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.IN-single equation LS regression the common practice i, to test goodness-
of-fit by the standard error of estimate s and probable absence:of residual auto-
regression by the Durbin-Watson d [2], [3], of the more recent count of sign
changes = [6]. With a wide choice of causative (or independent) variables (indvars)
and with access to a computer, a multitude of regressions can be produced, one for
each set of indvars selected. We usually pick the regression with the lowest s
and a satisfactory d or 7 as the “best”, unless there are very compelling a ‘priori
reasons for picking some other set. Truth to say, there is still much empiricism
in regression practice; in it art has a place as well as science.

In setting up the model y = x B+ u, u regular, we are saying that (considering
time series for convenience) throughout the period certain causes (which need not
be independent) regularly affected the level of the dependent variable, the
difference between the vector xp and the observed y vector, namely u, sum-
marising a vast number of unidentified causes, operating perhaps in some “years”
but notin others, as well as plain errors of observation. We customarily regard
our table of data as a single realisation from a theoretically p0531blc infinity of
states (with x constant throughout), the minor causes operating in such a random
way that the elements of # can be assumed to be homoskedastic throughout and
independent of one another, i.e. u is regular, by definition.

It is customary (indeed a practice to be recommended) to graph the calculated
dependent variable x b against the original vector y. Inevitably some of the
calculated disturbances, elements of v, y = x b+ v, are comparatively large. Are
they abnormally so? The statistics 5, d and = tell us little or nothing about such
aberration. Clearly we have something to gain by studying the individual disturb-
ances. Our knowledge of the data will be deepened thereby. Such exercises may
even bring to light indvars then-to-fore unsuspected. When, and only when,
aberration has been stochastically determined are we justified in using the device
of dummy variables thereby mitigating its effect. This paper deals with the
problem of the identification of such aberrations.

Order Statistics

We do so by recourse to order statistics. The elements of # in the model are, by
definition, independent. The vector v is a consistent estimate of #. It may be
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assumed that number of sets of observations T is so large that the calculated
clements of v are also independent; they cannot .be so, in’general, since
v' ip = 0, iy the unit vector.

We deal throughout with absolute values of the disturbances and that each of
these (positive) values has the cumulative frequency (c.f) F, o<F<1. The cf.
G, of the absolute value of order n, on the null-hypothesis, is easily seen to be:

() G,=T (: - i) f: d(1— )1 7" N

For any order n the value of G, as a polynomial in F can easily be found by
expanding (1—x)" ! in the integral. The formulae for the first three orders are:

G, = FT
(2) Gy= TF1—(T—1)F"
T(T—1)(T—2) F'-2 2F™* FT

Gy = = —+ =]
2 T—2 T—1x T

The practical problem is: given G, to find F. The solution is obvious in the
case of G,. In general G, will have values like .95, -99 etc., depending on the
probability used for determining significance. Now, for these earlier orders and
T not small, it isevident that, setting G, = 1—g, and F = 1—f, f<<g,, in
fact f is usually very small. On making these substitutions we find from (2):

0 &= (Df— (\Z)f2+ (D fa— -
@ @a= ()2 (D) e () -

" i) g = () /-3 (j) pree(T)re- -
In general: '

0 s 2 () )f
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A remarkable feature of (), apart from its simplicity, is its generality (i.e. it has
been derived without assumption about normality, or anything else), as func-
tionally relating g, and f (and hence G, and F). -

Now, taking a line from the obvious advantage of such a course in the case of
n = 1, we make such a transformation as to ensure that the first coefficient on the
nght of (4)is always unity. For this we set:

(s) 1=

or:

On so substituting for fin (4), the typical term contains the following factor in T':

= () ()7

_TT—1...T=n=i+1
) B (n+i)!

(n+i)

TT—1...T—n+1]" n
n!

easily seen to be O(T?) in T, so thatas T—oo each transformed coefficient (i.c. of
x"+') tends to a constant value, which on combining factors is easily seen to be:

(n+1)

® a=r () o] ey

As the factors in T alone tend to unity when T—o0,C7 is the coefficient of x"+!
in transformed (). For all values of n, C%= 1, from (8). As an example, for
the third term of g, at (3), i = 2, n = 3. Then, from (8):

= (—=1@) (Y@
= 6 x (120)7! x (1-817121)°

= 0°990579.
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This is the value of the coefficient of x5 in g; when number of sets of observations
is indefinitely large.- ' - I
In (7) the factors independent of T  have been transferred to C7, given by (8).
The rest of (7) (i.e. the partin T alone) may be written, with w = 1/T: -~
(o) W= (1—w)(1—2w) ... (1—mw)[(1—w)1—2w) . .. 1—rw)] -7,
m=n+i—1;7r=n—1; p= (n+i)ln

The full coefficient of x"* in the x-transformed version of (4) will then be
crwn, -

Log . W/ is expanded in powers of w. No special interest attaches here to the
general expansion so we proceed to particular cases. Again we take i = 2,1 = 3,
as an illustration. Recalling that, when o<w<1, log , (1—w) = —w—w?/2
—uwAf3—. .. ad inf. we find: '

B log, W3 = —5w—6_5w2—§§w3-—gl7w4——249w—5. ..
6 3 12

When T = 100, w = 10-% and the first four terms of the éxpansion give
log . W3, = —-051116. Whence W3 = -95016. The full coefficient of x® in the
expansion of g, is C.2 W, = 0°990579 X 0°95016 = 0-9412. ‘

The object of the x-transformation is to ensure that the coefficients of x*-*
remain small as T increases, in the transformed version of (4). Given T, they also
diminish as i increases. The fact that in the expansion of log, W} the numerical
cocfficients of w* tend to increase sharply with k is really no embarrassment,
since w* becomes very small as k increases when T' > 10, so that only the first
few terms are required for a close approximation. The x-transformed equations
were used throughout for the computation of Table 1.

, The Highest Deviate

On transformation (6) the x-equation version of (3) (i) is:

T(T—1) ,, T(T—1)(T—2)

(1) & = x—_ 1°2T2 I.2.3 T3

x3—. .. T terms.
When T = oo, (10) becomes:

(1) g, = 1—e -

yielding the solution:

(12) x = gy +g%2+g33+ ... ad inf.
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When g, = +05, x = 051292, when g, = -01, x = -010050. At the other extreme
when T = 1, x = g;. It is obvious that when g, is-small the universal solution
(i.e. for all values of T) is approximately x = g;. If xr be the exact solution the

corresponding f-probability is found from (8):’

(13) fr = %/T.

The normal theory gl-probablhty null hypothesis crmcal pomt is that found
from the standard normal table [1] correspondmg to probabxhty ( - fT/z)

The Critical Probabzltty Points Table

While the derivation of probabilities f corresponding to any initial probablhty g
can easily be derived by the foregoing x-transformation, the derivation of critical
points corresponding to probability f presents certain difficulties when T is not
large. We use normal theory throughout this paper but such a procedure is not
strictly valid. In the first place, even if model residue #, is normally distributed,
the statistic we use, namely v, divided by its estimated standard error, is not
distributed normally, but as the Student-Fisher statistic £. The hypothesis of
normality is strictly true only as T—co. In practice, however, Student-Fisher
critical points, given probability (-05, -01, etc.) are close to normal theory points
and the values given in Table 1 can be used with the mental reservation that the
actual null hypothesis probabilities are shghtly greater than the -0s and ‘o1
indicated. This is really an unimportant point since we make only formal use of
these probabilities in making inferences: we are content to state merely that some
calculated value is “significant”. It is enough that the null hypothesis probability
is “small”.

Another difficulty is that while the sample of T may be random and diawn
from a normal population the statistics of given order are not normally dis-
tributed. The critical points of the statistic X; = (x;—u)/o, where p and o pertain
to the normal population sampled and x; the highest value in the sample, are
given in Table 24 of [1], for T'<30, presumably using the exact frequency
distribution of X;. It remarkably happens, however, that our -os and o1
probability critical values for sample sizes T' = 10, 20, 30 (51x values in all), though
computed on the assumption that the largest value was normally distributed,
exactly (to two decimal places) equal the [1] values. So much for smallish values
of T. As T increases, the frequency distributions of statistics of all orders tend
towards normality so that considefable confidence may be reposed in all values
of T shown in Table 1. They are, however, described as “approximate” because
the populations involved are rcally not normally distributed, but only approxi-
mately so, as explained above.

Table 1 is fundamental for the present research As already stated, the values
shown were derived using the x-equations. It was usually-possible to make a good
guess of a near approximation x, to the root x requlred ‘beginning the iterative
process. Then x; = xo+ eq where'eg =~ f(xg)/f (), %a'= x;+ ¢ etc. In fact, two
terations were required in only a few cases; ‘mostly one sufficed since, as T
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TABLE 1: Approxtmate Critical -05 and -or Probability Pomts of Deviates of Orders. 1, 2, 3
- (Absolute Values), Jor Certain Values of Sample Size T. - o

f .
L3

Normal Thcory Assumed Throughout

Order 1 Order 2 Order 3

T . N _ N .,' . I"" 3 .
05+ v0r -05 o1’ 05 - oI
1 1°96 - 2°58 — T = — —
10 - 2:80 329 209 o242 7 1-98
20 302 348 236 . 267 2°03 - 2028
40" 322 . 3466 2°61 . 290 231 2:54
60 333 376 .27 3:02 246 269
8% 341 3°84 J 284 311 256 278
1oc 3°48 " 3-89 o291 318 2-64 285

increased, the x-solutions became nearly identical for each of the three orders.
Critical points for only a few values of T are given since in the range 10 T<100
critical points for any ‘T can easﬂy be mterpolated

Applzcatton to Regression

The A, factors. If the model is'y = x B+u, u rcgular the LS estimate is
Yy =y.+v,y,=xb. Now, while Es} = o® for all elements of u, the value of
Ev?, for given | in the regression, is not ¢* but A% o2, where:

(14) A= I‘—-x'(x'x)-ljvé,.‘

The seéond term on the right of (14) is o(T-! ) so that A{>1 and Evi—>0? only as
T—>o0. This A-correction should be used when T is not large, as in the exercise
that follows. In simple régression (14) assumes the form:

(1s) A% = (T—1){T—(x,—X)* ﬁl(x~—_)‘_- . | .

s i . .

The null hypothesis here is that all the elements in the residual vector & have the
regular properties Eu, = o, Eu?, = o* (with By = 0, ' # t). We establish the
regressmn on-these ;assumptions about our model (or population), estimating

o® by s* = Z(y—y.)*/(T—K), where K is_ the number of indvars, including the
constant. But if some of the values of the observed y, contain aberratlons which
we hope to discern from an examination of the higher values of | v, |, we
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contemplate the possibility of 2 model in which a few of the disturbances are not u
(for particular values of £) but u,+ a,, where Eq, 50, so that all the disturbances are
no Jonger regular, as defined above. Here we assume that these disturbances 4,
are few, say two or three: general residual heterovariance is another matter (see,
for example, [4]).

If we use the larger | v, | to this end, we cannot safely use the classical formula
in the previous paragraph, pace the null hypothesis, to estimate s* unléss T is very
large, which it rarely is. As the following exercise cleatly shows, such an estimate,
when T is not large, can seriously overestimate o® and underestimate the test
statistic, namely v,/(s.c. v,), used for identifying aberrations, thereby concealing
these when they are possibly present. Not, if, say, the first and second highest
absolute values of the residuals are under test, simply to‘eliminate from sum squates
(and reducing d.f. by 2) is invalid, for, even if there were no abnormalities present,
this procedure would underestimate o®.

The correct treatment is given in [s]. This involves substituting statistics
s*Ey, s°E, etc., for the actual contributions of the highest, second highest etc.,
(¥:—2:)* in sum squares, where E, = Ez,?, z, being the nth order value for a
random sample of T from N, (o, I) We then estimate o2 by s2 from:

k
(16) (T—K)s* = s* Z E,+ Z'(y—7.)%

n=1

where 2’ indicates the omission of the « residuals under test, or:
(17) s* = Z'(y—y:)?/(T—K— ZE).

To make the present exposé tolerably complete, a table of E,, given in [s] is
reproduced here, for convenience, as Table 2. -

TABLE 2: Value of E,=Ez* for random samples of T from N (O, I) for a2=I

Sample Order n
size T I 2 3 4 5 - 6 7 8

TO 3'799621 2.171462 1-426472 0:970990 0:660253 0437538 0-275135 0155713
20 4916871 3:216540 2:410593 1-897055 1-528207 I-245702 1-020668 0:836765
30 5.599340 3.867966 3-:037613 2-502189 2°112625 1-809929 1-564854 I-360810
40 6093230 4343362 3'498975 2:95I3I6 2-550458 2-2370I0 1-981502 1:767200
50 6480020 4'718344 3-864523 3308782 2:900577 2:°580232 2-318119 2-097405
60 6-800321 5°028251 4167506 3°605907 3°192432 2-867188 2-600425 2-375213
70 7072022 5:292497 4'426376 3-860271 3-442774 3113818 2-843555 2-615017,
8o 7°:308510 §°522905 4°652444 - 4082727 3°662028 3:330I32 3°057110 2-825048
90 7°517919 §:727220 4853153 4280453 3-857122 3-522820 3247552 3014259
100 7705850 5910793 5-033661 4458440 4-032804 3-696576 3-419431 3:184363
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Effect of abnormalities on the regression. ‘Since b—B = (x'x)x u, if a finite number
of abnormalities are present in u, b is'no longer an unbiased estimate of p. It is,
however, a .consistent estimate. For example, in simple regression b—p
= Z(x,—x)u,[ Z(x,~x)2. The point is that in the formula for b the biases, if any,
enter linearly (instead of their squares in estimating o® by the classical formula) and
in practice the bias in estimate of § will usually be small, so that this biased
estimate will lie well within the confidence limits of impeccable estimate.

-
. L, . <

[P An Exercise

The regression is simple:

¥ 4

Y, = 10+ x,+u,

X, = —13, —12,...0,...,12,13, B = 1, T =27 and the 4, mmally a random
sample of 27 from N (o, 1) Aberrations of 4 were added to the y, corresponding
to x, = —9 and to that for x, = 4. The (x, Y) ¢ observatlons are shown as dots

on the chart. The problem: can we detect these two aberrations (clear enough to
the eye) by stochastic analysis, and correct for them: For straightforward LS we
have: T'= 27; Zx = 0; Zx? = 1,638; ZxY = Zxy = 1,678:45; ZY = 278°45;
ZY? = 4,666:9647; Ey = 1,795'3210. From these we find a (estimate of the
intercept of the regression) = 10-3130 and b = 1-0247, obviously very good
. estimates of the population values 10 and 1 and illustrating the point in the
foregoing text that good regression coefficient estimates can be obtained from
disturbed data.

It is quite otherwise with the original estimate of s? (25 d.f.) which tarns out
to be 3+0169, three times the population value! :

The two largest disturbance values v, (as we might expect) are:

535 for x = 4
414 forx = —9g

N

We try to show ‘that these are abriormal by the method indicated in the text
proper We find:

L}

= 75°4217—(5'35)*—(414)* = 29-6596.

By rough 1nterpolat10n from Table 2 we ﬁnd for T = 27, E, = 54, Ey = 37,
sum 9-1, so, from (17): ‘ ’ ;

st = 2;9-6596/(,25—9'1) = 1-8654
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CHART I

Constructed illustration. Data, (i) simple regression and

(ii) regression with dummy variable.

Regression with dummy

Cem—— Simple regression

13

which;, by chl—squared is not 31gn1ficantly different from unity. s = 1-3658. We

then have— .
x Y - Y, v A v[As
4 1976 1441 535 ‘9763 401
—9 523 109 414 9558 317

*

From Table 1 the last column entries are well above the ‘o1 probability points

for orders 1 and 2 respectively. Aberrations, we infer, are probably present.
The third highest value of | v//\s | is 2+03 which is clearly lower than the 05
= 27, so we infer non-significance. We have

probability point for order 3, T
justified the correction or elimination of the two variables.

Let the dummy variable be Xj, taking the values 1 for x = —9 and x = 4,

otherwise 0. For the regression of Y on x and X, we require, in addition to the

values already given:

2Xy =2; 2X;% = 2; Zxy®= 1-851852; Zx;y = 4°364080.
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The regression is: .
Y, = 99303 + 1°0405x + 5°1659X;,
472)  (400)  (67) -

the figures in brackets being the Student-Fisher £'s. The population values of the
first two coefficients, known to be 10 and 1, lie comfortably within the -9s
probability confidence limits of estimate. Y, is graphed as the firm line on the
chart. We find s = 1:1004, also near the populatlon value of unity. This latter
result is flattering to the theory, since we deliberately took the two abnormal
‘disturbances as equal. In practice this may not be the case and, if more than one
aberration is present, the estimate s* will be inflated if only one dummy be used.

This is no complication, as the Referee has helpfully pointed out. If k aberrations
are discerned it will be.preferable to introduce a separate dummy for each
aberration, i.c. k in all.

3
»
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