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Abstract.

Wireless communication networks are evolving towards self-
configuring, autonomous and distributed multiagent systems in
which nodes are deployed randomly and have to adapt to the en-
vironment in which they operate. A cognitive network is a self-
organising system that relies on the ability of its autonomous
nodes to support communication in an adaptive and distributed
manner. In this paper we address the distributed channel selec-
tion problem, which is a crucial component of many cognitive
networks scenario, in the context of frequency-agile radios that
are able to operate in multiple frequency bands simultaneously.
We formulate the problem as an N-player stochastic game with
incomplete information. We prove that by adopting a simple
reinforcement scheme, namely learning automata, nodes will
converge to a Nash equilibrium, under the assumption of sym-
metric interference between the players.

1 Introduction

Recent years have seen the evolution of traditional wireless net-
works towards self-configuring, autonomous and distributed multi-
agent systems. This trend opens the doors to a new and exciting re-
search field involving both the specialization of state-of-the-art gen-
eral purpose multiagent algorithms and the development of new tech-
niques to solve issues which are specific of the wireless communica-
tion domain.

A crucial factor in the evolution of wireless communication sys-
tems is the management of radio spectrum. In today’s static com-
munication systems, regulators decide both the use of a certain fre-
quency band as well as the users that are allowed to transmit on that
band (see Figure 1(a)). On the one hand this model, by rigidly plan-
ning the allocation of frequency bands, ensures that the interference
between neighboring systems is limited. On the other hand, as the
allocation of spectrum bands is implemented on a long term assign-
ment basis, it is widely recognised that such an approach leads to an
inefficient usage of the spectrum resources. A first consequence of
this quasi-static paradigm is the presence of idle capacity within the
system: numerous studies and measurement campaigns have shown
that spectrum resources are often underutilized.

As spectrum becomes a more and more valuable resource, it is
imperative to address the inherent inefficiency that characterizes the
current spectrum management mechanism. Previous work focused
on mechanisms that assign spectrum more dynamically over shorter
time frames on an as-needed basis (see Figure 1(b)). The opening
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up of the TV white spaces [2] has made the concept of dynamic ac-
cess to spectrum a reality. Networks using the TV white spaces can
avail of any unsed spectrum in the TV bands as distinct from being
assigned a static allowance. Frequency-agile radios make it possible
to use whatever spectrum is available. In addition further advance-
ments mean that radios can use non-contiguous as well as contiguous
blocks of spectrum.

The use of non-contiguous blocks of spectrum for communica-
tions is increasingly of interest. LTE-Advanced [10] introduces the
concept of carrier aggregation which facilitates the combining of
different blocks of LTE spectrum to form larger transmission band-
widths. This will be crucial in supporting the ever-increasing data
demands on mobile networks. In LTE-Advanced carrier aggrega-
tion can be performed using contiguous or non-contiguous blocks
of spectrum and radio receiver architectures are being designed with
this in mind. Though carrier aggregation, as currently envisaged, will
involve the aggregation of static assignments of spectrum, it is not
unrealistic to envisge this becoming more dynamic in the future.

In this paper we look at scenarios in which a group of networks
dynamically access non-contiguous blocks of spectrum and do so
without the need for central coordination. We address the problem of
distributed spectrum resources allocation in the context of frequency-
agile radios that are able to operate in multiple frequency bands si-
multaneously. A number of frequency bands, herein named chan-
nels, have to be assigned to a number of wireless networks in a dis-
tributed manner so that the interference between adjacent systems is
minimized. As each radio is able to operate simultaneously on mul-
tiple non-contiguous frequency bands, we extend the traditional dis-
tributed channel selection problem so that each network has to decide
how many and which channels it should access. The problem of dis-
tributed channel selection has been addressed in the literature from a
game theory point of view [7], from a distributed multi-agent learn-
ing perspective [1, 3] as well as a combined approach [8]. For spe-
cial types of games, e.g. potential games, a proof of convergence of a
reinforcement learning procedure has been provided [6]. We have re-
cently applied learning automata to the problem of distributed chan-
nel selection for radios that have to decide whether it is advantageous
to select an additional channel as opposed to keep using only its cur-
rent transmission channel [4].

The problem we address in this paper is an extension of the tra-
ditional channel selection problem in that we allow each network to
take advantage of of non-contiguous frequency bands. This problem
can be formulated as an N-player stochastic game with incomplete
information, i.e. the distribution of each player’s payoff is unknown
to other players. All the wireless networks have to reach, in an au-
tonomous and distributed manner, a stable allocation of the available
channels, corresponding to a Nash equilibrium (NE). We model each



player as a learning automaton [5], which is a reinforcement learn-
ing scheme where each agent is a policy iterator. We prove that by
adopting this simple reinforcement scheme players will converge to
a Nash equilibrium, under the assumption of symmetric interference
between the players.

The remainder of the paper is organized as follows. Section 2 de-
tails the system model and some of the key properties of learning
automata. Section 3 provides the proof of convergence to a NE of
the proposed learning procedure. Section 4 presents the numerical
results. We summarize our conclusions in section 5.
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Figure 1. (a) A central entity divides the spectrum into frequency channels
which are then assigned to various technology/users. (b) Spectrum resource

assignment changes in time according to the requirements of the various
wireless networks.

2 Problem Description
Let us assume that N wireless networks are operating in the same
geographical area where M frequency channels are available. Two
or more networks can share the same channel only if the interference
they cause to each other is below a certain threshold; otherwise they
have to choose different channels. The goal of a distributed channel
allocation algorithm is to compute a stable channel assignment, ei-
ther through negotiation or blind interaction between the networks,
so as to minimize interference between the systems.

In this paper we adopt the blind interaction approach. The play-
ers indirectly interact by causing interference to each other. No ex-
plicit communication is allowed. This tight restriction is a desidera-

tum when one is designing a communication system in which coop-
eration between the different players cannot be assumed. Moreover
it simplifies the system design: in the case of cooperation between
networks a common control channel to exchange information has to
be established and maintained; also different networks need to agree
on a common protocol. Thus these requirements might hinder the
deployment of heterogenous wireless networks.

We model each player i as a learning automaton: each player i
keeps a probability distribution pi(k) over the set of actions and, at
each stage k, it chooses an action according to pi(k) . Then each
player updates its action probabilities based on the response ri(k)
from the environment, ignoring the presence of the other agents in
the same environment.

In this paper we adopt the Linear Reward-Inaction scheme
(LR−I ). The automaton increments the probability of the action that
resulted in a favorable response from the environment, while accord-
ingly decreasing the probabilities of all the other actions. In case of
an unfavorable environment response, the action probabilities are left
unaltered. The LR−I updating rule is:

pi(k + 1) = pi(k) + bri(k)(ei − pi(k)) (1)

where b ∈ (0, 1) is the reward parameter and ei is the unit vector,
where the ith element is unity.

Each network i wants to get assigned a number of channels ci ≤
Mi, where Mi ≤ M ∀i. Thus each agent has to decide how many
and which channels it should access. By exploiting the development
of frequency-agile radios, which are capable of transmitting on non-
contiguous frequency bands, the cardinality of each agent’s action
space is:

|Ai| =
MiX
j=1

 
M

j

!
. (2)

In other words, each agent can decide to transmit on any of the pos-
sible combinations of the desired number of channels.

Let ri be the payoff of player i, modeled as a random variable,
with ri ∈ [0, 1]. Let us define the utility function of player i:

di(a1, a2, ..., aN ) = E[ri|a1, a2, ..., aN ] (3)

where aj is the action chosen by player j. If we denote by pij the
probability that player i chooses action j, a strategy for player i is
defined as pi = [pi1, pi2, ..., pi|Ai|]. As in [9], we define the func-
tions fis as the expected payoff of player i, given that player i selects
action s and player l adopts strategy pl:

fis(Q) =
X

j1,...,ji−1,
ji+1,...,jN

di(j1, . . . , ji−1, s, ji+1, . . . , jN )
Y
l 6=i

pljl (4)

where Q = (p1,p2, ...,pN ) and jl is the action selected by player l
with probability pljl .

If the learning factor b in (1) is small the following statements hold
[9]:

1. If the learning algorithm converges, it always converges to a NE.
2. For any N-player game, all strict Nash equilibria in pure strategies

are asymptotically stable.
3. If there exists a bounded differentiable function F :
RM1+M2+...+MN → R, such that for some constant v > 0

∂F

∂pis
(Q) = vfis(Q), ∀i, s and ∀Q ∈ IM1+M2+...+MN (5)

where I = [0, 1], then the learning algorithm always converges to
an NE, for any initial condition.



3 Learning Nash Equilibria

We model the problem of multiple channel selection as an N-player
game. Each player has to decide how many and which channel it
should transmit on while minimizing the interference caused to ad-
jacent systems. Thus a single action ai denotes the set of channels
selected by player i.

In our model the players’ payoff is a function of each node’s SINR.
The SINR for player i transmitting on channel ci is defined as:

γici = γi(a1, ..., ci, ..., aN ) =
|hi(ci)|2P

σ2
i (ci) +

X
j|ci∈aj

|hji(ci)|2P
(6)

where aj is the action selected by player j, P is the transmit power,
|hi(ci)| is the channel gain between transmitter i and receiver i in
channel ci, |hji(ci)| is the channel gain between transmitter j and
receiver i in channel ci, and σ2

i (ci) is the noise power at the re-
ceiver i in channel ci. In our study we assume that the channel gains
are time-invariant realizations of a circular symmetric complex nor-
mal distribution with zero mean and unit variance. The noise vector
is also modeled as a circular symmetric complex Gaussian random
variable.

We define the payoff of player i as:

ri(a1, ..., ai, ..., aN ) =
1

Mi

X
ci∈ai

„
1− γ̄

γici

«
+

„
1− nai

Mi

«
(7)

where γ̄ is the minimum SINR that receiver i can support, nai is the
number of channels that node i transmits on when selecting action
ai (i.e. nai = |ai|) and Mi is the maximum number of channels that
node i is interested in.

Theorem 3.1. A pure strategy NE (a∗1, .., a
∗
i , ..., a

∗
N ), according to

the payoff given in (7), corresponds to the players choosing the max-
imum number of channels characterized by an SINR which is greater
than γ̄.

Proof. If action a∗i includes a channel k for which the receiver i
experiences an SINR γik ≤ γ̄, then the payoff of player i is:

ri(a
∗
1, .., a

∗
i , ..., a

∗
N ) =

1

Mi

X
ci∈ai

„
1−

γ̄

γici

«
+

„
1−

nai

Mi

«

≤
1

Mi

X
ci∈āi

„
1−

γ̄

γici

«
+

„
1−

nai − 1

Mi

«
= ri(a

∗
1, .., āi, ..., a

∗
N ) (8)

where āi = ai \ {k}.
If there exists a channel k /∈ a∗i such that γik > γ̄, then:

ri(a
∗
1, .., âi, ..., a

∗
N ) =

1

Mi

X
ci∈âi

„
1− γ̄

γici

«
+

„
1− nâi

Mi

«
> ri(a

∗
1, .., a

∗
i , ..., a

∗
N ) (9)

where âi = ai ∪ {k} and nâi = nai + 1.

To simplify the notation, we denote by g(s)
ji and g(s)

i the square of
the expected value of the channel gain between player j and player
i corresponding to channel s and the square of the expected value of
the channel gain between the ith transmitter-receiver pair in channel
s. Let us define the interference functions as:

rij(ci, cj) =

8><>:
g

(ci)
ji

g
(ci)
i

if ci = cj and j ∈ Ni

0 otherwise
(10)

where Ni denotes the set of players that can interfere with player i.
The interference functions are said to be symmetric if rij(ci, cj) =
rji(cj , ci), ∀i, j, ai, aj .

Theorem 3.2. The learning algorithm specified by (1) with payoff
function given in (7) always converges to a NE if the interference
functions are symmetric and the parameter b in (1) is small.

Proof. Accordingly to the payoff function in (7), (4) can be rewritten
as:

fis(Q) =
1

Mi

X
c∈s

0@1−
γ̄

g
(c)
i P

0@σ2(c) +
X

j∈Ni

g
(c)
ji P

X
aj |c∈aj

pjaj

1A1A
+

„
1−

ns

Mi

«
(11)

Let us define the function:

F (Q) =
2

Mi

X
i

X
k

nkpik −
2γ̄

MiP

X
i

X
k

X
ck∈k

σ2(ck)

g
(ck)
i

pik

−
γ̄

Mi

X
i

X
j

X
k

X
t

X
ck∈k

X
ct∈t

rij(ck, ct)pikpjt

+2
X

i

X
k

(1−
nk

Mi
)pik (12)

From (11) and (12), by exploiting the symmetry of the interference
functions, we get:

∂F

∂pis
(Q) =

2ns

Mi
−

2γ̄

Mi

X
c∈s

0BBB@ σ2(c)

g
(c)
i P

+

X
j∈Ni

g
(c)
ji

X
aj |c∈aj

pjaj

g
(c)
i

1CCCA+2(1−
ns

Mi
)

Therefore, according to the results reported in the previous section
(theorems 3.2 and 3.3 in [9]), the learning algorithm always con-
verges to a NE.

4 Simulation results
In this section we discuss the effect the number of networksN , num-
ber of channels M , and noise power σ2 has on the convergence time
of the proposed learning algorithm. The payoff defined in (7) has a
direct implementation and it allows a fully distributed solution to the
problem of channel selection. The receiver estimates the SINR on
the set of channels selected by its transmitter and sends back this in-
formation. The transmitter then updates its policy accordingly. If the
transmitter does not receive an ACK from its receiver(s), an unfavor-
able response is assumed. For each scenario we run 105 independent
simulations. We assumed that two or more networks cannot operate
on the same channels.

Figure 2 shows the average number of iterations required to con-
verge to a NE with respect to the cardinality of each player action
space. We assumed that each network tries to access at most Mi = 2
channels. Thus the cardinality of the action space isAi = M+

`
M
2

´
.

We can observe that the convergence time increases with the number
of players N . The impact of the cardinality of the action space Ai

on the convergence time is an interesting aspect of these results. As
expected, until a certain point the convergence time of the algorithm



increases with Ai. Then, increasing the number of available actions
does not affect the convergence time.

In Figure 3 we analyzed the combined effect of the number of
available channels M and the noise power on the average number of
iterations to converge to a NE. In particular, we assumed that N = 4
networks operate on the same geographical area and cannot utilize
the same channels. Accordingly to what we discussed above, the
impact of increasing the number of channels becomes less signifi-
cant after a certain point, independently on the noise power. For each
value of Ai, the convergence time linearly increases with the noise
power.
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Figure 2. The average number of iterations to converge to a NE versus
cardinality of each player action space (σ2 = 0.01). For each scenario, i.e.

number of players and number of available channels, we run 105

independent simulations (b = 0.05).
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Figure 3. The average number of iterations to converge to a NE versus
noise power at the receiver with N = 4 players. For each scenario, i.e. noise

power and number of available channels M , we run 105 independent
simulations (b = 0.05).

5 Conclusions
In this paper, we studied the problem of distributed channel alloca-
tion by exploiting a radio’s ability to operate in multiple channels
simultaneously. In particular, we extended the traditional channel se-
lection problem to allow a radio to decide how many and which chan-
nels it should use, while minimizing the interference suffered from
nearby systems. By modeling each player as a learning automaton
and using the Linear Reward Inaction scheme, we formally proved
convergence to a pure Nash equilibrium, under the assumption of
symmetric interference between the players.
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