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I N single equation LS regression the common practice is. to test goodness-
of-fi t by the standard error o f estimate s and probable absence, o f residual auto-
regression by the Durbin-Watson d [2], [3], o'r the more recent count o f sign 
changes r [6]. W i t h a wide choice o f causative (or independent) variables (indvars) 
and w i t h access to a computer, a multitude o f regressions can be produced, one for 
each set o f indvars selected. W e usually pick the regression w i t h the lowest s 
and a satisfactory d or r as the "best", unless there are very compelling a priori 
reasons for picking some other set. T ru th to say, there is still much empiricism 
in regression practice; i n i t art has a place as wel l as science. , 

In setting up the mode ls = x p + u, u regular, we are saying that (considering 
time series for convenience) throughout the period certain causes (which need not 
be independent) regularly affected the level o f the dependent variable, the 
difference between the vector xp and the observed y vector, namely u, sum­
marising a vast number o f unidentified causes, operating perhaps in some "years" 
but no t ' i n others, as we l l as plain errors o f observation. W e customarily regard 
our table o f data as a single realisation f rom a theoretically possible infinity o f 
states (wi th x constant throughout), the minor causes operating in such a random 
way that the elements o f « can be assumed to be homoskedastic throughout and 
independent o f one another, i.e. u is regular, by definition. 

I t is customary (indeed a practice to be recommended) to graph the calculated 
dependent variable x b against the original vector y. Inevitably some o f the 
calculated disturbances, elements o£v,y = xb+v, are comparatively large. Are 
they abnormally so ? The statistics 5, d and r tell Us little or nothing about such 
aberration. Clearly we have something to gain by studying the individual disturb­
ances. Our knowledge o f the data w i l l be deepened thereby. Such exercises may 
even bring to l ight indvars then-to-fore unsuspected. When , and only when, 
aberration has been stochastically determined are we justified in using the device 
o f dummy variables thereby mitigating its effect. This paper deals w i t h the 
problem o f the identification o f such aberrations. 

Order Statistics 
W e do so by recourse to order statistics. The elements o f « in the model are, by 

definition, independent. The vector v is a consistent estimate o f « . I t may be 
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assumed that number o f sets o f observations T is so large that the calculated 
elements o f v are also independent; they cannot be so, in general, since 
v' iT — o, iT the unit vector. 

W e deal throughout w i t h absolute values o f the disturbances and that each o f 
these (positive) values has the cumulative frequency (c.f.) F, o < F < i . The c.f. 
G „ o f the absolute value o f order n, on the null-hypothesis, is easily seen to be: 

(1) . G „ = T (Jlj) j F dx(i-x)".-1 xT-» 

For any order n the value o f G„ as a polynomial i n F can easily be found by 
expanding ( i — x ) " - 1 in the integral. The formulae for the first three orders are: 

G 1 = FT 

(2) G 2 = TFT-i-(T-i)FT 

T(T-i)(T-2) FT-2 2FT~l FT 

G 3 = : . [ + - ] 
2 T - 2 T - i T 

The practical problem is: given G„ to f ind F. The solution is obvious in the 
case o f Gv I n general G „ w i l l have values like .95, -99 etc., depending on the 
probability used for determining significance. N o w , for these earlier orders and 
T not small, i t is evident that, setting G „ = 1— g„ and F = 1—f, f<<gn> m 

fac t / i s usually very small. O n making these substitutions we find f rom (2): 

(3) c - i ) & - ( ! ) / • - ' ( ^ ^ 3 Q / « - . . . 

In general: 

(4) * . - r ^ ( - y ( " ^ , ) ( . r

+ « ) / " * ' -
1 = 0 • • \ ' \ ' 



A remarkable feature o f (4), apart f rom its simplicity, is its generality (i.e. i t has 
been derived wi thout assumption about normality, or anything else), as func­
tionally relating gn and/ (and hence G„ and F). • • 

N o w , taking a line f rom the obvious advantage o f such a course i n the case o f 
« =, i, we make such a transformation as to ensure that the first coefficient on the 
right o f (4)'is always unity. For this we set: 

(5) ( „ ' ) / - *• 

or : 

O n so substituting f o r / i n (4), the typical term contains the fol lowing factor i n T ; 

. " - w a r * 

( 7 » F t f 

(n + i) 

r r r - i . . . r—«+i 

easily seen to be O ( T 0 ) i n T, so that as T-*-co each transformed coefficient (i.e. o f 
x"+') tends to a constant value, which on combining factors is easily seen to be: 

(8) Q = H - ( W ^ - I ) [ ( „ + 0 ! ] - ( « 0 ~ ( 4 i ) 

As the factors i n Talone tend to unity when T->-oa,C" is the coefficient o f * " + ' 
i n transformed (4). For all values o f «, C" = 1, f rom (8). As an example, for 
the third term o f gz at (3), 1 = 2, « = 3. Then, f r o m (8): 

= 6 x (120)- 1 x ( i-8i7i2i) 6 ' 

= 0-990579-



This is the value o f the coefficient o f x 5 ing3 when number o f sets o f observations 
is indefinitely large! 

I n (7) the factors independent o f T have been transferred to C", given by (8). 
The rest o f (7) (i.e. the part i n T alone) may be wri t ten, w i t h w = i / T : 

(9) W", - (1—w){i—zw) . . . (1—mw)[(i—w)(i—2w) . . (1 — rw)] -", 
m = n+i—i; r = n— 1; p = (n+1')/« 

The full coefficient o f xn+i i n the x-transformed version o f (4) w i l l then be 
C,Wt. 
Log e W" is expanded in powers o f w. N o special interest attaches here to the 
general expansion so we proceed to particular cases. Again we take i = 2, n = 3, 
as an illustration. Recalling that, when o < w < i , log „ (1—w) = ^-w—w2/2 
— —. . . ad inf. we find: 

l o g e W\ = - 5 w - ^ w 2 - ^ - ? Z Z w 4 - 2 4 9 w - 5 . . . 
6 3 12 

W h e n T = 100, w = i o ~ 2 and the first four terms o f the expansion give 
log e W3

2 = —051116. Whence W\ = -95016. The ful l coefficient o f x5 i n the 
expansion o f £ 3 is C^W2

3 = 0-990579 x 0-95016 = 0-9412. 
The object o f the x-transformation is to ensure that the coefficients o f x"-' 

remain small as T increases, i n the transformed version o f (4). Given T, they also 
diminish as i increases. The fact that i n the expansion o f l o g e W" the numerical 
coefficients o f wk tend to increase sharply w i t h k is really no embarrassment, 
since wk becomes very small as k increases when T > 10, so that only the first 
few terms are required for a close approximation. The x-transformed equations 
were,used throughout for the computation o f Table 1. 

The Highest Deviate 

O n transformation (6) the x-equation version o f (3) (i) is: 

, v T(T-i) 2 , T ( T - i ) ( r - 2 ) . _ (10) 0-, = x— — i '- x2+ —̂  ^ ' x 3 — . . . 1 terms. 
\ J I # 2 T 2 1.2.3 T 3 

W h e n T = 00, (10) becomes: 

(11) gi = i - ^ x 

yielding the solution: 

(12) x = g1+g1

2l2+g1

3l3+ . . .ad inf. 



W h e n ^ j — '05, x — -051292, w h e n ^ = - o i , x = -010050. A t the other extreme 
when T = I , x = gv I t is obvious that when g1 is small the universal solution 
(i.e. for all values o f T) is approximately x = gv I f xT be the exact solution the 
corresponding /•probabil i ty is found f rom (8): ' 

(13) fT = xT/T. 

The normal theory ^ -p robab i l i t y nul l hypothesis critical point is that found 
f rom the standard normal table [ i ] corresponding to probability (1—^/2). 

The Critical Probability Points Table 
W h i l e the derivation o f probabilities/corresponding to any initial probability £ 

can easily be derived by the foregoing x-transformation, the derivation o f critical 
points corresponding to probability / presents certain difficulties when T is not 
large. W e use normal theory throughout this paper but such a procedure is not 
strictly valid. In the first place, even i f model residue ut is normally distributed, 
the statistic we use, namely vt divided by its estimated standard error, is not 
distributed normally, but as the Student-Fisher statistic t. The hypothesis o f 
normality is strictly true only as T->-oo. I n practice, however, Student-Fisher 
critical points, given probability (-05, - o i , etc.) are close to normal theory points 
and the values given in Table 1 can be used w i t h the mental reservation that the 
actual nu l l hypothesis probabilities are slightly greater than the -05 and -o i 
indicated. This is really an unimportant point since we make only formal use o f 
these probabilities i n making inferences: we are content to state merely that some 
calculated value is "significant". I t is enough that the nul l hypothesis probability 
is "small". -

Another difficulty is that while the sample o f T may be random and .drawn 
f rom a normal population the statistics o f given order are not normally dis­
tributed. The critical points o f the statistic X x = {xx—fji)jo, where fj, and a pertain 
to the normal population sampled and xt the highest value in the sample, are 
given i n Table 24 o f [1] , for T < 3 0 , presumably using the exact frequency 
distribution o f Xv I t remarkably happens, (however, that our -05 and -o i 
probability critical values for sample sizes T = 10, 20, 30 (six values in all), though 
computed on the assumption that the largest value was normally distributed, 
exactly (to two decimal places) equal the [1] values. So much for smallish values 
o f T. As T increases, the frequency distributions o f statistics o f all orders tend 
towards normality so that considerable confidence may be reposed in all values 
o f T shown in Table 1. They are, however, described as "approximate" because 
the populations involved are really not normally distributed, but only approxi­
mately so, as explained above. 

Table 1 is fundamental for the present research. As already stated, the values 
shown were derived using the x-equations. I t was usually-possible to make a good 
guess o f a near approximation x0 to the root x required, beginning the iterative 
process. Then x x = ' x 0 + e0 where e0= —j(x0)lf(x^j, x 2 ' = x±+ ex etc I n fact, two 
terations were required in only a few cases; mostly one sufficed since, as T 



TABLE I ; Approximate Critical -05 and \Oi Probability Points of Deviates of < Orders 1, 2, 3 
•- (Absolute Values), jor Certain Values of Sample Size T. . ' 

Normal Theory Assumed Throughout. 

Order 1 Order 2 Order 3 
T . —— — : •—— •—• : 

•05 • - t '01 •05 '01 •05 -or 

I 1-96 2-58 —•• — — 
10 2-80 3*29 < 

2-09 2-42f" , 1-71 1-98 
20 3'02 3-48 2-36 2*67 2-03 2-28 
40' 3*22 3-66 2'6l 2-90 2-31 2-54 
60 3*33 3-76 • 2-75 3-02 2-46 2*69 
80 3-41 3-84 2-84 3 -" 2-56 2-78 

IOC 3'48 3-89 2-91 3-18 2-64 2-85 

increased, the x-solutions became nearly identical for each o f the three orders. 
Critical points for only a few values o f T are given since in the range 10 < T < 100 
critical points for any T can easily be interpolated. 

Application to Regression 

The \ , factors. I f the model is • = x P + H , u regular, the LS estimate is 
y — yc+ v, yc = xb. N o w , while Eu2 = o-2 for all elements o f w, the value o f 
Ev2, for given t i n the regression, is not a2 But A2, a2, where: 

(14) A ^ r - x ^ x ' x ) ^ , : ' . -

The second term on the r ight o f (14) is o ( T _ 1 ) so that A*.->-i and Ev2,-+o2 only as 
T-*co. This A-correction should be used when T is not large, as i n the exercise 
that follows. In simple regression (14) assumes the f o r m : 

(15) A 2 = (T-i)lT~(x-xf j I (x-xjt. • , . 

The nul l hypothesis here is that all the elements i n the residual vector u have the 
regular properties E M , = o, Eu2, = a 2 (wi th Eu,ut, = 0, t' # t). W e establish the 
regression on these ^assumptions about our model (or population), estimating 
a 2 by s2 =", 2J(y—yc)2j(T— K), where K is,the number o f indvars, including the 
constant. B u t i f some o f the values o f the observed yt contain aberrations which 
we hope to discern f rom an examination o f the higher values o f | v, | , we 



contemplate the possibility o f a model in which a few o f the disturbances are no t« 
(for particular values o f t) b u t H , + a„ where Eat =^o, so that all the disturbances are 
no longer regular, as defined above. Here we assume that these disturbances a, 
are few, say t w o or three: general residual heterovariance is another matter (see, 
for example, [4]). 

I f we use the larger | v, \ to this end, we cannot safely use the classical formula 
in the previous paragraph, pace the null hypothesis, to estimate s2 unless T is very 
large, wh ich i t rarely is. As the fol lowing exercise clearly shows, such an estimate, 
when T is not large, can seriously overestimate o-2 and underestimate the test 
statistic, namely v,j(s.e. vt), used for identifying aberrations, thereby concealing 
these when they are possibly present. Nor , if, say, the first and second highest 
absolute values o f the residuals are under test, simply to'eliminate f rom sum squares 
(and reducing d.f. by 2) is invalid, for, even i f there were no abnormalities present, 
this procedure wou ld underestimate a2. 

The correct treatment is given in [5] . This involves substituting statistics 
52JBj, s 2 E 2 etc., for the actual contributions o f the highest, second highest etc., 
(yt—ytc)2 i n sum squares, where E„ = Ez2, z„ being the nth order value for a 
random sample o f T f rom N + (0, 1). W e then estimate a 2 by s2 f rom: 

(16) (T-K)s2 = 52 E En+ E\y-ytc)2, 

where E' indicates the omission o f the K residuals under test, or: 

(17) s* = E'(y-ytc)2l(T-K- EE,). 

T o make the present expose tolerably complete, a table o f E„, given in [5] is 
reproduced here, for convenience, as Table 2. 

TABLE 2: Value of E„=Ez'for random samples of Tfrom N^O, I) for c r ^ J 

Sample Order n 
size T 1 2 3 4 5 

10 3799621 2.171462 
20 4-916871 3-216540 
30 5.599340 3.867966 
40 6-093230 4-343362 
50 6-480929 4718344 
60 6-800321 5-028251 
70 7-072022 5-292497 
80 7-308510 5-522905 
90 7-517919 5-727220 

100 7705850 5-910793 

1- 426472 0-970990 0-660253 
2- 410593 1-897055 1-528207 
3- 037613 2-502189 2-112625 
3-498975 2-951316 2-550458 
3- 864523 3-308782 2-900577 
4- 167506 3-605907 3-192432 
4-426376 3-860271 3-442774 
4-652444 4-082727 3-662028 
4- 853153 4-280453 3-857122 
5- 033661 4-458440 4-032894 

0- 437538 0-275135 0-155713 
1- 245702 1-020668 0-836765 
1- 809929 1-564854 1-360810 
2- 237010 1-981502 1-767200 
2-580232 2-318119 2-097405 
2- 867188 2-600425 2-375213 
3- 113818 2-843555 2-615017, 
3-330I32 3-057110 2-825948 
3-522820 3-247552 3-OI4259 
3-696576 3-4I943I 3-184363 



Effect of abnormalities on the regression. Since b—p = (x'^^x'u, i f a finite number 
o f abnormalities are present i n u, b is no longer an unbiased estimate o f p. I t is, 
however, a consistent estimate. For example, i n simple regression b—p 
= U(xt—x)u,l E(xt—xf. The point is that i n the formula for b the biases, i f any, 
enter linearly (instead o f their squares in estimating c 2 by the classical formula) and 
in practice the bias i n estimate o f p w i l l usually be small, so that this biased 
estimate w i l l lie wel l w i t h i n the confidence limits o f impeccable estimate. 

, • An Exercise 

The regression is simple: 

Yt = io + xt+ut, 

xt— —13, —12, . . . o, . . . , 12, 13, p — i, T — 27 and the u, initially a random 
sample o f 27 f rom N (0, 1). Aberrations o f 4 were added to the y, corresponding 
to xt = —9 and to that for xt = 4. The (x, Y) "observations" are shown as dots 
on the chart. The problem: can we detect these two aberrations (clear enough to 
the eye) by stochastic analysis, and correct for them? For straightforward LS we 
have: T= 27; Ex = 0; Ex* = 1,638; ExY = - Exy = 1,678-45; EY= 278-45; 
EY2 = 4,666-9647; Ey2 = 1,795-3210. From these we find a (estimate o f the 
intercept o f the regression) = 10-3130 and b = 1-0247, obviously very good 
estimates o f the population values 10 and 1 and illustrating the point i n the 
foregoing text that good regression coefficient estimates can be obtained from 
disturbed data. 

I t is quite otherwise w i t h the original estimate o f 52 (25 d.f.) which turns out 
to be 3-0169, three times the population value! 

The t w o largest disturbance values vt (as we might expect) are: 

5-35 for x = 4 

4-14 for x = —9 

W e t ry to show that these are abnormal by the method indicated in the text 
proper. W e find: , . 

E' = 75 ;42 i7 - (5 -35) 2 - (4 - i4 ) 2 = 29-6596. 

B y rough interpolation f rom Table 2 we find for T — 27, £ x = 5-4, E2 = 3-7, 
sum 9-1, so, f r o m (17): ; 

s2 = 29-6596/(25—9-1) = 1-8654 



C H A R T I 

Constructed illustration. Data, (i) simple regression and 
(ii) regression w i t h dummy variable. 

1 1 • r - r 1 1 1 1 • 1 — 1 — 1 — 1 
30 

Regression with dummy 
Simple regression • 

T. 20 

10 

0 

1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
•10 

x - 1 3 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 .13 
-12 -10 -8 -6 - 4 - 2 0 2 4 6 8 10' 12 

which, by chi-squared, is not significantly different f rom unity. 5 = 1-3658. W e 
then have— 

X y Yc 
V •A. v/Xs 

4 19-76 14-41 5'3S •9763 4-01 
- 9 .5-23 1-09 4-14 •9558 3-17 

From Table 1 the last column entries are we l l above the -o i probability points 
for orders 1 and 2 respectively. Aberrations, we infer, are probably present. 

The th i rd highest value o f | p/Xs | is 2-03 which is clearly lower than the -05 
probability point for order 3, T = 27, so we infer non-significance. W e have 
justified the correction or elimination o f the two variables. 

Let the dummy variable be X x , taking the values 1 for x = — 9 and x = 4, 
otherwise o. For the regression o f Y on x and X x we require, in addition to the 
values already given: 

2XX = 2; ZXj* = 2; Zxx* = 1-851852; Hxtf = 4-364080. 
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The regression is: ' 
Yc = 9*9303 + I-0405X + 5-I659X-P 

(47-2) (40-0) (6-7) 

the figures in brackets being the Student-Fisher t's. The population values o f the 
first t w o coefficients, k n o w n to be 10 and 1, lie comfortably w i t h i n the -95 
probability confidence limits o f estimate. Yc is graphed as the firm line on the 
chart. W e find s2 = 1*1004, also near the population value o f unity. This latter 
result is flattering to the theory, since we deliberately took the two abnormal 
disturbances as equal. I n practice this may not be the case and, i f more than one 
aberration is present, the estimate s2 w i l l be inflated i f only one dummy be used. 

This is no complication, as the Referee has helpfully pointed out. I f k aberrations 
are discerned i t w i l l be. preferable to introduce a separate dummy for each 
aberration, i.e. k i n all. 

Economic and Social Research Institute, Dublin. 
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