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Substituting Means for
Missing Observations
in Regression

D. CONNIFFE
An Foras Talidintais

I INTRODUCTION

conometric textbooks usually discuss the procedures to be adopted

when missing values occur in data intended for regression analysis. There
is a large statistical literature on this topic. A variety of methods, differing
both in their computational complexity and in the assumptions required,
have been suggested, compared or simulated by, among others, Buck (1960),
Afifi and Elashoff (1966), Haitovsky (1968), and Hocking and Smith (1968).
More recently, there have been the papers of Dagenais (1973), and Beale
and Little (1975). Yet textbooks sometimes give a not dishonourable men-
tion to the simplest ad-hoc procedure of all: that of replacing missing values
by sample means. Apart from the obvious computational ease of the pro-
cedure, advantages over ordinary least squares (on the complete observations
only) are claimed for it in some circumstances. To quote Kmenta (1971):
‘One redeeming feature of the estimators . . . is the fact that when the corr-
elation between X and Y is low, the mean square error of these estimators is
less than that of ordinary least squares’.

This note examines why the simple method of substituting means seems
to give good results in certain circumstances. The objective is not to promote
this simple approach instead of more sophisticated methods — no one has
ever claimed that it could be generally superior — but to explain when and
why its mean square error properties are superior to ordinary least squares
or even to other methods.
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II MISSING VAI Y;ES OF THE DEPENDENT VARIABLE

Consider the case of:simple regression when there are r, observations on
xand r, (<r,) complete pairs of both x and v The est1mator of the re-
gressmn coeff1c1ent obtamed by replacing missing y values by the simple

mean and performmg the usual calculations is
I

ﬁ' S’xy Sxy Sx?
= = = g* 1
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where S’ implies sumrﬁation over all r, pairs including those in which the
sample mean has been subktituted, and §* i is the usual estimator from the r
complete observatlons Afifiand Elashoff (1967) gave comparisons of the
mean-square error of B relative to that of 8%, having assumed that

ViTatBx e
where E (¢;) = 0, V (¢;) = 02 (1-p?) and X; is N (i, 0,%)
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Using their results, the mean square error of f§is:
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while that of §* is
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The first term of (2) will clearly be much smaller than (3) provided r, is

~ considerably greater ‘than r,. The second term of (2) depends on the true
coefficient § and if this is small (2) can be less than (3). If § is not small
enough (2) will exceed (3), so the use of § instead of §* implies some degree
of prior knowledge. But, if § is small, has the reduction in MSE resulted from
information contained in the extra incomplete observations? This is a valid
question because Hocking and Smith (1972) have shown that if y and x are
bivariate Normal — or multivariate Normal if X is a vector of explanatory
variables — and y values are missing from some observations, then the maxi-
mum likelihood estimate of § is just §*. (This does not apply to the intercept
term.) '

In formula (1), Sx? is always less than S’x?, so fi\is obtained from f*
by ‘shrinking’ it. Shrinkage estimators form a class of biased estimators ob-
tained by multiplying léast square estimators by quantities less than unity.
Their properties have been discussed in the statistical literature; for example,
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by Mayer and Wilke (1973). The optimal — in a minimum mean square
error sense — shrinkage factor is

1/; 1+%’2 é 4)

so, provided 82 /02 is bounded, an improvement over least squares is possible.
The shrinkage estimator, defined by (4) is also superior to (1) although it
uses only the complete observations. Since formula (4) involves unknown
parameters that must be estimated from the data or from, probably vague,
prior knowledge, the optimality may not be attainable in practice.

But how plausible is S2x/S’?x as a shrinkage factor? It does not involve
02, p or f§ and its magnitude depends on the number of incomplete obser-
vations. The degree of shrinkage increases with the number of extra incom-
plete observations. But from (4) the optimal shrinkage increases as {2
decreases relative to- 02 (1—p?). Unless it could be postulated that missing
values will increase in frequency in situations where the coefficient is small,
Sx2/S’x? is inappropriate as a shrinkage factor. So, even in cases where the
choice of a ‘good’ shrinkage factor is far from clear, it can be stated, some-
what negatively, that the method of substituting the mean for missing Y
values is unlikely to help.

~—

III MISSING VALUES OF AN EXPLANATORY VARIABLE

The simplest case, the dependent variable measured on r, observations
and one explanatory variable with missing values for r —r, of these, is a
trivial one because substituting the sample mean just gives the ordinary
estimator. Suppose then that there are two explanatory variables, x, measured
on all r, observations and x,, which is missing for r, —r, of them. It is
obvious that:

2?7

S’xz = ng, $'x,x, = Sx,x, and §’x,y = Sx,y
and then
A Sx,y S'x? — 8%,y 8x,x,
! S'x? Sx2 — (Sx, x,)? _
and (5)

ﬁ\ _ S'x,y SxZ — Sx,y Sx, x,
2

$'x2 8x2  — (Sx,x, )2
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Taking expectations, where the model E(y) =a + 8, x, +§, x, is assumed,
gives ~

AL Sx2 (S*x,x, — Sx, X,)
BB)=8, +6, St 1
§x7 8x; — (Sx;x,)
and (6)
E(ﬁ V=g S’xf’Sx; — Sx,x, S*x, x,
o2 7| 9x2 8x2 — (Sx,x,)?

S*x, x, differs from $’x, x, in that it contains the true (but unknown) x,
values instead of the sample means. Thus the expectations (6) are not actually
estimable unless further assumptions are made about the x’s. However, it is
clear that the estimators (5) are biased; the extent of the bias depending on
the magnitude of §,. §, is biased downwards and 61 biasg\d upwards (assum-
ing x, and x, positively related; if negatively related § is biased down-
wards). The variances of §, and ﬁz , conditional on the x’s, are

2 Qo2 2 Q1,2
Uny2 UYSX1

and {7
2 Qy2 2 ' Z Qu? 2 \
S$’xi Sx; (Sx, x,) r 8’x% Sx; —(Sx, x,)
respectively, and these are smaller than the variances of the ordinary least
squares estimators, which are
' 2 Qy2 L2 Qy?
3 Oy Sx; oy Sxi

TSxf Sx2—(Sx, x,)? and - 8x? Sx2—(8x,x,)? (8)

The difference will not be appreciable in the case of ,/3\2 if Sx x, is small.
The differences could be very large, however, if the denominators in (8) were
close.to zero. Excluding this case for the present and remembering that mean
square error is the sum of variance and squared bias, it is evident that the
estimators (5) will only have better mean square errors than the least squares
estimators if 8, is small. As in Section II it appears that prior knowledge is
needed to justify the estimators.

.There are other estimators for this situation, of course. Another approach
is to replace the missing values by

Q2i=§2 f(xli—T(l)lexz/Sxi, (9)

where x ; is the value of x, corresponding to the missing x, value and X, is
the sample mean over ther, complete observations. Now the standard analysis

of the ‘completed’ data gives the usual least squares estimator B3 say, for 3,
and
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S’x.y Sx. x
1 _ 172 BI (10)

S'x3 : Sx2

for B, . Conditionally on the x’s, this has expectation

8+ S’x, x, _ Sx, x, |
vz sx? Sx? ’

and if x, is itself assumed to have a linear regression on x , the further ex-
pectation over x, is §,. So with this frequently made assumption, (10) is
unbiased, unlike the estimator ﬁ\l given by (5). The mean square error of
(10) is easily shown to be smaller than that of ﬁl except for small §, and for
the circumstances to be discussed next. The estimator (10) can be improved
on by various modifications; for example, starting with (9) and conducting
a weighted instead of unweighted analysis. The approach of Dagenais (1973)
and Methods 4 and 5 of Beale and Little (1975) are of this type. :

But there is a situation where the mean square error properties of th
simple method of substituting means are clearly superior to ordinary least
squares on the complete observations and even superior to the more sophis-
ticated methods mentioned. If

Sx? Sx2 — (Sx,x,)? ‘ (11)
is close to zero, that is, if there is a severe multicolliniarity problem, the
variances given by (8) will be very large. Those given by (7) will be much
smaller and this reduction will more than offset the squared bias, provided
B, is bounded. The simple method is also superior to (10) because the var-
iance of that estimator may be shown to contain (11) as a denominator. It is
easy to see why any approach, based on predicting missing values from
values of another explanatory variable, will fail in an extreme multicollin-
iarity situation. Formula (9) sets up an exact linear relationship between the
explanatory variables for the incomplete observations and so makes the
original multicolliniarity problem even more severe.

This superiority, in a mean square error sense, of the method of sub-
stituting means, is another example of the fairly general finding that, in
regression situations, biased estimators are most effective when extreme
multicolliniarity is present in the data. In summary then, although the method
of substituting means for missing explanatory variables is not generally
sound, it could outperform other approaches, at least in terms of mean
square error, in studies where the data-set is close to multicolliniar.
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