must define rules to resolve any name collisions.

Module Composition Composition allows a programmer to encapsulate one or more existing modules
within a new module [3, p.411]. Each module retains a separate namespace; the new module medi-
ates access to and between the modules it encloses.

Runtime Module Substitution Re-implementing a module is a common activity in software engineering. The
alternative module may add functionality, remove existing functionality, repair errors, or implement the
same functionality with different non-functional characteristics. Module substitution is a crucial step in the
evolution of complex products [65, ch.5] and the development of software product families [67, p.736].
Compile-time substitution can be achieved using techniques which do not require language support, such
as binary replacement [67, p.727]; this feature category therefore focuses on runtime module substitution
features.

Runtime Module Replacement Runtime module replacement consists of loading a new substitute mod-
ule into a running system, and removing the replaced module, without restarting.

Runtime Module Selection Runtime module selection allows a program to choose between co-existing
implementations of a module, depending on runtime conditions.
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4 FEATURE MODEL 4.8 Metaprogramming

Figure 8 shows these concepts structured as a feature model, and Table 8 gives an overview of these features
as they are implemented in the selected languages.

Modularity
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Module 
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Module 
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Runtime 
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Selection

Runtime 
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Figure 8: Modularity features.

4.8. Metaprogramming
Metaprograms analyse, modify, and generate programs [69]. Since compiler construction and static anal-

ysis are outside the scope of this paper, this feature category is concerned specifically with reflective metapro-
gramming at runtime: programs that analyse, modify, and extend themselves. Metaprogramming features are
categorised here according to the kinds of program artifact on which they operate.

Source Metaprogramming Source metaprogramming allows programs to manipulate plain text representa-
tions of their own source code.

Abstract Syntax Metaprogramming Abstract syntax metaprogramming allows programs to read and modify
their own partially-compiled source code, which is represented using the programming language’s own
data structuring facilities.

Binary Metaprogramming Binary metaprogramming allows programs to operate on their own compiled bi-
naries.

Figure 9 shows these concepts structured as a feature model, and Table 9 gives an overview of these features
as they are implemented in the selected languages.

Binary 
Metaprogramming

Source 
Metaprogramming

Abstract Syntax 
Metaprogramming

Metaprogramming

Figure 9: Metaprogramming features.

4.9. Input/Output
This feature category is concerned with input from, and output to, human users and ‘environments’.8 An

environment mediates access to resources [70] (both hardware and software) and provides the “conditions”

8With the exception of the agent programming community, the subject of input/output receives relatively little attention in the program-
ming language concepts literature. Considering the practical need for modern languages to integrate smoothly with large databases, Internet
services, and a wide range of peripheral devices, we find this surprising. Consequently, input/output is included here as a fully-fledged fea-
ture category.
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utput

C Erlang Haskell Jason Java

Stream
Input/Output

stdio; POSIX open(),
read(), write(), close() a

file and io
modules

System.IO module a � System streams, java.io
and java.nio packages

Interactive
Input/Output

� b Shell read-eval-print
loop

GHCi interpreter, various
GUI libraries c

� Swing GUI library d

Shared Data POSIX mmap(), munmap();
shm_open(), shm_unlink()

System.Posix.SharedMem
module

�

Databases POSIX dbm facility;
database libraries e

odbc module Database.HDBC module JDBC

Table 10: Input/output part 1 - stream input/output, interactive input/output, and shared data in C, Erlang, Haskell, Jason, and Java.

aIn C, the standard I/O facility or POSIX I/O system calls can be used to read from the environment on platforms that export environment data structures as files.
bThere is no native C interpreter; numerous libaries (X, WinAPI, etc.) provide interactive GUI implementation.
cHaskell access to 3rd-party GUI libraries (e.g. Tcl/TK or wxWidgets) is via its Foreign Function Interface (FFI).
dMany additional interaction features for Java, such as the SWT graphical user interface (GUI) library, are provided by third-parties.
eThere are numerous non-POSIX C libraries for database access, including ODBC.
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utput

C Erlang Haskell Jason Java

Message Passing
Input/Output

System Calls POSIX mq_send(),
mq_receive();
sendmsg(),
recvmsg()

In C and C++; port
drivers a

System module Java environment
actions

Runtime.exec(),
JNI, many libraries b

Asynchronous
System Calls

POSIX non-blocking
mode

With driver_async
C function

Polling via
System.IO.hReady

� Process p =
exec("cmd")

Synchronous
System Calls

POSIX blocking
mode

Using port_command System.IO module go(left) go("left") c

Active Sensing POSIX open() with
O_SYNC flag d

With driver_output
C function

hSetBuffering � e String msg =
prompt("?")

Event
Notifications

POSIX signals As messages to the
port owner

System.Posix.Signals
module

Individualised percepts WatchService API,
JNI callbacks

Asynchronous
Notifications

POSIX
sigpending()

� getPendingSignals ?at(X,Y)
[source(percept)]

WatchKey.poll()

Synchronous
Notifications

POSIX pause(),
sigsuspend(),
sigwait()

Using receive awaitSignal .wait("+at(X,Y)
[source(percept)]")

WatchKey.take()

Event Handlers POSIX sigaction() � installHandler +at(X,Y)[source
(percept)] <- do(X)

Method calling with
JNIEnv

Table 11: Input/output part 2 - message passing input/output in C, Erlang, Haskell, Jason, and Java.

aErlang also provides several other message passing input/output mechanisms, including C nodes, a Java nodes library called jinterface, TCP/IP and UDP sockets, and the newly-
developed Natively Implemented Functions (NIFs).

bThe Java Native Interface (JNI) allows Java programs to interact with native code written in C, C++, and Assembly languages. Many other standard and third-party libraries support
high-level interaction between Java programs and specific external systems.

cBefore use, a Java native method must be explicitly loaded with System.loadLibrary and declared using the native keyword.
dThe setvbuf() facility can be used to make a C stream unbuffered, so that output appears at the destination as soon as it is written.
eWhile a Jason environment action cannot return a data item to its caller, it may directly change the percepts of any agent [11, p.106].
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4 FEATURE MODEL 4.9 Input/Output

under which actors, agents, or objects exist [71].9 The environment may consist of many concurrent activities,
but unlike the concurrent activities discussed in subsection 4.6, the environment is often defined in a different
(usually lower-level) programming language.

Stream Input/Output Streams (see subsection 4.1) can be used for input from, and output to, potentially
unbounded data sources and sinks, such as files, network connections, and character terminals. In this
input/output mode, only one ‘end’ of the stream is visible to the application programmer, for either input
or output. A language may define stream types for binary data, text, or structured records.

Message Passing Input/Output In this mode of input/output, a program communicates with its environment
by sending commands and responding to events. As in subsection 4.6, a message can be defined as a data
transfer, or as a request for some action to be carried out [57]. In practice, message passing mechanisms
for input/output are often different from those used in peer communication, because the environment is
potentially unbounded and its structure may be unknown.

System Calls System calls or commands allow the programmer to request the environment to perform
an action, which may either be predefined or specified in an intermediate command (or ‘shell’) lan-
guage.

Asynchronous System Calls The system call and its parameters (if any) are copied to a buffer, and
the invoking program resumes immediately.

Synchronous System Calls The invoking program is suspended until the action begins.

Active Sensing The invoking program is suspended until the action is complete. In this mode, the
action may return a data item describing the result, or a simple success/failure indicator.

Event Notifications An event notification mechanism allows the environment to notify the program of
changes. The programmer may be required to subscribe to events of interest, or to selectively re-
trieve event notifications from a cache; alternatively, the environment may deliver event notifications
directly by invoking event handlers provided by the program. A program can respond to an environ-
ment event in one of three ways:

Asynchronous Notifications The program tests to see if a specific event notification is available,
and returns immediately.

Synchronous Notifications The program waits until a specific event notification occurs.

Event Handlers The event implicitly triggers the execution of an event handling procedure, which
may depend on the event type and content. The event handler may execute as an independent
activity.

Interactive Input/Output A language may offer dedicated facilities for interaction with human users, in ad-
dition to those provided by the environment.

Shared Data In analogy with communication between concurrent activities by shared state, communication
with the environment may be achieved by modifying data structures within the environment that are
potentially accessible to multiple programs.

Databases A database is a shared collection of logically related data, with a self-describing structure.
Access to a database is usually controlled by a database management system, which ensures the
security and integrity of the data in the presence of concurrent access [72].

9Many agent programming researchers would define an environment more strongly, to include the requirement that the environment
should mediate “interaction among agents” [70]. However, this definition does not generalise easily to other programming paradigms, as it
seems to preclude direct communication by shared memory between objects. We argue that this interaction mediation should be considered
an optional property.
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Figure 10 shows these concepts structured as a feature model; Table 10 and Table 11 give an overview of
these features as they are implemented in the selected languages.
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Figure 10: Input/output features, including an outgoing dependency on the Type System (see subsection 4.1, Figure 2) feature group.

5. Conclusions

This paper proposes and validates a feature model of actor, agent, functional, object, and procedural pro-
gramming languages. The feature model allows comparison across a wide range of previously disparate pro-
gramming language styles, and is designed to be extensible. The full feature model developed in section 4 is
shown in figure Figure 11.

5.1. Limitations of the Feature Model

The five language mappings used to validate the model should be helpful to practitioners in assessing the
suitability of C, Erlang, Haskell, Jason, and Java for a particular development project or software architecture.
However, features are just one of many factors to take into consideration in such decisions. A key criterion is the
availability of experts with sufficient experience in the chosen language. Other factors of potential importance
include platform compatibility, development tool support, documentation, training materials, user community,
and nonfunctional properties.

Some important programming language concepts were not explicitly included in the current feature model.
These concepts, which are not easily represented as atomic features, were excluded in order to maximise com-
posability, as noted in section 3.

Scope Van Roy and Haridi [3, p.507] define scope as the “part of the program text in which [a] member is
visible”. Scope is usually expressed in terms of specific language constructs, which makes comparison of
scope rules between languages difficult.

Exceptions A runtime failure or exception is defined as an unexpected condition that cannot be handled locally
[44, p.418]. The rules for exception definition, propagation, and recovery are necessarily dependent on
the current context; like scope, failure is a cross-cutting concern that does not easily fit to a feature-based
model.
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Security Defined as “protection from both malicious computations and innocent (but buggy) computations”,
security is a global system property [3, p.208]. While certain languages have well-known security flaws
(see, for example, Scott [44, p.353]), modern security mechanisms are typically implemented by the
compiler, interpreter, virtual machine, or operating system.

Naming Languages such as Haskell offer sophisticated pattern-matching naming capabilities, however these are
difficult to map to a feature model as they cut across multiple feature groups such as type systems and
declarative expressions.

Most languages allow concurrent activities to be assigned to two or more separate nodes. However, many
popular distributed computing mechanisms, such as CORBA, DCE/RPC, and JADE, are not part of their respective
language specifications. Consequently, distribution topics have been excluded from this feature model.

Finally, the feature model does not include any value judgements on the presence or absence of language
features. We argue that the value of a given feature is inherently application-dependent; “the simple presence of
features is not a good indication of the worth of a language” [35]. A full-featured language will allow a wider
range of programs to be concisely expressed, but at the cost of a more expensive implementation and a more
challenging learning curve.

5.2. Future Work
The main research value of the presented feature model lies in the future work which it enables. Some of

this work is outlined as follows.

• Mapping other programming languages to the feature model would allow it to be refined and validated
further.

• Analytical work is needed to further explore the dependencies between features, and thus arrive at a more
complete understanding of the actor, agent, functional, object, and procedural programming languages de-
sign space. If two features f1 and f2 are truly independent (and therefore composable), it must be feasible
to construct languages which have both f1 and f2, f1 only, f2 only, and neither f1 nor f2. Unidirectional
and bidirectional dependencies between features are also possible.

• Feature models are commonly based on propositional logic; for instance, a feature f1 may require a sub-
feature f2. However, this feature model could be enriched with fuzzy relations between feature occur-
rences, to model both empirically-observed correlations and recommendations [73]. For example, when-
ever f3 is present then f4 may also be likely; or if f5 is chosen, then f6 is recommended.

• The model is designed to be used as a basis for structured comparisons, including empirical comparisons,
between programming languages in any of the actor, agent, functional, object, and procedural styles. This
work would require the development of objective criteria, to determine whether each feature is present or
absent.

In the longer term, given a sufficient understanding of the application domains in which actor, agent, functional,
object, and procedural programming languages are commonly used, the values of the features in the model could
be determined as functions of the domain characteristics. Approximations of these functions could perhaps be
obtained empirically, by studying feature usage in existing applications or by experimenting with toy problems.
This knowledge of which features are desirable would then help a designer or practitioner to create or select a
programming language which is appropriate to a particular application domain.
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Figure 11: The resulting feature model of actor, agent, functional, object, and procedural programming languages – including all details.
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