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Substituting Means for 
Missing Observations 

i n Regression 

D . C O N N I F F E 
An Foras Taluntais 

I I N T R O D U C T I O N 

E conometric textbooks usually discuss the procedures to be adopted 
when missing values occur in data intended for regression analysis. There 

is a large statistical literature on this topic . A variety o f methods, differing 
bo th in their computational complexi ty and in the assumptions required, 
have been suggested, compared or simulated b y , among others, Buck (1960), 
A f i f i and Elashoff (1966), Haitovsky (1968), and Hocking and Smith (1968) . 
More recently, there have been the papers o f Dagenais (1973) , and Beale 
and L i t t l e (1975). Yet textbooks sometimes give a not dishonourable men
t i o n to the simplest ad-hoc procedure o f al l : that o f replacing missing values 
by sample means. Apar t f rom the obvious computat ional ease o f the pro
cedure, advantages over ordinary least squares (on the complete observations 
only) are claimed for i t in some circumstances. To quote Kmenta (1971) : 
'One redeeming feature o f the estimators . . . is the fact that when the corr
elation between X and Y is low, the mean square error o f these estimators is 
less than that o f ordinary least squares'. 

This note examines w h y the simple method o f substituting means seems 
to give good results i n certain circumstances. The objective is not to promote 
this simple approach instead of more sophisticated methods — no one has 
ever claimed that i t could be generally superior — b u t to explain when and 
w h y its mean square error properties are superior to ordinary least squares 
or even to other methods. 



I I MISSING V A L U E S OF T H E DEPENDENT V A R I A B L E 

Consider the case ofasimple regression when there are r1 observations on 
x and r ( < r ) complete pairs' of bo th x and y . The estimator of the re-
gression coefficient obtained by replacing missing y values by the simple 
mean and performing the usual calculations is 

S'xy Sxy Sx 2 

= = 6* (1) 
P -S 'x 2 S'x 2 P S'x 2 K ' 

where S' implies summation over all pairs including those in which the 
sample mean has been substituted, and |3* is the usual estimator f rom the r 2 

complete observations. A f i f i and Elashoff (1967) gave comparisons of the 
mean-square error o f 0 relative to that o f 0*, having assumed that 

y j = a + |3 x j + ej, 

where E (ej) = 0, V (ej) = a 2 ( 1 - p 2 ) and X{ is N ( j ^ , a x

2 ) 

Using their results, the mean square error of /3 is: 

( r 2 - l ) a 2 ( l - p 2 ) + f i r - r j C 2 . ( r a - 1 ) + ( r _ r ) j ( 2 ) 

( r i _ 3 ) ( r 1 - l ) a 2

i ( r t - l ) 2 j r 1 + l . 1 \ [ 

while that of |3* is 

a 2 ( 1 - P 2 ) 

( ' 3 - 3 ) < 
(3) 

The first term o f (2) w i l l clearly be much smaller than (3) provided r x is 
considerably greater than r 2 . The second term of (2) depends on the true 
"coefficient /3 and i f this is small (2) can be less than (3). I f |3 is not small 
enough (2) w i l l exceed (3), so the use o f j3 instead o f |3* implies some degree 
of pr ior knowledge. But , i f |3 is small, has the reduction in MSE resulted f rom 
informat ion contained in the extra incomplete observations? This is a valid 
question because Hocking and Smith (1972) have shown that i f y and x are 
bivariate Normal — or multivariate Normal i f X is a vector of explanatory 
variables — and y values are missing f rom some observations, then the maxi
m u m l ike l ihood estimate o f j3 is just )3*. (This does not apply to the intercept 
term.) 

I n formula (1) , Sx 2 is always less than S 'x 2 , so (3 is obtained f rom 0* 
b y 'shrinking' i t . Shrinkage estimators fo rm a class of biased estimators ob
tained by mul t ip ly ing least square estimators by quantities less than un i ty . 
Their properties have been discussed i n the statistical l i terature; for example, 



by Mayer and Wilke (1973). The opt imal — in a m i n i m u m mean square 
error sense — shrinkage factor is 

j 0 2 Sx 2 

so, provided j32 / a 2 is bounded, an improvement over least squares is possible. 
The shrinkage estimator, defined by (4) is also superior to (1) although i t 
uses only the complete observations. Since formula (4) involves unknown 
parameters that must be estimated f rom the data or f rom, probably vague, 
pr ior knowledge, the opt imal i ty may no t be attainable in practice. 

But how plausible is S 2 x / S ' 2 x as a shrinkage factor? I t does not involve 
a 2 , p or )3 and its magnitude depends on the number o f incomplete obser
vations. The degree o f shrinkage increases w i t h the number o f extra incom
plete observations. But f rom (4) the opt imal shrinkage increases as |32 

decreases relative to* a 2 (1—p 2 ) . Unless i t could be postulated that missing 
values w i l l increase in frequency in situations where the coefficient is small, 
Sx 2 /S ' x 2 is inappropriate as a shrinkage factor. So, even in cases where the 
choice o f a 'good' shrinkage factor is far f rom clear, i t can be stated, some
what negatively, that the method of substituting the mean for missing Y 
values is unl ikely to help. 

I l l MISSING V A L U E S O F A N E X P L A N A T O R Y V A R I A B L E 

The simplest case, the dependent variable measured on rx observations 
and one explanatory variable w i t h missing values for r1— r 2 o f these, is a 
t r ivial one because substituting the sample mean just gives the ordinary 
estimator. Suppose then that there are t w o explanatory variables, X j measured 
on all r t observations and x 2 , which is missing for T j — r 2 o f them. I t is 
obvious that : 

and then 

and 

S'x 2 = S x 2 , S 'XjX 2 = SXjX 2 and S ' x 2 y = S x 2 y 

A S x 2 y S ' x 2 - S ' x i y S X l x 2 

Pi S'x 2 Sx 2 - ( S x j X 2 ) 2 

S ' x ^ S x 2 — S x 2 y S x j X 2 

S'x 2 Sx 2 - ( S X l x 2 ) 2 

( 5 ) 



Taking expectations, where the model E(y) = a + |3j x t +132 x 2 is assumed, 
gives 

^ S ' x J S x * - ( S x . x , ) * 

and (6) 

' S 'x 2 Sx 2 - Sx, x 2 S*x, x 2 ) 
E ( ? 2 ) = /3 

2 2 j S'x 2 Sx2

2 - ( S X l x 2 ) 2 \ 

S * x ] [ x 2 differs f rom S ' x , x 2 i n that i t contains the true (but unknown) x 2 

values instead o f the sample means. Thus the expectations (6) are not actually 
estimable unless further assumptions are made about the x's. However, i t is 
clear that the estimators (5) are biased; the extent o f the bias depending on 
the magnitude o f |32 . (32 is biased downwards and biased upwards (assum
ing X j and x 2 positively related; i f negatively related (3j is biased down
wards). The variances o f p t and j ^ 2 , condit ional on the x's, are 

a 2 S x 2 a 2 S'x 2 

- and i ! . (7) 
S'x 2 S x 2 _ ( S X l x 2 ) 2 , S 'x 2 S x 2 - ( S X l x 2 ) 2 

respectively, and these are smaller than the variances o f the ordinary least 
squares estimators, which are 

a 2 S x 2 a 2 S x 2 

Sx 2 S x 2 - ( S X l x 2 ) 2 a n d Sx 2 S x 2 - ( S X l x 2 ) 2 ( 8 ) 

The difference w i l l not be appreciable in the case o f $ 2 i f S X j x 2 is small. 
The differences could be very large, however, i f the denominators i n (8) were 
close .to zero. Excluding this case for the present and remembering that mean 
square error is the sum o f variance and squared bias, i t is evident that the 
estimators (5) w i l l only have better mean square errors than the least squares 
estimators i f (32 is small. As in Section I I i t appears that pr ior knowledge is 
needed to jus t i fy the estimators. 

There are other estimators for this si tuation, o f course. Another approach 
is to replace the missing values by 

* 2 i = * 2 + ( X ! i - X 1 ) S x i X 2 / S x 2 , (9) 

where x x j is the value of x ; corresponding to the missing x 2 value and x 2 is 
the sample mean over the r 2 complete observations. N o w the standard analysis 
o f the 'completed' data gives the usual least squares estimator (3% say, for 0 2 

and 



S'Xjy SXjX 
2 

S'x-2 Sx 2 _ 
ft (10) 

for j3 j . Condi t ional ly on the x's, this has expectation 

!

S'x, x , Sx, x , ) 

and i f x 2 is itself assumed to have a linear regression on x t , the further ex
pectation over x 2 is /3j . So w i t h this frequently made assumption, (10) is 
unbiased, unlike the estimator $ given by (5). The mean square error of 
(10) is easily shown to be smaller than that o f $ ( except for small )32 and for 
the circumstances to be discussed next. The estimator (10) can be improved 
on by various modifications; for example, starting w i t h (9) and conducting 
a weighted instead of unweighted analysis. The approach o f Dagenais (1973) 
and Methods 4 and 5 o f Beale and Li t t l e (1975) are o f this type. 

But there is a situation where the mean square error properties of the 
simple method o f substituting means are clearly superior to ordinary least 
squares on the complete observations and even superior to the more sophis
ticated methods mentioned. I f 

S x 2 S x 2 - ( S X l x 2 ) 2 (11) 

is close to zero, that is, i f there is a severe mul t ico l l in ia r i ty problem, the 
variances given by (8) w i l l be very large. Those given by (7) w i l l be much 
smaller and this reduction w i l l more than offset the squared bias, provided 
j32 is bounded. The simple method is also superior to (10) because the var
iance o f that estimator may be shown to contain (11) as a denominator. I t is 
easy to see why any approach, based on predicting missing values from 
values o f another explanatory variable, w i l l fail in an extreme mul t ico l l in 
iar i ty si tuation. Formula (9) sets up an exact linear relationship between the 
explanatory variables for the incomplete observations and so makes the 
original mul t ico l l in ia r i ty problem even more severe. 

This superiority, in a mean square error sense, of the method of sub
st i tut ing means, is another example of the fairly general finding that, in 
regression situations, biased estimators are most effective when extreme 
mul t ico l l in ia r i ty is present in the data. I n summary then, although the method 
of substituting means for missing explanatory variables is not generally 
sound, i t could outperform other approaches, at least in terms of mean 
square error, i n studies where the data-set is close to mul t icol l in iar . 
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