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Randomisation and the von Neumann
Function: A Variance Formula and
a Problem

R. C. GEARY* '
The Economic and Social Research Institute, Dublin

N a paper of many years ago (Geary 1952) what was termed the contiguity

ratio was introduced, to determine whether, in probability, a statistical
map has a pattern or whether the mapped statistics are distributed at random.
This ratio is really a two-dimensional version of the von Neumann (1941)
statistic, more familiar as that tabled for null-hypothesis normal OLS resi-
duals by J. Durbin and G. S. Watson. Geary was also concerned with the
OLS residual problem, He approached it in two ways, by randomisation and
by classical OLS regression theory, his instruments being means and variances
of the contiguity ratio.

A difficulty with randomisation treatment was expressed as follows:—
“The problem is to determine if there is a contiguity effect, i.e. if ¢ (the con-
tiguity ratio) has a significantly low value after the elimination of ¢ indepen-
dent variables by the least square method. As far as randomisation is con-
cerned, it would appear that the test developed in this section can be applied
formally, the z being the remainders after the contributions of the indepen-
dent variables have been removed. To a certain extent the writer shares the
misgivings of some other students about the validity of the randomization
approach in its application to regression remainders. As each successive in-
dependent variable isremoved,shouldnot thedegree of freedom be diminished?
It does not seem so. What happens is that the variance (or range) of the
remainders diminish as the effect of each independent variable is allowed for,
the test becoming indeterminate when the number of independent variables
(originally with mean zero) is one less than the number of observations n, i.e.,
when all the remainders are zero. Accordingly the formal application of the
randomization procedure, without diminution of the number of degree of
freedom, does not result in obvious inconsistency: we can conceive of cases

-

* The paper benefited from comments by R. N. Vaughan.
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where ¢ will be significantly low even after removal of the effect of (n — 2)
independent variables. Since doubts remain, however, the writer considered
it desirable to examine the problem from the classical sampling aspect. In
any case it will be interesting to compare the results of the two approaches.
In the practical aspect the randomisation method has the advantage that it
can be applied without the assumption of universal normality in the n obser-
vations,regarded as a random sample”.

As far as the writer is aware the degrees of freedom problem has never been
discussed in this application: the controversy in another context between
K. Pearson and R. A. Fisher is part of statistical history. One of the objects
of the present communication is to invite statisticians to discuss the problem.

The contiguity ratio context is too esoteric for a suitable discussion. The
problem arises in the much simpler single dimension of the ratio. But the
writer is unaware of any randomisation treatment of the von Neumann
statistic, so he ventures to give one here without any claim to originality.
One result is remarkable, as will be seen.

One is given a sample of n measures of any kind (they may be raw values,
OLS residuals etc.), x;, ;.. ., %, , ordered in a particular way. From a given
function (e.g., the von Neumann ratio) one wants to make inferences about
the character of the sample (is it probably non-normal, autoregressed etc.?)
One considers the n! permutations of the sample values for each of which
the test function has a value. These n! values are regarded as forming a fre-
quency distribution. If the single value of the function found for the given
ordered sample is near the ends of the frequency distribution (i.e., beyond
the .05, .01 etc., limits) one rejects the hypothesis, exactly as in ordinary
theory. A feature of the test is that no assumption is made about the fre-
quency distribution from which the sample of n is drawn. In theory one
could calculate the moments of the function—or at least the first four
moments—and so estimate the frequency distribution using e.g., the Pearson .
curve system. Here we deal only with the first two moments, the mean and
the variance, which suffice for most practical purposes.

The test function cannot usefully be symmetrical in (x,, x5, . . ., x,)
because then all the n! values would be the same. The essence of the von
Neumann ratio d is that it is not symmetrical (for n>2) as it assumes that the

sample elements are arrayed in a particular way. In fact, assuming, without
loss of generality, that:—

> Tx;=0 (1)
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as will always be the case with OLS residuals, d is given by—
n

d=2(x,-—x,-_1)2/2x?=N/D (2)
=2 i=1

The numerator N is assymetrical, the denominator D symmetrical, i.e., D
has the same value in all permutations. We need concern ourselves only with
the numerator N. It is the fact of constant D that makes the calculation of
moments of d exactly calculable. This is also the classical case when the
sample is a normal one because then d is a homogeneous function of degree
zero, with nr? = Z x? in the denominator. The fact that when the sample is
normal 7 is independent of d (Geary, 1933) makes the exact calculation of
the moments of d, and hence the estimation of the frequency of d (as by
Durbin-Watson) possible.

If f is any polynomial function of (x;, Xx,. . ., X, ) ordered in a particular
way the randomisation mean M (f) of fis the sum of f for all the permuta-
tions divided by n!. To find the mean of d? given by (2) or, in effect, N> we
have to deal with terms in x?, x2 x;-, x2 x;- x;-- and x; x;- x;+ x;+-, all sub-
scripts different. On taking means we may disregard subscripts and insert
mean values of these terms, having regard only to exponents. These mean
values may be written (in a notation which is obvious) (4), (31), (22), (211),
(1111). Note that (31) = (13) etc.

Square (1) and take means. There are n of type x? and n (n — 1)/2 of type
x;x4, 1 # 1. Hence:

n(2)+(11) [2n (n — 1)]/2=0 ° 3)

or

(11) == (2)/(r - 1) (4)

As in (4), we can express all terms in two or more variables in single variable
expressions. As an example of the method of derivation, we have

Zx; Zx3=0 (5)
Multiplying out and taking means:

n4)+n(n—-1)(31)=0 (6)

or

(31) = — (4)/(n —1) (7)
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The derivation of other randomisation means we need is a little more com-
plicated. We shall be content to give the results:

(22) = [ (2)* — (4)]/(n — 1)
(211)= [2 (4) —n (2)?1/(n — 1) (n — 2) (8)
(1111) =38 [ (2) —2 ()} /(n — 1) (n — 2) (n.— 3)

From (2),
D=n(2) (9)
Expanding the numerator of (2)
N = (x} +xn)+2t"_2—21x —212 XiXi i (10)
Hence taking means
M(N)=2(2)+2(n—-2)(2)+2(n—1) (2)/(n — 1), (11)

‘using (4). Hence M (N) = 2n (2). Then:
M(d)=M(N)D=2, (12)

using (9).

The algebra of the calculation of M (d?) or, in effect, M (N?) is onerous but
the result is simple. We regard N, given by the right side of (10) as three terms
(A + B + C) with square (4% + 24B + ...+ C?) and aggregate the terms, hav-
ing regard to coefficients and numbers of terms of each kind, x¢, x? x;- €tc.,

which, on taking means are replaced by (4), (31) etc. Then, gathermg terms
we find: .

M (N*) =2 (2n — 3) (4) — 8 (2n — 3) (31) + 2 (2n% — 4n + 3) (22)
—8(n—2)(n—3)(211)+4 (n —2) (n — 3) (1111). (13)

Using (7) and (8) and collecting terms:
M (N?)=2n [(2n® —3) (2)* — (H)]/(n —1)." (14)
As M (d*) = M (N?)/D? with D =n (2):

var (d) = M (d?) — [M (d)]? (15)
=2 [(2n—3) = by /n (n — 1)
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where b, =(4)/(2)? the familiar kurticity statistic in normal theory in which
in fact its population value 3, is 3.

As a check on the quite elaborate, if elementary, algebra, consider the case
of n = 2. There is then but a single value of d given by (2), for in this case d
is symmetrical in (x,, x;). (4) = (x}{ +x%)/2 = x} since x; + x, =0 and
(2) = x?. Hence b, = 1. Substituting then n = 2 and b, =1 in (15) we find
var (d) = 0, as we should.

Of course (15) is O (n™!), which means"that, with increasing n, d tends in
probability towards 2 (see (12)). What, as announced above, is remarkable
is that the coefficient of b, is O (n"%). This implies that the variance is
nearly independent of the frequency distribution from which the random
sample of n (arrayed in any order) is drawn, As an example take n = 20—one
would scarcely be interested in e.g., residual autocorrelation for fewer obser-
vations—and b = 1, and 6, a range probably covering most distributions.
Values of standard deviation (= square root variance) of var (d) given by (15)
are—

Value of b, s.d. of d
1 0.4353
6 0.4039

The difference is of small importance, having regard to the uses of the statis-
tic d.

There is an interest in comparing the lower critical probability points
derived from randomisation with the well-known d; of Durbin-Watson
(1951). Assuming normality, b, = 3 and, since the mean is 2, lower .05 and
.01 NHP critical points would be given respectively by (2 — 1. 96005) =
and (2 — 2.5759s) = c,, s being the randomisation standard deviation, s?
given by (15). Following are comparisons with dj for various values of =,
with %', the number of regression terms, equalling 1 and 2:—

.05 probability . .01 probability

n s Durbin-Watson dj, Durbin-Watson d,

€1 k=1 k=2 2 k=1 K'=2
20 0.4230 1.17 1.20 " L10 0.91 0.95 0.86
30 0.3523 1.31 1.35 1.28 1.09 1.13 1.07
40 0.3080 1.40 1.44 1.39 1.21 1.25 1.20
50  0.2770 1.46 1.50 1.46 1.29 1.32 1.28
60 0.2538 1.50 1.55 1.51 1.35 1.38 1.35
70 0.2356 1.54 1.58 1.55 1.40 1.43 1.40
80 0.2207 1.57 1.61 1.59 1.43 1.47 1.44
90 0.2084 1.59 1.63 1.61 1.46 1.50 1.47

100 0.1980 1.61 1.65 1.63 1.49 1.53 1.50
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The regularity in relationship is marked: from n = 30 on in no case do the ¢
figures differ from the DW by more than 0.04. The differences, however,
though small, are systematic, not random.

Clearly the correspondence between the ¢ and the dy, is good. As is well
known, in Durbin-Watson there is a zone of indecision characterised by
limits d; and d;. As the previous table shows, the randomisation approach
strongly favours dj . The difference between dy, and dy is the greater the

smaller the value of n so that in the following table attention is confined to
n =20, 30, 40.

.05 probability .01 probability
N k= k=2 k=1 k=2
dL——Cl dU_Cl dL—-Cl dU_Cl dL'-CZ dU—C2 dL—Cz dU—Cz
20 .03 .24 - .07 27 .04 .24 --.05 .36
30 .04 .18 —.03 .26 .04 17 - .02 .25
40 04 14 —.01 .20 04 13 —.01 .19

There is not a shadow of doubt that, with &' = 1,2,d; is closer to the ran-
domisation value than is dy;, to the extent that there seems no point in referr-
ing to dy; in testing for absence of residual autoregression. As the randomisa-
tion formula is almost distribution-free (as regards the disturbances) the
same may now be said of the d; series. Obviously the randomisation limits
(c1 and ¢, ) themselves can confidently be used for adjudging significance if
too much precision be not attached to the null-hypothesis probability (i.e.
to use “near” .05, .01 etc. instead of exact .05, .01 etc.). When 7 is not too
small the foregoing assumption that the n! values are normally distributed is
close enough for the purpose of the approximate probability statement.

In their original 1951 paper Durbin and Watson furnish tables only for the
lower critical values of the von Neumann ratio, namely, d; and dy. The
upper critical values should also be considered: the null hypothesis (i.e., no
residual autocorrelation) should also be rejected when the actual ratio ex-
ceeds 4 — dy (4 being the algebraic maximum of the ratio). The latter situa-
tion is far more rare, in actual practice, than the former. It can occur only
when consecutive values of the calculated disturbances tend to oscillate in
sign from plus to minus, when, in fact the change in signs test tau (Geary

1970)! is near n, the number of observations, instead of near n/2 when the
disturbance values are in random order.

1. None of the several papers on the tau test questioned the validity of the randomisa-
tion test applied to OLS disturbances. All comments bore on the discriminatory power of
the test, compared with the DW and other tests, None of the commentators objected
that the randomisation test did not take account of degrees of freedom, or denied that,
having regard to its simplicity and convenience, tau was more efficient than might have
been expected.



RANDOMISATION AND THE VON NEUMANN FUNCTION 57

The main point is, however, that, at the upper rejection limit, the discrep-
ancies between the normal theory randomisation critical values and the DW
values are exactly those shown in the previous tables.

Comparison between randomisation and DW null hypothesis limits has
been confined to &' =1 and k' = 2, i.e., for estimated OLS disturbances after
removal of one and two indvars respectively. Comparison is not so satisfac-
tory for regressions with more than two indvars. The nub of the problem
raised in this paper and stated at the outset is that we have but one random-
isation critical limit for given probability; there are k' values of d;. With
randomisation the manner by which the OLS disturbances are estimated
(i.e., without regard to number of indvars) is disregarded: we simply have a
time sequence of numbers (positive and negative since their sum must be
zero) and the null hypothesis is that they are probably in non-random
order. The fact that the estimated disturbances are related because their sum
is zero is of no importance unless n is small. Basically the approach is the
same in using the tau test, on the classical approach, on the contrary,with. &’
indvars there are (k' + 1) linear relations between the disturbances so that in
significance-testing the number of independent variables involved is not n
but (n — k' — 1), the number of degrees of freedom.

An obvious approach is as follows. If, in (15), one regards n as number of
‘degrees of freedom established in the ordinary way, would the resulting
values of ¢, and ¢, correspond to the Durbin-Watson values of d; for k' =1,
2, ..., 5. The answer is “No”. Attention may be confined to the most test-
ing case of number of observations equal to 20.

With 1 to 5 indvars, degrees of freedom in the disturbance range from 18
to 14 and using (15) and, always assuming normality, the ¢; values forn =18
and 14 are respectively 1.13 and 1.04, range 0.09. But the Durbin-Watson
range for d; from k' = 1 to k£’ = 5 is 0.41. This comparison relates to prob-
ability .05. At .01 probability the contrast is also marked: for ¢, the range
is 0.15, for &' 0.35. If any correction for number of degrees of freedom is
necessary using randomisation, it will not be on these lines.

The most important conclusion is that for practical purposes the Durbin-
Watson d; system may be accepted without the prior assumption that OLS
disturbances are normally distributed. It is true that this has been shown
here only for &’ = 1 and 2. There is little reason to doubt that it is true for all
values of %&'. The randomisation approach has the merit of being far simpler
algebraically than Durbin-Watson and can stand on its own, especially when
n is not small.
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