
Acceleration of Cryptographic
Functions using Graphics Hardware

Owen Harrison

A thesis submitted to the

University of Dublin, Trinity College

for the degree of Doctor of Philosophy

February 2010

Declaration

I, the undersigned, declare that this work has not previously been submitted to

this or any other University, and that unless otherwise stated, it is entirely my

own work.

Owen Harrison

Dated: 18th February, 2010

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this

thesis upon request.

Owen Harrison

Dated: 18th February, 2010

Acknowledgements

I would like to thank my family for always being there, unwavering in support.

To John Waldron, my supervisor, thank you for giving me the initial opportunity,

the freedom I required and well timed advice dotted over the past years. Thanks

to my friends for encouraging, sympathising, distracting, entertaining, especially

Barry, Claire, Garrett, Niall, Marie and Saar. To Tony, my best man, for many

ideas, many comments, much patience, a debt of gratitude I am incapable of

repaying. To Rachel, my reader, my open ears, my support, my friend, my wife,

thank you, te quiero mucho.

iv

Abstract

Graphics processing units (GPUs) can act as an attractive alternative to CPUs

for general purpose computation in certain scenarios. Traditionally, the GPU has

been developed to offload graphics processing from the CPU. In recent years the

GPU has continued to become a more flexible and powerful device, responding

to the demand of the games industry to execute more and more complex custom

graphics algorithms. In the early 2000s a new approach to processing emerged,

whereby non-graphics problems that suit a data parallel model could execute on

the GPU at competitive or faster rates that the CPU. This performance gap has

continued to grow, and as the GPU develops in terms of programming flexibil-

ity, the range of application spaces that benefit from GPU assistance widens.

Adding to this trend, GPU vendors have started releasing programming frame-

works specifically tailored to general purpose computation on GPUs. In light

of these developments, there is intense research involving the use of GPUs for

acceleration within many problem spaces. We advance the state of the art by

presenting the capacity of the GPU to accelerate commonly used cryptographic

functions.

We investigate GPU acceleration of symmetric-key and asymmetric-key func-

tions, fundamental components of modern cryptographic systems. We show that

AES, a popular example of a symmetric-key function, can be competitive with

the CPU on recent GPUs and outperform on contemporary GPUs. We illus-

trate the issues related to GPU support of symmetric-key modes of operations in

various scenarios and present strategies for maintaining performance. We show

that RSA, a popular example of an asymmetric-key function, can outperform

the CPU when running on the GPU. For both symmetric-key and asymmetric-

key approaches presented, not all cryptographic contexts suit the GPU and as

such these contexts are highlighted. Also, both approaches are investigated for

efficient batching of multiple requests within a single GPU call. Finally, the inte-

gration of GPU accelerated cryptography within an operating system abstraction

layer and associated costs are presented.

v

Related Publications

O. Harrison and J. Waldron. Efficient Acceleration of Asymmetric Cryptogra-

phy on Graphics Hardware. International Conference on Cryptology in Africa,

(AfricaCrypt), Gammarth, Tunisia, June 21–25, 2009. LNCS, Volume 5580/2009,

Pages 350–367.

O. Harrison and J. Waldron. Public Key Cryptography on Graphics Hard-

ware. Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques, (Eurocrypt), Cologne, Germany, April 26–30, 2009. Ap-

peared in conference booklet, Pages 65–72, and as Poster.

O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on Mod-

ern Graphics Hardware. USENIX Security Symposium, San Jose, CA, July 28–

August 1, 2008. Pages 195–209.

O. Harrison and J. Waldron. AES Encryption Implementation and Analysis

on Commodity Graphics Processing Units. Workshop on Cryptographic Hard-

ware and Embedded Systems, (CHES), Vienna, Austria, September 10–13, 2007.

LNCS, Volume 4727/2007, Pages 209–226.

O. Harrison and J. Waldron. Optimising Data Movement Rates for Parallel

Processing Applications on Graphics Processors. International Conference on

Parallel and Distributed Computing and Networks, Innsbruck, Austria, February

12–14, 2007. Pages 251–256.

Under Review

O. Harrison and J. Waldron. GPU Accelerated Cryptography as an OS Service,

September 2009. Currently available as a technical report [45].

vi

Glossary

AES Advanced Encryption Standard

CBC Cipher Block Chaining MOO

CCM Counter with CBC-Message Authentication Code MOO

CTR Counter MOO

DES Data Encryption Standard

DMA Direct Memory Access.

DX9 DirectX 9. Microsoft suite of media APIs. Also used to

identify a generation of compliant graphics hardware.

DX10 DirectX 10.

ECB Electronic Codebook MOO

ECC Elliptic Curve Cryptography

FLOP Floating Point Operation

GPU Graphics Processing Unit

GPGPU General Purpose Computation on Graphics Processing

Units

Kb,Mb,Gb 210,220,230 bits

KB,MB,GB 210,220,230 bytes

MOO Symmetric-key Mode of Operation

NIST National Institute of Standards and Technology

OCF OpenBSD Cryptographic Framework

RNS Residue Number System

ROP Raster Operations

RSA Rivest Shamir Adleman asymmetric-key algorithm

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SM Streaming Multiprocessor

SP Streaming Processor

Warp Group of threads issued by the GPU thread scheduler

as a single unit.

XOR Exclusive OR

vii

Contents

Acknowledgements iv

Abstract v

Related Publications vi

Glossary vii

Contents viii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Thesis Aim . 3

1.2 Motivation . 3

1.3 Contributions . 4

2 Background and Related Work 7

2.1 DX9 Compliant Graphics Hardware 7

2.1.1 Hardware Overview . 7

2.1.2 Programming Interface . 8

2.1.3 Textures . 10

2.1.4 General Purpose Computation 11

2.1.5 Restrictions and Performance Considerations 12

2.2 DX10 Compliant Graphics Hardware 15

2.2.1 Departure from DX9 . 15

2.2.2 Hardware Overview . 16

2.2.2.1 Nvidia DX10 Compliant Hardware 17

2.2.3 Programming Interface - CUDA 19

2.2.4 Restrictions and Performance Considerations 22

viii

2.2.4.1 Memory . 22

2.2.4.2 Branching . 25

2.2.4.3 Thread Co-operation 26

2.2.4.4 Occupancy . 26

2.2.4.5 Instruction Throughput 29

2.2.4.6 Data Transfer . 29

2.2.4.7 Execution Model 30

2.2.4.8 Tool Chain . 31

2.2.5 Shader Model 3.0 versus Shader Model 4.0 31

2.3 Symmetric-Key Cryptography . 32

2.3.1 AES . 33

2.3.1.1 Single Cipher Round 33

2.3.1.2 Full Cipher . 36

2.3.1.3 Implementation 36

2.3.2 Block Cipher Modes of Operations 38

2.3.2.1 Parallel Modes 38

2.3.2.2 Serial Modes . 39

2.4 Asymmetric-Key Cryptography 40

2.4.1 RSA . 41

2.4.2 Modular Arithmetic Fundamentals 43

2.4.2.1 Basics . 43

2.4.2.2 Chinese Remainder Theorem 44

2.4.2.3 Integer Representation 44

2.4.2.4 Montgomery Reduction 46

2.4.2.5 Exponentiation 47

2.5 Related Work . 49

2.5.1 Cryptography and Graphics Hardware 49

2.5.1.1 Symmetric-Key Cryptography 49

2.5.1.2 Asymmetric-Key Cryptography 54

2.5.1.3 Other . 55

3 GPU Data Transfer 57

3.1 OpenGL Imaging Pipeline . 58

3.2 Transfer Tools . 60

3.3 Download Tool . 61

3.3.1 Overview . 61

3.3.2 Tool Details . 61

3.3.3 Usage Notes . 63

3.3.4 Observations . 63

ix

3.4 Readback Tool . 66

3.4.1 Overview . 66

3.4.2 Transfer Rate Mode . 66

3.4.3 Asynchronous Behaviour Mode 67

3.4.4 Usage Notes . 69

3.4.5 Observations . 70

3.4.5.1 Transfer Rate Observations 70

3.4.5.2 Asynchronous Behaviour Observations 70

3.5 DX10 Data Transfer . 72

3.6 Conclusions . 72

4 Symmetric Cryptography on DX9 Hardware 73

4.1 The GPU and AES . 74

4.2 XOR Approaches . 77

4.2.1 8-bit XOR . 77

4.2.2 4-bit XOR . 77

4.2.3 ROP XOR . 79

4.2.4 Results . 79

4.3 AES on DX9 Hardware . 80

4.3.1 AES Lookup Tables . 80

4.3.2 AES Input Data . 81

4.3.3 AES Implementations . 82

4.3.4 Results . 86

4.4 GPU as an AES Co-Processor . 90

4.4.1 Results . 91

4.5 Conclusions . 91

5 Symmetric Cryptography on DX10 Hardware 93

5.1 Block Based AES Implementation 94

5.1.1 Mapping AES to CUDA 94

5.1.2 AES and G80 Memory . 96

5.1.3 Results . 100

5.2 Payload Data Model . 104

5.2.1 The Data Model . 104

5.2.2 General Use Implications 106

5.3 Applied Data Model . 107

5.3.1 Descriptor Serialisation . 107

5.3.2 Thread to Message Mapping 109

5.3.3 Padding . 112

x

5.3.4 Payload Combining . 112

5.4 Modes Of Operation . 113

5.4.1 Parallel MOOs . 113

5.4.2 Serial MOOs . 115

5.4.3 Mixed MOOs and Message Sizes 117

5.5 Conclusions . 120

6 Asymmetric Cryptography on DX10 Hardware 121

6.1 Implementation Commonalities 122

6.2 Radix Based Modular Exponentiation 123

6.2.1 Serial Approach . 124

6.2.1.1 Memory Usage 127

6.2.1.2 Results . 129

6.2.2 Parallel Approach . 129

6.2.3 Radix Results . 130

6.3 RNS Based Modular Exponentiation 133

6.3.1 Montgomery in RNS . 133

6.3.2 Exponentiation using Kawamura on the GPU 135

6.3.3 Single Precision Modular Multiplication on the GPU . . . 139

6.3.3.1 Results . 142

6.3.4 RNS Results . 143

6.4 Radix vs RNS on the GPU . 144

6.5 Conclusions . 145

7 GPU Accelerated Cryptography as an OS Service 147

7.1 OCF Background . 148

7.2 Integration of GPU and OCF . 149

7.2.1 Overview . 149

7.2.2 Memory Management . 150

7.2.2.1 Memory Map Creation 153

7.2.2.2 Memory Map Removal 154

7.2.2.3 Memory Map Translation 155

7.2.3 GPU Driver and Daemon 156

7.2.4 Security . 160

7.3 Concurrent Request Processing 160

7.3.1 Symmetric Request Batching 160

7.3.2 Asymmetric Request Batching 161

7.3.3 Request Pipelining . 165

7.4 Performance . 165

xi

7.4.1 Symmetric-Key Performance 165

7.4.2 Asymmetric-Key Performance 168

7.5 Conclusions . 169

8 Review and Outlook 171

8.1 General Lessons . 175

8.2 Future Work . 177

Appendices 190

A OCF Extensions 190

A.1 New Memory Management Interface 190

A.1.1 Crypto Layer Interface . 190

A.1.2 Cryptodev Layer ioctl Interface 190

A.2 Gpucrypt ioctl Interface . 190

B Hardware 192

B.1 Processor Details . 192

B.2 Memory Bandwidth . 192

B.3 GeForce 8800GTX Memory . 192

C Operating System Terms and Functions 194

D System Specifications 197

xii

List of Figures

1.1 Floating point performance for Nvidia GPUs and Intel CPUs [93]. 2

2.1 Simplified block diagram of the GeForce 7900GTX, a DX9 com-

pliant GPU. 8

2.2 The different stages of the DX9 graphics pipeline. 9

2.3 Orthogonal projection configured to protect the co-ordinates of

the input vertices. 12

2.4 Simplified block diagram of the GeForce 8800GTX, the first DX10

compliant GPU. 16

2.5 Block diagram of the physical memory available to the SPs on a

G8X GPU. 18

2.6 Example of the CUDA execution model. 21

2.7 State for AES-128: input and output for round transformations. . 33

2.8 AES-128 SubBytes byte substitution using an S-box lookup. . . . 34

2.9 AES-128 ShiftRows round transformation stage. 34

2.10 AES-128 MixColumns round transformation stage. 35

2.11 AES-128 AddRoundKey round transformation stage. 35

2.12 Electronic Code Book Mode of Operation: encryption and decryp-

tion. 38

2.13 Counter Mode of Operation: encryption and decryption. 39

2.14 Cipher Block Chaining Mode of Operation: encryption and de-

cryption. 40

2.15 Example of Public and Private Key use in RSA. 41

3.1 Download rates for varying texture sizes, with 4 component FP32

texels, across different scenarios using a 6600GT. 65

3.2 PCIe asynchronous behaviour comparison of 512 × 512 versus

1024× 1024 buffers. 71

4.1 Illustrations of the different gather techniques employed for mes-

sage input data across the AES approaches. 82

xiii

4.2 Effects of payload size variation on AES encryption throughput. . 87

5.1 G80 AES implementations with and without data transfers across

varying payload sizes. 102

5.2 Serialised streams used by each thread for data and key retrieval. 109

5.3 Mapping physical thread IDs to descriptor IDs to message data. . 110

5.4 Throughput rates for parallel MOO messages across varying mes-

sage numbers and sizes. 114

5.5 Throughput rates for serial MOO messages across varying message

numbers and sizes. 116

5.6 Global memory read performance with varying stride patterns. . . 117

5.7 Throughput rates for different payload packing configurations. . . 118

6.1 Serial Thread Model. 125

6.2 N×N limb multiplication in parallel on a CUDA device. 130

6.3 GPU Radix based Montgomery Exponentiation: 1024-bit RSA

Decryption. 131

6.4 GPU RNS based Montgomery Exponentiation: 1024-bit RSA De-

cryption. 144

6.5 RNS vs Radix: 1024-bit RSA Decryption. 145

7.1 Original OCF Architecture. 149

7.2 OCF and GPU: High Level View - Different Address Space Problem.150

7.3 Illustration of the Cryptodev Layer Memory Management Overhead.151

7.4 Performance of the copy from user() Function. 151

7.5 Crypto and Cryptodev Layers: Memory Mapping Internal Structure.153

7.6 New OCF Memory Allocation: Cryptodev to GPU. 154

7.7 Crypto and Cryptodev Layers: Memory Mapping Translation Pro-

cess. 155

7.8 GPU Driver Gpucrypt and GPU Daemon Gpucryptd. 157

7.9 Mechanism for Processing Multiple Distinct Asymmetric-Key Re-

quests. 162

7.10 Comparison of Pre-processing techniques for RSA-1024 Request

Batching. 164

7.11 Performance of GPU accelerated AES using the OCF. 165

7.12 Multithreaded performance of GPU accelerated AES using the OCF.167

7.13 Performance of GPU accelerated RSA-1024 using the OCF. 167

7.14 Concurrency and GPU accelerated RSA-1024 using the OCF. . . 168

xiv

List of Tables

2.1 Comparison of select features required by DX9 Shader Model 3.0

and DX10 Shader Model 4.0 . 31

3.1 Example output of the readback tool in asynchronous behaviour

mode using a 6600GT. 68

4.1 Peak data transfer rates using 1024 × 1024, 4 component, byte

buffers. 74

4.2 downloadBench and readbackBench parameters used in pipeline

configuration of AES implementations. 75

4.3 Results of the various XOR implementation approaches quoted in

Gb/s of XOR output. 80

4.4 Pseudocode for a single single column, single round transformation

using simulated XOR in-fragment processor operation. 84

4.5 GeForce 6600GT results for the various AES approaches quoted

in Mb/s. 86

4.6 GeForce 7900GT results for the various AES approaches quoted

in Mb/s. 86

4.7 CPU based AES results quoted in Mb/s. 90

4.8 %CPU Idle Time based on 16MB payload sizes. 91

5.1 Mapping of CUDA threads to input and output message data. . . 95

5.2 On-chip Memory Reads: Average execution times for 5 billion

32-bit integer reads. 98

5.3 Modification of values used for AES lookup table indexes to avoid

bank conflicts. 99

5.4 AES CTR peak throughput rate on the G80, including data trans-

fer, using different types of on-chip memory for lookup tables. . . 100

5.5 The Payload Data Model . 105

6.1 Kawamura et al. [53]: Montgomery multiplication in an RNS. . . 134

xv

6.2 CUDA thread allocation scheme for RNS based modular exponen-

tiation. 138

6.3 Granlund and Montgomery’s division by invariants optimised for

GPU and RNS. 140

6.4 GPU Modular Multiplication throughput using a variety of tech-

niques. 143

B.1 List of CPUs used for comparisons. 193

B.2 Bandwidth rates between relevant GPUs and on-card device mem-

ory. 193

B.3 Bandwidth rates of relevant system bus types. 193

B.4 Physical memory types and sizes for the GeForce 8800GTX 193

D.1 System 1 . 197

D.2 System 2 . 197

D.3 System 3 . 198

xvi

Chapter 1

Introduction

Graphics processing units (GPU) have exhibited a large increase in floating point

performance compared with traditional CPUs since the early 2000s. The tradi-

tional CPU has levelled off in terms of clock frequency as power and heat concerns

have become dominant restrictions. A 2008 GPU released by Nvidia reports a

peak throughput of almost 1 TeraFlop. In contrast, a similar era quad core Intel

x86 CPU reports a peak throughput in the order of 100 GigaFlops. The contin-

uing divergence of floating point performance is made clear by Figure 1.1. The

performance advantage of the GPU over the CPU comes at a price of decreased

applicability to general purpose computing. The CPU is optimised for general

purpose serial processes. Large on-chip caches and complex control logic are

used to hide system memory access latencies. This leads to a large amount of

the x86 transistor budget being consumed by caches and control logic. The GPU

in comparison contains a reduced amount of on-chip caches and control logic and

in return there is an increased percentage of transistor logic spent on execution

units. For example, the latest Nvidia GPU contains 240 simple processing cores.

This division of transistor budget narrows the GPU’s suitability to tasks that

are data parallel and exhibit a high compute intensity.

A data parallel task is one where multiple threads can be instantiated, all

executing the same programme, across many data elements in parallel. An ex-

ample of such a task is graphics rendering, where there exists a number of input

data elements and a single shading program that executes in parallel across the

input elements to generate pixels. A task exhibiting a high compute intensity,

or arithmetic intensity, is one with a high ratio of arithmetic to memory access

instructions. Memory latency on the GPU is expected to be hidden by a combi-

nation of arithmetic instructions and a high number of parallel threads, rather

than large caches and control logic. Tasks that fit the data parallel and compute

intensity criteria can exhibit higher performance on a GPU compared to a CPU.

1

Figure 1.1: Floating point performance for Nvidia GPUs and Intel CPUs [93].

An important trend, which broadens the GPUs suitability to general computa-

tion, is the increasing ability to program the processors. Early GPUs were fixed

function devices, supporting a graphics pipeline via parametrisation only. Sub-

sequent generations introduced programmable units within the GPU, primarily

to allow game programmers to execute custom code for pixel shading. Each gen-

eration further increased the flexibility of these programmable units. Examples

include increases in supported program length, increases in register counts, ad-

dition of branch instructions and improved memory access. Early recognition of

the possibility of using the GPU as a general purpose data parallel, or stream,

processor came from Buck et al. [12] and Venkatasubramanian [125] in 2003.

An early important milestone for general purpose computation on GPUs

(GPGPU) was the release of Shader Model 3.0 [107] compliant processors. Shader

Model 3.0 is part of Microsoft’s DirectX 9 [71] suite of programming interfaces

and details the feature set of the programmable units within a GPU. These GPUs,

released by both the major GPU vendors, Nvidia and AMD (formerly ATI), im-

proved the flexibility of the programming units to the extent where they could

realistically compete with the traditional CPU with regard to performance on

suitable compute intensive parallel problems. Early examples of GPGPU include

work in diverse fields such as databases [34], computer vision [30] and data min-

ing [36]. One of the most popular GPGPU projects, Folding@home [28], used a

DirectX 9 compliant GPU to achieve a ∼2.5 times increase over a comparable

CPU. The next major milestone for GPGPU was the introduction of Shader

2

Model 4.0 [73] complaint GPUs in 2006. This standard further pushed the ca-

pabilities of the programmable units within the GPU to resemble fully featured

CPUs. GPU vendors also recognised the market for general computation accel-

eration by releasing non graphical APIs to program their devices for the first

time. From this point on, the interest in GPGPU has intensified, spreading to a

large number of application contexts [37].

The increase in pervasiveness of confidential online transactions, digital rights

management solutions and the secure digitisation of all forms of governmental,

corporate and personal data, drives the demand for efficient security systems.

The high speed implementation of cryptographic algorithms used to form such

systems continues to be an active area of research. Such implementations are

not only limited to the CPU, but are also based on an array of diverse hard-

ware devices such as FPGAs, ASICs, PCI co-processor cards, RFID, smart cards

and USB devices [26]. Two common types of constituent algorithms in security

systems are symmetric-key and asymmetric-key. Symmetric-key algorithms are

generally used for confidential communication between parties in the case where

a shared secret between the parties exists. Asymmetric-key algorithms are gener-

ally used for confidential communication between parties where no shared secret

exists. These algorithm types are combined in various ways to produce secure

systems providing authenticity, integrity and confidentiality. Symmetric-key and

especially asymmetric-key algorithms can exhibit a high compute intensity, and

in certain circumstances, a suitability to highly parallel compute devices.

1.1 Thesis Aim

The aim of this thesis is to investigate to what extent the GPU can act as an ef-

ficient cryptographic processing platform for symmetric-key and asymmetric-key

algorithms. The focal algorithms for this investigation are two of the most popu-

lar cryptographic functions, AES [79] (symmetric-key) and RSA [111] (asymmetric-

key).

1.2 Motivation

The GPU is now ubiquitous, but for the most part it is grossly underutilised.

Unless playing high-end games, in the order of a TeraFlop of processing power

is largely going unused. There exists the potential to use this available power

in the capacity of a co-processor for non-graphical processing. In particular,

it could possibly fulfil the role of existing PCI-based cryptographic accelerator

3

cards. Standard end-user machines could potentially offload their cryptographic

requirements to the GPU, freeing up the CPU for other tasks. Applications

within a server environment requiring bulk cryptographic processing, such as se-

cure backup/restore or high bandwidth media streaming, could similarly benefit.

Also, it is important that potential sources of high performance cryptographic

processing are benchmarked. This provides the metrics against which the se-

curity assumptions of the various cryptographic primitives are scrutinised. A

further motivation for employing the GPU to perform cryptographic tasks is the

possibility of creating a reduced trusted computing base that is designed to hide

data from the CPU. This could be used for example in the transfer of encrypted

video feeds, which are decrypted directly on the GPU. The potential for such a

system has been discussed by Cook et al. [14].

A background motivation for this work is related to the traditional CPU de-

sign bottlenecking on clock frequency. The main technique employed to tackle

this problem is to increase the number of on-chip processing cores, thereby in-

creasing the total amount of available clock cycles. Intel are currently developing

“many core” architectures within the Terascale and Larrabee projects. Teras-

cale has demonstrated an 80-core processor as a research prototype. Larrabee

is yet to be released as a commercial product, though published architecture

designs [117] show it to be a highly parallel processor aimed at graphics tasks

and general purpose compute intensive tasks. AMD are also developing a hybrid

processor within their Fusion project, combining on a single die a traditional

CPU design with a many core GPU-like design for parallel work [3]. It seems

likely that future general purpose computation will involve some form of highly

parallel compute device. The GPU, currently with 240 on-chip processing cores,

can be seen as an early example of such a device. Future parallel devices are

likely to follow similar design paths, with many simple arithmetic logic units

(ALU) tied to small caches. As such, by mapping cryptography to GPUs, we

also hope to expose the issues that this type of processing will encounter in such

future highly parallel architectures.

1.3 Contributions

Interest in cryptography on graphics hardware has increased in recent years, es-

pecially with the introduction of DirectX 10 compliant GPUs. In Chapter 2 we

give the first comprehensive survey of published work related to cryptographic

acceleration on graphics hardware. The work in this thesis covers acceleration

of cryptographic functions on DirectX 9 and DirectX 10 compliant GPUs. Prior

4

to DirectX 10, the only method of programming graphics processors was via a

graphics API such as via DirectX or OpenGL [97]. Because of its operating

system agnostic status, we used OpenGL to program the DirectX 9 compliant

devices. During the implementation of AES on such hardware, it became appar-

ent that one of the primary performance bottlenecks was efficient movement of

data to and from the graphics card over the system bus. Furthermore, achiev-

ing optimal transfer rates for a task using a graphics API is complex, involving

the careful selection from a vast array of configuration combinations. No tools

existed to help with the selection of such configuration states as little demand ex-

ists for bi-directional large data transfers from traditional graphics applications.

Chapter 3 is based on work from “Optimising Data Movement Rates For Parallel

Processing Applications On Graphics Processors” [41]. This introduces new tools

that are used to investigate data movement rates, performance cliff avoidance,

and the minimisation of data transfer bottlenecks in our AES implementations.

Chapter 4 is based on work presented in “AES Encryption Implementation

and Analysis on Commodity Graphics Processing Units” [40]. It describes the

first DirectX 9 compliant GPU implementation of a symmetric-key function that

gives competitive performance compared to the traditional CPU. AES is imple-

mented using various approaches in an effort to work around the lack of integer

support on the GPUs involved. We also investigate an issue raised by Cook

et al. [15], whereby the OS reports 100% usage when executing their OpenGL

based AES implementation. We look into this more deeply and show the extent

to which the CPU can offload cryptographic operations to the GPU and free

cycles for other work.

Chapter 5 presents work from “Practical Symmetric Key Cryptography on

Modern Graphics Hardware” [43]. Here, a DirectX 10 compliant GPU is used

to implement the fastest reported AES implementation on a GPU. The various

issues involved with a high-speed implementation on a DirectX 10 compliant

GPU are discussed. The results are compared to CPU implementations and are

shown to be favourable. Also presented is a new model for mapping symmetric-

key client requests to the GPU in a generic manner. We also study the GPU’s

ability to process symmetric-key requests within the context of various modes of

operation. A mode of operation acts as a wrapping protocol specifying how to

use an underlying symmetric-key cipher securely.

Work that first appeared in booklet format in Eurocrypt 2009 as “Public Key

Cryptography on Graphics Hardware” [46] and later in Africacrypt 2009 as “Ef-

ficient Acceleration of Asymmetric Cryptography on Graphics Hardware” [44]

is presented in Chapter 6. This describes one of the first DirectX 10 GPU im-

5

plementations of efficient big integer modular exponentiation suitable for use in

many asymmetric-key cryptographic systems. We show how careful use of the

GPU memory system can increase performance and greatly reduce latency over

superficially similar GPU implementations. We analyse different number repre-

sentation systems with an aim to finding a balance between peak performance

and minimum latency. In the context of modular exponentiation using residue

number systems we introduce new and optimised algorithms for various parts of

the implementation. Our GPU exponentiation approaches are employed in an

RSA context and are shown to give superior performance compared with CPU

based implementations.

Chapter 7 describes the integration of the GPU as an Operating System

service for use by both userspace and kernelspace consumers. An existing vir-

tualisation services layer, the OpenBSD Cryptographic Framework (OCF) [55],

which abstracts clients from hardware accelerated cryptographic processors, is

used as the basis of this work. The novel contributions are, the effective integra-

tion of the GPU within the OCF model; the observation that the GPU interface

is userspace only and the newly developed mechanisms to allow it to be used as

part of a kernel service; the introduction of a new memory management system

within the OCF to allow efficient handling of memory transfers between multiple

address spaces; and an implementation of a general purpose multi-request batch-

ing scheme for asymmetric key requests with regard to the GPU. This work is

under peer review and is currently made available as the technical report, “GPU

Accelerated Cryptography as an OS Service” [45].

6

Chapter 2

Background and Related Work

The research presented in this thesis involves the use of two different types of

GPU architecture. The first type of architecture concerns GPUs that are DirectX

9 compliant, we label these GPUs as DX9. The second type concerns the use

of newer GPUs that are DirectX 10 [70] compliant, labelled DX10. Firstly, this

chapter covers an introduction to both architectures, highlighting design features

relevant to the implementations presented in subsequent chapters. Secondly, we

present the required background to the cryptographic functions explored and

related mathematics. Finally, related work in the area of GPUs and cryptog-

raphy is covered. The GPU information below is generally Nvidia-centric due

to the implementations presented in subsequent chapters being based on Nvidia

hardware. Nvidia were the first to release DX10 compliant hardware and as such

were the vendor of choice for most early DX10 based GPGPU research.

2.1 DX9 Compliant Graphics Hardware

2.1.1 Hardware Overview

With respect to Nvidia hardware, DX9 compliant GPUs include all instances

of the NV4X [85] and G7X [88] architecture families. These processor families

are largely outdated at the time of writing by newer DX10 compliant proces-

sors, however many are still in use. For example, the GPU used within Sony’s

PlayStation 3 is a DX9 GPU based on the Nvidia GeForce 7800GTX, part of the

G7X family. GPUs are designed to suit the concept of a graphics pipeline, which

traditionally receives as input a description of a 3D model and outputs a 2D

rendering for display on screen. Figure 2.1 shows a heavily simplified hardware

view of a DX9 compliant GPU, the GeForce 7900GTX, a high-end GPU from

the Nvidia G7X family. The figure depicts the main programmable units within

7

Figure 2.1: Simplified block diagram of the GeForce 7900GTX, a DX9 compliant
GPU.

the GPU, the vertex and fragment processors, which support the execution of

custom code. The corresponding components within graphics processors prior to

DX9 were largely fixed function and were controlled by parameterisation. This

allowed little scope for the GPU to be used for anything other than its primary

graphics function.

The DX9 vertex and fragment processors contain the majority of the pro-

cessing power found within a GPU. The distribution of this processing power

is not shared evenly between the two types of processing units. Typical graph-

ics applications place more demand for processing on the fragment processors

and thus most of the processing power lies within these units. For example,

the GeForce 7900GTX is equipped with 24 fragment processors, each of which

contains (amongst other components) two 32-bit floating point (FP32) 4-vector

arithmetic logic units (ALU). Thus, the fragment processors provide 48 FP32

4-vector ALUs. In comparison, the vertex processors provide 8 equivalent FP32

4-vector ALUs. Figure 2.1 also depicts the raster operations units (ROP). These

units are responsible for committing fragment processor output to device DRAM

memory.

2.1.2 Programming Interface

Programming DX9 compliant processors requires the use of a graphics APIs such

as Direct3D [39], part of the DirectX family of APIs, or OpenGL. These graphics

APIs use a programming pipeline, which supports the configuration of the data

processing and I/O stages within the GPU. This pipeline, shown in Figure 2.2,

is divided into vertex processing, rasterisation, fragment processing and raster

8

Host

Vertex

Buffer

Vertex

Processing

Rasteri−

sation

Fragment

Processing

Raster

Operation

Active

Framebuffer

Textures

+

Figure 2.2: The different stages of the DX9 graphics pipeline.

operation processing stages. One can see the parallels between the hardware

components discussed above and the programming pipeline. The operation and

data in each pipeline stage can be summarised as follows:� A list of vertices, which exist within a 3 dimensional space, is provide to

the graphics driver. These vertices act as descriptors for primitives such as

points, triangles or quadrilaterals.� The vertex processing stage of the pipeline transforms the vertex co-ordinates

into screen space co-ordinates.� The rasterisation stage is responsible for accepting the screen space co-

ordinates, which represent primitives, and generating a pixelised view. This

pixelised view comes in the form of arrays of fragments. A fragment denotes

a potential pixel, which may or may not be rendered to a final output buffer.� The fragment processing stage accepts fragments as input and can manip-

ulate attributes of each fragment, such as colour.� These fragments are outputted to the final stage, raster operation, which is

ultimately responsible for writing the final pixel colour values to memory

for display or recycling back into the pipeline.

As mentioned, the DX9 vertex and fragment processors are programmable.

The vertex processing stage runs custom code, called a vertex shader, for each in-

put vertex. The code can specify a series of input and output vertex attributes,

such as position, normal, texture co-ordinates and colour. The rasteriser in-

terpolates the output attributes of each vertex within a primitive, generating

fragments with a set of interpolated attributes. The fragment processing stage

runs custom code, called a fragment shader, for each fragment handed off to it by

the rasteriser. It is responsible for combining the fragment attributes to generate

9

a limited number of colour values for handoff to the raster operations units. Var-

ious high level shading languages exist for writing shaders, including Microsoft’s

DirectX High Level Shading Language HLSL [72], OpenGL’s shading language

GLSL [113] and Nvidia’s Cg [66]. These languages provide a C-like environment

to program the GPU’s vertex or fragment processors. They also provide explicit

support for GPU related features such as textures, vector data types, colours and

co-ordinates. Shader Model 3.0, part of the DirectX 9.0c specification, details

the minimum feature set that both the vertex and fragment processors support.

The raster operation is the last stage of the pipeline and runs on the ROP units.

This stage allows parameterised control over how the fragment shader’s output

is combined with the destination framebuffer. Although this stage does not sup-

port custom code execution and can only be controlled by parameterisation, as

we shall see, it can be useful when combining fragment processor output with

GPU memory.

2.1.3 Textures

Textures are a key component in the programmer’s arsenal when programming

a GPU. Textures are blocks of memory which exist in off-chip device memory on

the GPU card. They can be thought of as similar to bulk data arrays in a normal

CPU programming environment. These blocks of memory consist of individual

elements called texels, each of which has a storage format. An example of a

texel’s format could be a 4 wide FP32 vector representing the values for red,

green, blue and alpha (RGBA). Traditionally textures were accessible only by

the fragment processing stage in the GPU, allowing the combination of colours

at particular locations within a texture and the colour values output by the

rasteriser. DirectX 9 hardware improved texture access by supporting texture

reads from both the vertex and fragment processors.

The fragment processor has a somewhat restricted ability to write to tex-

tures. This ability is termed as render-to-texture and is important in the context

of general purpose processing. During the configuration of the pipeline, via

OpenGL or DirectX, the programmer can specify that the fragment processor

should output to a texture instead of a frame buffer. The advantage of render-

ing to texture is that the output of a pipeline pass can be used directly as the

input of the next pipeline pass. Without render-to-texture, access to the output

of the pipeline requires a copy-to-texture call, which involves the overhead of a

memory copy (from frame buffer to texture). Iterative solutions, which require

the consumption of the previous pipeline’s output as the next pipeline’s input

can be implemented using a pair of textures, one for input and one for output.

10

A single texture cannot be used in this scenario due to coherence issues when

reading and writing to the same texture in a single pass. After each pipeline pass

the role of the texture pair is switched, the input texture becomes the output

and vice versa. This implementation pattern is informally called the ping-pong

technique [33].

Textures can be declared as 1, 2 or 3 dimensional, though 2 dimensional

textures are most commonly used with DX9 GPUs. 1D textures are restrictive

in size due to limits of 2048 texels per dimension. 3D texture write support is

absent on some DX9 GPUs. Other DX9 GPUs support 3D texture writes, though

inefficiently relative to 2D texture writes. The internal data types stored within

a texel can be 16-bit or 32-bit floats and also a variety of bit width integers up

to 16-bit. The number of data components stored per texel ranges from 1 to 4.

It is a common technique to pack multiple data units into each texel to improve

I/O efficiency and make effective use of the vector processors.

2.1.4 General Purpose Computation

A problem that suits a parallel processing model can be broken into a large num-

ber of independent, or loosely bound tasks. The code which executes the task

in this context is commonly referred to as a kernel. With regard to GPGPU,

the kernel normally takes the form of a fragment shader which runs on fragment

processors. To control the number of fragment shader instances, which can be

seen as controlling the number of threads executing the kernel, we draw a 2D

quadrilateral of size x pixels by y pixels. The aim of this draw command is to

create x×y number of fragments shader instances, corresponding to the number

of fragments generated by the rasteriser. To ensure the size of the quadrilat-

eral corresponds in a 1-to-1 manner with the number of generated fragments, we

setup an orthogonal projection for the viewing volume which encompasses the

quadrilateral. This type of projection preserves the dimensions of objects spec-

ified within the viewing volume. The viewing volume is a set of clipping planes

which delimit 3D space and determine the active vertices which are sent to the

vertex processors. We must also create a viewport with the same dimensions

as the quadrilateral. The viewport is a plane onto which the viewing volume is

projected. See Figure 2.3 for a depiction of the viewing volume, viewport and

an orthogonal projection.

By configuring the graphics pipeline as described above we can create a de-

fined number of threads which run on the GPU. To specify the input data made

available to each fragment shader instance we can bind one or more 2D textures

to the quadrilateral vertices. The rasteriser is responsible for interpolating the

11

Viewport Viewing Volume

Quad

Figure 2.3: Orthogonal projection configured to protect the co-ordinates of the
input vertices.

texture co-ordinates bound to the vertices. These interpolated co-ordinates are

made available to each fragment instance. A common requirement is to maintain

a 1-1 mapping of fragment instances to input data elements. To achieve this the

bound texture is made the same size as the quadrilateral, for example x by y

as above. In the same way, the output can be stored following a 1-1 mapping

between the fragment instances and output data elements by binding a texture

of the same size as the quadrilateral to an output framebuffer object. These 1-1

mappings are useful when each thread’s input and output data element count

and size are symmetric. View volume, viewport and texture setup must be done

to configure the graphics pipeline before a draw command is executed. The draw

command triggers a single pass of the pipeline. It is equivalent to program exe-

cution, executing a potentially large number of fragment program instances and

storing their output ready for readback by the CPU or for the next pass of the

pipeline. Extensive coverage of general purpose computation on DX9 compliant

GPUs and example applications can be found in the survey by Owens et al. [101].

2.1.5 Restrictions and Performance Considerations

DX9 hardware is suited to the execution of data parallel tasks and lacks the

flexibility of the standard CPU. We list the major restrictions and related per-

formance considerations associated with using this hardware for general com-

putation. Much of the information regarding DX9 restrictions can be found in

Nvidia documentation [87, 107].

Memory: The DX9 GPU memory model provides a relatively complex and

performance sensitive environment compared to the CPU. Care has to be taken

with regard to memory usage to avoid performance bottlenecks. Points of note

regarding the DX9 GPU’s memory model include:� The amount of high speed on-chip memory available for each ALU on a

12

DX9 GPU is limited to sizes within the estimated range of 16KB to 24KB.

In comparison, a similar era CPU provides combined ALU access to much

greater sizes of on-chip caches, typically in the order of 2-4MB.� The GPU’s high speed memory mainly consists of a read-only cache for

device memory, called the texture cache. Writing to device memory does

not update the cache within a single pipeline pass. This causes cache

coherence issues if fragment programs within a single pipeline pass read

and write to the same memory locations.� Vertex and fragment shaders have access to local read/write memory in the

form of a limited set of temporary registers. These registers are the only

form of fast on-chip read/write memory. Also of note, the registers do not

support indexed access, limiting their use in certain contexts.� Vertex and fragment shaders have access to read-only high speed on-chip

constant registers. Like the temporary registers, these are limited in num-

ber. The numbers of available DX9 temporary and constant registers can

be seen later in Table 2.1.� Writing to device memory is supported only during the last stage of the

rendering pipeline. A fragment shader cannot commit data to device mem-

ory at any stage, but can only output a limited amount of data to the

raster operation stage which is responsible for committing values to device

memory.� The GPU lacks scatter support within its fragment processors. Output

locations for data are determined via the pipeline configuration before

pipeline execution and as such is fixed during fragment execution. The

GPU can output to multiple textures, called render targets, however this

is limited to 4 with DX9 GPUs. Thus, the amount of output generated by

a single pipeline pass for a single fragment shader is limited to 4 texels.� Memory allocation and memory free operations can only take place before

or after a pipeline execution, but not during.

Thread Co-operation: The ALUs on the GPU, whether those within the ver-

tex or fragment pipelines are incapable of sharing information during a single

pass of the pipeline. The only manner of sharing data is to execute multiple

pipeline passes using render-to-texture as described above. The execution of

each pipeline pass comes with overheads not associated with core computation

13

and thus the more fine grained the requirement for data sharing, the less effective

the GPU becomes.

Data Transfer: Any computation using a DX9 or DX10 GPU involves the

transmission of data across the system bus. This data is not only input and

output for shader execution but also any control operations related to pipeline

configuration. The overhead of system bus use becomes more of a performance

bottleneck as the amount of computation performed per pipeline pass decreases.

Also, as previously mentioned, textures are used as data arrays for shader input

and output. Thus, we transfer input and output data via texture transfers to

and from the GPU. As we will see in Chapter 3, careful pipeline configuration is

required to avoid large drops in transfer rate potential.

Instruction Support: The ALUs on DX9 GPUs support only 32-bit floating

point for processing and data access. No native integer or bitwise operations are

supported within the vertex and fragment processors. This reduces the effective-

ness of the main source of GPU processing power with regards to cryptographic

processing due to its heavy requirement for integer processing.

Branching Costs: Branching is supported on both the vertex and fragment

processors. The vertex processors support MIMD (multiple instruction multiple

data) branching, where each processor can execute a different thread of instruc-

tions. The fragment processors however act as a set of SIMD (single instruction

multiple data) groups. If branching occurs within a SIMD group, each divergent

path must be executed serially and the results predicated. Thus, although frag-

ment processor branching is supported, there can be a large performance penalty

if thread divergence is common.

Program Length: The vertex and fragment processors support a minimum

of 512 static instructions as specified by the shader model specification. The

number of actual executed instructions, i.e. dynamic instructions, is fixed at

65,535. These limitations restrict the complexity of the possible programs that

can be run on the GPU in a single pass and as a result can lead to the fragmen-

tation of programs into multiple parts, each called in a separate pipeline pass.

Access to Design Details: The finer details of the GPU architectures de-

signed by vendors, Nvidia and AMD, are often kept secret. Information which

may be beneficial to general purpose computation such as low level optimisation

14

can be difficult or impossible to access. Examples of this include the lack of

information on the exact cache sizes available to each ALU or the rasterisation

patterns used to generate fragments for handoff to the fragment processors. This

tradition of secrecy continues with DX10 hardware.

Vertex Processors: Efficiently employing the vertex processors in a general

purpose application can be difficult due to their placement and function within

the graphics pipeline. Their output values are in the form of vertex attributes.

These attributes are used by the fixed function rasteriser to generate the num-

ber of fragment shader instances required and also to generate each fragment’s

interpolated attribute values. The fixed interpolation of the vertex output at-

tributes is beneficial in graphical applications, though has limited use in general

computation. This interpolation can be avoided by using point primitives. How-

ever, this can result in idle fragment processors as the rasteriser will generate one

fragment per vertex. DX10 hardware specifically addresses this issue by allowing

more effective use of all the available GPU processors depending on the work

required.

2.2 DX10 Compliant Graphics Hardware

2.2.1 Departure from DX9

The DirectX 10 specification details the system architecture for a more flexible

programmable graphics processing unit. This specification requires a minimum

feature set from compliant GPU’s processing cores, which comes close to the

flexibility of the traditional CPU. One of the main improvements in DX10 com-

pliant hardware over DX9 in relation to cryptography is the addition of integer

operation support. Included in the integer instruction set is support for arith-

metic and bitwise operations. Another high profile change includes an increase in

complexity of the graphics pipeline with an additional stage called the Geometry

Shader. However, we will see in Section 2.2.3, that general purpose use of the

GPU no longer has to be concerned with the graphics pipeline.

Shader model 4.0 [73] is included as part of the DX10 specification. The

model specifies a unified instruction set for all of the programmable stages of the

pipeline: vertex, fragment and geometry. The specification also defines a single

virtual machine to be used as a common base for all programmable stages. These

specification requirements have important implications for hardware implemen-

tations in terms of general purpose processing, see Section 2.2.2. Also included

15

Figure 2.4: Simplified block diagram of the GeForce 8800GTX, the first DX10
compliant GPU.

in the specification are large increases in the number of constant and temporary

registers available to each programmable stage. These registers are now index-

able, which increases their flexibility compared to previous register usage. Other

improvements over DX9 include an increase in size of texture dimensions; in-

crease in number of textures available to programmable stages; increase count of

instruction slots, i.e. static program length; increased dynamic program length;

new data load instruction to allow unfiltered device memory loads, rather than

reading via texture sampling.

2.2.2 Hardware Overview

As mentioned previously, the DX10 specification details both a common virtual

machine base and instruction set for all programmable stages of the graphics

pipeline. This is referred to as the unified shader model. Both Nvidia and AMD

DX10 compliant GPUs reflect these requirements by implementing each pro-

grammable stage using the same processing cores. This approach is commonly

known as unified shader architecture. The first commercially available DX10

compliant GPU was the Nvidia GeForce 8800GTX, an instance of the G8X [90]

architecture family. This architecture provides an homogeneous array of process-

ing cores. The GPU is capable of dynamically configuring the processing cores

to assume the role of any of the three programmable stages, depending on the

work required. As previously mentioned, it is difficult to make full use of the

vertex processors for general purpose computation on DX9 GPUs. Both Nvidia

and AMD DX10 compliant GPUs alleviate this issue by dynamically assigning

the processing cores to the work type present in the pipeline.

16

2.2.2.1 Nvidia DX10 Compliant Hardware

In Figure 2.4 we can see that the Geforce 8800GTX has 128 homogeneous stream

processing (SP) cores. Each stream processor is a pipelined, in-order, scalar mi-

croprocessor capable of executing 32-bit floating point and 32-bit integer opera-

tions. The G8X and subsequent Nvidia architecture use scalar processors rather

than the tradition vector processors found in graphics hardware. This is due

to the realisation that as shader programs get more complex, the active vector

width narrows [92, p27]. Thus, complex shader programs fail to fully utilize

the entire width of the vector processors and as such leave hardware idle. A

scalar approach does not suffer from this scenario. Also, as general purpose com-

putations can commonly involve scalar operations, the full utilisation of vector

hardware can require inventive data packing techniques. The change to scalar

processors removes this obstacle to achieving performance on the GPU.

We can also see in Figure 2.4 that the stream processors are grouped into

units called streaming multiprocessors (SM). Each SM contains 8 SPs; 2 special

function units (SFU), which handle transcendental operations; a multithreaded

instruction unit (MT IU); and shared memory. The SMs are grouped into pairs

to form a thread processing cluster (TPC). Within a TPC the SMs share texture

fetch units, texture addressing units, texture cache and other control logic. The

architecture scales by a combination of changing the number of SPs per SM,

SMs per TPC and the number of TPCs per GPU. The latest Nvidia architecture

family at time of writing, the G200 [94], demonstrates this by increasing the

processing cores to a total of 240 by combining 3 SMs per TPC and increasing

the number of TPCs to 10. The design of the G200 is essentially the same as the

original DX10 compliant GPU. In Figure 2.4 we also see the ROP layer, which

serves the same purpose as in DX9 hardware. Also present is a level 2 cache (of

undefined size) to provide increased performance for texture reads.

SIMT: As mentioned, an SM contains 8 SPs, which are tied to a multithreaded

instruction unit. This arrangement functions in a manner called SIMT (single

instruction, multiple-threads) [93], which is similar to SIMD. The SM is capable

of executing threads, i.e. instances of a kernel execution, each of which run on

a single SP. Each thread in effect executes with its own instruction pointer and

register state. The similarity of SIMT to SIMD is that the instruction unit issues

a single instruction for all SPs to execute at any one time. As such all SPs within

an SM execute the same instructions, though can operate on their own unique

data. The main difference between SIMT and SIMD is that SIMD instructions

expose the vector width to software, whereas SIMT instructions are scalar and

17

SM
SM

SP 1

Registers

SP

Registers

Shared Memory

Device Memory

Constant Cache

Texture Cache

SP 2 SP N

Registers

Figure 2.5: Block diagram of the physical memory available to the SPs on a G8X
GPU.

determine the execution and branch behaviour of a single thread. SIMT uses an

abstraction that allows the SIMD like SM to create multiple independent scalar

threads. This abstraction is implemented in hardware by a thread scheduler.

The scheduler is capable of dynamically disabling the output of sets of ALUs

within the SM during divergent thread execution.

Although the SM ensures correctness of execution of independent scalar

threads, for efficiency it creates and schedules in groups of 32 parallel threads,

called warps. This grouping of threads into warps is not reflected in software,

though it is an important consideration in application development with regards

to efficiency. The instruction unit issues the same instruction for each group of

32 threads, selectively committing results dependent on thread branching. With

regard to performance, the architecture can be viewed as having an effective

SIMD width of 32. The performance implications of thread branching on the

architecture is discussed in Section 2.2.4.2.

Memory: All types of memory available to each stream processor can be seen in

Figure 2.5. This figure shows all the on-chip, high speed memory and the off-chip

memory available to each SP. Each memory type is designed for a specific task

and generally requires explicit programmer instructions. Each physical memory

type can be described as follows:� Registers - each SP has its own on-chip 32-bit register file.� Shared Memory - all SPs within a single SM share a small on-chip read-

18

/write memory. Shared memory can only be written to and read from

during kernel execution and is accessibly only by the SPs that reside in the

same SM as the shared memory.� Constant Cache - a read-only cache shared by all SPs that is used to speed

up reads from constant memory space.� Texture Cache - a read-only cache shared by all SPs that is used to speed

up reads from texture memory space. All memory read via the texture

cache comes from the texture units within the TPC.� Device Memory - a read/write DRAM memory which exists off-chip. Whereas

the on-chip memories are generally small, in the order of kilobytes, current

graphics cards contain up to a low number of gigabytes of device memory.

Each SP within an SM has the ability to write to arbitrary locations within

the GPU’s device memory. This overcomes the DX9 fragment processor’s lack

of scatter support - the inability of shaders to write directly to device mem-

ory. This increases the DX10 GPU’s flexibility with regard to general purpose

computation. Also, SP access to shared memory has important synchronisation

implications. Threads running on the same SM have the ability to co-ordinate

via a synchronisation barrier instruction. Combining the synchronisation barrier

with the high speed on-chip read/write shared memory can provide a means of

implementing fine grained inter-thread co-operation.

2.2.3 Programming Interface - CUDA

Both major GPU vendors have released new software environments for gen-

eral purpose computation on their DX10 hardware. Nvidia released the Com-

pute Unified Device Architecture (CUDA) [83] and ATI/AMD initially released

“Close-To-Metal” (CTM) [1], which was later encapsulated in Stream SDK [2].

These new software environments allow programmers to avoid the use of tra-

ditional graphics APIs such as OpenGL and Direct3D to harness the GPU for

general computation. All DX10 implementations within this thesis were made

using CUDA and as such we focus on this architecture here. CUDA provides

the ability to program the GPU using the C++ language with specialised exten-

sions. These extensions can be grouped according to compute capability. Each

GPU release that supports CUDA has a particular compute capability release

number. The first CUDA supporting devices, and also the first DX10 compli-

ant devices, implemented compute capability 1.0. Subsequent hardware releases

19

have followed with minor updates to the CUDA extensions and as such add new

compute capability versions. At the time of writing, the latest CUDA compute

capability was 1.3. The CUDA implementations presented in this thesis are based

on compute capability 1.0 and thus, are compatible with all CUDA devices.

CUDA extends the C++ language to support the distinction of code which

runs on the CPU and the GPU, called host and device code respectively. The

CUDA compiler processes CUDA source files according to C++ syntax rules,

however device code is restricted to a limited set of C++ syntax. Device and

host code can be mixed within a single file, though are separated at the function

level. A language extension provides function type qualifiers to indicate whether

code runs on the host or device. A CUDA program which executes on the GPU

is called a kernel. The “main” function, or starting point, for a kernel is specified

by tagging a function with the global qualifier. A global function can only

be called from a host function and can only call device functions. A device

qualifier can be used to denote a function which runs on the GPU and is callable

from a global or another device function. A host qualifier specifies a function

which runs on the CPU and can be called by other host functions. Variable type

qualifiers have also been added to the language and specify the type of memory

that stores the variable. These qualifiers include device , constant and

shared . Texture memory is specified using its own type and registers are

specified using automatic variables within device functions.

CUDA also provides a language extension to define the number of threads

to be created on kernel execution. The number of threads are specified via

the combination of a CUDA grid and a CUDA block. Threads are organised

into blocks and blocks are organised into a grid. A block is represented by a 3

component vector, each component represents a dimension. The total number of

threads in a block are derived from the multiplication of the three dimensions.

All blocks within a grid are the same size. Also, all threads within a block execute

on a single SM. A grid is represented by a 2 component vector, each component

represents a dimension. The total number of blocks in a grid are derived from

the multiplication of the two dimensions. The total number of threads spawned

for a kernel execution on the GPU is derived from the number of threads per

block multiplied by the number of blocks per grid. For example, given a CUDA

block value of (1, 3, 100), and a CUDA grid value of (2, 3), the total number of

threads for the kernel execution equals (1× 3× 100)× (2× 3). Note, that there

is a hard limit of 512 threads per block, however we later discuss factors that

can further restrict the number of threads per block.

Another language extension gives each thread access to a unique identifier via

20

CPU

Program

{

 ...

 ...

 Kernel Call 1()

 ...

 ...

 Kernel Call 2()

 ...

 ...

}

GPU

Kernel 1

Grid Configuration:

Blocks = 3 x 2

Threads = 4 x 2

Block

(0,0)

Block

(1,0)

Block

(2,0)

Block

(0,1)

Block

(1,1)

Block

(2,1)

Kernel 2

Block

(0,0)

Block

(1,0)

Block

(2,0)

Block (2,0)

Thread

 (0,0)

Thread

 (1,0)

Thread

 (2,0)

Thread

 (3,0)

Thread

 (0,1)

Thread

 (1,1)

Thread

 (2,1)

Thread

 (3,1)

Kernel 1

Figure 2.6: Example of the CUDA execution model.

the use of CUDA’s build-in threadIdx and blockIdx variables. The threadIdx

variable is set to the threads position within the CUDA block it belongs to. The

blockIdx is set to thread’s block within the grid. The total number of threads

executed on the GPU for a global function (kernel) call is equal to the number

of threads per block multiplied by the number of blocks in the grid. A single

C program running on the CPU can execute multiple, different kernels serially

on the GPU. This technique can be used to isolate separate parallel and serial

portions of a task, executing the serial parts on the CPU and the parallel parts on

the GPU. Figure 2.6 illustrates an example of the execution of multiple kernels

on the GPU, interleaved with serial code on the CPU. It also illustrates the grid

and block configuration for each kernel execution.

CUDA defines a number of memory address spaces. Each thread has its own

private memory address space. This address space is backed by a combination of

on-chip high performance registers and slower off-chip device memory. This space

has a lifetime of the thread. Each thread has access to a shared memory space,

which is shared by threads within the same CUDA block and has a lifetime

of the block. The space is implemented by high performance on-chip shared

memory. All threads that comprise a kernel execution have access to a single

address space called global memory. Global memory address space resides in

device memory. Threads also have access to read-only texture memory and read-

only constant memory address spaces. These address spaces are shared by all

threads in a grid and are implemented using device memory. Unlike the global

address space they are accelerated by on-chip caches. The global, texture and

constant address spaces are persistent across multiple kernel executions within

the same application.

21

2.2.4 Restrictions and Performance Considerations

There are a number of restrictions and performance pitfalls encountered when

designing solutions for acceleration using DX10 compliant GPUs. The main

issues of concern are listed below. Many of the points presented below can be

found in official Nvidia literature [91, 92, 93].

2.2.4.1 Memory

Careful use of the different memory address spaces available for use by threads

on the GPU is an essential part of efficient application development. The lim-

ited availability of fast on-chip memory acts as one of the main programming

concerns. Appendix B.3 lists the available memories and sizes for the reference

DX10 GPU in this work, the GeForce 8800GTX. We detail the performance re-

lated concerns for each type of memory space below.

Private Memory: This type of memory is implemented using a combination

of on-chip registers and off-chip device memory. Registers are used to store au-

tomatic variables declared within a kernel. Automatic variables are variables

that are not explicitly specified by the programmer to reside in any other ad-

dress space and are generally used as fast working memory. These registers are

referred to as temporary registers in certain contexts. Local memory is used by

the compiler when there is insufficient numbers of registers available to store all

automatic variables. This is referred to as “register spillage”. Device memory is

used to store local memory, which is relatively slow compared to register access.

An SM takes 4 clock cycles to issue a memory instruction per CUDA warp. Reg-

ister access generally adds no extra clock cycles per instruction, whereas device

memory access adds between 400 and 600 extra cycles. From this difference it is

clear that register spillage can cause a performance cliff, particularly when taking

into account the normally heavy use of registers within a programme, and should

be avoided if possible. It is possible to detect this spillage using compiler options

to display register usage. Note that, implementations presented in Chapter 5

gain performance by allowing a small amount of register spillage for a increase

in concurrent threads per SM.

Shared Memory: A strategy for performance improvement regarding repeated

access to data is to use shared memory as a staging area for this data. This

strategy involves the prefetching of data from slower device memory into on-

chip shared memory. Subsequently this data can be accessed efficiently by an

22

algorithm, and can optionally be committed back to device memory. We see an

example of this staging strategy in Chapter 5. As shared memory is relatively

small compared to device memory a data tiling approach to staging can be used.

This splits the data into subsets, each subset being read into shared memory for

use one tile at a time [57]. A slight variation on staging is to use shared memory

to store intermediate results which require repeated access, again providing a

speed up over global memory use. This strategy is seen in Chapter 5.

Each SM’s shared memory is physically arranged in a series of 16 banks, or

modules, each 32 bits wide. Banks are organised such that successive 32-bit

words are assigned to successive banks. A shared memory request is issued on

behalf of a 1/2 warp, i.e. one request per 16 threads, and as such each request

consists of 16 addresses. Each address within a request maps onto a particular

bank. If all addresses map to a unique bank, no bank conflicts occur. As long as

no bank conflicts occur, shared memory access is as quick as register access. Bank

conflicts occur when addresses within a shared memory request map to the same

bank. When a request addresses the same bank multiple times, these accesses are

serviced serially. The hardware splits memory requests into as many separate

(and serial) conflict free requests as necessary to service the original request,

thus the bandwidth is reduced by a factor equal to the number of separate

requests made. An exception to the serialisation of memory requests concerns

the ability of hardware to choose a broadcast address, which allows a single

address to service multiple accesses at the one time. An example of this is where

no conflicts occur when all threads access the same shared memory location.

The programmer does not have control over the selection of the broadcast bank.

Considering the organisation of data within shared memory is deterministic, one

can endeavour to arranged storage and retrieval of data to and from shared

memory to minimise the number of bank conflicts.

A further concern relating to shared memory is its population with data.

There is no mechanism by which a programmer can pre-load data into shared

memory for use in a subsequent kernel call. Data must be loaded into shared

memory by the threads within a CUDA block during the thread’s runtime. This

introduces complexity into the design of algorithms which wish to use shared

memory as a manual cache for speeding up global memory access. With respect

to efficiency, the task of shared memory population should ideally be divided

equally across all threads. As thread count per block depends on many factors,

such as shared resource contention, this division can lead to inefficiencies. For

example, if all threads wish to use a shared lookup table residing in shared

memory, the task of populating this table is split across all threads. If this task

23

does not divide evenly amongst the threads within a block, then some threads can

be left doing nothing during all or part of the memory copy. This is encountered

in Chapter 5.

A note should be made regarding security doubts raised by the use of shared

memory for processing of cryptographic functions. Shared memory is only ac-

cessibly between threads within a single kernel instance. As CUDA supports no

time-slicing, thus each kernel is executed from beginning to end without inter-

ruption, and also each kernel is executed by a single CPU process, the sharing of

data between threads gives no more access to data than the calling CPU process

already has. However, it should also be noted that care should be taken if the

GPU were used for cryptographic processing in an untrusted compute environ-

ment to “zero” all memories before kernel completion so as to not leak data to

subsequent kernels. The previous recommendation should not be considered that

doing so makes the use of a GPU in an untrusted environment secure, and such

security analysis is beyond the scope of this thesis.

Constant Memory: This memory is a read-only region of device memory,

which is accelerated via an on-chip cache. Reads from the cache are as fast as

register reads as long as all addresses within a single constant memory request

read from the same address. The number of threads serviced by a single constant

memory request is 16, a 1/2 warp. All accesses to different addresses within con-

stant memory for a single request are carried out serially. Thus, if threads are

expected to access multiple different locations, even if the memory is read-only, it

can be worth using a different type of memory such as texture or shared memory.

The constant cache is referred to as constant registers in certain contexts.

Texture Memory: This address space maps to a read-only region of device

memory. Reads from texture memory are cached and are not subject to the

same addressing restrictions to achieve optimal performance as constant mem-

ory or global memory, so can prove a flexible alternative for accelerating device

memory access. However, the cache and fetch mechanism is optimised for 2D

spacial locality, thus achieving good performance with texture memory can de-

pend on good spacial locality of address access. This locality type is as a result of

its primary use with textures, where the most common pattern of texture access

is to read texels that are spatially close to the currently active texel. Texture

memory also provides hardware for high speed filtering of memory reads, such

as interpolation between texels, however this was not found useful in the context

of the cipher implementations presented in this thesis.

24

Global Memory: Global memory space can be allocated and used as linear

memory, in the same manner that traditional CPU based applications can in-

teract with system memory. Global memory is not cached and thus is relatively

slow compared to other cached device memory spaces, however it supports both

read and write operations. Also, global memory, when used as linear memory,

supports pointer usage, which can be useful for certain pointer based data struc-

tures such as trees. Efficient use of global memory requires the adherence of

certain access patterns. The compiler will generate a single instruction for a

global memory access for a single thread if the data type is 4, 8 or 16 bytes

long, and its address is a multiple of the data type size. Failing to meet these

requirements can result in multiple instructions being generated, which run seri-

ally. Simultaneous access to global memory by a half warp can be coalesced into

a single instruction if the following is true: each thread adheres to the access

pattern previously described for generating a single access instruction; all data

being accessed by the 16 threads is contiguous and aligned to the size of the

data; threads access words in sequence, i.e. the nth thread accesses the nth word.

Compute capability 1.2 removes this last requirement.

Global memory can be mapped by textures, allowing memory access to po-

tentially benefit from full read/write flexibility and also cached reads. However,

writing to global memory mapped by a texture is not necessarily reflected by the

texture cache within the same kernel execution. The texture cache is not read-

/write coherent, in that writes to a global memory location and subsequent reads

for that same memory location via texture fetching gives undefined results. If

incoherence is a potential problem it is required to alternate access to the texture

and global memory across different kernel executions.

2.2.4.2 Branching

As mentioned previously, an SM unit creates and schedules threads in groups of

32 called warps. On instruction issue, the SM selects an active warp and issues

an instruction to all the active threads within the warp. Thread paths within a

warp can diverge when they make a conditional branch. When threads diverge,

all unique code paths within a warp of threads must be executed serially. When

all paths within a warp converge again, all threads return to being executed in

parallel. Distinct warps execute independently regardless of code path. Thus,

to maintain full efficiency of an SM, threads within a warp should not diverge.

Warps are formed by the hardware in a deterministic fashion. Threads within a

25

CUDA block are split into warps, each warp contains threads with consecutive

IDs. Thus, programmers can determine that if code paths taken by threads is

consistent based on multiples of the warp size, starting at thread 0, then no

thread divergence can happen. The issue of thread divergence has important

consequences for asymmetric-key cryptography as shown in Chapter 6.

2.2.4.3 Thread Co-operation

As previously mentioned, threads within a CUDA block have the ability to

synchronise. More precisely, all threads within a CUDA block can issue a

syncthreads() intrinsic that stops their progress until all threads within the

block reach the same point. This intrinsic is allowed within conditional code.

However, if threads within a block diverge at the point of synchronisation, the

outcome is undefined, possibly resulting in a program crash. Thus, synchro-

nisation and branching can be mixed only if the conditional branch evaluates

equivalently across all threads within a block. This factor plays a role in the

flexibility of asymmetric-key implementations as seen in Chapter 5. It should

also be kept in mind that, as in DX9 GPUs, no global synchronisation of threads

is supported. Although atomic instructions were introduced for global memory

access in compute capability 1.1, which allows a certain level of global thread

collaboration (for example in reduction functions [82]), the only point of syn-

chronisation for all threads within a kernel execution, is when the kernel (i.e. all

threads) is finished executing.

2.2.4.4 Occupancy

An important consideration regarding performance on a GPU, or any highly

parallel processing device, is that of maintaining a high occupancy. A high occu-

pancy refers to keeping the processing cores (e.g. the SPs in the GPU) busy doing

useful work rather than waiting on I/O or other threads for completion. Much of

the transistor budget on a traditional CPU is consumed with the aim of keeping

the processing cores as busy as possible with the use of units such as branch

predictors, re-order buffers and large caches. The GPU gains in theoretical per-

formance by simplifying, reducing or removing these hardware components, and

thus it follows that more responsibility for keeping the processing cores occupied

shifts to the programmer. To maintain a high occupancy on the GPU the follow-

ing points require consideration. Although not previously stated, the principles

behind the considerations below also apply to DX9 hardware.

26

Balanced Workload: Where possible, all SMs should have the same amount

of work to do. Considering that each CUDA block is assigned to a single SM and

given n SMs in a device, the CUDA grid size should specify at least n blocks1.

If one assumes the work performed per block is equal, then the number of blocks

specified should be a multiple of n. Ideally, regardless of work load per block,

each SM should perform an equal amount of work. This ensures no SMs are

idle while awaiting the completion of work by other SMs before returning to the

CPU. The assignment of blocks to SMs is undefined, however we can make cer-

tain assumptions to distribute uneven block work loads beneficially, as presented

in Chapter 6.

Multiprocessor Occupancy: Nvidia define the term, “multiprocessor occu-

pancy”, to be the ratio of the number of warps running concurrently on an SM

to the maximum number of concurrent warps supported by an SM. The G8X ar-

chitectures support up to 24 actively running warps per SM, i.e. 768 threads, thus

to be capable of 100% multiprocessor occupancy across all SMs on the GeForce

8800GTX we require at least 12,228 (768× 16) threads. Executing a kernel with

a high number of threads has the benefit of hiding memory latency, which in-

creases the occupancy of the processing cores. In general it is recommended that

the multiprocessor occupancy ratio is maintained as close to 100% as possible,

however the following factors are involved in achieving this goal.� The registers available within an SM are shared amongst all active threads

on the SM. The number of active threads is determined by the number of

active blocks per SM × the number of threads per block. Register con-

tention can cause a reduction in both the number of active blocks and

number of threads possible per block and hence reduce multiprocessor oc-

cupancy. The number of registers used per thread is kernel dependent and

can be outputted by the compiler using the -cubin switch. The program-

mer has the ability to specify the number of registers to use, if it is adversely

affecting the multiprocessor occupancy, using the --maxregcount switch.

However, when reducing the number of registers used for a kernel, a per-

formance penalty is paid for each register which spills over to local memory

(i.e. device memory). The trade off between local memory spillage and

multiprocessor occupancy is seen in Chapter 6.� Another resource which can restrict multiprocessor occupancy is shared

memory. It is divided between all active blocks on an SM. Again, the

1Nvidia DX10 compliant GPUs contain a variable number of streaming multiprocessors,
ranging for example from 2 with the GeForce 8500GT to 30 with the GeForce GTX280.

27

amount of shared memory used is kernel dependent and can be output by

the compiler using the -cubin switch. Relating to this point and the point

above, the active block count is determined by the compiler, taking into

account the number of blocks specified per grid; the number of threads

specified per block; the shared memory usage per block; and the number

of registers used per thread.� For all compute capabilities as of time of writing, the maximum number of

threads supported per block is 512. Thus, the active block count per SM

must be greater than one to achieve full multiprocessor occupancy. Also,

the maximum number of concurrent blocks supported by an SM is 8.� Thread count per block should always be a multiple of the warp size due to

the scheduler issuing threads in groups of warp size. If this is not adhered

to, it is guaranteed that SPs will retire unwanted results, thus wasting

compute resources.

Nvidia provides an occupancy calculator [84], which accepts as input the

number of threads per block, the number of registers per thread and the amount

of shared memory used per block. It outputs the level of multiprocessor occu-

pancy. If the occupancy is less than 100%, it indicates which resource is causing

the occupancy drop.

Parallelism: A concern related to occupancy is the degree of parallelism in-

herent in a problem. The ability to split a problem into data parallel tasks can

determine the likely level of occupancy a GPU will display in the task’s execu-

tion. “Embarrassingly parallel” workloads [4] naturally split into a number of

parallel tasks, with little or no inter task co-operation. These types of workloads

can lead to a high thread count with little to no communications overhead, the

ideal for highly parallel devices such as the GPU. Tasks which don’t easily divide

into independent or loosely coupled units of work, can potentially be divided by

increasing the level of inter task co-operation. Increasing inter task communi-

cation, in order to increase parallelism and thus the number of active threads,

results in a trade off between the potential performance gain due to increased

occupancy and performance loss due to the overhead in inter-thread communica-

tion. A coarse grained approach to increasing occupancy on a device when a task

cannot be further subdivided, is to execute multiple instances of these tasks con-

currently. This approach increases the number of concurrent threads, however

also increases the requirement for large input data sizes per kernel execution,

which can reduce the practicality of the approach. Both fine grained and coarse

28

grained approaches to increase parallelism and occupancy on the GPU appear

throughout the implementations in this thesis. It should be noted that security

against fault attacks can involve the execution of the same task multiple times

taking a vote to determine a more reliable result. This type of technique could

increase the appeal of the coarse grained approaches presented if fault attack

resilient approaches were implemented on the GPU.

Arithmetic Intensity: The ratio of arithmetic operations to I/O operations is

referred to as arithmetic intensity. With regard to occupancy it is desirable for

a kernel to have a high arithmetic intensity. As there is little hardware within

the GPU dedicated to hiding memory latency, I/O heavy kernels require a large

number of threads to effectively hide the I/O cost. A kernel with high arith-

metic intensity reduces this pressure to have such a large number of threads as

the higher the intensity, the better the arithmetic operations hide the I/O cost.

It follows that blindly increasing CUDA grid and block sizes in an attempt to

increase occupancy can have no effect if the kernel is not I/O bound.

2.2.4.5 Instruction Throughput

Instruction support on the GPU is not equal across different data types and op-

erations. Regarding Nvidia DX10 hardware, 32-bit integer addition and bitwise

operations takes 4 clock cycles to issue per warp, the same for 32-bit floating

point add, multiply and multiply-add. 32-bit integer multiplication takes 16 cy-

cles to issue per warp, however there is a faster 24-bit integer multiply which

reduces this cost to 4 cycles. Of particular importance to certain asymmetric

cryptographic algorithms, integer division and modulo operations are specified

by Nvidia as “particularly costly and should be avoided if possible”. We present

alternatives to avoid these costs in Chapter 6.

2.2.4.6 Data Transfer

As with DX9 hardware, transfer rates over the system PCI bus remains an im-

pediment to performance. Recent improvements to bandwidth speeds of the

system bus with the introduction of PCI Express v2.0 x16 giving a theoretical

8GB/s still performs poorly relative to device memory bandwidth at a theoretical

142GB/s for Nvidia’s GeForceGTX 280. It is beneficial to aim to minimise data

movements from host (CPU) to device (GPU) where possible. Where multiple

kernel calls are required data should remain on device memory. Transfers that

are required between host and device should be batched into one transfer if pos-

29

sible to avoid the minimum overhead associated with per transfer call. CUDA

supports using page locked memory on the host, which permits the device to

execute DMA transfers. This gives the best transfer rate by avoiding an extra

memory copy by the device driver. However, as page locked memory (memory

which cannot be swapped out and exists in kernel-space), is generally smaller

than standard system memory and shared by all OS services, there can be a

negative impact to overall system performance if too much is reserved for CUDA

use.

Also, as with DX9 hardware, when the CUDA API issues instructions to the

GPU there is an associated overhead. This overhead is due to the combination

of the relatively slow system bus and the device driver transformation of GPU

calls into native instructions. These factors introduce a latency to tasks which

may not otherwise exist if executed on the CPU. Thus, the types of applications

which are suitable for acceleration on any GPU are generally those which have

a certain degree of tolerance to latency. The GPU suits problems where each

input data element requires a large amount of processing. This factor is clearly

exposed in all result sections presented throughout the thesis.

2.2.4.7 Execution Model

A number of restrictions relating to the execution model employed by DX10

hardware and CUDA play a factor in how solutions for the GPU are designed.

The GPU cannot be subdivided to run different kernels simultaneously, either

via time slicing or concurrency. This has the effect that resource utilisation is

the sole responsibility of a single kernel, in that unused resources during a kernel

execution will not be consumed by other kernels. This also has the effect that

implementations which have threads running largely differing algorithms dur-

ing a kernel execution, must split the functionality within a single kernel using

conditional branches. This technique is given the term “fat kernels”. Another

restriction which should be considered is that results for a kernel execution are

not available until all threads are finished. This has implications for occupancy

as stated above in Section 2.2.4.4, and plays a role in load balancing of work

in Chapter 5. A further restriction, that the G8X family imposes, is that ker-

nel execution cannot happen at the same time as data transfer from host to

device, or vice versa. Later architectures removed this restriction allowing the

overlap of kernel execution and data transfer. This improvement goes some way

to alleviating the adverse affect of latency on throughput as pipelining can be

implemented.

30

Shader Model 3.0 Shader Model 4.0

Instruction Slots ≥ 512 ≥ 65536

Vertex Constant Registers ≥ 256
16 X 4096

Fragment Constant Registers ≥ 224

Vertex Temporary Registers 16
4096

Fragment Temporary Registers 32

Render Targets 4 8

2D Texture Size 2048 × 2048 8192 × 8192

Integer Operations - Yes

Load Operations - Yes

Vertex Texture Access 4
128

Fragment Texture Access 16

Table 2.1: Comparison of select features required by DX9 Shader Model 3.0 and
DX10 Shader Model 4.0 .

2.2.4.8 Tool Chain

Nvidia provide a single compiler tool, nvcc, which hides a chain of tools used to

generate device and host binaries. Of interest is the device binary generating part

of this tool chain. nvcc first splits the host and device code into separate files.

A device code compiler, opencc, is called to generate an intermediate assembly

language called PTX (parallel thread execution) from the device code. Finally

an assembler, ptxas, generates a binary file from the PTX assembly ready for

sending to the GPU driver. One restriction is that direct access to the instruction

set which actually runs on the device is not made available. PTX is a virtual

language, its binary representation gets further optimised and mapped to the

ISA of the device by the GPU driver. This restriction, combined with Nvidia’s

reluctance to release low level architectural details, limits low level optimisation

opportunities. Another restriction involves the inability to inline PTX assembly

within CUDA files. If an advantage were found to using PTX directly, we must

edit an entire kernel represented in PTX assembly. This makes it difficult to use

and maintain assembly for large kernels, perhaps making it more beneficial to

focus on optimisation at the C++ level.

2.2.5 Shader Model 3.0 versus Shader Model 4.0

Table 2.1 shows a comparison of a subset of features required by shader model 3.0

and shader model 4.0. The information in Table 2.1 is gathered from Microsoft

and Nvidia company literature [10, 92]. The table reflects the unification of

vertex and fragment shaders in DX10. The term “Render Targets” refers to

31

the number of textures that can be written to by the output of the ROP stage.

Render targets have little significance as we have seen that the unified shader

can now output to device memory at any point during thread execution. “Load

Operations” refers to the ability to read from device memory without using

texture filtering. “Texture Access” refers to the number of textures which can

be access by a kernel. All other terms have been previously introduced.

2.3 Symmetric-Key Cryptography

Symmetric-key cryptography is based on the use of a single secret key for both the

encryption of plaintext messages and the decryption of ciphertext messages. In

general, this type of cryptography is relatively fast compared with asymmetric-

key cryptography. As such, security systems normally satisfy the bulk cryp-

tographic requirement with the use of symmetric-key functions. A commonly

employed building block of symmetric-key based security systems is the block

cipher [69, ch7]. A block cipher is an algorithm which operates on input data,

split into fixed lengths (i.e. blocks), and outputs a transformed version of the

input. The transformation is deterministic, in that given the same inputs, the

same output will be produced for each execution of the algorithm. The typical

structure of a block cipher is to accept as input, either some form of primary

data input such as plaintext or ciphertext and a secondary input known as the

key. The combination of the primary and secondary inputs are used to deter-

mine the transformation into a single output block, which is ideally impossible

to distinguish from a random block of bits of equal length.

Another type of symmetric-key building block is the stream cipher [69, ch6].

This is similar to a block cipher though differentiates itself by accepting inputs

in smaller sizes and is typically used in an environment where the size of data

is unknown, such as in communication devices. The distinction between block

and stream ciphers is blurring as data volumes trend upwards and block ciphers

in certain contexts can be used in a stream like fashion. The first widely used

and analysed block cipher was the Data Encryption Standard (DES) [76]. In

recent years this block cipher has been deprecated in favour of using the new

Advanced Encryption Standard (AES). This block cipher is one of the most

popular symmetric-key cryptographic functions and is used as the focal algorithm

for the symmetric-key implementations presented in this thesis.

32

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

Figure 2.7: State for AES-128: input and output for round transformations.

2.3.1 AES

The Advanced Encryption Standard (AES) was introduced in 2001 by the Na-

tional Institute of Standards and Technology (NIST) in response to security

concerns of DES. The standard adopted a restricted version of the Rijndael [20]

symmetric block cipher that can encrypt and decrypt data in blocks of 128 bits

using a key sizes of 128, 192 or 256 bits. The cipher involves the execution of

a number of transformation rounds. Each round accepts a data block of 128

bits and outputs a data block of the same size. Also, each round’s output is the

next round’s input. The number of rounds executed is determined by the key

length used: 128-bit uses 10 rounds; 192-bit uses 12 rounds; and 256-bit uses 14.

The AES implementations presented throughout this thesis and the following

description are based on AES using a 128-bit key.

2.3.1.1 Single Cipher Round

Each round operates on units of 128 bits of data called the State, transforming

an input State of 128 bits into an output State of the same size ready for the next

round. The State, which consists of a 16 byte block, is generally viewed as a 4 x

4 array of bytes. This is shown in Figure 2.7, where ai,j are the bytes within the

State, i indicates the row and j the column. Each round consists of a number of

stages, which are responsible for transforming the State. These transformations

are listed and briefly described as follows.� SubBytes: performs a non-linear byte substitution using a 256 × 1-byte

entry lookup table. Figure 2.8 illustrates an example of the substitution

operation. It operates on each byte within the state independently, using

a single input byte as the address within the lookup table, traditionally

33

Figure 2.8: AES-128 SubBytes byte substitution using an S-box lookup.

Figure 2.9: AES-128 ShiftRows round transformation stage.

referred to as a Substitution Box (S-box) [25], to retrieve a single output

byte. We denote the substitution as bi,j = S[ai,j], where ai,j is an input

byte and bi,j is the corresponding output byte.� ShiftRows: shifts the rows of the State cyclically to the left by differing

offsets as illustrated in Figure 2.9. In the figure we use ai,j to denote the

input and output for ease of reading. Row 0 is not shifted, row 1 is shifted

by 1 byte, row 2 by 2 bytes and row 3 by 3 bytes. We denote these shifts

as:










b0,j

b1,j

b2,j

b3,j











=











a0,j

a1,|j−1|4

a2,|j−2|4

a3,|j−3|4











.� MixColumns: performs a linear transformation on each of the columns

within the State. The linear transformation takes the form of a mul-

tiplication of each 4-byte vector with a fixed matrix in the Galois field

GF (28) [62]. Figure 2.10 shows the multiplication of a single column where

b(x) = c(x) ⊗ a(x). More precisely the multiplication for a single column

34

Figure 2.10: AES-128 MixColumns round transformation stage.

Figure 2.11: AES-128 AddRoundKey round transformation stage.

is as follows, where the constant polynomial c(x) is seen in matrix form:











b0

b1

b2

b3











=











02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02





















a0

a1

a2

a3











.

� AddRoundKey: adds a Round Key (described later) to the current State.

Addition of each byte is done in the Galois field GF (28), by a bitwise XOR.

An example of this is shown in Figure 2.11, where the 128-bit round key is

represented in the same manner as the State, i.e. as a 4 x 4 array of bytes.

35

The following pseudocode describes a round and the order in which the above

transformation steps are used. Each of these transformation stages are designed

to be reversible, thus allowing the overall cipher to be reversible.

Round ()
{

SubBytes () ;
ShiftRows () ;
MixColumns () ;
AddRoundKey() ;

}

2.3.1.2 Full Cipher

The key schedule is a generation process in which the initial cipher key, 128

bits in this case, is expanded into a sufficient number of block sized round keys.

The expansion routine is deterministic, dependent solely on the initial cipher

key and some constants. Each round consumes one of the round keys in the

AddRoundKey stage. One additional round key is used in an AddRoundKey

stage before the cipher rounds are executed. The final round execution is different

from the main rounds in that it does not execute a MixColumns() transformation

stage. All stages of the Rijndael cipher are listed as follows.

Ri jndae l ()
{

Key Schedule () ;
AddRoundKey() ;
For (i = 1 to 9) // based on 10 round 128− b i t AES

Round () ;
Final Round () ;

}

2.3.1.3 Implementation

A technique for efficient implementation of the Rijndael cipher on 32-bit machines

is the use of lookup tables [21]. Tables can be generated which combine the

precomputed transformations of the SubBytes, ShiftRows and MixColumns steps

for all possible byte values. These tables are constant and not reliant on the

cipher inputs and thus can act as a hard coded lookup tables. To generate the

tables we state the full transformation of a round for a single column as:

36

MixColumns()

SubBytes()

ShiftRows() AddRoundKey()











e0,j

e1,j

e2,j

e3,j











=











02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02





















S[a0,j]

S[a1,|j−1|4]

S[a2,|j−2|4]

S[a3,|j−3|4]











⊕











k0,j

k1,j

k2,j

k3,j











.

The matrix multiplication, under the heading MixColumns(), can be written

in terms of an XORing of vector multiplies:

S[a0,j]











02

01

01

03











⊕ S[a1,|j−1|4]











03

02

01

01











⊕ S[a2,|j−2|4]











01

03

02

01











⊕ S[a3,|j−3|4]











01

01

03

02











.

For each vector multiply a table can be generated by using all possible values
returned by the S-box substitution stage. This gives the following 4 tables, each
containing 256 entries of 4-byte vectors, where a denotes any byte value and • is
multiplication in GF (28):

T0[a] =











S[a] • 02

S[a]

S[a]

S[a] • 03











, T1[a] =











S[a] • 03

S[a] • 02

S[a]

S[a]











, T2[a] =











S[a]

S[a] • 03

S[a] • 02

S[a]











, T3[a] =











S[a]

S[a]

S[a] • 03

S[a] • 02











.

A lookup can be performed using these tables instead of executing the vector

multiplies above. By performing an XOR of each 4-byte vector lookup result, we

produce a column transformation for a round save the AddRoundKey() step. As

such, we can generate a full round’s output for a column as shown in Equation 2.1.

These table lookups form an integral part of the AES implementations presented

in this thesis. Note that the final round does not perform MixColumns() stage

and as such we use the S-box directly as our lookup table for this stage. Also note

that decryption can be performed in the same way as encryption, using lookup

tables, however inverted S-box data is used to seed the generation of the lookup

tables. Related to security, it is worth noting that the use of lookup tables is

good practice, giving increased resilience against side channel timing attacks.

ej = T0[a0,j]⊕ T1[a1,|j−1|4]⊕ T2[a2,|j−2|4]⊕ T3[a3,|j−3|4]⊕ kj . (2.1)

37

Figure 2.12: Electronic Code Book Mode of Operation: encryption and decryp-
tion.

2.3.2 Block Cipher Modes of Operations

Block ciphers are rarely used in isolation to build a secure system. They are nor-

mally used in a manner which provides confidentiality and or authentication for

messages larger than a single block size. An algorithm that determines the man-

ner in which a block cipher is used is referred to as a mode of operation [116], or

simply as a mode. A mode is considered a standard building block for creating a

secure system using symmetric-key cryptography. NIST currently approves 5 dif-

ferent confidentiality modes [80] which, in the context of this thesis, fall into two

different groups. Firstly, modes which are based on chaining of block cipher data

with little scope for parallelisation during encryption or decryption. Secondly,

modes which are not inherently serial and allow a high degree of parallelisation

for both encryption and decryption. We term these modes of operations as serial

modes and parallel modes respectively and discuss them below. In Chapter 5 we

explore these two categories of confidentiality modes and their implications for

use on the GPU. Although we do not focus on modes that involve authentication,

we also include observations regarding their suitability to the GPU.

2.3.2.1 Parallel Modes

Electronic Code Book (ECB) mode [77] is a simple method for using a block

cipher, though is considered insecure and not recommended for use in most

security systems. The mode splits a message, plaintext or ciphertext, into block

sized chunks. Each chunk is passed through the block cipher independently of

the rest of the message. This mode is illustrated in Figure 2.12. The advantage

of this mode is that it is embarrassingly parallel, the disadvantage is its insecurity

due to equal blocks encrypted with the same key produce the same output block.

Counter (CTR) mode [23] is similar to a stream cipher in that it generates a

keystream independent of the message being encrypted or decrypted. A nonce is

used as a form of initialisation vector for the mode whereby a stream of input data

38

Figure 2.13: Counter Mode of Operation: encryption and decryption.

blocks is produced in a deterministic fashion based on the nonce. The stream of

data should have the property that it does not repeat for a long period. A simple

and common way to satisfy the data stream requirement is to use the nonce as

a starting value for an incremental counter. The data stream is split into blocks

and encrypted independently of the other input blocks. The message is also split

into blocks and XORed with the output from the block ciphers. Figure 2.13

shows this operation. Advantages of this mode include its ease in making it

embarrassingly parallel by using a counter function which can generate a unique

input block independently; its ability to precompute a keystream; and as shown

in Figure 2.13, the block cipher is required to operate only in a single direction,

i.e. there is no need for the inverse of the block cipher.

2.3.2.2 Serial Modes

Cipher Block Chaining (CBC) mode [24] is an example of a confidentiality mode

which is serial. A plaintext message is split into blocks, each block is XORed

with the output of the previous block cipher output. The first block is XORed

with a nonce (initialisation vector). In this way, each encryption of a block relies

on having encrypted all preceding message blocks. This chain of dependence for

encryption is clearly illustrated in Figure 2.14. Each block decryption relies on

two neighbouring ciphertext blocks and thus can be parallelised.

Cipher Feedback (CFB) mode [77] is similar to CBC in that it involves chain-

ing, however it XORs the plaintext after the execution of the block cipher. This

allows encryption and decryption of blocks in smaller sizes than the native block

size of the cipher. Also this mode only requires the use of the encrypt version

39

Figure 2.14: Cipher Block Chaining Mode of Operation: encryption and decryp-
tion.

of the block cipher. As with CBC, CFB encryption is a serial process. Output

Feedback (OFB) mode [77] generates a keystream independent of the plaintext or

ciphertext, as in CTR. It does this by chaining the output for each block cipher

to the next, starting with a nonce. The plaintext or ciphertext is then XORed

to the keystream to encrypt or decrypt. This has the advantage of being able to

generate the keystream in advance, however neither the encrypt or decrypt can

be executed in parallel.

2.4 Asymmetric-Key Cryptography

Asymmetric-key cryptography, also referred to as public-key cryptography, de-

scribe a collection of cryptographic algorithms and protocols which allow the

establishment of a secure channel without an initial shared key. In contrast,

symmetric-key cryptography is based on prior agreement of a shared secret upon

which secure communication is based. In practice the secure sharing of a key

can be difficult to achieve, and if compromised, results in an insecure channel.

Asymmetric-key cryptography solves this problem through the use of secrets that

are not shared between parties, but rather used privately and separately to es-

tablish a common secret between the parties. A classic example of a public-key

system is the Diffie Hellman Key Exchange protocol (DH) [22], which allows two

parties using independently held secret keys, to generate a shared secret key. The

Rivest, Shamir, Adleman algorithm (RSA) later advanced public-key cryptogra-

phy by allowing the secure transmission of a chosen message without an initial

shared secret, facilitating encryption and authentication directly.

Asymmetric-key algorithms are generally computationally expensive relative

to symmetric-key algorithms. Due to the computational expense of asymmetric

algorithms, they are mainly used during the handshake part of a secure session

40

Figure 2.15: Example of Public and Private Key use in RSA.

setup, involving authentication and sharing of a secret key. This shared secret

key is then used with symmetric-key algorithms to facilitate the remainder of

the session’s data transfer. Public-key systems, such as RSA, DH, Digital Secu-

rity Algorithm (DSA) [78], Elliptic Curve Cryptographic algorithms (ECC) [9]

and others, typically involve heavy use of big integer modular arithmetic. Thus,

the efficient execution of modular arithmetic is the focus of many public-key

cryptosystem implementations. Chapter 6 investigates the efficient execution

of modular arithmetic on the GPU using an implementation of RSA as a con-

crete example. Below we discuss the operational details of RSA, followed by a

description of the mathematical fundamentals required for the implementation

techniques presented in Chapter 6.

2.4.1 RSA

The RSA cryptosystem is based on the now well established paradigm of the

use of asymmetric public and private keys. A public key is used to encrypt a

message, whereas the private key is required to decrypt the resulting ciphertext.

If Alice wishes to send Bob a message confidentially, she encrypts the message

with Bob’s public key and transmits the ciphertext. Bob uses his private key to

decrypt the ciphertext, thus retrieving the original message. RSA also provides

a mechanism for authentication through digital signatures. A digital signature

41

is a digital string which can be used to associate a message with an entity such

as Bob. Bob can generate a ciphertext, a digital signature, by encrypting a

message with his private key. The digital signature, along with the message is

made publicly available. Alice can subsequently decrypt this digital signature

using Bob’s public key, thus generating the original message. The signature

can be verified by comparing the decrypted message with the publicly available

message. The relationship of public and private keys used for encryption and

signing is depicted in Figure 2.15. In practice a trusted certificate authority is

required to bind a public key to an identity (certification), thus providing a basis

for reliable authentication.

The RSA public key consists of a modulus n and an encryption exponent e.

The private key primarily consists of a decryption exponent d. n is generated

such that n = pq, where p and q are large primes. e and d are integers generated

such that the following relationship holds: med(mod n) ≡ m(mod n), where m is

an integer in the range [0, n−1]. It is common for the private key to also contain

p and q and other prime related data for computational convenience, all of which

must be kept secret. RSA encryption is defined in Algorithm 2.1 and decryption

in Algorithm 2.2. Functions o2i() and i2o() are responsible for converting a

digital string in octet format (i.e. bytes) to integer format and vice versa. The

encryption and decryption algorithms are generally used in the context of a

padding scheme. The scheme can specify the o2i() and i2o() algorithms used as

well as how to produce an encoded version of a message which adheres to certain

security recommendations, [5], such as m not being a small value. The employed

padding scheme is computationally inexpensive compared to the exponentiation

part of RSA and as such is of less interest in the context of asymmetric-key

acceleration. A thorough set of recommendations on a secure implementation of

RSA can be found in PKCS#1 [114].

Algorithm 2.1 RSA Encryption

Require: RSA public key (n, e); message M , an octet string.
m← o2i(M)
c← me mod n
C ← i2o(c)
return C

The RSA signature and verification primitives are similar to encryption and

decryption algorithms, though vary in their intent. The private key is used to

encrypt (called sign in this context) a message or its hashcode, thus generating a

signature. A party wishing to verify the message as being signed by someone in

possession of the private key can decrypt (verify) the signature using the signer’s

42

Algorithm 2.2 RSA Decryption

Require: RSA key pair: (n, e), (d); ciphertext C, an octet string.
c← o2i(C)
m← cd mod n
M ← i2o(m)
return M

public key. This produces a message or its hashcode, which can be compared

to the original for verification. We do not cover the topic of key generation

or the theory behind RSA as it not in scope here, plenty of material can be

found on this, for example [18]. From the encryption and decryption algorithms

detailed, we can clearly see that the bottleneck lies in the execution of modular

exponentiation operations. Typically the RSA decryption exponent is generally

large, from 1024 bits for common use up to 4096 bits. In contrast the encryption

exponent is generally set to small values such as 65537. Thus, by far the most

computationally expensive RSA primitives are decrypt and sign, i.e. those using

the decryption exponent (private key).

2.4.2 Modular Arithmetic Fundamentals

2.4.2.1 Basics

Given integers a, b and n, we can say “a is congruent to b modulo n” if a− b is

an integral multiple of n, that is n|(a− b). This relationship is written as:

a ≡ b(mod n)

where n is referred to as the modulus. We define the binary operation, modulo

as:

a mod n = a− n⌊a/n⌋, if n 6= 0; a mod 0 = a

where ⌊x⌋ is the maximum integer i such that i ≤ x. During this thesis, for

convenience we often use the shorthand notation for the modulo operation, |a|n,

which is equivalent to a mod n. Addition, subtraction and multiplication modulo

n can be performed in the conventional way, for example ||a|n + |b|n|n = |a+ b|n.

Division modulo n is performed as multiplication by the multiplicative inverse

of the divisor. More precisely, |a/b|n = |ab−1|n, where b−1 is an integer such that

|bb−1|n = 1. Here, b−1 if referred to as the multiplicative inverse of b modulo n.

The inverse of an integer modulo n does not always exist, in such a case division

is undefined. It is worth noting that an inverse always exists for b mod n if b

43

is relatively prime to n. That is gcd(b, n) = 1 where gcd() returns the greatest

common divisor of the two arguments.

2.4.2.2 Chinese Remainder Theorem

Given pairwise relatively prime integers n1, n2, ..., nk and a system of simultane-

ous congruences,

b ≡ a1(mod n1)

b ≡ a2(mod n2)
...

b ≡ ak(mod nk)

(2.2)

there is a unique solution b modulo N =
∏k

i=1 ni. We can generate this unique

solution using the known constructive proof [58]:

b =
k

∑

i=1

(|ai|ni
|N−1

i |ni
Ni) mod N (2.3)

where, Ni = N/ni.

2.4.2.3 Integer Representation

Integers can be represented in multiple ways. We detail the following represen-

tations which are referred to in this thesis.

Radix Representation: The radix representation is how numbers are nor-

mally represented. For example the number 124 has an implicit radix (or base)

of 10 and the value of the number is derived from the position of the digits in

the manner, 1× 102 + 2× 101 + 4× 100. More formally, given radix r, a positive

integer a can be written uniquely as:

a = an−1r
n−1 + an−2r

n−2 + ... + a1r + a0

where ai is in the range [0, r − 1] and n is the number of limbs in the represen-

tation. If n = 1, a is termed a single-precision integer, or a multiple-precision

integer if n > 1.

Mixed Radix Representation: This is a representation where each digit

position of a number can be associated with an arbitrary weight, rather than

44

using a conventional weight based on a geometric progression based on a single

radix (as in Radix Representation). For example, an integer a can be written as:

a = an−1

n−2
∏

i=1

ri + ... + a2(r1r0) + a1(r0) + a0.

To make this representation useful, it is normal for restrictions to be placed on

the relationship of weights and digits used.

Modular Representation and Residue Number Systems: Given an in-

teger a and a set of relatively prime integers n1, n2, ..., nk, we can use modular

representation to depict a as a sequence of residues:

< a >n= (|a|n1
, |a|n2

, ..., |a|nk
)

where, the set n1, n2, ..., nk is called the base. This sequence of residues can be

rewritten to form the simultaneous equations according to the Chinese Remain-

der Theorem (CRT) see Equation 2.2. Thus we know that there is a unique

mapping of an integer a to < a >n, i.e. (|a|n1
, |a|n2

, ..., |a|nk
), where 0 ≤ a < N

and N =
∏k

i=1 ni. The set of all modular representations of the integers a within

the range 0 ≤ a < N is called a Residue Number System (RNS). The range

0 ≤ a < N is called the dynamic range of the system.

A useful feature of an RNS is addition, subtraction and multiplication of

multiple-precision integers can be broken into parallel units of work, where each

limb is operated on independently of the other limbs. We can carry out these

operations as follows:

< a >n + < b >n= (||a|n1
+ |b|n1

|n1
, ||a|n2

+ |b|n2
|n2

, ..., ||a|nk
+ |b|nk

|nk
),

< a >n − < b >n= (||a|n1
− |b|n1

|n1
, ||a|n2

− |b|n2
|n2

, ..., ||a|nk
− |b|nk

|nk
),

< a >n × < b >n= (||a|n1
× |b|n1

|n1
, ||a|n2

× |b|n2
|n2

, ..., ||a|nk
× |b|nk

|nk
).

This allows, for example, |ab|N to be calculated using < a >n × < b >n. Also,

the integers a and b and the results of the +,−,× operations can be uniquely

mapped to the RNS so long as a, b and the results fall within the dynamic range

of the system. The ability to perform these operations in such a fashion can be

advantageous on a highly parallel device such as a GPU. There are a number

of disadvantages associated with representation using an RNS. RNS is not a

weighted number system, so there is no easy way to make size comparison of two

numbers. It is also difficult to detect an overflow as a result of an operation, i.e.

if the dynamic range of the system has been exceeded. Division is also difficult

45

to perform, limiting the usefulness of RNS for general purpose arithmetic. A

method used to overcome these restrictions is to convert a number in RNS into

a weighted number system. This conversion can be done using Equation 2.3

or using a more optimised approach such as Garner’s algorithm [31]. We look

into CRT conversion in more detail in the context of modular exponentiation

performed in an RNS in Chapter 6.

2.4.2.4 Montgomery Reduction

Modular reduction, the calculation of |a|n, can be computationally expensive,

especially when dealing with large multiple-precision integers. The reason for

this is that the classical approach to reduction is to perform division, which is not

a fast operation when compared to addition or multiplication. A popular method

for fast modular reduction without division is Montgomery reduction [74]. Given

a positive modulus n and integers a and R, where 0 ≤ a < nR, gcd(n, R) = 1 and

R > n, Montgomery reduction produces the output w ≡ aR−1(mod n), where

w < 2n.

Algorithm 2.3 Montgomery Reduction

Require: Integers a, n, R, where 0 ≤ a < nR, gcd(n, R) = 1 and R > n.
1: s← a(−n−1)(mod R)
2: u← sn
3: w ← (a + u)/R
4: return w

Algorithm 2.3 states the steps required to produce w. Here a is the integer we

are trying to reduce modulo n. R is an integer which we can choose freely save

that it meets the stated criteria. As we can see there is a divide operation using R

as the divisor. Thus, R is typically chosen to be a power of 2, so that on an radix-2

based computer, this divide can be achieved using an efficient shift operation. We

can see that w ≡ aR−1(mod n) because line 3 in Algorithm 2.3 can be written

as w ← a/R + sn/R, which when reduced modulo n, the right hand disappears,

leaving aR−1. Also, for this algorithm to work (a + u) must be a multiple of

R. We can see that is true if we assume that (a + u) mod R = 0. This can be

rewritten to (a + sn) mod R = 0, and solving for s, we see s ≡ −an−1 mod R.

This is the calculation performed in line 1. Lastly, we see w < 2n as it is equal to

w = (a + sn)/R, where a < nR and s < R. So, w < (nR + nR)/R, i.e. w < 2n.

Concerns: A number of issues are immediately apparent with this approach.

First, it does not calculate |a|n, but rather |aR−1|n. Second we require the

46

potentially expensive inverse calculation of | − n−1|R to perform the algorithm.

And third, we require that the input value a < nR. These issues are addressed

when we consider Montgomery reduction in the context of multiplication and

exponentiation.

Montgomery Multiplication: This is the slight modification to the reduc-

tion function to perform modular multiplication. We first calculate a = xy,

where we restrict x, y < n to guarantee a < nR. Thus, we use Montgomery

Multiplication to calculate w ≡ xyR−1(mod n), where w < 2n.

Montgomery Exponentiation: This is the use of Montgomery multiplica-

tion to execute modular exponentiation. Considering the calculation of |a2|n

using Montgomery multiplication produces |a2R−1|n, it is difficult to reuse this

value to further calculate the powers of a modulo n. However, if we first convert a

into Montgomery representation, a′ = |aR|n, we find squaring using Montgomery

multiplication produces |a′a′R−1|n = |aRaRR−1|n = |a2R|n. This is equivalent

to the Montgomery representation of |a2|n. In effect the additional R in Mont-

gomery representation stops the R−1 from “accumulating”. In general we can

repeatedly apply this to produce |akR|n. To generate |ak|n we execute a final

Montgomery multiplication by 1, akR · 1. In the context of modular exponen-

tiation, the first two concerns raised previously dissipate when k is sufficiently

large, i.e. the savings of not executing division outweigh the once off overheads.

Regarding the third concern, we can modulo n the input base a before exponen-

tiation, thus satisfying the quoted restriction for Montgomery reduction a < nR

(or a2 < nR in the case of Montgomery exponentiation).

2.4.2.5 Exponentiation

Montgomery exponentiation looks at ways of improving modular exponentiation

by reducing the cost of a single modular multiplication. Another method to im-

prove modular exponentiation, and that of normal exponentiation, is to reduce

the number of multiplies required. A naive implementation of exponentiation

involves the repeated multiplication using the base, for example ak requires k−1

multiplies. There are many improvements to this approach which are docu-

mented in the literature [69]. Here we present a classic improvement to the naive

approach, and also describe Sliding Window Exponentiation, which is based on

this improvement and used in Chapter 6.

47

Left-to-right Binary Exponentiation: An insight into the exponentiation

problem can be made which removes the need to execute k−1 multiplies. Given

a, we can see that repeated squaring of this number leads to a doubling of its

exponent, a · a = a2 · a2 = a4.... Also, we see that repeated multiplication by

a leads to an increment of the exponent, a · a = a2 · a = a3.... Thus, the naive

approach “reaches” the exponent, by incrementing by 1 repeatedly. We can see

that it requires less steps to reach the exponent by a combination of doubling

and increments, and hence exponentiation can be achieved more efficiently by

squaring and multiplying, giving rise to algorithms called repeated square-and-

multiply. We look at left-to-right binary exponentiation, Algorithm 2.4, where

the exponent is viewed as radix-2 representation and is traversed from most

significant bit to least, squaring and multiplying where appropriate.

Algorithm 2.4 Left-to-right Binary Exponentiation [69, ch14]

Require: Integer a, k = (kp, kp−1, ..., k0)2, where k ≥ 1
A← 1
for i = p down to 0 do

A← A2

if ki = 1 then
A← A · a

return A

Sliding Window Exponentiation: We can see that binary exponentiation

iterates through the exponent a single bit at a time. If we view the exponent

in representation k = (kp, kp−1, ..., k0)2n , we can substitute the squaring step of

Algorithm 2.4 with A2n

and substitute the multiplication step with an uncon-

ditional A · aki. This new algorithm, termed Left-to-right n-ary exponentiation,

saves on the average number of multiplications performed, assuming the multi-

plicands, aki are precomputed. Extending this, instead of treating n as a fixed

bit width, we can use a variable bit width to further save on multiplications.

This variable bit width approach is called Sliding Window and is detailed in

Algorithm 2.5. Here w can be interpreted as the maximum bit width. The

precomputation of values used for multiplication are detailed in lines 1 through

3. Apart from a2, only the odd powers of a are generated. This is due to the

manner in which the bitstring is selected in line 9, ensuring that only odd powers

are used in multiplication, a2 is only used during precomputation.

48

Algorithm 2.5 Sliding Window Exponentiation [69, ch14]

Require: Integer a, k = (kp, kp−1, ..., k0)2, where kp = 1, and an integer w ≥ 1.
1: a1 ← a, a2 ← a2

2: for i = 1 to 2w−1 do
3: a2i+1 ← a2i−1 · a2

4: A← 1, i← p
5: while i ≥ 0 do
6: if ki = 0 then
7: A← A2, i← i− 1
8: else
9: Find the longest bitstring ki, ki−1...kl such that its length len ≤ w and

kl = 1
10: A← A2len

· a(ki,ki−1...kl)2 , i← l − 1
11: return A

2.5 Related Work

Efficient cryptographic implementations on non-traditional general purpose pro-

cessors continues to be an active research area. Recent SSL [29] and ECC im-

plementations using the vector processors in IBM’s Cell Broadband Engine for

Sony’s Playstation 3 were implemented by Costigan and Scott [17], and Costi-

gan and Schwabe [16]. Field Programmable Gate Arrays (FPGA) have been

extensively used for various cryptographic functions. A comparative survey of

a large number of symmetric-key and hash algorithm implementations on FP-

GAs was presented by Jarvinen et al. [51]. Another survey regarding the use

of FPGAs in cryptographic acceleration was presented by Wollinger et al. [127].

This survey covers both symmetric-key and asymmetric-key cryptosystems. Of

particular interest to the security community is high performing AES imple-

mentations on a variety of hardware platforms. A large survey covering AES

implementations on Smart Cards, RFID tags, FPGAs, ASICs, USB Devices and

PCI based co-processors is presented in [26]. GPU usage in cryptography is a

recent phenomenon and as such no comprehensive survey of related work ex-

ists. The following aims to list and briefly describe all such works at the time of

writing.

2.5.1 Cryptography and Graphics Hardware

2.5.1.1 Symmetric-Key Cryptography

Non-Commodity: Until 2007 there had been little use of graphics processing

technology in the field of cryptography due to its previously poor suitability to

49

the problem space. This was due to its lack of one or more of processing power,

programmability and integer support. The first reported use of graphics hard-

ware in the field of cryptography was by Kedem and Ishihara [54] in 1999. Here

they use the PixelFlow [96] architecture for brute force cryptanalysis of 40-bit

RC4 and UNIX passwords. The PixelFlow architecture is a specialised, non-

commodity, highly parallel SIMD machine suited to graphics processing. The

PixelFlow arrangement used by Kedem and Ishihara in their study consisted of

147,456 8-bit processors running at 100 MHz and was capable of 40-bit RC4 key

retrieval in an average time of 3.25 hours. It was also capable of 24 Million

UNIX password checks (based on DES) per second.

Commodity, Pre-DX9: The first attempt to use a commodity GPU for the

acceleration of any cryptographic primitive was an implementation of AES made

in 2005 by Cook et al. [15]. The imaging subset of the graphics pipeline was used

to execute the AES table lookups referred to in Section 2.3.1.3. The imaging

subset is a fixed function part of the pipeline which allows the construction of

colour maps. These colour maps were used by Cook et al. to simulate XOR in-

structions within the GPU. They presented a successful implementation of AES

though the reported peak throughput speed of 1.53Mb/s. The main reasons

for the relatively poor throughput speeds were due to the restrictive feature set

available within graphics hardware at that time. For example, there was no abil-

ity to program the most powerful components within the GPU (fragment and

vertex processors) and thus the reliance on the underpowered imaging subset.

The most advanced graphics processor used was the Geforce 3 Ti200, which is

pre-DX9.

Cook et al. [14] published a related paper to this work which proposed the

use of graphics processors as part of building a secure video transmission sys-

tem within a mostly untrusted environment. Here they posit that the trusted

computing base for visual data can be confined to just the GPU, i.e. excluding

the operating system, on an untrusted client. Graphical information is sent en-

crypted from a remote source to the client. This graphical data is decrypted on

the GPU and displayed without making available plaintext or keying information

to the CPU. For this the available commodity GPU requires modification. The

GPU requires the secure storage of a public-private key pair which can be used

to establish a secret key with a foreign party. Also the GPU requires the abil-

ity to restrict read access to certain parts of its memory, for example the CPU

should not be able to read from the area which stores the decrypted plaintext

data. The prototype described in this paper implemented parts or all of the used

50

cryptographic functions, RC4 (the stream cipher used to generate the keystream

for video decryption) and RSA decryption, on the CPU as it was not practical

to implement them on the GPU. This last restriction is no longer true, recent

GPUs are now capable of implementing these functions.

Commodity, DX9: Most reported DX9 symmetric-key implementations are

AES based. These implementations were published over a small time period and

as such do not directly build upon each other, but rather present independent

works. This is a similar trait with regard to DX10 symmetric-key implemen-

tations covered later. One of the main factors regarding the AES performance

of the implementations listed is whether the lookup tables presented earlier in

Section 2.3.1.3 were used. Another important factor relating to AES on DX9

hardware is the implementation strategy for the simulation of XOR. We group

the implementations into those that used the AES lookup tables and those that

did not. The following implementations did not use the lookup tables, but rather

implemented each stage within an AES round transformation separately:� Rosenberg [112] integrated a DX9 AES implementation into the OpenSSL

library using its engine support. The implementation was run on a GeForce

6800GT and written in OpenGL. No objective rates were provided, however

relative rates to OpenSSL running on the CPU are reported. The imple-

mentation executed 15.4 times slower than OpenSSL on a CPU, using a

payload size of 16MB. The implementation did not avail of the native XOR

instruction within the ROP section of the pipeline, but used a 256 × 256

entry lookup table to carry out the XOR operation one byte at a time.� Seshadrinathan et al. [118] implemented AES on the GPU to allow cipher-

text to be sent to the GPU and for the plaintext to be displayed directly

onto the display device. A system for displaying the decrypted ciphertext

was presented. The implementation was on a DX9 GPU, the GeForce 7800,

and achieved a rate of 426.1Mb/s with a payload size of 32MB. Again, a

256 × 256 entry lookup table was used to carry out the XOR operation.� Pilkington et al. [103] presented an AES implementation on a GeForce

7900GT GPU and achieved a rate of 12Mb/s. The same 256 × 256 entry

lookup table XOR approach was used here.

The following implementation incorporated the use of lookup tables:� Yang and Goodman [129] presented various implementations of AES. One

of these implementations was a standard block based implementation using

51

AMD’s X1950 XTX GPU. Yang and Goodman are the only demonstration

of AES running on an AMD GPU. The implementation used a “hybrid”

4-bit table lookup to simulate the XOR operation on the GPU’s floating

point processors. They reported peak throughput rates of 801Mb/s.

Commodity, DX10: With the release of DX10 GPUs, and integer support,

there was heightened interest in the implementation of symmetric-key cryptog-

raphy. Most implementations involved attempts to accelerate AES. Again, one

of the main determinants in the resultant AES performance is the use of AES

lookup tables. The XOR approaches used in DX9 implementations are no longer

necessary as native XOR is supported in the main ALUs of the GPU. Also, we

see that the complex memory system with the GPU requires careful use so as

not to lose performance. We group the implementations into those that based

on the use of AES lookup tables and those that are not. The following are

implementations that do not use the lookup tables:� An AES encryption and decryption implementation on Nvidia’s G8X ar-

chitecture was presented by Yamanouchi [128]. This implementation was

based on OpenGL, where the author is concerned with the performance of

vertex and fragment stages separately. The approach presented achieves

a peak encryption throughput rate of 760Mb/s using the fragment pro-

cessing stage of the OpenGL pipeline. This is achieved by sending and

receiving data to and from the GPU in batches of 1MB. It is noted that

decryption performs at the same rate as encryption as the steps involved

are computationally equivalent. The GPU used in this publication was a

GeForce 8800GTS.� Rosenberg [112] also presented an implementation of AES using CUDA on

a Geforce 8800GTS DX10 GPU. This implementation was integrated into

the OpenSSL library and no objective throughput rates are provided. It

was reported that the DX10 implementation executed at 1.0365 faster than

the CPU using a minimum payload size of 9,830,400 bytes.

The following list the AES DX10 implementations that used AES lookup tables:� Yang and Goodman [129] use AMD’s first DX10 compatible architecture

to investigate different implementations of AES. Though they concentrate

on a bitslicing implementation of AES, they also provide some details on a

standard block based implementation. Using a lookup table based imple-

mentation they report rates of 3.25Gb/s on an HD 2900 XT. The paper

does not indicate if these rates include data transfer across the system bus.

52

� Another notable implementation of AES on a GPU was presented by Man-

avski [65]. A GeForce 8800GTX, DX10 compatible, GPU is used. A rate

of 2.5Gb/s using a payload size of 8MB is achieved. If data transfer is not

included, i.e. the payload transfer is omitted, then a rate of 8.27Gb/s is

reported. The key schedule is executed on the CPU and stored in shared

memory. However, round keys are accessed using a constant address across

threads, so constant memory would suit key storage better. The AES

lookup tables are stored in constant memory. Threads running on a sin-

gle SM will concurrently access disparate table locations, which does not

suit constant memory as it is single ported and thus serialises concurrent

access to different addresses. Shared memory would much better suit the

lookup table storage. Shared memory is used to store all intermediate re-

sults within a round. It is not clear why the SM registers are not used for

this task.

Bitslicing: as mentioned previously, Yang and Goodman [129] presented a

bitslicing implementation of AES. This was executed on an AMD DX10 HD

2900 XT GPU and the CTM programming infrastructure. Bitslicing [8] is a

technique which involves the transposition of groups of input blocks into a more

convenient representation for a processor. They show rates of 17.2Gb/s process-

ing throughput for their bitsliced AES implementation. These rates do not apply

to the normal use of AES, i.e. the encryption of plaintext or decryption of cipher-

text. Bitslicing requires a transposition of data overhead, which is not included

in the above figures. Also, data transfer is not included in the above rates. The

bitslicing techniques presented are useful for key searching algorithms, such as a

brute force attack, where the transposed input data can be efficiently generated

dynamically.

Non AES: other, non AES, symmetric-key block cipher implementations in-

clude an implementation of the ARIA [60] block cipher by Yeom et al. [130].

This block cipher is relatively new and adopted by the Korean Agency for Tech-

nology and Standards. They presented an implementation on Nvidia’s GeForce

8800GTS (DX10) GPU using CUDA. A throughput rate of 4.8Gb/s is reported,

which is claimed to be the fasted implementation of ARIA. Yang and Good-

man [129] also present a bitsliced approach for DES on AMD’s first DX10 GPU.

They achieved a peak throughput rate of 32.4Gb/s, proving much faster than

a CPU with sufficient data. An RC4 [109] implementation is presented by Boe-

ing [11]. Nvidia’s GeForce 9800GX2 (DX10) GPU is used in combination with

the CUDA infrastructure. A rate of 6.5 × 106 RC4 key searches per second is

reported.

53

2.5.1.2 Asymmetric-Key Cryptography

The first GPU implementation within the field of asymmetric-key cryptography

was presented in a paper by Fleissner [27] concerning the acceleration of Mont-

gomery exponentiation. A radix based pencil and paper [58] multiplication ap-

proach was used. Nvidia’s GeForce 7800GTX (DX9) GPU was employed, which

does not have integer support, resulting in the use of 24-bit limb sizes. Also, the

restrictive programming environment forced the implementation to separate the

execution of an exponentiation into multiple kernel calls, each instance calculat-

ing a single modular product. The execution of multiple kernels to calculate a

single modular exponentiation adds overhead to the total run time. The imple-

mentation restricted the size of the modulus and base to 192 bits. The paper

presents its results in terms of ratio comparisons with its own CPU implemen-

tation, and does not state the rates of processing. For example, it reports that

the GPU implementation can result in a 168 times speed up compared to a CPU

implementation. However, no throughput rates are given for either.

The same GPU, the GeForce 7800GTX (DX9), was used by Moss et al. [75]

to implement 1024-bit modular exponentiation. Here they based their approach

on Montgomery exponentiation using integers represented in a residue number

system (RNS). This paper demonstrated the feasibility of a public-key imple-

mentation on a GPU, by achieving 1024-bit modular exponentiation throughput

rates of 5.7 ms/op, or 175.4 exponentiations per second. Due to using a DX9

GPU, like Fleissner, Moss et al. implemented a single exponentiation using mul-

tiple kernel executions, one per modular product. They report, due to difficulties

concerning memory management, a sliding window approach was not possible,

resulting in binary exponentiation being used instead. Also, a process known

as base extension, see Section 6.3.1, was based on using a mixed radix system

rather than using a more efficient Chinese Remainder Theorem based approach.

A more recent contribution, from Szerwinski and Güneysu [121], presented

implementations of 1024-bit and 2048-bit modular exponentiations based on both

radix and RNS integer representation. All implementations were programmed us-

ing CUDA and executed on a DX10 compliant GPU, Nvidia’s GeForce 8800GTS.

The maximum throughput achieved was via a radix based approach, resulting

in 833 1024-bit modular exponentiations per second. However, associated with

this throughput is a minimum latency of 6.9 seconds. Due to this high latency

the paper concludes that the GPU’s maximum throughput can be achieved only

in contexts where latency is irrelevant and thus its usefulness is quite restricted.

The RNS approach displayed better latency characteristics, though with a re-

duced throughput rate of 439.8 1024-bit modular exponentiations. Also covered

54

in this paper is an implementation of point multiplication operations for ECC

over the prime field P-224 [81]. Here they achieve 1412.6 elliptic curve point mul-

tiplications per second. Bernstein et al. [7] subsequently published work which

focused solely on GPU acceleration in the area of elliptic curves. Here they

primarily focused on techniques for implementing the elliptic-curve method of

integer factorisation. They also use their developed techniques for integer fac-

torisation to contrast with results presented in [121]. They reported 2414 280-bit

elliptic-curve point multiplications per second for a general 280-bit modulus on

a GeForce 8800GTS.

2.5.1.3 Other

An early paper by Jacob and Brodley [50] focused on the use of GPUs to accel-

erate a problem within the space of computer security. They used OpenGL to

program an Nvidia 6800GT (DX9) GPU to accelerate the Snort [122] network

intrusion detection system (IDS). The most computationally expensive part of

the IDS is signature matching. That is, given a string, its comparison with a set

of black listed strings. This string matching was offloaded to the GPU. Their im-

plementation, Pixelsnort, under certain loads from the IDS outperformed Snort

by up to 40%. Vasiliadis et al. [124] demonstrated a similar work using an Nvidia

GeForce 8600GT (DX10) using CUDA. The also accelerated Snort, called Gnort,

achieving a factor of two speed up using the GPU compared to the CPU. They

reported a maximum traffic processing throughput of 2.3Gb/s while monitoring

real traffic using a standard Ethernet interface. Data was grouped into payloads

consisting of 1024 network packets of 800 bytes each.

Hashing algorithms have also received some attention. Tzeng and Wei [123]

presented a method to generate white noise on the GPU using MD5 [110] as a

pseudo-random number generator (PRNG). White noise (i.e. random numbers)

is useful in graphics applications for certain applications, such as fractal terrain

generation. Traditionally this white noise has been “pre-baked” on the CPU and

transferred as textures for use on the GPU. However, for large sources of white

noise, this use of memory can become a bottleneck, and thus it is desirable for

the GPU to be able to dynamically generate its own white noise. The paper

showed that MD5 provides a good order independent PRNG, which can run on

the GPU using hardware generated texture co-ordinates as input values to the

MD5 hash function. An Nvidia GeForce 8800GTX was used and achieved a

rate of 220 MD5 128-bit hashes in 6.3 milliseconds. It is also worth noting that

there are commercial entities currently selling software packages for password

55

retrieval using GPUs giving reportedly large increases in performance over CPU

approaches. The password retrieval process in these applications is generally

based on brute force attacks on hashing functions.

56

Chapter 3

GPU Data Transfer

Traditional use of GPUs typically does not put great demands on data transfer

rates across the system bus. Furthermore, if demands are put on the system

bus, they tend to be a result of data download (CPU to GPU) and not readback

(GPU to CPU). In contrast, general purpose processing applications running on

the GPU can require large amounts of data transfer across the system bus in

both directions. Specifically, symmetric cryptography can require the processing

of large amounts of data that require equal amounts of download and readback.

Asymmetric cryptography tends to have less of a requirement for data transfer

compared with symmetric cryptography. This is due to the comparatively high

arithmetic intensity and large processing requirement of the functions employed

within asymmetric cryptosystems. As stated previously, see Section 2.4, practical

cryptosystems employ asymmetric systems for initial exchange of a secret key for

session creation. The bulk session data is secured using symmetric functions.

Data transfer and kernel execution on a DX9 and early DX10 GPUs cannot

be overlapped, and thus the time required to transfer data to and from the card

cannot be hidden from final throughput rates. Also, the data transfer rates

across the system bus are slow when compared to the access rates of device

memory. To compound this, the readback rates for DX9 GPUs tend to be even

slower than their download rates as hardware and driver focus is on the most

in-demand transfer direction. Because of these factors and the bi-directional

and potentially large data requirements of symmetric cryptography, one of the

prime performance bottlenecks to accelerating symmetric functions is transfer

speed. During the research into achieving optimal transfer rates for AES on DX9

hardware using OpenGL, we discovered that there was no tool in existence that

could fully investigate the graphics’ pipeline configuration states and their effect

on data transfer performance. We also discovered that achieving high transfer

rates using OpenGL is a complex task with many pitfalls. To address this, we

57

developed tools to support the investigation of such states to determine the best

configuration for our DX9 symmetric-key implementations. The tools also have

applicability to any GPU based application that requires large data transfer using

OpenGL. The tools can be used to help find the OpenGL pipeline configuration

that optimizes transfer rates for any given application. This chapter presents

these tools and their findings. This chapter also discusses how optimising transfer

rates is a much more simplified process for DX10 hardware using CUDA.

3.1 OpenGL Imaging Pipeline

Achieving optimum bi-directional data transfer performance is a complex task

involving a large array of configuration states and transfer methods. Slight mis-

configurations can lead to significant drops in transfer performance, which can

be unexpected and difficult to diagnose. We developed two tools, one focusing

on optimising download transfer rates, the other on readback transfer rates.

They are both written using the OpenGL API and are applicable to applications

written using OpenGL, such as the work presented in the following chapter. The

tools allow the creation of typical application transfer scenarios by providing

full control over relevant configuration states related to the OpenGL imaging

pipeline. Example states include texture dimension, system memory alignment,

transfer method, external and internal texture formats, data type, texture type,

the use of fragment buffer objects, pixel buffer objects and the use of fragment

programs or fixed function. By providing the ability to have full control over

all the relevant configuration states, the user can quickly simulate the majority

of application transfer scenarios thus allowing the exploration of relevant states

and their performance implications.

The imaging pipeline is part of the OpenGL specification, which concerns the

movement of data to and from the GPU. Regarding download, data first resides

in system memory, unpacked (read) according to the pipeline configuration, po-

tentially converted to a data format ready for the GPU, sent to the GPU for

potential further conversion, and finally written to GPU device memory mapped

as a framebuffer or texture. Readback of data is much the same in reverse, ending

with data packed (write) into system memory. OpenGL provides a core specifi-

cation along with a large number of extensions provided by card vendors and the

OpenGL Architecture Review Board (ARB). A relevant extension is the Frame-

buffer Object extension (FBO) [98], which supports a texture being bound to,

and used as, the active framebuffer. This extension facilitates render to texture

as previously described. Another relevant extension is the Pixel Buffer Object

58

extension (PBO) [99]. This extension permits the use of DMA transfers, which

can speed up data transfer and also permits non-blocking readback commands,

i.e. the overlap of CPU computation with GPU data transfer.

Other factors concerning the imaging pipeline, which are controlled by the

tools presented, are briefly described as follows:� Transfer Method: Data download is triggered using the glDrawPixels()

function or the glTexImage()/glTexSubImage() family of functions.

glDrawPixels() is used to draw pixels existing in system memory to the

active framebuffer. This can either render to screen or in combination with

an FBO can render to a texture. glTexImage() and glTexSubImage() are

used for transferring all or a portion of a system resident pixels to a texture

in GPU memory.� External Data Format: All pixels read from and written to system

memory have a designated storage format and type. Format generally

specifies the number and purpose of the components used to represent a

single pixel, such as GL RGBA. The type specifies the system memory bit

width and data type used to store the pixel data, such as GL FLOAT. Packed

storage types are also supported, where multiple components are packed

into a single system data type, such as GL UNSIGNED SHORT 5 6 5, which

packs three components of 5, 6 and 5-bit widths into a single short.� Internal Data Format: This refers to the resolution and number of com-

ponents used to represent the pixels stored in GPU memory. For example

GL RGB16 uses three 16-bit components. There are a large number of pos-

sible internal formats, which is further extended by both ARB and vendor

specific extensions.� Data Alignment: Data in the host can be stored aligned to specific byte

boundaries. Depending on the system architecture, this can have an im-

pact on the performance of data reads and writes. OpenGL supports the

specification of a byte boundary alignment that will be followed when data

is packed into or unpacked out of system memory.� Data Conversion: If the external data formats or types mismatch with

the internal formats supported by the GPU, the OpenGL driver will trans-

parently transform the data. This transformation can take the form of

precision conversion, component swizzling or component padding. Swiz-

zling is a term used to denote the swapping of components representing a

pixel, or in general the scalars within a data vector. Transparent driver

59

conversion of data can occur in unpredictable scenarios depending on the

particular internal formats supported by the GPU. This is further com-

plicated by OpenGL provision of generic internal storage formats such as

GL RGB, which are dynamically mapped depending on hardware support.

3.2 Transfer Tools

Due to the typically low demand for large data transfer to and from the GPU,

most development assistant tools focus on the shader processors and their op-

timum ALU and memory usage. At time of development there existed only

two notable tools that covered the area of data transfer rates. These are Stan-

ford’s GPUBench [13] and Nvidia’s PBO Texture Performance Tool [86]. These

are designed to be used solely as benchmarking tools for a number of prede-

fined configuration states. They are not designed to give the user the flexibility

required to simulate the vast array of application data transfer scenarios. Stan-

ford’s GPUBench covers a wide range of scenarios relating to all areas of GPU

performance, however provides a limited benchmarking flexibility in relation to

data transfer. Nvidia’s PBO Texture Performance Tool similarly supports the

benchmarking of transfer, however the scenarios are exposed in a limited fashion.

For example, in both tools the user cannot specify any OpenGL internal or exter-

nal pixel formats, or investigate the potential benefits of asynchronous readback.

The tools are designed to generate comparative benchmark numbers for card

comparison and not to allow the exploration of configuration states applicable

to an application in development.

We have implemented a download and readback pair of tools that expose all

configuration states relevant to data transfer rates. The download and readback

tools are covered in Section 3.3 and 3.4 respectively. Both sections cover the

corresponding tool details, tool usage notes and categorised observations. We

do not aim to present a survey of hardware and their transfer capabilities. We

present an introduction to the transfer tool and how it can be used to optimise

bus transfer rates for cryptographic acceleration and also for any application re-

quiring fast transfer. Sample tool output across various scenarios and GPUs, and

access to the source code for these tools, can be found on the tool’s website [42].

The observations presented below are based on experimentation using the follow-

ing cards: Nvidia GeForce 5200Go (AGP 4x), 6600GT (AGP 8x), 6600Go (PCIe

x16) and 7900GT (PCIe x16). AGP (Accelerated Graphics Port [48]) and PCIe

(Peripheral Component Interconnect Express [102]) are system bus standards

used by the tested cards, AGP being outdated by the faster PCIe standards.

60

3.3 Download Tool

3.3.1 Overview

Data can be transferred from the system to the GPU by means of texture trans-

fer or direct rendering of pixels to the active framebuffer. Each execution of

the download tool, downloadBench, transfers approximately 6.25GB of data in

a series of frames from system memory to the active framebuffer. Transferring

multiple frames averages out any individual frame transfer impact on the final

result. Also, transferring a similar and large amount of data for each tool execu-

tion allows for easy comparison of various scenarios. The tool will not transfer

the full data allocation to the card if a scenario is estimated to take longer than

3 minutes to complete, in such a case an estimated rate for the full data transfer

is output. The tool generates these estimates by first running the frame transfer

loop an initial 10 times before conditionally running the full scenario. These

estimates are generally pessimistic as the first frame transfer time occupies a

larger percentage of the run time.

At the start of each scenario execution an initial test frame is downloaded and

subsequently readback from the GPU. The readback data is compared against

the downloaded data, taking into account any padding bytes, see packAlignment

below. If there is any mismatch between the readback data and the downloaded

data a warning message is generated indicating that the verification stage has

failed and the reported transfer rates are unreliable. This issue is fully discussed

as an observation in Section 3.4.4.

3.3.2 Tool Details

The full list and description of configuration states that the tool exposes is pre-

sented below. These provide sufficient control to simulate the majority of data

download scenarios. The controllable pipeline states are depicted by the follow-

ing arguments to the download tool.

./downloadBench PixelDimension Un/packAlignment TransferMethod

glExtFormat glExtType glIntFormat glTexTarget

FBOState PBOState FPState� PixelDimension: allows the user to specify the dimension of the buffer

sizes and texture sizes involved in the transfer. Currently to simplify the

number of parameters this is restricted to square 2D textures, though this

could easily be extended.

61

� Un/packAlignment: allows the specification of the alignment in system

memory that the data will be unpacked from, this is described in full in

The OpenGL Programming Guide [97], see glPixelStore(). In general,

architectures experience greater system memory read performance when the

reads are aligned to some byte boundary, this setting should correspond to

the user’s system’s recommendations.� TransferMethod: indicates the choice of method for downloading data to

the graphics card. The tool supports the values DrawPixels and

TexSubImage, which use the glDrawPixels() and glTexSubImage() func-

tions respectively to transfer data. glTexSubImage() is recommended over

glTexImage() for repeated transfers.� glExtFormat, glExtType: specifies both the format and type of data

that is held in system memory. The possible values accepted are string

representations of the format and type constants supported by the OpenGL

API and extensions, e.g. GL RGBA, GL FLOAT.� glIntFormat: specifies the requested internal storage format and resolu-

tion for use in GPU memory. Again the values supported are string rep-

resentations of internal format constants supported by the core API and

extensions. A core API example is GL RGBA, a vendor specific extension

example is GL FLOAT RGBA32 NV.� glTexTarget: specifies the type of texture target to use to bind the texture

to, the supported and tested targets are GL TEXTURE RECTANGLE ARB and

GL TEXTURE 2D.� FBOState: can be set to FBO ON or FBO OFF, indicating whether or not the

data is to be transferred into a texture attached framebuffer object. This

setting makes sense in the context of DrawPixels transfer method, allowing

transfer of data to a texture by using render to texture. When an FBO

is not used in the context of DrawPixels, the default visible framebuffer is

used as the destination of transferred data. In this case the internal format

and texture target can be set to NONE.� FPState: specifies whether a fragment program is bound to the graphics

pipeline or the default fixed function fragment stage of the pipeline is used.

Values supported are FP ON and FP OFF. The bound fragment program is

a tool provided shader that simply relays the fragments to the next stage.

62

The TexSubImage transfer method does not involve the fragment process-

ing stage of the pipeline, and as such FPState is relevant to the DrawPixels

mode. During TexSubImage mode, the only use of the fragment processing

stage is the rendering of a single point to ensure the texture transfer is not

optimised away by the driver.� PBOState: this specifies whether a pixelbuffer object is used to unpack

data from system memory during the transfers. The values supported are

PBO ON and PBO OFF.

3.3.3 Usage Notes

Artificially high transfer rates for simulated application scenarios is the most

common problem encountered when using the download and readback tools.

This can occur due to transparent driver optimisations and restrictions, which

are difficult to detect, and must be taken into account. When rendering to the

default visible framebuffer there are many scenarios that cause false rates to

be reported. If the screen display size does not encompass the entire visible

rendering window then the data that corresponds to the cropped region of the

window need not be transferred. If drawing to a position outside of the area

specified when creating the render window, the data transfer does not need to

take place. Also, when a foreign window obscures the tool’s render window, the

obscured region’s corresponding data do not need transferring. These issues affect

the DrawPixels mode by artificially increasing the download rates. TexSubImage

does not result in a speed up as only a point is drawn to screen in this mode. The

texture is still transferred but the omission of a single fragment rendering makes

little performance difference. The verification stage of both the DrawPixels

and TexSubImage modes fails when data is not transferred and consequently is

not correctly read back. The user of the tool must take care not to obscure

the visible window with any GUI objects for any portion of time and to ensure

the visible area of the screen can encompass the render window. The use of a

framebuffer object removes these obscuring issues as rendering does not target

a visible window, thus these usage notes only apply to applications optimising

downloads for on-screen rendering.

3.3.4 Observations

The download tool was used on the stated cards, see Section 3.2, to execute

an array of scenarios. The following observations, grouped into common related

63

factors, were made. These illustrate the type of insight that can be gained from

using the tool.

Pixel Buffer Object: In general using Pixel Buffer Objects while in

TexSubImage mode, and transferring float data types to an internal format from

the OpenGL float buffer extensions (ARB or Nvidia); or transferring byte data

types to internal unsigned bytes, results in the best performance. When using

PBOs, TexSubImage mode for data download is superior, ∼3 times faster, com-

pared with DrawPixels mode. Under no scenario did DrawPixels experience

a speed up when switching between PBO OFF and PBO ON. Part of the differ-

ence in speed is attributed to DrawPixels resulting in fragment generation and

subsequent processing, whereas TexSubImage does not produce fragments, but

transfers data directly to texture memory. However, when testing TexSubImage

using texture mapped quad rendering, there still existed a 2 times speed up.

Thus, the main difference in speed is explained by the lack of affect PBOs have

on the glDrawPixels() function.

Pixel Format and Type: There are hundreds of combinations of internal and

external texture formats and types, all of which have performance implications.

The following covers some points of note regarding the mix of formats and types.� Important for cryptography, unsigned byte transfers can be accelerated us-

ing PBOs, however concerning 4 component transfers, the GL BGRA external

format must be used with an *RGBA* internal format. This is due to the

internal format for bytes being stored in pre-swizzled format according to

the Microsoft GDI pixel layout. If this is not adhered to, PBOs have no

affect on byte transfer.� The use of integer or short external data types shows poor performance

and is not improved with the use of PBOs.� Float data types can be accelerated by PBOs, as long as the component

ordering between internal and external storage formats is maintained. It is

also necessary to use resolution specific internal formats from the OpenGL

float buffer extensions. If generic core API internal formats are specified

then PBOs have no effect.� There is up to a ∼7% performance advantage when using internal formats

from the NV float buffer extension over the ARB texture buffer exten-

sion.

64

 0

 2

 4

 6

 8

 10

 12

 14

 16 32 64 128 256 512 1024 2048

T
ra

ns
fe

r
R

at
e

G
b/

s

Texture Size (n x n)

ARB: PBO_OFF
ARB: PBO_ON
NV: PBO_OFF
NV: PBO_ON

Figure 3.1: Download rates for varying texture sizes, with 4 component FP32
texels, across different scenarios using a 6600GT.� If padding is avoided for a single byte component by using GL LUMINANCE8

as the internal format, PBO speed up can also occur.� In general it is advisable to use explicit internal format resolutions to avoid

possible slow downs caused by transparent data conversion.

Fragment Program: The use of a fragment program (FP ON) has no significant

impact on TexSubImage mode as expected, however when using DrawPixels

mode there is a dramatic slow down compared to the fixed function pipeline.

The fragment program used is a simple colour in colour out pass through pro-

gram. No explanation could be found for this behaviour. It is assumed some

configuration setting is causing a part of the rendering process to transparently

resort to software mode and carry out its function on the CPU.

Data Conversion: In general, scenarios that result in data padding, swizzling,

clamping, scaling of precision, lead to no speed up when using PBOs. Also, as

expected, with no PBO use, data conversion causes a slow down compared to

scenarios that don’t undergo any conversion.

Texture Size: Varying texture sizes that are transferred can have a significant

effect on overall transfer rates. To demonstrate this, Figure 3.1 shows the results

of running four scenarios with varying texture sizes. The scenarios presented are

configured with and without the use of PBOs. Also, two seemingly equivalent

internal storage formats were used, one from Nvidia’s OpenGL extensions and

65

one from the ARB’s extensions, FLOAT RGBA32 NV and RGBA32F ARB. It can be

seen that for small texture sizes, non PBO use results in higher rates of transfer.

Also when using FLOAT RGBA32 NV there is a significant increase in performance

at powers of two texture sizes, where as RGBA32F ARB shows no correlation. We

can see that in general the larger the texture the faster the download rate. How-

ever, we can see that the use of PBOs is not supported over a certain texture size.

For example, at 2048 × 2048 texture size, using 4 component FP32 texels, the

figure shows that PBO accelerated transfers offers no improvement in speed over

texture transfers without PBOs. In general, the increase in texture size permits

the amortisation of the per byte transfer costs. This is a reoccurring factor in

the use of GPUs as we will see in the presented cryptographic implementations.

3.4 Readback Tool

3.4.1 Overview

As mentioned, there is a lack of demand for high readback rates in the context

of traditional GPU usage. As such the rates tend to be considerably lower than

download rates due to hardware and driver optimisations. PCIe and PCIe 2.0

have aimed to alleviated this asymmetry of speeds, however many PCIe graphics

cards still suffer from slow readback. To ease the impact of slow readback on

system performance, pixel buffer objects support the asynchronous execution of

readback functions. Asynchronous, or non-blocking, readback can benefit sys-

tems that use the GPU as a co-processor, sharing work between the CPU and

GPU. The presented readback tool, readbackBench, provides two modes of oper-

ation, one for investigating readback transfer rates and the second for analysing

the asynchronous readback behaviour. Similar to the download tool, both modes

support the execution of various transfer scenarios. In both modes the same

amount of data, as in the download tool, is readback from the GPU frame by

frame. Also, the same verification stage and initial time limiter trial phase is

executed. The specific modes of operation, transfer rate and asynchronous be-

haviour are discussed in the following sections.

3.4.2 Transfer Rate Mode

The transfer rate mode outputs the rate at which data can be copied from the

GPU to system memory. It attempts to minimize the amount of data down-

loaded to the GPU, using a single non texture mapped quad draw operation per

frame to ensure driver optimisation does not omit the readback of any data. The

66

tool uses its calling arguments to calculate the number of readback iterations

required to transfer a large, mostly fixed, amount of data from the GPU. The

arguments are as follows:

./readbackBench PixelDimension Un/packAlignment glExtFormat

glExtType glIntFormat glTexTarget FBOState

numberPBOs PBOUsagePattern [workLoad] [drawMode]

[blockingDetail]� PixelDimension, Un/packAlignment, glExtFormat, glExtType,

glIntFormat, glTexTarget: these arguments have the same meaning as

for the download tool.� FBOState: when set to FBO ON or FBO OFF the glReadPixels() function

is used to retrieve data from a texture attached FBO or the default frame-

buffer respectively. The FBOState argument can also be set to FBO ON GTI,

which allows the user to specify that the glGetTexImage() function should

be used to read from the texture attached FBO.� numberPBOs: this turns on and off readback into system memory using

a PBO. Increasing the number of PBOs increases the number of parallel

readback requests outstanding to the GPU.� PBOUsagePattern: this is used to specify the expected usage pattern of

the pixel buffer object. OpenGL allows hints to be passed to indicate the

level of modification expected and whether the most common operation

will be read, write or copy. For a full list of values see the glBufferData()

function in the OpenGL Programming Guide.� The last three parameters are optional. If they are used, the tool changes

into asynchronous behaviour mode. These are covered in the asynchronous

behaviour section below.

3.4.3 Asynchronous Behaviour Mode

The use of PBOs for system storage permits function calls to readback data from

the GPU without blocking. It lends support for multiple outstanding readback

requests and also the overlap of GPU and CPU work. To enable asynchronous

support, a PBO is created and bound for use as a packing store. A readback

function call is made and will return immediately. When the readback data is

required, a mapping call is made to the PBO, which returns a pointer to the data

67

Map Blocking Time 164279µs
Read Blocking Time 52159259µs
Map+Read Blocking Time 52323538µs
Dummy Work Time 44455106µs
Total Transfer Time 97553896µs
Bytes Transferred 6710886400
Transfer Rate 524.80Mb/s

Table 3.1: Example output of the readback tool in asynchronous behaviour mode
using a 6600GT.

store. The map call will block until all data is readback to (packed into) system

memory. To use the PBO for readback again, it must be unmapped. As indicated

above multiple PBOs are supported by OpenGL and can be used to pipeline

readbacks while the CPU works on previously readback results. An example of

pipelining readback is presented in Nvidia’s Fast Texture Transfers article [89].

Ideally no CPU cycles should be wasted on blocking calls, however this is far from

achievable in most scenarios. The following lists the readbackBench arguments

relevant to exposing the level of asynchronous support.� workLoad: To expose a scenario’s pipeline potential the tool can insert

variable amounts of dummy work to simulate CPU side processing during

data readback. workLoad can be set to an integer that is used to increase

and decrease the amount of dummy CPU cycles spent. Table 3.1 shows

an example output of the tool when running in asynchronous mode. It

includes the total amount of PBO map and readback command blocking

times, and also the time spent in the dummy work loop. To maximise

the pipeline potential, a scenario ideally would reduce the total amount

of blocking time by the same amount of dummy work time increase, thus

maintaining the same transfer rate while gaining free CPU cycles. This can

only happen while the amount of dummy work time is less than the total

scenario time.� drawMode: The default draw mode used during the execution of the read-

back tool is a non texture mapped quad render operation as mentioned

previously, called QUAD DRAW mode. This is suitable for measuring pure

readback rates, however it is not always suitable for measuring the pipeline

potential of a scenario. The asynchronous efficiency depends largely on how

the particular hardware system handles DMA memory transfers during bus

contention and how the graphics driver behaves. drawMode can be set to

PIXEL DRAW to instruct the tool to use glDrawPixels() function to fill the

68

entire window each frame. This generates download traffic to contend with

DMA readbacks, thus simulating an application that requires bi-directional

data transfer. The default QUAD DRAW mode can be used to more closely

simulate the bus traffic patterns of a ping-pong based application, where

the results generated on the GPU are used for the next kernel execution’s

input, i.e. little download traffic.� blockingDetail: this argument, when used, generates logging messages

for each frame displaying the blocking times in detail.

3.4.4 Usage Notes

The following usage pitfall is applicable to both download and readback transfers.

The internal format used to store data within the graphics card is implementation

dependent. According to the OpenGL specification an OpenGL implementation

can use the input parameters such as external format, external type and internal

format merely as a guide. The graphics driver makes this process transparent

and thus when specifying these parameters the user cannot be sure exactly what

form the data will take when transferred from and to the card. The result being

that data can be down converted into a lower precision representation before

being transferred over the bus, leading to false speed-ups.

An example of this pitfall is Nvidia’s transparent mapping of the generic in-

ternal format GL RGBA to the specific internal format GL RGBA8. As a consequence

floats, integers, shorts all get down converted to an 8-bit representation when

used in combination with GL RGBA. There is no way of programmatically know-

ing that a smaller resolution is being used apart from using a strict verification

stage that requires an exact match between data downloaded and readback from

the GPU. When a verification failure is detected the tools continue, however a

warning message is output to notify the user of possible false speed-ups. The

reason for not aborting the scenario execution on verification failure is that in

some scenarios data conversion will occur but the number of bits per pixel will

not change. For example, components can be scaled to a range [0, 1], but can

have the same bit width as the original data elements. Also, 32-bit integers can

be transferred as 32-bit floats, the data will be down converted to a float, yet the

number of bits transferred will be consistent. To allow for better judgement in

determining whether the warning message indicates a false speed up, the inter-

nal formats natively supported on the GPU should be known. For Nvidia DX9

GPUs, this information can be found in the GeForce 7 Programmers Guide [87].

Window obscuring affects readback in the same manner as it affects download

69

transfers. Care must be taken to ensure when using the default framebuffer that

the entire window is visible, otherwise the verification stage will fail and artificial

increases in transfer rates can occur. Also, it was noted that for asynchronous

behaviour to function the specific graphics drivers must be used. With regard

to DX9 Nvidia drivers running on Linux, the driver version should be at least

1.0-8762.

3.4.5 Observations

Similar to the download tool, we present the notable observations based on run-

ning a large array of pipeline configuration combinations. We split the observa-

tions for the readback tool into transfer rate mode and asynchronous behaviour

mode.

3.4.5.1 Transfer Rate Observations

Scenarios that use short or integer external data types under perform by a

minimum of 50% compared to byte and float counterparts. Single external

components suffer a four times reduction if the internal format is not explic-

itly requested as a single component due to all four components being trans-

ferred across the bus and filtering occurring within the driver. When using

glGetTexImage() to readback, there is a large drop in performance compared to

using glReadPixels(). The use of TEXTURE RECTANGLE ARB as the texture tar-

get consistently out performs TEXTURE 2D by ∼7%. This performance difference

does not exist when using internal formats from the OpenGL float buffer ex-

tensions, such as FLOAT RGBA32 NV or RGBA32F ARB. Regarding the size of buffer

dimensions, there is a notable performance increase using higher numbers of

PBOs for small buffer sizes. Also, there are large rates increases when using

sizes that are powers of two, though in general the larger the buffer size the

faster the readback rate. Finally, as with downloads, it is advisable to use ex-

plicit internal format resolutions to avoid the possibility of the driver performing

transparent conversions, which can adversely affect transfer rates.

3.4.5.2 Asynchronous Behaviour Observations

Asynchronous Support: On the tested hardware the vast majority of sce-

narios do not support asynchronous readback. The notable groups that do not

are: all scenarios with an external type of unsigned byte that do not use the

GL BGRA external format; all scenarios with an external data type of signed byte;

70

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 0 2 4 6 8 10 12 14 16 18

R
ea

db
ac

k
T

im
e

of
 6

.2
5

G
B

 (
S

ec
on

ds
)

Dummy Work Load (Seconds)

512 x 512 - 2 PBOs
1024 x 1024 - 2 PBOs

Figure 3.2: PCIe asynchronous behaviour comparison of 512×512 versus 1024×
1024 buffers.

all scenarios with external types of signed and unsigned shorts and integers; all

scenarios with an external format of GL LUMINANCE; all scenarios that use floats

without an explicit internal resolution formats, e.g. those from the float buffer

or arb texture float extensions; all scenarios that use glGetTexImage() to read-

back data.

Pipeline Efficiency: The ideal behaviour of scenarios that support asynchronous

readbacks would be that for every second added to the CPU dummy work time,

blocking time is reduced by a second. As such, for a given amount of readback

time, we should be able to hide that amount of additional dummy work time.

However, in practice this is not true and varying settings such as the number

of PBOs and buffer sizes used affects how close a scenario comes to this ideal.

On the AGP cards the number of PBOs used, buffer sizes and drawing mode

used have a significant effect on the pipelining efficiency. For example, using a

512× 512 buffer size in QUAD DRAW mode, as the number of PBOs used increases

the more efficient at hiding the dummy work time the scenario becomes. How-

ever, when the same scenario uses PIXEL DRAW mode, the efficiency of dummy

work time hiding does not increase as the number of PBOs used increases. Using

a PCIe card eliminates the vast majority of these behavioural differences regard-

ing the number of PBOs and draw modes used. However, there is still a sig-

nificant difference between the asynchronous behaviours when buffer dimensions

are varied. Figure 3.2 illustrates 512× 512 textures outperforming 1024× 1024

textures in terms of pipeline potential on a PCIe card.

71

3.5 DX10 Data Transfer

The complexities of achieving high data transfer have largely been removed with

regard to DX10 compatible GPUs. This is mainly due to the GPU natively sup-

porting a wider range of data types and widths removing most conversion issues

encountered previously. With internal data formats being scalar, and more ex-

ternal data types matching internal data types, format mismatch is less likely.

Also, the use of CUDA removes the need to deal with graphics API issues such

as of pixel formats, transfer methods, frame buffer objects, etc. Nvidia have re-

leased a simple open source demonstration application within their CUDA SDK,

which shows peak transfer rates both to and from the GPU. Through experi-

mentation it is easy to achieve maximum bandwidth for use with cryptographic

functions. We can use 32-bit integer external and internal data types with no

loss of transfer performance. One remaining performance factor, which must still

be taken into account, is the use of DMA memory. This is provided via pixel

buffer objects in OpenGL. CUDA supports DMA memory via allocation through

the cudaMallocHost() function. All copies and reads from this memory are ac-

celerated. The drawback of using too much of this type of memory is a possible

decrease in system wide performance.

3.6 Conclusions

One of the primary bottlenecks to overcome in effectively accelerating applica-

tions that require large data streams using the GPU is the efficient movement

of said data onto and off of the graphics card. The use of the tools presented in

this chapter provide a means of exposing a great deal of idiosyncrasies related to

data transfer via the OpenGL API. These can be used to identify optimal state

configuration for data movement and thus help avoid such bottlenecks. We cover

the application of these tools in relation to AES development on DX9 hardware

in Section 4.1.

72

Chapter 4

Symmetric Cryptography on

DX9 Hardware

Early generations of graphics processors were controlled through parametrised

function calls. This is ill suited for the level of hardware control required to imple-

ment symmetric-key functions as we saw with Cook et al. in Section 2.5.1. A key

innovation since has been an increase in the graphics processor’s programmabil-

ity. DX9 GPUs support the ability to create and run custom programs. However,

these processors provide floating point processing capabilities only and as such

cryptography is not an obvious target application. Despite this, this chapter

shows that it is possible to achieve respectable secret-key cryptographic perfor-

mance using the DX9 generation of GPU.

We have selected the Advanced Encryption Standard (AES) symmetric block

cipher as our example cryptographic algorithm for implementation. AES was se-

lected due to its popularity, compact nature, well documented implementation

techniques and optimisations. We have simplified our investigation to cover AES

using 128-bit key size only, which provides sufficient detail to demonstrate the

feasibility and performance of the proposed implementation approaches. The

implementation executes multiple instances of the block cipher in isolation, ef-

fectively in ECB mode. This mode has the features of being simple and embar-

rassingly parallel, though it is insecure. The presented implementations can be

extended to other parallel modes of operation such as CTR, which is considered

secure [64] and can also result in performance improvements as we will see in

Chapter 5. The ability to parallelise an application is necessary for achieving

performance on a GPU architecture.

Sections 4.1 covers GPU related issues that have a direct bearing on the pre-

sented implementations. Section 4.2 demonstrates the core operation of AES, a

bitwise exclusive-or (XOR), and various implementation approaches along with

73

Download Rate (Gb/s) Readback Rate (Gb/s)
6600GT AGP 8x 12.71 1.39
7900GT PCIe x16 21.24 8.42

Table 4.1: Peak data transfer rates using 1024×1024, 4 component, byte buffers.

their performance. We present the details of three different AES implementation

approaches in Section 4.3 including results and analysis. Section 4.4 investi-

gates the effectiveness of using a DX9 GPU as a parallel co-processor and its

interference with overlapping CPU processes.

4.1 The GPU and AES

The following is a discussion of various GPU related factors that have a direct

impact on the design of our AES implementation approaches.

Data Throughput: There is a high data throughput requirement, both to and

from the graphics card. This data transfer must occur across the relatively slow

system bus, which has improved with the introduction of the PCIe bus standard,

however still remains one of the major potential bottlenecks. We used the tools

presented in the previous chapter to investigate the pipeline configuration states

for our needs. The selected states give relatively good performance for both

download and readback transfers and also match the requirements of the specific

implementations. We highlight the peak performance of data transfers for the

AES implementation cards in Table 4.1. Note that test scenarios were executed

on all cards referenced in Chapter 3 to ensure good transfer performance for all

cards. Asynchronous readback is not used in the reported benchmarking of the

AES implementations, however the selected configuration states were tested to

ensure good non-blocking behaviour.

The main data transfer requirement for AES on the GPU is the use of a data

format that is compatible with our input, output and processing requirements,

i.e. those that maintain precision and do not require conversion. As such, we

focus on integer based formats, bytes, shorts and integers. From the previous

chapter we have noted that shorts and integers give poor transfer performance.

Also, integers lose precision during driver conversion. As an example of the ex-

treme transfer rate variation experienced across differing pipeline configuration,

downloading shorts to a 6600Go PCIe achieved 0.84Gb/s, where under an equiv-

alent scenario using unsigned byte transfer achieved 18.59Gb/s. To achieve this

byte transfer rate one must use an internal format set to GL RGBA8 and an ex-

74

Download Readback
PixelDimension Peak at 1024× 1024
Un/packAlignment 4
TransferMethod glTexSubImage() glReadPixels()

glExtFormat GL BGRA

glExtType GL UNSIGNED BYTE

glIntFormat GL RGBA8

glTexTarget GL TEXTURE RECTANGLE ARB

FBOState FBO ON

PBOState PBO ON -
numberPBOs - 4
FPState FP ON

PBOUsagePattern GL DYNAMIC DRAW GL DYNAMIC READ

Table 4.2: downloadBench and readbackBench parameters used in pipeline con-
figuration of AES implementations.

ternal format of GL BGRA. As another example of the transfer rate variation, if

GL RGBA were used for both external and internal formats, the rate of download

is 4.51Gb/s. GL DYNAMIC READ and GL DYNAMIC DRAW were used to represent ap-

plication’s data access pattern’s in a practical environment: data stores are read

from and written to frequently. We used 4 pixel buffer objects to suit the number

of output textures used in all implementations. Also, it was necessary to ensure

that all states worked well with the use of framebuffer objects as their use is

non-optional in one of the AES approaches. The full list of states used for the

AES implementations is shown in Table 4.2.

Texture Lookups: Our implementation approaches rely heavily on texture

lookups. These lookups come largely in the form of sequential and dependent

lookups. Dependent texture lookups are those that use retrieved data from an

initial texture lookup to form the basis of new texture co-ordinates to execute a

further lookup. This type of lookup generally results in random gather patterns

from the accessed texture and results in large slowdowns to read performance.

Example results from the GPUBench [13] tool shows the dramatic fall off in ac-

cess speed depending on the different types of texture access, ranging from over

480Gb/s for sequential access to less than 32Gb/s for random access on DX9

cards. The reason for such a reduction in speed is due to the small cache sizes

on the GPUs. These caches are normally sufficient for graphical purposes, which

show a high degree of spacial locality of reference. There is an emphasis on all

implementation techniques presented to try to reduce the memory footprint of

75

lookup tables used and to increase the reuse patterns of memory access. Thus,

we try to minimise the last two types of cache misses as discussed by Hill and

Smith [47], namely conflict and capacity misses.

Scatter: Gather is supported in terms of texture reads from various locations,

however, a previously noted DX9 restriction is the lack of native scatter support

within the fragment processors. Each fragment processor can output a small

number of results (between 1 and 4 pixels), however, these results must be writ-

ten to a predetermined memory location within the active output framebuffers.

This is due to traditional graphics programming where each potential pixel is

associated with only one pixel location on the screen/framebuffer. This, as we

will see in Section 4.3.3, restricts our block cipher output format for our AES

implementation strategies and also causes a further restriction on the cipher in-

put format for one of them.

XOR: Another relevant area of the GPU is the availability of a bitwise op-

erations within the final stage of the pipeline. There is hardware support for

this type of operation, and in particular XOR, within the raster operation units

of Nvidia DX9 GPUs. This allows the combination of the fragment processor

output and the existing data within the active framebuffer to be combined us-

ing XOR. Note, as mentioned previously there does not exist support for XOR

within DX9 fragment processors. ROPs can only be used at the end of the ren-

dering pipeline and exist in fewer numbers compared to the fragment processors.

We use the ROP XOR functionality in both Section 4.2.3 and Section 4.3.3 and

further discuss the restrictions imposed by its availability in the ROP only.

Swizzle: The last GPU feature of note is the fragment processors ability to im-

plement swizzle operations for free. Data can be stored, addressed and operated

upon within the various processing stages of the GPU as groups of scalar compo-

nents, or vectors up to 4 wide. This vector support is due to traditional graphics

processing commonly requiring to work with RGB or RGBA (red, green, blue,

alpha) component groups. The fragment processor has the ability to arbitrarily

access and permute the RGBA components within a vector during instruction

execution. This provides a useful means for cheaply executing byte rotates, which

we use to further optimise the AES implementations to reduce the active memory

footprint. This is explored in Sections 4.3.1 and 4.3.3.

76

4.2 XOR Approaches

The AES implementations presented rely on efficient execution of XOR. Here

we present three different approaches used for performing this operation on the

DX9 GPUs.

4.2.1 8-bit XOR

This approach involves the use of a lookup table to perform the XOR operation on

two 8-bit values. The table uses 65,536 (256×256) byte entries, representing the

precomputed results of the XOR operation for all 8-bit values. The lookup table

is stored as a texture, which uses the single component GL ALPHA external and

internal format. This format is used to reduce the internal memory necessary to

represent the lookup table.

To test this approach, two four-component 1024 × 1024 textures are used

to store the input data. Each component is a byte, thus each texel holds four

bytes. The bytes at corresponding locations within these two textures are XORed

together, thus using a sequential data access pattern across the input textures.

For example the first component of the texel at location (x, y) in texture 1 is

XORed with the first component of the texel at the same (x, y) location in

texture 2. A quadrilateral with dimensions 1024 × 1024 to match the size of

the input textures is rendered to generate a fragment program instance per texel

pair. The fragment program loads a single pair of texels from the two input

textures corresponding to the fragment’s texture co-ordinate. Each of the four

corresponding pairs of bytes from the pair of texels are used in turn to execute a

dependent texture lookup within the 256× 256 XOR lookup texture. The result

of each XOR lookup form one of the four components of the output fragment.

4.2.2 4-bit XOR

We have noted that dependent texture lookups have a severe performance penalty.

One way to reduce this penalty is to make the dependent texture lookups access

a reduced lookup space and thus ease the caching requirements. This approach

uses a similar method to the above 256×256 8-bit lookup table, however to help

reduce the size of the table we split each 8-bit input value into two 4-bit values

and use a smaller precomputed 256 entry table. The issue with this approach

is that there is no integer support or bitwise operators, all values read into the

fragment processor are represented as floating point numbers. Thus splitting the

input floating point values representing the high and low 4-bit values must be

77

achieved using a different method than bit masking or shifting.

The method requires a 16 × 16 entry texture with the wrap mode set to

GL REPEAT to store our precomputed XOR values. We use the text2D() function

to execute the XOR texture lookups instead of the more flexible textRECT()

function. The text2D() function scales the width and height of a square texture

into the range [0, 1]. It also scales the co-ordinates used as lookup values in

the range [0, 1]. In comparison the textRECT() function supports non-square

textures and does not perform any scaling on width, height or co-ordinates, and

as such we use this texture lookup function more frequently for general purpose

use. Regarding a texture’s wrap mode, this dictates what happens when a co-

ordinate is used for lookup that is outside the range of the texture’s width or

height. In the case of GL REPEAT, a texture co-ordinate that falls outside its

border, wraps around to the opposite border removing the width or height from

the co-ordinate. This repeats until the co-ordinate falls within the texture. For a

square texture, we observe that the repeat wrapping behaviour acts as a mod n

operation on the (x, y) lookup co-ordinates, where n is the height/width of the

texture.

The text2D() scaling behaviour provides an automatic manner of isolating

the 4 high bits of an 8 bit input value. The XOR texture has a dimension

size of 16 pixels in both directions. The use of text2D() to access this texture

effectively scales each dimension from [0, 15] to [0, 1]. Also, consider that the

XOR input operands have the range, [0, 255], these are also scaled to [0, 1]. As

the original input operands with a 256 distinct values are mapped to the same

range as the texture dimensions with 16 distinct values, the 4 high bits of the

input operands dictate the texel fetched from the XOR texture. Thus, the use of

the original operands in the 4-bit precomputed XOR texture returns the XOR of

the operands’ high 4 bits. If we multiply the input operands by 16, we effectively

shift the 4 low bits into the place of the 4 high bits. However, the operands are

stored in registers as floats, since the fragment processor is a floating point only

processor. Thus, unlike left bit shifts on byte data types, the high bits are still

affecting the value of the operand. The GL REPEAT removes this by effectively

executing a mod 16 on the operands. The operands multiplied by 16 can be

used to lookup the XOR texture and return the XOR of the operands’ low 4

bits. After retrieving the two high and low 4-bit results, they are recombined by

multiplying the 4 high bit value by 16 and adding the low bit value.

78

4.2.3 ROP XOR

We use the native XOR instruction found in the ROP units at the end of the

rendering pipeline. This allows the output from the fragment processors to be

XORed with the values within the active framebuffer. The advantage of this is

that the XOR instruction itself will have good performance. The disadvantage

is that the XOR operation can only be applied to the final stage of the rendering

process, meaning that to reuse previously XORed values a full render pass must

occur. In comparison, the previous two approaches that simulate XORs within

the fragment processors can immediately reuse the values as input to subsequent

operations within the fragment program. The ping-pong method must be em-

ployed when requiring the previous render pass output to be used within the

next pass input. This involves making the output textures the input textures of

the next rendering pass, and switching the current pass’s input texture to be the

output textures of the next pass.

All input and output textures use unsigned bytes for their format. This data

type suits the small size of the lookup tables, the ability to divide the value into

high and low 4-bit pairs and also the use of the bitwise component within the

ROP. A by-product of using the XOR function in the ROP stage is that only a

single input can be XORed to the existing results in the framebuffer. We make

sure that all tests are timed transferring the same amount of data and performing

the same number of XOR operations. Also all tests use input and output texture

sizes of 1024× 1024.

4.2.4 Results

Table 4.3 shows the results of the three approaches using a GPU via OpenGL.

The results are quoted in Gb/s of XOR output production so as to be consistent

with the AES rates quoted later. A single test consists of two 4MB input buffers

being consumed on the GPU in a sequential manner, XORing corresponding data

elements from each buffer one byte at a time. The rates shown are generated from

the average XOR throughput for 256 serial executions of said test. The results

from the GeForce 6600GT were generated on System 1, and the results for the

GeForce 7900GT were generated on System 2. System 1 and System 2 refer to

the hardware and software configurations used to execute the experiments and

are detailed in Appendix D. Also included in Table 4.3, is the performance of

executing XOR on the System 2 CPU. The 8-bit and 32-bit CPU results show

the performance of using a standard C implementation using bytes and integers

respectively as the data units. No optimisations were applied to the CPU XOR

79

GeForce 6600GT GeForce 7900GT CPU
8-bit 4-bit Native 8-bit 4-bit Native 8-bit 32-bit

W/O Round Trip 1.41 8.34 32.5 5.25 27.42 95.69
0.92 3.41

With Round Trip 0.62 0.98 1.10 2.61 3.69 3.71

Table 4.3: Results of the various XOR implementation approaches quoted in
Gb/s of XOR output.

implementation, as such the CPU results should not be considered optimal. The

GPU results include figures for running the approaches with and without full

data round trip. As one would expect the full data round trip approaches incur

large slow downs due to the transmission of input and results across the system

bus. In the context of an AES implementation, the output for a single XOR

operation will generally not have to undergo transfer across the system bus.

We can see that the native XOR results far exceed those of the other two

approaches. However, it is worth bearing in mind the previously mentioned

restrictions to using the ROP XOR approach. The native speeds as expected

are close to the full rendering speeds less the additional overhead of a texture

lookup and a framebuffer read per pixel per pass. The theoretical pixel fill rate

of the 7900GT is 7200Mpixels/s, which in the case of 4 byte components, is

equivalent to 214Gb/s. We can also see that there is a significant increase in

XOR performance when using the 4-bit lookup table over the 8-bit lookup table.

This increase and the fact that the major difference between the table lookup

approaches and the native approach is the execution of dependent texture reads,

suggest that the lookup table approaches are memory bound.

4.3 AES on DX9 Hardware

4.3.1 AES Lookup Tables

The AES cipher is introduced in Section 2.3.1. As noted earlier, the number of

rounds is determined by the key length, 128-bit uses 10 rounds, 192-bit uses 12

and 256-bit uses 14. We have opted to use a 128-bit key length and thus 10

rounds in all AES implementations within this chapter. These rounds can be

reduced into a number of simplified equations, one for each column of the state,

see Equation 2.1. This equation reduces the number of operations involved by

using 4 1KB lookup tables, the results of which need to be XORed with each

other and the round key. In an attempt to reduce the active memory footprint

used within each round we also have adopted a variation of Equation 2.1, shown

80

in Equation 4.1 as stated in the original Rijndael proposal [21]. This equation

is based on the observation that the tables, Ti, can be generated from any one

of the tables with byte rotations. A byte rotation is denoted by Rot(). This

can be seen in Equation 4.1, in that a single table is used, the results of which

are rotated. The use of a single 1KB table reduces the caching demands for

this part of the implementation. This equation incurs a penalty of three extra

rotates per column per round. The rotates can be implemented using the free

swizzle operations. The presented AES implementations are based on the use of

both equations, which are described as noROT and ROT (no-rotate and rotate).

Thus we can see that the operations involved in the AES implementations are

byte selects (swizzle), XORs, and table lookups (denoted by Ti[]).

ej = T0[a0,j]⊕ Rot(T0[a1,|j−1|4]⊕

Rot(T0[a2,|j−2|4]⊕Rot(T0[a3,|j−3|4])))⊕ kj . (4.1)

4.3.2 AES Input Data

In general we read message data (plaintext/ciphertext) from textures that have

an internal format of four bytes (components) per texture element (texel). Each

texel makes up a single column within the cipher input state. Each texel is

written to the destination framebuffer when the cipher or stage processing, de-

pending on the approach used, is finished and represents the new state of the

corresponding column. Within all AES implementations we attempt to increase

the patterns of memory access by altering the layout of the message data across

the input textures. We explore three different input gather techniques, which in-

clude the use of multiple tables and single tables. These techniques are included

in the AES implementations where appropriate.

In Figure 4.1(a) we can see that the input data is read from four different

textures at the same texture co-ordinate, which provides for good predictability.

However, as Govindaraju et al. [35] point out, texture memory is read in the

form of blocks of data. This would mean that 4 independent texture blocks

are requesting residency within the texture cache at all times. We label this

technique as Multi Input in the results section.

In Figure 4.1(b) we have adopted a different memory gather approach reading

all input plaintext from a single texture. The layout of the 16 byte blocks use

four component texels one after the other in a horizontal fashion, which we hope

would require less active memory blocks within the texture cache at the one time.

The rasterisation pattern, which is responsible for handing off fragments to the

81

a) b) c)

Figure 4.1: Illustrations of the different gather techniques employed for message
input data across the AES approaches.

fragment processor in a normally cache friendly order, is proprietary so we can

only guess at the most efficient access patterns. To reduce the overhead in cal-

culating the 4 different gather texture co-ordinates within the fragment program

we construct the rendered quadrilateral with multiple texture co-ordinates per

vertex. We configure each texture co-ordinate set to be appropriately out of line

with the rendered quadrilateral so that the interpolated co-ordinates generated

within the rasterisation stage will automatically fall on the correct texel. This al-

lows the rasterisation stage of the pipeline to calculate the required co-ordinates,

thus incurring no computational overhead within the fragment processors. This

technique is labelled as Single Input Hgather.

The third gather approach, shown in Figure 4.1(c), is similar to the previous

technique. It reads from a single texture. However, to cater for an access pattern

that suits 2 dimensional block structures, we organise the input message data

into squares. This has similar gather requirements to the standard texture filter

reads used within traditional graphics programming. The same method involving

multiple texture co-ordinates as stated in the previous technique is also used here.

This technique is labelled as Single Input Sgather.

4.3.3 AES Implementations

Here we present three different AES approaches on DX9 hardware. All ap-

proaches implement the AES cipher using 128-bit key length and thus 10 rounds.

All approaches use pipeline configuration as specified for efficient data transfer

both to and from the graphics card. The data round trip overhead is included

in reported performance to show realistic results in a practical environment. As

introduced in Section 4.3.1 both forms of the optimised table lookup techniques

of AES cipher implementation are implemented within each approach. All ap-

proaches use a technique called multiple render target, which involves the use

of 4 output textures as output targets for the fragment programs. The AES

82

implementation approaches are presented as follows:

Approach 1: This approach is based on the 8-bit implementation of XOR as

described in Section 4.2. Each execution of the fragment program reads a full 16

byte block via 4 texels using all the gather techniques described above. The other

input textures used within the fragment program are the round key texture, the

XOR texture and the Ti lookup textures. The round key texture is a 1D texture

that contains a pre-generated schedule of round keys, which is provided by the

CPU part of the implementation. The appropriate texture co-ordinates for the

round key are dynamically generated within the fragment program. There are

either 5 or 2 1D Ti lookup textures, representing the first form of the cipher opti-

misation lookup tables (noROT) or the second form, which only involves a single

lookup table (ROT). The extra lookup table is used for the last round, which

consists of different data than the other Ti tables as the round MixColumn() step

is omitted. A single execution of the fragment program processes the 16 input

bytes (a full AES state) and produces the final round output of 16 bytes.

Table 4.4 contains pseudocode that represents a single column, single round

transformation using the noROT optimisation. We can see the starting lines,

which use the previous columns represented by four 4-way components: s0-3.

These are looked up using x,y,z,w (synonymous with rgba) to access the partic-

ular row involved in this column transformation. After the initial Ti and round

keys are looked up they are repeatedly XORed with each other via the XOR tex-

ture dependent texture lookup. It should be noted that all retrieved texels used

for texture lookups require multiplication by a correction factor of slightly less

that 1 to avoid rounding error. This is labelled as applyCorrectionFactor()

in the pseudocode. This correction factor did not adversely affect performance

as the operations could be removed without any change in throughput. This

indicates that the algorithm is I/O bound due to the large number of dependent

texture lookups. The implementation mostly executes this pseudocode repeat-

edly for all columns of the state and all rounds of the cipher. The final four

4-way components are written to the active 4 output textures ready for readback

after all fragments have been processed.

Approach 2: Based on the 4-bit version of the XOR approaches described in

Section 4.2. The vast majority of implementation detail is the same as the above

8-bit AES approach. The number of XOR lookups are doubled due to both the

high and low bit values being dealt with separately. The high and low bit values

are only recombined at the end of each round when necessary for use as a single

83

/* AES Table lookup */
te0 = tex1D(te0Tex, s0.z);
te1 = tex1D(te1Tex, s1.y);
te2 = tex1D(te2Tex, s2.x);
te3 = tex1D(te3Tex, s3.w);

/* Round key data - i is the round counter */
rk = tex1D(rkTex, 1/44*((i*4)+1));
applyCorrectionFactor();

/* First 4 byte xors for a single column */
t0.x = tex2D(xorTex,float2(te0.x,te1.x)).w;
t0.y = tex2D(xorTex,float2(te0.y,te1.y)).w;
t0.z = tex2D(xorTex,float2(te0.z,te1.z)).w;
t0.w = tex2D(xorTex,float2(te0.w,te1.w)).w;
applyCorrectionFactor();

t0.x = tex2D(xorTex,float2(t0.x,te2.x)).w;
t0.y = tex2D(xorTex,float2(t0.y,te2.y)).w;
t0.z = tex2D(xorTex,float2(t0.z,te2.z)).w;
t0.w = tex2D(xorTex,float2(t0.w,te2.w)).w;
applyCorrectionFactor();

t0.x = tex2D(xorTex,float2(t0.x,te3.x)).w;
t0.y = tex2D(xorTex,float2(t0.y,te3.y)).w;
t0.z = tex2D(xorTex,float2(t0.z,te3.z)).w;
t0.w = tex2D(xorTex,float2(t0.w,te3.w)).w;
applyCorrectionFactor();

t0.x = tex2D(xorTex,float2(t0.x,rk.z)).w;
t0.y = tex2D(xorTex,float2(t0.y,rk.y)).w;
t0.z = tex2D(xorTex,float2(t0.z,rk.x)).w;
t0.w = tex2D(xorTex,float2(t0.w,rk.w)).w;
applyCorrectionFactor();

Table 4.4: Pseudocode for a single single column, single round transformation
using simulated XOR in-fragment processor operation.

84

8-bit Ti table lookup value. This recombining could be further delayed by using

2D Ti lookup tables based on 4-bit by 4-bit lookups, though was deemed un-

necessary as the ALU instructions are not presenting a bottleneck. This can be

shown by the removal of all ALU instructions within the algorithm implementa-

tion resulting in no performance difference.

Approach 3: This approach is based on the ROP provided XOR native im-

plementation shown in Section 4.2. As scatter is not supported within fragment

programs, the output is restricted to writing to a fixed location within the four

textures bound to the active framebuffers. Recall that the XOR operation is

executed at the end of the pipeline pass, after the fragment program has termi-

nated. To use the XOR results we must initiate another pipeline pass using the

output textures as the new input. This restriction dictates that the input format

must match the output format and thus use the Multi Input gather technique as

described above. The Single Input Gather techniques are not incorporated into

the implementation of this approach.

As only one XOR operation per fragment output can be executed per pass,

we require five rendering passes per round of execution plus one initial clear

fragments command to reset all output values to zero. The input and output

textures are swapped for each pass, see ping-pong in Section 2.1.3. Each stage of

the optimised AES equations are implemented by a different fragment program

specifically written to execute the correct component based lookup within the

Ti textures. To save having to read in all four input textures for each render

pass, and due to the free nature of the swizzle operation we can rearrange the

ROT version of the AES implementation technique to permit only a single active

input texture per pass. This reduces the active cache footprint of a single pass.

Equations 4.2 and 4.3 show the Rot equation suitably rotated to facilitate a single

state column reference per rendering pass. Note that the column references are

matching vertically. This in effect means that we are only referring to a single

column at each stage and generating full stage output for all columns, XORing

it with the appropriately rotated result. The OpenGL Vertex Buffer Object

extension was employed when implementing this approach to reduce the overhead

of vertex transfer due to the high number of render passes.

k0 ⊕ T0[a0,0]⊕Rot(T0[a1,1])⊕ Rot2(T0[a2,2])⊕Rot3(T0[a3,3]) . (4.2)

k1 ⊕ Rot3(T0[a3,0])⊕ T0[a0,1]⊕ Rot(T0[a1,2])⊕Rot2(T0[a2,3]) . (4.3)

85

8-bit 4-bit ROP

Multi Input
ROT 49.92 91.76 361.20

noROT 48.88 89.52 359.12
Single Input ROT 49.76 91.20 -

Sgather noROT 48.88 89.76 -
Single Input ROT 49.60 91.28 -

Hgather noROT 49.20 90.40 -

Table 4.5: GeForce 6600GT results for the various AES approaches quoted in
Mb/s.

8-bit 4-bit ROP

Multi Input
ROT 206.88 313.84 870.99

noROT 205.68 312.08 868.50
Single Input ROT 208.48 313.44 -

Sgather noROT 207.36 312.96 -
Single Input ROT 207.92 313.28 -

Hgather noROT 205.52 312.64 -

Table 4.6: GeForce 7900GT results for the various AES approaches quoted in
Mb/s.

4.3.4 Results

Table 4.5 shows the peak throughput of AES encryption using the various imple-

mentation strategies described above running on the GeForce 6600GT (System

1, see Appendix D). Table 4.6 shows the same for implementations running

on the GeForce 7900GT (System 2, see Appendix D). The results are derived

from the average peak AES throughput rate taken from 256 serial executions

of each test. The input data is randomised for each test, thus ensuring caches

behave in a manner expected within a practical system. We can see that the

performance figures follow the results trend presented in the XOR Approaches

in Section 4.2. There is a consistent slight speed up when using the ROT version

of the AES implementation over the noROT version. There is no appreciable

difference in speed when using the different gathering techniques, which suggests

that the bottleneck lies with the XOR table lookups or that the sequential na-

ture of all gather techniques do not incur cache misses in the first place. The

large speed increase in the ROP XOR approach over the other XOR approaches

suggest the primary bottleneck is the texture dependent lookups to simulate the

XOR operation. As mentioned previously the improvement of 4-bit XOR over

8-bit XOR shows that the cache is failing to accelerate these texture lookups.

Note that the implementations presented in all results sections within the thesis

86

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16B 256B 4KB 64KB 1MB 16MB

T
hr

ou
gh

pu
t R

at
e

(M
bp

s)

Payload Size

7900GT ROP
7900GT 4-bit
6600GT ROP
6600GT 4-bit

OpenSSL
Crypto++

GeForce3, Cook et al.

Figure 4.2: Effects of payload size variation on AES encryption throughput.

have been confirmed as functionally correct using comparisons against standard

implementations of the corresponding algorithms.

Figure 4.2 demonstrates the encryption throughput effectiveness of the GPUs

studied when using different payload sizes. A payload defines a block of data,

which is delivered to the GPU in isolation and delivered back to the CPU after the

entire data block is encrypted. In practice the payload size refers to the amount

of data transferred in the form of input and output textures across the system

bus for kernel processing in a single pipeline pass. The figure clearly shows that

as the payload size reduces the throughput also reduces. Transferring multiple

small data loads across the system bus leads to an increase in the number of

required CPU-GPU interactions, increasing inefficiency. More importantly, in

general terms, as data workloads reduce in size it becomes increasingly difficult

to ensure all processors in a many processor environment are kept busy, which in

turn leads to difficulty in effectively leveraging the potential processing power.

The implication of the noted behaviour in Figure 4.2 with regard to cryptography

is an ineffectiveness of the DX9 GPUs to assist in small data unit encryption and

decryption. Applications such as IPsec rely heavily on this type of behaviour and

thus for the GPU to assist in this context, the overhead of data transfer and API

calls would have to be significantly reduced. Applications that require bulk data

encryption and decryption, or latency insensitive applications in general are thus

more suited to these GPUs.

Included in Figure 4.2 are the 7900GT and 6600GT ROP and 4-bit ap-

87

proaches, along with the CPU based AES throughput rates. It is assumed that

the payload size does not affect the throughput rate of AES on a CPU in any

significant way. The performance rates of AES decryption are not listed sepa-

rately for either GPU or CPU as they produce the same throughput rates. The

essential difference between the AES encryption and decryption algorithms when

using the optimised equations presented, is a change in the lookup table data.

This data reflects the inverse S-box operation. Also included in Figure 4.2 is the

only GPU based cipher implementation reported before this work was carried

out. The aforementioned Cook et al. AES implementation on a GeForce 3 Ti200

reports a rate of 1.53Mb/s and is barely visible in the figure. This highlights the

advances in programming flexibility and processing capability of GPUs since the

release of the GeForce 3.

Comparison Note: As part of the results presented here we include compara-

tive results from CPU based AES implementations. Throughout this thesis we

compare results with CPU based implementations, however we should highlight

the inexactness of this approach. There are a number of ways to compare a CPU

to a GPU. For example, comparisons using transistor counts or die area gives a

comparative performance boost to CPUs as they generally consume less transis-

tors per chip than GPUs. Another comparison could be made related to research

cost per architecture, which according to informal reports swings the compara-

tive advantage to the GPU. A more useful comparison could be made using the

final system price per bit processed, which loosely reflects all constituent factors.

However, this is difficult to state precisely. A multi CPU socket system costs

more than a single socket, where both include extra PCI slots. Being able to

extend a single system with use of GPUs can save costs in expanding to another

full system. Also, a further issue with this approach is that it does not serve an

academic evaluation where in the near future it may be possible to use a GPU

directly in the motherboard in the same way a CPU does [3]. This removes the

cost of all GPU card components that are not the chip itself, making it more

equitable to the way in which a CPU is used.

A further issue with using price based comparisons is that prices are subject

to a number of factors, such as marketing strategy, market conditions, vendor

conditions, etc. As such, these types of comparison are not scientific and give

questionable value. However, it can be argued that a comparison with the CPU

should be made in some form, if even to give rough placement of the GPU in

context with existing implementations. To enable such a rough comparison we

select where possible similar era, similar priced CPU and GPU chips in isolation.

88

Looking at the chips in isolation removes factors such as the cost of GPU card

components such as RAM, and other system integration issues. CPU chip factory

gate prices are generally available in units of 1000. However, GPU prices are only

available for end consumer retail prices, which includes the price of the retail

channel and all PCI board components. A guess at the price of an individual

chip can be determined from the difference in price between single and dual GPU

boards. Using an example of the latest high end Nvidia processor, the average

difference in price between the single GPU GeForce GTX 285 card and the dual

GPU GeForce GTX 295 card is ∼$140US. As stated this is a rough guess at the

factory gate price of a new GPU release, though it could easily be at cost price or

a discounted price. The CPUs used for comparison throughout the thesis have

a release date typically within one year of the GPU release, and a factory gate

price range of $200-300US. In summary, the CPU comparisons are not exact

and act as a background context against which the GPU’s performance can be

roughly judged.

Also, note that throughout this thesis the cryptographic processing rates are

measured in terms of throughput, rather than the more common format, cycles

per byte. The reason for this is that on a many core architecture, cycles per

byte per core does not give a useful indication of processor throughput. When

processing on a many core device, the ALU processing rate is just one factor that

determines the throughput rate. Factors such as shared resource contention and

availability of threads can have a dramatic impact on the final throughput. A

more informative metric is required than cycles per byte for a single core. Thus,

we have tended to use the final system throughput for different data sizes.

Comparison: Figure 4.2 includes the performance of running the built in

OpenSSL [100] speed test on System 2, see Appendix D. The speed test reported

is the rate of repeatedly encrypting in-memory plaintext using AES in ECB

mode. The OpenSSL version used was 0.9.8g. It is common to see CPU compar-

isons using OpenSSL in the literature. However, OpenSSL performance tends

to include a lot of API overhead and thus under report the CPU performance

potential. To complement these results, Figure 4.2 also includes the throughput

rates for AES in ECB mode as reported by the popular Crypto++ [19] API. The

Crypto++ result included here is taken from the website’s benchmarking pages.

The benchmarked CPU is a 2.93Ghz Intel Prescott, though it is not clear the

exact version. Table 4.7 shows the exact CPU throughput rates achieved . The

CPU release date and factory gate pricing at release date, where available, are

shown in Appendix B.1.

89

OpenSSL 369.04
Crypto++ 848.0

Table 4.7: CPU based AES results quoted in Mb/s.

4.4 GPU as an AES Co-Processor

The results shown in Section 4.3.4 are somewhat encouraging in that DX9 GPUs

can provide assistance as a cryptographic co-processor. However, it was noted

that the operating system reported CPU utilisation at 100% during all runs of

the above approaches. Cook et al. [15] also reported the same issue for their

implementations. There is little point in using the GPU as a cryptographic co-

processor if it must be run in series with CPU tasks. We present a formalised

investigation into this behaviour and corresponding results in this Section.

We define %CPU Idle Time as the amount of idle CPU time during the ex-

ecution of a GPU task as a percentage of the total runtime of the GPU task.

For example, if a CPU task must run in series with a GPU task, the GPU task

has a %CPU Idle Time of 0%. Conversely GPU tasks that can run perfectly in

parallel with CPU tasks have a %CPU Idle Time of 100%. %CPU Idle Time for

GPU tasks can be calculated as follows:

1. Create a CPU bound task, which requires a known amount of runtime,

called CPU Task Time.

2. Record the length of time the GPU tasks takes on an otherwise idle CPU,

called GPU Task Time. The CPU Task Time must be sufficiently longer

than the GPU Task Time such that it starts first and always finishes last.

3. Run both the CPU and GPU tasks together starting the CPU task first.

Record the total run time of the CPU task, called Combined Task Time.

4. GPU Task Used CPU Time = Combined Task Time− CPU Task Time. This

follows as the amount of CPU time demanded by the GPU must be the

extra time the CPU task takes to finish when run in parallel with the GPU

task.

5. GPU Task Idle CPU Time = GPU Task Time− GPU Task Used CPU Time.

This also follows as the amount of time the GPU task consumes that it does

not require running on the CPU must be in the form of idle CPU cycles.

6. %CPU Idle Time = GPU Task Idle CPU Time / GPU Task Time × 100.

90

GeForce 6600GT GeForce 7900GT
8-bit 4-bit ROP 8-bit 4-bit ROP

Multi Input
ROT 96.69% 94.19% 86.75% 87.42% 90.61% 74.84%

noROT 95.96% 94.10% 85.98% 88.79% 89.79% 74.57%

Single Input ROT 99.18% 96.75% N/A 88.06% 93.54% N/A
SGather noROT 98.24% 95.32% N/A 88.65% 92.34% N/A

Single Input ROT 98.76% 96.59% N/A 88.70% 93.02% N/A
HGather noROT 98.56% 96.46% N/A 88.49% 93.34% N/A

Table 4.8: %CPU Idle Time based on 16MB payload sizes.

4.4.1 Results

In Table 4.8 we present the previous GPU based AES approaches in terms of

%CPU Idle Time. It can be seen that in general the GPU performs well as

a co-processor as most of the percentages are quite high. This indicates a high

percentage of idle CPU time while the GPU is performing AES operations. There

is a notable reduction in %CPU Idle Time for scenarios that demonstrate a high

throughput rate. This is expected as the amount of CPU overhead will remain

more or less consistent across the different GPU approaches for a fixed amount

of data processed while the overall execution time has dropped. This results in a

higher percentage of the tasks total running time occupying the CPU. As such,

care has to be taken when interpreting these figures given that the faster AES

approaches are not necessarily disadvantaged over the slower ones in terms of

%CPU Idle Time, but rather there is a price to pay for the increased throughput

rates. Although not practical, the GPU tasks that process at faster rates can

artificially generate the same %CPU Idle Time as the slower GPU tasks by adding

sleep cycles. This table demonstrates that the high throughput rates come at a

price of increased interference with CPU tasks per unit of time that the GPU

task is running.

4.5 Conclusions

Within this chapter we presented new approaches to solving AES block cipher

encryption on DX9 GPU hardware. We have compared each approach’s result-

ing performance to each other and to standard CPU implementations. We have

achieved rates of up to 870.99Mb/s using a Raster Operations Unit based ap-

proach and 313.84Mb/s using a fragment processor based XOR simulation on a

GeForce 7900GT. The throughput rates achieved are competitive with the CPU

rates presented, achieving similar rates when the amount of input data per pay-

91

load becomes large. Given the rates achieved on DX9 GPUs, it is possible to use

them to alleviate AES loads, or potentially similar cryptographic loads, from a

CPU allowing it to spend time on other tasks. It was demonstrated that the GPU

performs best using large payload sizes and thus suits applications that require

bulk data encryption/decryption. This chapter also demonstrated that the GPU

can be used effectively as a co-processor contrary to the operating system reports

of 100% CPU load during GPU task execution. The 6600GT results were derived

from System 1 and the 7900GT results from System 2, see Appendix D. The

CPU timing mechanism used was the gettimeofday() function. The results are

based on the average timings from multiple independent test executions.

92

Chapter 5

Symmetric Cryptography on

DX10 Hardware

The Nvidia G80 architecture is DX10 standard compliant. It belongs to the first

generation of GPU architectures that support integer data units and bitwise

operations, key features for cryptographic implementations. The programming

model for this architecture has also improved with the release of CUDA, which

provides a C-like programming environment for shader definition and execution.

Using CUDA and an Nvidia GeForce 8800GTX, the first DX10 compliant GPU

and part of the G80 architecture family, we implement 128-bit AES. This im-

plementation is compared to the previous effort in Chapter 4 and other CPU

and GPU implementations. This implementation is based on various hardcoded

assumptions relating to message sizes, message location, key location, single key,

etc. We call this implementation an optimised one and use it for contrast with

a more general purpose approach later in the chapter.

A practical consideration, with regards to symmetric-key cryptography, is the

GPU’s suitability as an accelerator when not used in the context of the hard-

coded assumptions. Another practical consideration is the current development

overhead associated with using a GPU for cryptographic acceleration. Client

applications would benefit from the ability to map their general cryptographic

requirements onto GPUs in an easy manner. Also, a challenge exists to achieving

high efficiency when processing payloads that include messages using different

modes of operation. As we will see, problematic modes of operation are those

that are serial in nature. We call these modes, serial MOO, as opposed to parallel

modes such as CTR, which we call parallel MOO.

We present a data model for encapsulating symmetric-key functions in a gen-

eral manner, which is suitable for use with the GPU. The application of this

data model and the details of its interaction with the underlying GPU imple-

93

mentations are outlined. In particular we investigate how input and output data

can be mapped to the threading model of the GPU for both serial and parallel

MOOs. We show the performance of these modes and use our optimised AES

implementation to determine the overhead associated with using a flexible data

model and its mapping to the GPU. Also included in the chapter is a study of

the issues related to the mixing of symmetric-key modes of operation within a

single GPU call.

The main goal in achieving good performance on a GPU processor is to en-

sure that all processing units are busy executing instructions. This is a challenge

with the 8800GTX processor when the following are considered: it can only ex-

ecute a single kernel at a time; it follows a SIMD-like programming model, thus

threads can dictate the runtime of neighbouring threads; its on-chip caches are

limited, therefore there can be a demand for a large number of threads to hide

memory latency; and it contains 128 execution units. These considerations have

a significant influence on design decisions and implementations presented here.

Outline: Section 5.1 presents an optimised implementation of AES, running

in ECB and CTR modes of operation, on the Nvidia G80 architecture and shows

its performance improvements over comparable CPU and GPU implementations.

In Section 5.2 we introduce the generic data model suited to GPUs, which is used

to encapsulate application oriented symmetric-key requirements. Section 5.3 de-

scribes in detail the steps of mapping from the generic data structure to under-

lying GPU implementations. We implement different modes of operation using

the outlined data model and the optimised AES implementation in Section 5.4.

This exposes the overhead associated with moving from a hardcoded to a more

general purpose implementation.

5.1 Block Based AES Implementation

5.1.1 Mapping AES to CUDA

As previously mentioned the G80 architecture supports integer bitwise operations

and 32-bit integer data types. These new features, which are shared by all DX10

compatible GPUs, simplify the implementation of AES and other block ciphers.

This allows for a more conventional AES approach compared to implementations

on previous generations of graphics processors. We based our implementations

around both the single 1KB and 4 × 1KB pre-calculated lookup tables, which

were presented earlier, see Equation 4.1 and Equation 2.1 respectively. Again,

94

/* Index generation */

int index = threadIdx.x + (blockIdx.x × blockDim.x);

/* Input state read */

uint4 state = plaintext[index];
...

/* Output state write */

ciphertext[index] = state;

Table 5.1: Mapping of CUDA threads to input and output message data.

we label these as ROT and noROT approaches. Also, similar to the previous

chapter all approaches using the ROT and noROT include the use of an implicit

extra table for the last AES round.

Each thread that is created, calculates its own input and output address for a

single AES data block. The simple thread to I/O data mapping scheme used for

all implementations reported in this section is shown in Table 5.1. Each thread’s

index relative to all threads within the CUDA grid for a kernel execution is

used as the thread’s offset into the input and output data buffers. In the table,

blockDim is the number of CUDA blocks within the CUDA grid, blockId is the

current CUDA block that the thread exists within, and threadId is the current

thread index within the CUDA block. Input and output blocks are read and

written as 4 component 32-bit integer vectors.

As ECB and CTR are parallel modes of operation, each thread runs largely

in isolation from other threads in a single pass to generate an AES output block.

As mentioned, to achieve high performance on a GPU or on any highly multi-

threaded processor, an important programming goal is to increase occupancy.

It is for this reason that we create a single thread for each input block of data

rather than processing multiple blocks in a single thread. There is the possibility

to create even more threads by allowing multiple threads to co-operate on a

single AES block. However, as the generation of each AES state column requires

access to all other columns for each round, the synchronisation overhead is too

high when compared to the amount of arithmetic work done.

XORs are supported in the programmable section of the graphics pipeline.

As such there is no need to use the ROP XOR support, which requires multiple

passes of the pipeline, one for each XOR operation. Data is processed as 32-

bit integers also improving the performance of XOR over the previous GPU

generation. One side effect of using 32-bit integer processing is that the rotations

performed in the ROT version of the AES incur an overhead. Switching to bytes

would alleviate this by allowing arbitrary selection of components, however this

95

would increase the number of XORs required. We will see that some of the AES

implementations are not fully I/O bound on the G80 and the extra rotates affect

the final throughput rate.

The following optimised AES implementations are simplified by using a single

key for all data to be encrypted, with the key schedule generated on the CPU.

The reason for implementing the key schedule process on the CPU rather than

the GPU is that it is serial in nature, thus the generation of a key schedule must

be done within a single thread. There would be a very high overhead per thread,

i.e. per AES block, to generate its own schedule. We address the overheads

of using multiple different keys, for use in rekeying and distinct cryptographic

sessions, within a single payload later in the chapter.

5.1.2 AES and G80 Memory

Device Memory: We investigated using both textures and linear global mem-

ory to store the input and output message data on the device. Through exper-

imentation we found global memory to be slightly faster than texture memory

for message data access due to the sequential and non-repeating nature of the

memory access. Also, we have ensured that all global memory reads and writes

per half warp are coalesced into a single global memory access. Recall that the

CUDA 1.0 requirements for full coalescing is for each thread to individually ac-

cess 4, 8 or 16 byte data units; for memory addresses of each of the data units to

be aligned to the data unit’s width; for all threads within a half warp to access

the data units consecutively; and finally for the data accessed concurrently by the

threads within a half warp to be aligned to the total size of the data requested.

The first constraint is easily met considering the G80 supports a single 4-wide

integer read. Each thread within a warp accesses a single AES state using a sin-

gle 16-byte uint4 read instruction. The data index generated using the thread

and block IDs is done so that each thread obtains a consecutive index, that

is, thread n will access data at (baseAddress + (n × sizeof(uint4))) and

thread n+1 will access data at (baseAddress + ((n+1) × sizeof(uint4))).

When allocating device memory on the GPU for storing the entire data payload,

we use cudaMalloc(), which ensures that the returned baseAddress from the

malloc function is aligned to at least a 256 byte boundary. These conditions

ensure that the read and write commands shown in Table 5.1 coalesce fully. All

our implementation approaches are based on using linear global memory reads

and writes for plaintext and ciphertext data.

Host Memory: An important factor in the performance of transferring data to

96

and from the GPU is whether one uses page locked memory or not. Page locked

memory is substantially faster than non page locked memory as it can be used

directly by the GPU via DMA. The disadvantage is that systems have a limited

amount of page locked memory as it cannot be swapped out to disk, though

this is normally seen as advantageous to secure applications as it avoids paging

sensitive information to disk. We have seen the DX9 equivalent of this type of

memory, pixel buffer objects, in the previous chapter. For CUDA we simply

allocate host memory via cudaMallocHost() instead of the standard malloc()

function. All implementation results are quoted using this accelerated system

memory. Another minor observation regarding host memory use is that a 3%

AES throughput improvement can be experienced when the message data buffer

is reused to store the AES cipher output. There are no coherency issues with

input and output buffer reuse as each data element is treated by a single thread

in isolation. This technique may not be possible to employ depending on the

calling API. If the API requires the input buffer to remain unchanged then sep-

arate input and output buffers must be maintained.

On-chip Memory: As lookup table access is one of the main performance

bottlenecks for our AES approaches, we implemented both ROT and noROT

versions using all available types of on-chip memory for the G80. The types

used are texture cache, constant cache and shared memory. Shared memory is

shared between threads in a CUDA block and is limited to 16KB of memory

per multiprocessor. As previously mentioned, shared memory is divided into 16

banks, where memory locations are striped across the banks in units of 32 bits.

16 parallel reads are supported if no bank conflicts occur and for those that do

occur, they must be resolved serially. The constant memory cache working set is

8KB per multiprocessor. It is also single ported and as such it only supports a

single memory request at one time. Texture memory cache is used for all texture

reads and is 8KB in size per multiprocessor. To investigate the read performance

characteristics of these types of memory we devised read tests to access the three

types of memory in two different ways. We split the tests into random and co-

herent read memory access patterns, each test accessing 5 billion integers per

kernel execution. Coherent access patterns refer to read requests that execute in

parallel and are not serialised due to memory porting constraints. We include

this access type as there are opportunities to exploit coherent reads within shared

memory, i.e. reads with no bank conflicts per half warp request.

In Table 5.2 we can see the average execution times measured in seconds to

perform the 5 billion reads. Although we are only interested in the coherent read

97

Coherent Reads Random Reads

Shared Memory 0.204319s 0.433328s

Constant Memory 0.176087s 0.960423s

Texture Memory 0.702573s 1.237914s

Table 5.2: On-chip Memory Reads: Average execution times for 5 billion 32-bit
integer reads.

performance of shared memory we have included the coherent read performance

of texture and constant caches. We can see that constant memory performs

best with regard to coherent reads. However, as the AES lookup tables will be

accessed randomly within a warp we are mainly interested in random reads, of

which shared memory gives the best performance. This is due to its high number

of ports. There is an extra overhead to using shared memory to store lookup

tables. Both texture and constant memory can be loaded with data before the

kernel is called and used by all threads within the grid of threads, and also by

subsequent kernel calls within a CUDA context. Shared memory must be popu-

lated once per CUDA block, and repeatedly done so for each new block. Shared

memory is designed for use as inter-thread communication memory within the

one multiprocessor and is not designed for pre-loading of data. This is most likely

an API limitation. If a mechanism existed to populate shared memory separate

to a kernel execution it would reduce the overhead of using shared memory for

pre-baked lookup tables.

Lookup Tables in Shared Memory: The reason for including the coher-

ent performance of shared memory in the results in Table 5.2 is that there is the

possibility of arranging multiple copies of the AES lookup tables to avoid bank

conflict in the ROT approach. This arrangement, assuming overhead was limited,

would be desirable as we could expect an increase of the final AES throughput

rates due to the improved lookup performance. Considering shared memory in

the G80 is stated as 16KB in size, it should be able to store 16 1KB lookup

tables. In this case, each thread within a half warp can use a modified index to

lookup the 16 tables such that they access unique shared memory banks, thus

avoiding conflicts. We modify the lookup index as illustrated in Table 5.3.

Recall that shared memory is arranged so that consecutive 32-bit words are

stored in consecutive banks. As such we can view shared memory as a two

dimensional array where there are 16 columns and 256 rows, each column being

32 bits wide. From the brief code in Table 5.3 we can see that oldindex is

acting as the row selector and bankId is acting as the column selector. The new

98

/*Use threadId to select a unique bank.*/

bankId = threadId & 0xf;

/*Modify the original index value.*/

newindex = oldindex × 16 + bankId;

Table 5.3: Modification of values used for AES lookup table indexes to avoid
bank conflicts.

index guarantees that each thread within a half warp accesses their own column.

However, the overhead associated with the extra operations to generate the new

index if coded as presented in Table 5.3, under performs the scenario using a

single 1KB table with bank conflicts. Careful optimisation of the operations

used to generate the new index can almost entirely eliminate the overhead.

First, the bankId can be calculated once and reused for all table lookups.

Next, note that oldindex in a standard ROT implementation is used to lookup

shared memory, for example shmAESLookup[oldindex]. If we look at this in

PTX CUDA assembly we can see that it breaks down into oldindex × 4 + the

address of shmAESLookup. We can add the bankId offset at the start of the cipher

execution to the address of shmAESLookup, thus in effect pre-selecting the column

(bank) within the shared memory array. The “× 4” is used by the compiler to

calculate the byte offset from the base address. This offset is required as each

element is 4 bytes long. This multiplication step is needed regardless of storing

integers or bytes, as ultimately we require 4 bytes returned per lookup. Thus, if

we modify the PTX assembly to use × 64, we incorporate the row select for free.

It is worth noting that the PTX comments made in Chapter 2 regarding the lack

of inline assembly makes this optimisation and code management difficult. We

are forced to modify over 1000 lines of assembly, which included over 900 register

aliases.

Unfortunately, CUDA and the G80 does not permit full use of all of the 16KB

of shared memory advertised. We only have access to slightly less than 16KB,

as the first 28 bytes are reserved for system use. Many attempts were made to

use these few bytes by backing up and restoring them suitably, however system

instability could not be avoided. The full 16 × 1KB single table approach is thus

not feasible. We used a similar approach, which omitted the last entry from each

of the 16 1KB tables. A conditional was added to check the lookup value. If the

last entry was being sought, a hardcoded entry was used instead of executing the

table lookup. The previously described assembly language optimisations were

also applied to this approach. However, the extra conditional adds sufficient

overhead to ultimately result in similar performance to the ROT approach with

99

Shared Memory Constant Memory Texture Memory

ROT 6,214 Mbps 3,964 Mbps 4,378 Mbps

noROT 7,234 Mbps 3,942 Mbps 4,336 Mbps

Table 5.4: AES CTR peak throughput rate on the G80, including data transfer,
using different types of on-chip memory for lookup tables.

random access patterns.

We also investigated using a compressed lookup table. We can see that the

Tn tables listed in Section 2.3.1.3 have values derived from each other. Take table

T0[a] from said list of tables. We can symbolise the values within the table as

ABBC, where A = B • 2 and C = B • 3. Clearly 3 = (1 ⊕ 2), and considering

we are using arithmetic within a field we can write the distributive relationship

C = B • (1⊕ 2) = A⊕B. Thus, given just AB, i.e. 2 bytes instead of the 4-byte

ABBC, we can quickly generate the rest of the returned values from the lookup

table. However, this extra XOR combined with additional complexity of index

modification, leads to throughput rates of less than the 1KB ROT approach.

We include theoretical performance figures given changes both to CUDA and to

hardware related to shared memory access at the end of the following results

section.

5.1.3 Results

Implementations: Here we present the throughput rates for AES in CTR

mode using the ROT and noROT approaches with random access patterns on

all types of on-chip memory. Table 5.4 shows the maximum performance of these

implementations including payload transfer across the system bus. It can be seen

that the noROT approach using shared memory gives the fastest throughput

rates. This approach requires the four 1KB tables to be setup within shared

memory for each CUDA block of threads running. The overhead of this setup was

minimised by fixing the number of threads per block to allow even distribution of

the loads from global memory into shared memory. We use 256 threads per block,

thus each thread is responsible for loading four 32-bit integers, which require little

overhead for read index offset generation. The ROT shared memory approach

under performs due to the extra rotates that must be performed. We could

alleviate the rotates if bytes were used, and as such could be accessed arbitrarily,

however using bytes would increase the number of XORs to perform as swizzle

is not free. In contrast to the difference in performance of the ROT and noROT

approaches using shared memory, the approaches using constant memory and

texture memory show little variation. This suggests that they are mostly I/O

100

bound on cache reads as the extra rotates have little effect and are being hidden

by waits on reads.

As the noROT approach using shared memory shows best peak performance,

we focus on this approach for further analysis. Figure 5.1 shows the performance

of AES CTR using this approach under different payload sizes. The figure ex-

poses the requirement for a large number of threads to maintain a high occupancy

within the GPU, and also for a small amount of GPU-CPU interactions per data

element being processed. We also display the throughput rate of this approach

without the overhead of message data transfer across the PCIe x16 bus. A max-

imum rate of 17,571Mbps was recorded without transfers, highlighting the data

transfer overhead when compared to a maximum of 7,234Mbps with transfers

included. We have included the rates without data transfer for the following

reasons: some cryptanalysis techniques do not require a pre-baked data element

per cipher execution; newer hardware than the G80 supports the overlapping

of transfer and computation on the GPU, thus if efficient pipelining is possible

on these cards the throughput could approach those reported here; there is a

possibility that future GPUs will share the system memory with the CPU, either

in the form of a combined processor or a direct motherboard processor slot.

All the results in Table 5.4 and Figure 5.1 are generated by taking the average

of multiple kernel executions. The number of executions is determined by the

payload size, varying from 50 for the largest payloads to 50,000 for the smallest.

The reason for the variance in the number of executions, is that for small pay-

loads each execution runtime is small. External factors, such as OS scheduling,

can have a proportionally large influence on the reported runtime, thus requir-

ing a high number of iterations to give a reliable average throughput rate. Also,

all the results were generated by executing the tests on System 3, see Appendix D.

CTR and ECB: Also included in Figure 5.1 is the noROT approach running

in ECB mode with data transfer included. The peak performance achieved was

6,989Mb/s. AES in CTR mode can perform better due to using the input

message data at the end of the block cipher, rather than at the start. Recall

that CTR mode performs the cipher on a nonce combined with a counter. The

output of which is XORed with the message data. Thus we can issue the read

for message data early. While this read is being carried out, we can proceed with

the cipher execution. In contrast, ECB requires the result of the message data

read before it can proceed with cipher execution. Thus, in CTR mode we can

hide, or partially hide, the read data read latency. This can benefit the overall

throughput if the amount of time saved hiding the read latency is greater than

101

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

T
hr

ou
gh

pu
t R

at
e

(M
bp

s)

Payload Size

G80: Without Transfer
G80: With Transfers(CTR)
G80: With Transfers(ECB)

7900GT: With Transfers
CPU: Crypto++

CPU: Matsui
AMD GPU: Yang and Goodman

Figure 5.1: G80 AES implementations with and without data transfers across
varying payload sizes.

the time lost handling the counter and nonce.

We optimise the CTR implementation so that the application of the counter

to the 128-bit nonce consumes a single 32-bit addition without carry per AES

message block. Each thread is responsible for adding their offset within the

CUDA grid to the least significant 32-bit value of a 128-bit pre-offset nonce

without regard for carry. The CPU is responsible for adding an offset to the

nonce, reflecting the number of message blocks that have been processed within

a single cryptographic session. This produces the 128-bit pre-offset nonce for use

by the threads. In this way threads do not calculate the global offset within the

cryptographic session. To handle the issue of the abandoned carry, which would

have to be manually handled on GPU hardware, we employ the CPU. The CPU

is responsible for detecting that the number of threads within a grid will cause

a wrap of the 32-bit least significant integer of the pre-offset nonce. In this case

the CPU splits the CUDA kernel call into two. The first kernel execution uses

up the remaining values in the least significant integer. The CPU then performs

the increment with carry on the higher significant integers. Then the second grid

is executed with the remaining threads allowing the least significant integer to

wrap without carry. This way the CPU carries out this check once per kernel

call and avoids each thread performing the addition with carry across the 128-bit

value once per message block.

Related to the ability to concurrently execute kernels and transfer data on

102

newer GPUs, the decoupling of data reads from cipher execution in CTR mode

can be used to not only increase throughput, but also to reduce latency. This

can be achieved by executing a transfer of message data asynchronously. This is

followed by the execution of a kernel that generates the key stream. A second

kernel call is then executed to perform the XORing of message data with the key

stream. Thus the transfer of input data for use in the same cipher execution are

overlapped.

Comparison: Figure 5.1 also compares our results with other AES implemen-

tations on CPUs and GPUs. Again, we use the Crypto++ benchmarking figures

available on the website to report a similar era CPU to the GPU. Figure 5.1 in-

cludes Crypto++ AES throughput rate for CTR mode running on an Intel Core

2 Duo E6300 1.86GHz. The benchmarked figure only reports performance for a

single core. We simply double the reported rate to arrive at 2,224Mbps, though

this may be overly optimistic as there will be bus contention between cores. The

rate for the same processor running AES in ECB mode is 1,774Mbps. Matsui [67]

claimed the fastest AES speeds on a 64-bit AMD Athlon processor producing a

rate of 170 cycles per 128-bit AES block. We scale this to the dual core Athlon 64

X2 3800+ 2.0GHz to produce speeds of 2,872Mbps. Yang and Goodman [129]

cite a speed of 3,584Mbps on an AMD HD 2900 XT GPU (AMD’s DX10 compli-

ant GPU) for their block based AES implementation. We do not have access to

the throughput rates as data sizes increase, hence its illustration as a horizontal

straight line, which does not reflect the performance as the buffer size increases.

We have included the rates achieved in Chapter 4 for AES on a GeForce 7900GT,

which serves to provide a guide to the rate progression from one generation of

Nvidia GPU to the next.

With data transfers included for the G80 implementation presented, we see

a significant speed up over the fastest CPU reported implementations. Without

transfer rates included we see a speed up of over 6 times. When compared to

the block based AES implementation on AMD’s first DX10 GPU by Yang and

Goodman we can see approximately a 2x and 5x speed up with and without

data transfers respectively. The increase in speeds, when data transfer over the

system bus are not included, clearly illustrate the benefit that would be gained

from sharing system memory, or a fully pipelined implementation using newer

Nvidia GPUs.

Potential: Regarding important advances to current Nvidia hardware and their

implications on AES execution. An increase in available shared memory to the

103

full 16KB would allow an implementation using the zero conflict shared memory

packing approach explained in Section 5.1.2. If shared memory were increased

on future GPUs to 64KB we could implement the noROT approach similarly.

Another improvement in performance would be gained if the CUDA API sup-

ported pre-population of shared memory, rather than requiring each block to do

so. To estimate the performance of such improvements, assuming all other hard-

ware components remained the same, we executed both the ROT and noROT

approaches with the same block data to simulate zero shared memory conflicts.

These resulted in 18,704Mb/s for the ROT approach and 25,560Mb/s for the

noROT approach assuming perfect pipelining is possible. These figures serve no

immediate practical use apart from highlighting the bottlenecks in the current

implementations and an indication of what conditions will help alleviate them.

5.2 Payload Data Model

In this section we present a data model, which we use to explore the issues

involved in mapping a generic symmetric-key cryptographic service to GPU im-

plementations. The aim of this section is to outline the data model, its design

criteria and the usage implications in the context of GPUs. The data model

is seen as being used within an encapsulating runtime, facilitating the client’s

abstraction from underlying GPU based cryptographic implementations. The

runtime can either expose the data model directly to the client, or via a wrapper

layer adding higher level functional support such as session management.

5.2.1 The Data Model

Table 5.5 illustrates a payload data model suitable for processing symmetric-key

data on the GPU. In this context, the term payload indicates a single grouping

of data that contains both data for processing and related meta data. The data

model described is similar to standard symmetric-key models and their associated

APIs. The GPU, as we have seen, requires a large amount of data to achieve

high throughput rates. This requirement can be met using large messages or the

combination of multiple smaller messages. Standard cryptographic data models

expose support for multiple messages through disparate data pointers. This

type of model does not suit the GPU for smaller messages as it requires either

multiple data transfers across the system bus, or multiple copies to perform one

single system bus transfer. Both are inefficient, especially in the context of AES

where we have seen it is already I/O bound. Also, it requires the conversion

104

struct payload struct msgDscr

{ {
unsigned char *data; struct elementDscr *msg;

struct payloadDscr *dscr; struct elementDscr *iv;

}; struct keyValue **msgMode;

unsigned char *key;

struct payloadDscr unsigned int keySize;

{ };
unsigned int id;

struct keyValue *payloadMode; struct elementDscr

unsigned int msgCount; {
unsigned int size; unsigned int count;

struct msgDscr *msgs; unsigned int offset;

}; unsigned int size;

};

Table 5.5: The Payload Data Model

of data pointers into offsets as pointers lose their meaning when sent across the

system bus. We present a data model that supports multiple messages within a

single data stream. The use of a contiguous block of virtual memory for message

data storage facilitates a single copy as in the optimised implementations shown

previously. The data model also supports indexing into said streams using offsets

rather than pointers, and the mixing of different types of symmetric-key functions

for use within a single kernel call.

In Table 5.5 we can see the primary data model components used. The main

payload structure contains a pointer to a single message data stream, either

plaintext or ciphertext. This stream is designed to hold one or more messages,

with potentially varying keys. A payload descriptor structure, payloadDscr,

is also referenced, which is used to provide all information related to the data

stream required for its processing. The payload descriptor uses an ID to uniquely

identify payloads in an asynchronous runtime environment. The cryptographic

service to use can be set within the payload descriptor or within the individual

message descriptors. We include a higher level mode, payloadMode, to describe

such values as cryptographic families. This allows an encapsulating runtime

to quickly match a payload to suitable hardware accelerators. A lower level

property, msgMode, can also be used to describe the cryptographic service on a per

message basis as can be seen in the message descriptor structure, msgDscr. The

message descriptor structure is responsible for describing all information required

to carry out the specified cryptographic function for a message. The message

descriptor shown contains the primary meta data required such as references to

105

the message data, initialisation vector (IV) and key. The references into the data

stream use the generic elementDscr descriptor, which allows the description of

any data unit within the data stream using address space independent offsets.

The element descriptor separates the concept of element size and count as the

size of elements can sometimes indicate a functional difference in the used cipher.

The return payload is similar to the payload structure.

5.2.2 General Use Implications

A consideration regarding the use of per message properties to indicate crypto-

graphic function, is that it can severely impact performance. The GPU can only

execute a single kernel across all threads, any variation in function must be im-

plemented using conditional branches. The technique used for the execution of a

large variation in kernel code is called fat kernels. A fat kernel inserts conditional

branches at the start of each thread indicating the algorithm to run. As the GPU

is a form of SIMD processor, any mix of functions within a warp requires the

algorithms to be executed serially. Also, any mix of functions within a CUDA

block, ensures that all threads within that block consume the time required to

run the longest thread. In general it is best for performance if all messages within

a payload use the same function, which is determined before kernel execution.

Another concern when employing this data model for use with an attached

processor, such as a GPU, is memory allocation for I/O buffers. For the G80 it

is important to use page locked memory, which requires a request to be made

to the CUDA library. The CUDA library then returns a pointer to the memory

requested that can be used within the calling process. Both the input and output

buffers should use page locked memory and also reuse the same buffers where

possible for maximum performance. It is presumed that one of the motivations

for using a generic data model is to abstract the client from implementation de-

tails such as CUDA. Thus, there is a need to support client application requests

for buffers in the runtime. The encapsulating runtime should take the responsi-

bility of executing the CUDA allocations as required on behalf of client requests.

Allowing the application to provide its own standard system buffers would re-

quire an extra copy into accelerated CUDA memory, which would counteract the

use of accelerated memory in the first place.

106

5.3 Applied Data Model

In this section we cover implementation concerns when bridging between the

previously described data model and specific GPU cipher implementations. In

particular we focus on our implementation of a runtime layer, which maps the

data model to our specific cipher modes of operation presented in Section 5.4.

The overhead of providing a general purpose interface to a GPU implementation

is the addition of abstraction layers that need to be resolved within each kernel

thread. Throughput is lost when message functions, sizes, element types, etc.,

can vary within a payload. Each thread must perform extra memory accesses,

calculations and conditional branches to act upon the dynamic settings. These

per thread calculations can be offset by an implementation using the CPU as

a preprocessing stage which optimises a payload for thread parsing before the

payload is dispatched. Naturally there is a practical limit to the amount of CPU

preprocessing employed, as one of the potential uses of a GPU is to act as a

co-processor, which should speed up the overall throughput of a system. The

per thread overheads and CPU pre-processing can be easily seen in the following

sections.

5.3.1 Descriptor Serialisation

Each element in each message descriptor is serialised on the CPU into a form

that can be used independently and quickly by each thread on the GPU. The

runtime determines a fixed byte size for a serialised message descriptor. The

serialisation of all message descriptors produces a message descriptor stream.

Thus, given a descriptor ID, which start at 0 and increment for each subsequent

message descriptor in the stream, a thread can calculate the required offset into

the message descriptor stream using a fixed multiplier. A key schedule stream is

generated on the CPU, either from cache lookups or dynamically executing key

schedules, avoiding redundant entries. A corresponding key descriptor stream is

generated, which contains a key descriptor entry for each message in the pay-

load. Each key descriptor contains the offset and size information required to

support thread recovery of the appropriate round keys from the key schedule

stream. Given a descriptor ID, threads calculate an offset into the key descriptor

stream in a similar manner as with the message descriptor stream. The serialised

message descriptor, key descriptor and key schedule streams are transferred to

the GPU and stored within texture memory address space. This gives the best

size flexibility of the cacheable memory types.

107

LThread2Dscr Index: During the descriptor serialisation process, we can order

message descriptors in various ways. This can have an influence over the order in

which messages are processed by threads. We will see later how message ordering

can be important to performance. However, we first require an efficient way for

threads to map to a particular message and key descriptor. We adopt the term

physical thread ID to denote the normal ordering of threads within a CUDA grid,

returned by the calculation threadIdx.x + (blockIdx.x × blockDim.x). A

naive method for mapping threads to descriptors is to use the physical thread ID

directly as the descriptor ID. However, we quickly see that this requires heavy

duplication of descriptors in the descriptor stream, as parallel mode messages

use multiple threads per message. An improvement to this is to use a separate

index, which maps physical IDs to descriptor IDs. However, the index is large

as it stores one entry per thread, and each entry stores both the descriptor ID

and thread offset into the message for use with parallel mode messages. A large

index leads to poor cache behaviour during lookup and a high CPU overhead

in its generation. The GPU approaches maximum AES performance at 512KB

payloads, which if containing parallel mode messages would result in an index

with 216 entries.

A further improvement to the index is to use a compressed version, where

only the physical ID of the first thread of a message is stored. Thus, for parallel

mode messages, the physical ID of the thread that processes the first block of the

message is entered into the index, whereas the thread that processes the whole

serial mode message is used. A thread’s offset into its message is generated

by subtracting the thread’s physical ID from the physical ID retrieved from the

index. The descriptor ID is the offset into the index itself as there is one entry per

message. Thus only a single integer per index entry is required. This produces a

small index with good caching behaviour and a reduced overhead during index

generation at the expense of having to search the index. In tests the benefits of

the compressed index outweigh the search overhead.

The disadvantage to the previously described approach is that it does not

permit non-consecutive physical IDs to map to the same descriptor ID. We show

later that it is desirable to allow non-consecutive threads to work on a single par-

allel mode message for balancing work across the GPU processing elements. To

support this, we maintain the same compressed index as before, however instead

of using physical IDs to lookup the index, each thread generates a new ID ac-

cording to a load-balancing scheme. We call this new ID a logical thread ID. The

compressed index is generated as previously described, however the IDs stored

108

Figure 5.2: Serialised streams used by each thread for data and key retrieval.

in the index are now used as logical IDs, thus we call it the LThread2Dscr index.

The primary load-balancing schemes investigated are presented in Section 5.3.2.

Figure 5.2 shows an example of the LThread2Dscr index and how it relates to

the message descriptor stream.

Key Support: As outlined previously, the GPU is a highly parallel device and

the key schedule generation is inherently serial, thus in general it makes most

sense to implement key expansion on the CPU prior to payload dispatch. Only

in the case where serial modes of operation are being executed on the GPU with

sufficient numbers of messages with sufficiently varied keys does it make sense

to implement the key schedule on the GPU. Our runtime layer implementation

handles the generation of the key stream and uses a CPU based cache for stor-

ing key schedules to ensure key reuse across messages. This is not just to aid

efficiency at the key schedule generation stage on the CPU but also to generate

the smallest key schedule stream possible. This is important for on-chip GPU

caching of the key schedules. An alternative approach is to cache the entire key

schedule stream to save on rebuilding the stream each client call, though this

was not implemented here.

5.3.2 Thread to Message Mapping

The full process for mapping a physical thread ID to a descriptor ID and its

underlying data is the following, this is also shown in simplified form in Figure 5.3.

1. Generate the LThread2Dscr index as outlined previously. This work is car-

ried out on the CPU.

2. Map physical thread IDs to logical thread IDs within each kernel thread

according to a load-balancing scheme. Firstly, we should note that CUDA

109

Figure 5.3: Mapping physical thread IDs to descriptor IDs to message data.

only supports a grid with the same number of threads per block. Also of

note is that the programmer cannot control the assignment of CUDA blocks

to the SMs. This process is controlled automatically by hardware. A further

consideration is that the number of threads per CUDA block used for the

AES implementations described earlier is 256. This number of threads is to

ensure the simplest form of shared memory configuration for lookup table

population, see Section 5.1. As such, each CUDA block within the grid

contains a full 256 threads. Given these restrictions it is still desirable to

influence the distribution of workload across threads. For example, given

a payload, the runtime should aim to distribute the associated workload

equally across all SMs. If the work in a payload is assigned to each thread

in physical ID order, the first CUDA block of 256 threads would be assigned

to before moving on to the next. This assignment scheme would result in

a kernel execution with threads competing for resources on occupied SMs

while other SMs remain idle.

An approach to solving this potential imbalance of work between the SMs

is to first generate a CUDA grid size in multiples of the number of SMs on

the GPU, i.e. in thread groups of 16 × 256 for the 8800GTX. This ensures

that there is at least one CUDA block per SM. As the number of threads

configured to run on the GPU are assigned in groups of 16 × 256, a lot

of scenarios will result in groups of threads in which only some threads

are required to do productive work. This we call a “partially occupied”

group. Conversely if each thread within a group is occupied we call this

a “fully occupied” group. Given the total number of threads required for

processing a payload, each thread can determine if they are assigned to a

fully occupied group, or a partially occupied group.

110

If a thread belongs to a fully occupied group, it uses the physical thread

ID as its logical thread ID. If the thread belongs to a partially occupied

group it calculates a logical thread ID such that an equal number of threads

per CUDA block are considered active. That is, there is not enough work

for the number of threads in the group of 16 CUDA blocks and as such

we assign an equal number of threads per block to execute productive

work. Within such a group, the number of productive threads per CUDA

block is calculated. If a thread’s ID within the CUDA block is above this

number, it only participates in populating shared memory and returns.

This load-balancing scheme distributes productive threads equally across

CUDA blocks. For large numbers of threads, the scheme is quick to execute

as a single check can eliminate the case of fully occupied groups where

physical and logical IDs are the same. The shortcoming of this approach

is that it assumes the work done per thread is equal. It assigns threads

on a CUDA block by CUDA block basis, effectively assigning messages to

threads within a block (or partial block) before moving onto the next. This

makes it difficult or impossible to group costly threads working on serial

MOO messages in a manner that distributes them across the SMs.

A second load-balancing approach aims to alleviate this problem. This

approach maps physical thread IDs in groups of 32 striped across each

CUDA block to consecutive logical threads. By striping the threads across

CUDA blocks it allows the possibility of balancing groups of 32 serial MOO

messages across SMs, then mapping the rest of the threads within a 16 ×

256 thread group to parallel MOO messages. The size of 32 threads is used

to match the warp size. Using groups of non-warp size could unnecessarily

mix threads working on serial and parallel MOO messages within a warp,

resulting in idle SPs. We use the second approach in our reporting of results

later as it is ∼0.25% slower than the first, and as we will see the advantage

can significantly outweigh the overhead. See Section 5.4.3 for the effects of

load-balancing for mixed mode payloads. Note that both load-balancing

schemes presented here are examples of scenarios where non-consecutive

physical IDs are potentially mapped to a single descriptor ID.

3. Search the LThread2Dscr index with logical thread ID to determine descrip-

tor ID. Due to storing a compressed form of the logical thread IDs within

the index the search is implemented as a binary search. A direct lookup ta-

ble could be used for seemingly better performance, however as mentioned

previously the overhead of the resultant lookup table size is too high. Each

111

thread uses its logical thread ID to find the index entry with the closest,

but not greater than, value. This entry’s offset into the index is used as the

descriptor ID. This step also calculates the thread’s offset into its message,

i.e. which block within the message it should operate on. The difference

between the thread’s logical ID and the value of the entry retrieved from

the index is used as the message offset.

4. Use the descriptor ID to offset into the message descriptor stream and the

key descriptor stream. The descriptors are used to retrieve the input data

and other message settings required to perform the cryptographic function.

5.3.3 Padding

Some modes of operations can require padding when the input data is not a

multiple of some bit length. As the ability to generate a linked list of addresses

for use during DMA transfer is not supported in CUDA, it is not practical for

the CPU based serialization process to support the pre-padding of messages

directly into the data stream for sending to the attached device. The reason for

this is that the CPU would have to generate a new single stream of contiguous

memory based on the new padding insertions and the original data stream. An

alternative more efficient approach is to delegate padding to the GPU. This

requires that each thread checks if padding is required and to generate the extra

input data itself. In relation to CUDA this extra check causes thread divergence

for the single thread that must execute the padding. However the overhead is

generally very low as the divergence only lasts for a single cipher block across 32

threads. There is an issue with GPU delegation as a thread cannot allocate its

own memory. This is problematic when the output buffer is too small to hold

the padded output. One can enforce output buffers that have a size of some

multiple, however some scenarios can require a full extra block for padding, as in

PKCS#5 [115]. The CPU interface must ensure there is enough allocated output

memory for padding requirements.

5.3.4 Payload Combining

The runtime layer implementation can easily implement payload combining in

the scenario where payloads are queued via an encapsulating framework. The

multiple data and key schedule streams within host memory space can be copied

into consolidated input buffers on the attached device. During serialisation stage,

the serialised message and key descriptors are appended and offsets are recalcu-

112

lated taking into account the combined input streams on the attached device.

Similarly processed payloads can be read from a consolidated output buffer on

the attached device and read into separate host buffers. Generally ciphers do not

change the size of the plaintext and ciphertext, padding aside, allowing efficient

reuse (directly or copies) of the input payload descriptors. Although combining

is possible, it has questionable value as the overhead of the extra copies and

recalculation could outweigh benefit of less GPU calls and higher occupancy.

5.4 Modes Of Operation

In this section we present the implementation and results of symmetric-key modes

of operation built using the previously described data model, runtime layer and

AES implementation. Modes of operation determine how the underlying block

cipher is used to implement a cryptographic system which supports messages

greater than one block in length. We have analysed the most common encryp-

tion modes, specifically CTR, CBC, CFB and OFB. Using these modes on a

highly multithreaded device, the major overriding characteristic which deter-

mines throughput is whether the mode can be implemented in parallel or must

be done serially. We focus on the throughput of the two main categories of

MOOs: serial MOO (CBC and CFB encryption and OFB), and parallel MOO

(CBC and CFB decryption and CTR). All implementations are based on the

optimised AES implementation presented in Section 5.1 using CUDA. Also, all

results are based on using the same system and methodology as specified in Sec-

tion 5.1.3. Discounting block cipher performance variation, these results should

provide a guide to the general behaviour of the investigated MOOs using other

block ciphers on a GPU.

5.4.1 Parallel MOOs

It is easier to achieve full occupancy on a highly parallel processor such as a

GPU when processing parallel MOO messages compared to serial MOO mes-

sages. Each message can be split into blocks and assigned its own thread, thus

the number of threads equals the total number of blocks within the payload.

Figure 5.4 shows the throughput rates of different message sizes used within

payloads containing parallel MOO messages. The results shown are based on

CFB decryption. CTR and CBC decryption were also implemented, though the

throughput rates did not vary excluding the aforementioned performance bene-

fit of CTR. The number of messages indicates the number used within a single

113

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 4 16 64 256 1024 4096 16384 65536 262144

T
hr

ou
gh

pu
t R

at
e

(M
bp

s)

No. Messages

16 Blocks
64 Blocks

512 Blocks
2048 Blocks

16384 Blocks
Key Change: 512 Blocks

Figure 5.4: Throughput rates for parallel MOO messages across varying message
numbers and sizes.

payload. As we can see, the greater the payload size the better the performance.

This is to be expected as the increased resource occupancy and memory latency

become more effectively hidden. We can also see that at a certain throughput

rate the per message overhead of using a generic data model becomes the domi-

nant overhead. As a result, increasing the payload message count past a certain

point results in a drop in performance.

All results are based on multiple executions of a single payload with the

reuse of accelerated message input and output buffers both for host and on

device storage. This simulates the scenario where a client application either uses

CUDA calls itself or the encapsulating runtime executes the required CUDA

calls on the client application’s behalf. Most results are also based on key reuse,

simulating a scenario where all messages are from within a single cryptographic

session. In contrast we include in Figure 5.4 throughput rates for an extreme

mixed key scenario, whereby each message uses its own unique key. We have

highlighted the comparison of rates with and without key change for payloads

with a message size of 512 blocks. As expected, an increasing message count

results in an increasing overhead on total throughput.

The maximum throughput achieved for a parallel MOO under the generic

data model was 5,860Mbps. An important observation to be made from these

figures is that there is an overhead associated with using the described generic

data model for abstracting the underlying implementation details. We use the

114

optimised ECB implementation presented in Section 5.1.3 to generated overhead

percentages. ECB is more comparable to CFB decryption as it immediately

uses data read from device memory. When using large messages (16,384 blocks)

the overhead is ∼16%, with medium sized messages (512 blocks) the overhead is

∼22%, and in the worst case when using small messages (16 blocks) the overhead

is ∼45%. The reason for this increase in overhead is partly due to the degradation

in caching behaviour when using larger index and descriptor streams. Also as

the number of messages increases the overhead associated with index generation

and search, and the descriptor stream serialisation increases.

5.4.2 Serial MOOs

The payload must have a high message count when processing serial MOO mes-

sages on the GPU to give good performance. Given a small number of messages,

there will be a shortage of threads to maintain a high occupancy level on the

GPU and thus performance will suffer. The serial implementations follow the

same thread to message mapping process as described previously. The message

descriptor contains the message size for serial messages, which is used to set the

number of input blocks to be processed by a single thread starting with the ini-

tialisation vector (referenced via the message descriptor). The thread starts at

the message offset within the data stream and consumes single blocks per cipher

iteration. This creates a memory access pattern where neighbouring threads ac-

cess memory locations separated by the size of the message they are processing.

This access pattern has an important impact on throughput as will be seen.

Figure 5.5 shows the performance rates for a serial MOO using different

message sizes. All results are based on the CBC MOO in encrypt mode, other

serial MOOs using the same block cipher performed equivalently with regards to

bulk throughput rates. All messages within a single payload were the same size,

see Section 5.4.3 for detail on mixing sizes of messages within a payload. We have

included in the figure the performance for CBC MOO from Crypto++ on the

same CPU used in Section 5.1.3. We have also included the results for a parallel

MOO for a payload with a message size of 2048 blocks from Figure 5.4. The

figure highlights the comparison of this parallel MOO with the corresponding

serial MOO message size. We can see the penalty paid for a small number of

serial messages. The parallel MOO scenario significantly outperforms the serial

MOO scenario at low message counts. We also see that performance can be

gained by grouping message blocks per thread. This reduces the per message

overheads such as index and stream lookups. The overhead reduction accounts

for the better performance achieved by the high message count serial payloads

115

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 4 16 64 256 1024 4096 16384 65536 262144

T
hr

ou
gh

pu
t R

at
e

(M
bp

s)

No. Messages

16 Blocks
32 Blocks
64 Blocks

512 Blocks
1024 Blocks
2048 Blocks

Parallel: 2048 Blocks
8192 Blocks

Crypto++ CBC

Figure 5.5: Throughput rates for serial MOO messages across varying message
numbers and sizes.

over parallel payloads.

A negative performance trend can be observed for larger serial MOO message

sizes: as the number of messages increase a performance bottleneck is hit. This

may be explained by the memory access pattern created by such executions.

Neighbouring threads within a CUDA warp use increasingly disparate memory

address locations for their input and output data as the message size increases.

We have isolated this behaviour with a separate memory test in which each

thread performs a series of sequential reads from global memory starting at an

offset from the previous neighbouring thread equal to the number of sequential

reads performed. Figure 5.6 presents these results for different offsets and corre-

sponding sequential reads in increments of 16-byte blocks. Each block is read in

the same manner as the AES implementations, i.e. with a single uint4 read. For

block counts of 128 and over the memory read performance drops dramatically as

the the number of active threads increase. There is not enough publicly available

information on the G80 to definitively explain this behaviour. It is possibly a

combination of a level 2 cache bottleneck and a limit on the number of separate

DRAM open pages supported by the DRAM controllers.

116

 0

 50

 100

 150

 200

 250

 16 64 256 1024 4096 16384 65536 262144

R
ea

d
R

at
e

(G
bp

s)

No. Threads

64 Blocks
128 Blocks
256 Blocks

1024 Blocks
2048 Blocks
8192 Blocks

Figure 5.6: Global memory read performance with varying stride patterns.

5.4.3 Mixed MOOs and Message Sizes

Here we investigate the issues involved in mixing both MOO types and mes-

sage sizes used within a single payload. The mixing of serial and parallel MOO

messages within a payload can be beneficial, for example if a small number of

serial MOO messages are present in a payload, the presence of parallel MOO

messages can help increase occupancy. However, mixing can also result in poor

performance, for example, if threads within a CUDA warp work on different

MOO types, it can result in idle SPs and a reduction in occupancy. Threads

working on serial MOO messages are, in general, extremely costly compared

with threads working on a parallel MOO. The first thread type works iteratively

across all blocks within a message, whereas the second thread type works on a

single block. Thus when mixing MOO types within a payload, the positioning of

serial threads (those working on serial MOO messages) within the CUDA grid

is important. A reasonable load-balanced scenario is for all serial threads to be

divided evenly across the multiprocessors. Also, as the warp size is 32 threads,

serial threads should also be grouped into 32 so as not to mix MOO types within

a warp. Message size variation within a warp of threads working on serial MOO

messages can lead to idle SPs. To minimize this, neighbouring serial threads

should operate on messages of a similar size.

To satisfy this distribution of serial threads, we use the striping load-balancing

scheme presented in Section 5.3.2. This scheme ensures that consecutive logical

thread IDs are striped in groups of 32 across CUDA blocks. Thus, to distribute

117

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t (

M
bp

s)

Payload 2

Payload 1

Payload 3

Payload 4

Payload 5

Payload 6

Payload 7

Figure 5.7: Throughput rates for different payload packing configurations.

serial threads in groups of 32 across CUDA blocks we group all serial MOO

messages together. Considering logical thread IDs map consecutively to message

descriptors, we can group all serial MOO messages together by either the client

application directly ensuring that messages are in a suitable order within the

data stream, or by the re-ordering of the descriptors on serialisation. For our

tests we used the simpler first approach. To ensure that serial threads work on

similar sized messages, we order the group of serial MOO messages according

to their size. This re-ordering of messages is achieved in the same manner as

the aggregation of the serial MOO messages. Using the striping load-balancing

scheme, parallel MOO messages do not require any further re-positioning.

Using the striping load-balancing scheme we processed a number of tests to

highlight the importance of message ordering to performance. Each payload

consisted of the same messages, only the ordering of the messages within the

payload was changed. The messages used were of varying MOO type and sizes.

Figure 5.7 shows the throughput rates of different payload configurations. The

relative difference between the scenarios’ performance clearly shows the impor-

tance of correct ordering of message types and sizes within a payload. The

absolute throughput rates are not important as the payloads used were config-

ured to fit the test requirements and not for performance. All payloads used

960 512-block parallel MOO messages, 992 32-block parallel MOO messages and

1024 serial MOO messages with 8 variations in message size ranging from 16 to

2048 blocks. Here is a description of each of the payload configurations used in

Figure 5.7.

118

Payload Configuration 1: The payload messages are ordered such that

the thread distribution results in a single serial thread per warp. All other

threads within the warp are parallel threads, thus creating 31 idle SPs.

Also, recall that threads are created in groups of 16 × 256, i.e. 16 CUDA

blocks per group. The ordering of this configuration is such that these warps

are only placed in the first CUDA block of each group of 16 blocks. Thus,

all other blocks contain parallel threads. This configuration is devised as a

worst case scenario.

Payload Configuration 2: Similar to configuration 1 except that the

warps are spread evenly across all CUDA blocks. The performance is similar

to configuration 1 as the GPU dynamically schedules the CUDA blocks

when an SM becomes available.

Payload Configuration 3: All serial MOO messages are ordered such

that the serial threads are assigned to the minimum number of CUDA

blocks. This scenario is much faster than 1 and 2 as all SPs within an SM

are occupied, even though not all SMs are occupied with work.

Payload Configuration 4: This configuration randomly distributes the

serial MOO messages across the payload.

Payload Configuration 5: This is the same as configuration 4 except

that the serial MOOs are grouped into units of 32. This is to ensure that

serial threads are grouped into warps.

Payload Configuration 6: All serial MOO messages are grouped to-

gether, thus the resultant serial threads are grouped into units of 32 and

distributed evenly across all CUDA blocks.

Payload Configuration 7: This is the same as configuration 6 except

that all serial MOO messages are also ordered according to their size. All

other payload configurations use a random ordering of message sizes.

From the results one can see the impact of serial MOO message positioning

within a payload and the resultant serial thread distribution. It is clear the im-

portance of serial thread grouping within the device’s SIMD width to ensure the

SIMD slots are occupied. It can also be seen the importance of distributing serial

threads across the GPU multiprocessors. Furthermore, it is clear the impact of

ordering serial MOO messages according to their size. A separate and notable

concern when mixing function types within a payload is that the underlying im-

plementation can suffer from increased resource pressure. The G80 only supports

119

a single block of code that executes for all threads, thus the support of multiple

functions within a single kernel via conditional code blocks can increase resource

usage and also increase overhead for the execution of such conditions.

5.5 Conclusions

In this chapter we have presented an optimised AES implementation using ECB

and CTR mode of operation on an Nvidia G80 GPU, which when including data

transfer rates, shows a ∼2.5x speed up over a comparable CPU implementation.

With transfer rates across the PCIe bus not included, the speed up increases to

∼6x. Comparing to the next fastest GPU based AES implementation, we see

a ∼2x increase in performance. We have also investigated the use of the GPU

for serving as a general purpose symmetric-key cryptographic processor. The

investigation covers the details of a suitable general purpose data structure for

representing client requests and how this data structure can be mapped to un-

derlying GPU implementations. Also covered is the implementation and analysis

of both major types of encryption modes of operation, serial and parallel. We

expose the issues and potentially preventable caveats when mixing these modes

of operation within a single kernel execution.

We show that the use of a generic data model and mapping scheme results

in an overhead ranging from 16% to 45%. This overhead occurs most acutely

during the processing of parallel MOO payloads with small messages and a high

message count. It could be argued that in such a case a client would be better

implementing a hardcoded approach if the input data structures are known in

advance. Overall we can see that the GPU is suitable for bulk AES processing. It

can also be employed in a general manner while still maintaining its performance

in many circumstances for both parallel and serial modes of operation messages.

Despite the overheads of using a generic data model and mapping scheme for

the GPU, the performance is greater than competing implementations assuming

chip occupancy can be maintained. However, when small payloads are used, the

GPU underperforms executing both the general and hardcoded implementations.

This is due to resource underutilisation and the transfer overheads associated

with data movement across the system bus.

120

Chapter 6

Asymmetric Cryptography on

DX10 Hardware

Asymmetric-key systems typically involve heavy use of big integer modular arith-

metic. An example of this is RSA, where integer sizes range from 1024-bit for

common application use to 4096-bit for conservative systems. Recall that RSA

relies on the generation of two related exponents, e and d, such that med

(mod

n) ≡ m(mod n). Using this relationship RSA encryption is performed by c =

me(mod n), where m is the input message and c is the output ciphertext. The

relationship can then be used to decrypt the ciphertext by performing m =

cd(mod n), thus retrieving the original message. In the context of 1024-bit RSA

(RSA-1024) m and c are typically encoded as 1024-bit integers, with values less

than n. The decrypt exponent d is generated so that it is also 1024 bits wide.

The encrypt exponent is normally small, fitting within a single 32-bit integer.

The exponent size is the major determining factor of the cost of a modular ex-

ponentiation, and thus the cost of an RSA operation. As such, of interest with

regards to RSA acceleration are the costly decrypt and sign operations, which

both use the large decrypt exponent. The RSA encrypt and verify operations

use the smaller encrypt exponent.

We use the Nvidia 8800GTX G80 GPU with CUDA to investigate the possi-

bility of accelerating modular exponentiation with a focus on RSA-1024 decryp-

tion. Montgomery exponentiation is employed in all implementations presented.

Its constituent Montgomery reduction expedites modular reduction by removing

the requirement for an expensive divide. In summary, given a positive modulus n

and integers a and R, where 0 ≤ a < nR, gcd(n, R) = 1 and R > n, Montgomery

reduction produces the output w ≡ aR−1(mod n), where w < 2n. The details

of how to generate aR−1(mod n) and how to use it in the context of exponentia-

tion are covered in Section 2.4.2.4. We present exponentiation approaches using

121

Montgomery exponentiation for integers in both radix and modular representa-

tion. Modular representation is used to build a residue number system (RNS),

which as we will see imposes changes on the Montgomery technique. We inves-

tigate both types of number representation showing how GPU occupancy and

inter thread communication play a central role to performance. Regarding RNS

based implementations, we present an optimised base extension algorithm and

also a new approach for efficient single-precision modular multiplication in an

RSA RNS context. We show that using an RNS based exponentiation approach

on the GPU can outperform radix based approaches at smaller payload sizes.

Section 6.1 notes a number of implementation factors that are common across

all implementations presented in this chapter. In Section 6.2 we present imple-

mentations of modular exponentiation based on numbers in radix representation.

Section 6.3 covers the implementation details concerning exponentiation using

numbers in a residue number system. We also include in this section an explo-

ration into the most efficient single precision modular multiplication techniques

suitable for RNS on the GPU.

6.1 Implementation Commonalities

Key Support: All implementations presented in this chapter process a pay-

load containing multiple messages. Each message is associated with a key, which

among other values contains an exponent. The use of a CUDA compatible device

imposes restrictions on the rate of key change supported. The reason for this is

that the exponent largely determines the flow of control through the code. For

example, in binary exponentiation, the exponent determines a conditional branch

to execute an additional multiply per iteration. In Sliding Window exponentia-

tion, the exponent determines whether to square or to execute a batch of squares

plus a cumulated multiply. These conditional code paths, which depend on the

exponent, cause thread divergence. When threads within a CUDA warp diverge

on a streaming multiprocessor, all code paths are executed serially, thus a large

performance overhead is incurred for threads that diverge for large portions of

code.

Concerning the implementations presented later, depending on the degree

of parallelism applied, threads can co-operate or act independently to execute

an exponentiation. For implementations that use independent threads, the key

should be the same for all threads within a CUDA warp. This ensures good

performance, in that a single path is executed for all threads within the warp.

For implementations that use co-operative threads, a synchronisation barrier is

122

used to ensure consistent results when co-operating. All threads within a CUDA

block that perform a synchronisation barrier must not be divergent at the point

of synchronisation. Thus, all threads within a single CUDA block are required

to execute the same path at points of synchronisation. It follows that for expo-

nentiation that uses inter-thread communication, only one key can be used per

CUDA block. This is another reason to focused on RSA decryption performance

comparisons as it is common to require several decryptions per single key and

thus suitable for GPU acceleration. We indicate the specific implications of the

above restrictions within each implementation section later on.

RSA-CRT: RSA-1024 decryption consists of raising a 1024-bit number to the

power of a 1024-bit exponent, so a naive approach would use 32 32-bit limbs to

store the integers. However, we use a method based on the Chinese Remainder

Theorem (CRT) to reduce the size of both the base and exponent as described

by Quisquater and Couvreur [106]. Given the ciphertext c, decryption exponent

d and modulus n we can write:

c1 = |c|p c2 = |c|q

d1 = |d|p−1 d2 = |d|q−1

m1 = |m|p = |cd1

1 |p

m2 = |m|q = |cd2

2 |q

where, n = pq, p and q are prime, m is the message, and m = |cd|n. We can see

that we have a residue representation of m, < m >n= (|m|p, |m|q). Thus, given

|m|p and |m|q we can use the constructive proof of CRT to generate |m|n. The

advantage of this is that instead of using |cd|n to calculate the message, we can

calculate |cd1

1 |p and |cd2

2 |q where c1, c2, d1 and d2 are half the bit width of c and

d. This reduces the cost of generating the message from the ciphertext by up

to four times [69, ch14]. It is common practice to store p, q, d1, d2 and other

related data within the private key to facilitate the efficient employment of this

approach. This CRT optimisation approach is used in both the radix and RNS

based implementations of RSA presented here.

6.2 Radix Based Modular Exponentiation

This section presents large integer modular exponentiation implementations suit-

able for RSA based on the standard pencil-and-paper technique of multiple-

precision multiplication [58]. The integers involved are represented in radix form,

x = (xn, xn−1...x1, x0)b, where b is the radix and xi are the coefficients or limbs.

123

Specifically, on the GPU the radix b is 232. Following the CRT approach above,

our implementations of 1024-bit RSA decryption represent the ciphertext as a

pair of 16-limb 32-bit integers. Each 16-limb number represents the 1024-bit ci-

phertext modulo each of the primes, p and q, whose product comprise the public

key’s modulus. We have developed two radix based GPU implementations with

varying degrees of parallelism incorporating Montgomery reduction and pencil-

and-paper multiplication. One implementation acts in a mostly serial manner,

while the other distributes parts of the exponentiation across multiple threads

in an attempt to increase parallelism, and thus GPU occupancy.

The motivation for using the two approaches is to explore different perfor-

mance trends, which depend on the number of decryption operations required

for processing at any one time. We have focused on the basic pencil-and-paper

multiplication approach rather than the Karatsuba [52] or Toom-Cook [58] ap-

proaches. These are applicable for a larger number of limbs than is required for

a 1024-bit RSA implementation, i.e. 16 limbs. For example, within the GMP

project [32], the threshold for using Karatsuba multiplication on a generic archi-

tecture is set to 32 limbs, the Toom-Cook approach’s threshold is even higher.

Even though we focus on RSA decrypt (and equivalently sign), and thus deal

with ciphertext input and data such as p, q and other derived data that belong

to the private key, the core exponentiation approaches hold for the encrypt and

verify RSA functions or any exponentiation based algorithms.

With regards to Montgomery reduction, considering p and q are less than

2512, we can select R = 2512. This satisfies the condition that the modulus n < R

and also the requirement for division by R be an efficient process. Also, as p and

q are prime, there are no common factors with R satisfying the relative prime

requirement. Another restriction of Montgomery reduction is 0 ≤ a < nR, where

a is the number we are reducing. From the above CRT approach we see that the

powers of c1 and c2 require reduction in p and q respectively. Given that c1 and

c2 are derived from |c|p and |c|q, it is easy to see that all powers of c1 and c2 are

less than pR and qR respectively.

6.2.1 Serial Approach

Each thread within this implementation performs a full exponentiation without

any inter thread communication or cooperation. This is a standard optimised

implementation of an exponentiation using the CRT approach, operating on

two independent pairs of 16-limb numbers. The approach also uses the Sliding

Window technique to reduce the number of Montgomery multiplies and squares

required. As a single thread computes an exponentiation independently, a single

124

Figure 6.1: Serial Thread Model.

exponent should be used across groups of 32 threads. In terms of RSA, assuming

peak performance, this implementation is restricted to scenarios that process at

least 32 messages per key. As we are using the CRT based approach to split the

input messages in two, we also use two different exponents for a single message,

see d1 and d2 above. Thus a message must be split into different groups of

32 threads to avoid guaranteed thread divergence. We have adopted a simple

strategy to avoid this divergence, whereby CUDA blocks are used in pairs. The

first block handles all 16-limb numbers relating to the modulus p, while the

second block handles all numbers relating to the modulus q, where n = pq and n

is the original modulus. The values for p and q can change within a CUDA block,

though again, should follow the restrictions on change frequency. The threading

model employed is illustrated in Figure 6.1.

The added support for integers, bitwise operations and increased memory flex-

ibility such as scatter operations, in the 8800GTX, allows this implementation to

execute largely in a single kernel call. The byte and bit manipulation operations

required for the efficient implementation of Sliding Window are straightforward

as opposed to the difficulties encountered using a DX9 GPU [75]. In the ref-

erenced DX9 implementation, Sliding Window was deemed impractical. Binary

exponentiation was used instead where the main exponent traversing loop was

implemented on the CPU, which resulted in a large number of kernel executions

to perform a single exponentiation. The implementation we use on the G80 is

more standard, consisting of the following macro level details:� Input data is split into pairs according to the CRT approach.� The base data is then converted to Montgomery representation.� Exponentiation is executed using multiplies or squares according to the

exponent following the Sliding Window technique.� All modular reductions of multiplication or squaring outputs use the Mont-

gomery method.

125

� The final output for each pair is Montgomery multiplied by 1 to undo the

initial Montgomery representation.� The output pair is recombined to the final 1024-bit datum using CRT.

As the steps are well known we do not go into further detail except to draw

attention to the following optimisations that were applied within the implemen-

tation:� All N×N limb multiplies used cumulative addition to reduce memory pres-

sure [58].� All N×N limb squaring are optimised to reduce the number of required

multiplies [69].� All N×N limb multiplies mod R are truncated, again to remove redundant

multiplies.� The final two steps within Montgomery multiplication were combined into

a single N×N multiply and accumulate.

These optimisations are listed here as they are relevant to the implementation

in Section 6.2.2.

CUDA does not provide an add with carry operation. This causes an over-

head for all additions to multiple precision numbers as these must be handled

manually by checking for overflows. We expect that this performance issue will

be alleviated in the near future as some Nvidia employees informally state that

the hardware supports such an operation but it is not yet exposed by the PTX

virtual assembly language. All operations within the radix serial approach (and

parallel approach) use 32-bit integers. Multiplies can be performed using the

standard 32-bit multiply as there is a umulhi intrinsic that supports the re-

trieval of the high 32-bit word from a 32-bit multiplication. The 32-bit multiply

is quoted as executing in 16 cycles, so we require 16 cycles for the low word multi-

ply and 16 cycles for the high word multiply. There is a faster umul24 instruction,

which multiples 24-bit integers in 4 cycles. This is an attractive option, however

there is no equivalent umul24hi instruction and we require the high word results.

16-bit shorts can be multiplied in 4 cycles without overflow, however this gives

no performance advantage as it requires four times more operations than 32-bit

multiplies for the same resolution output. We assume that Nvidia transparently

transpose the 32-bit multiplies into multiple operations, hence their execution in

16 cycles.

126

6.2.1.1 Memory Usage

As we have seen, the concept of a uniform, hierarchical read-write memory sys-

tem such as a CPU’s does not exist on the GPU, and performance cliffs can

be encountered without careful memory planning. The following are the high-

lights of the various memory access techniques, which are used to optimise the

implementation’s performance. Note that the implementations in Section 6.2.2

and Section 6.3 use similar memory techniques where appropriate (RNS does not

implement N × N limb multiplies for example), and as such are not repeated

later unless significantly different.

Sliding Window Data: The Sliding Window technique requires that vari-

ous powers of the input data are pre-calculated. This data is used during the

exponentiation process to act as one of the N -limb inputs into an N×N multiple-

precision multiplication. The number of powers that require pre-calculation is

dependent on the window size, however the size is a multiple of the input data size

and as such is generally impractical to store in on-chip memory. We investigated

two options on how to handle the storage and retrieval of this pre-calculated

data. In both cases each thread running on the GPU is responsible for the

pre-calculation work relevant for the threads input data before exponentiation

begins.

1. Each thread writes its pre-calculated data to global memory. The data is

stored in a single array with a stride width equal to the number messages

being processed in a single kernel call multiplied by the message size. Reads

are subsequently made from this array directly from global memory. In this

scenario only a single kernel call is required for the exponentiation process.

2. In the previous approach the data reads are not coalesced as each thread

reads a single limb which is separated by 16 32-bit integers from the next

message’s pre-calculated power. Coalesced global reads require the data

to be contiguous in memory with a stride of up to 16 bytes per thread.

Non-coalesced reads generate separate memory transactions significantly

reducing load/store throughput. To ameliorate this the Sliding Window

pre-calculation data is first generated in an initialisation kernel, writing its

results to global memory. A texture can then be bound to this memory and

the subsequent exponentiation kernel can use the pre-calculation data via

texture references. Note that texture access uses the texture cache, which

is a local on chip cache, however textures cannot be written to directly

hence the need for a separate initialisation kernel.

127

The first approach described above is suited to small amounts of data. The

second approach is beneficial for larger amounts of data when the advantage

of texture use outweighs the fixed overhead of the extra kernel call. Another

approach could be to convolve the pre-calculated data to allow coalescing of

memory, however this was not implemented. It is not known if the overhead of

such convolution and subsequent data read offset calculations would be worth

the coalescing improvement.

Exponent Data: Another adaptive memory approach concerns the exponent.

As mentioned, the exponent must be the same across a warp number of threads,

thus all threads within a warp, when reading the exponent, access the same

memory location at any one time. Constant memory has by far the best perfor-

mance under this scenario, see Table 5.2, however it is limited to 64KB on the

G80. As each exponent requires 32 integers worth of storage in an RSA 1024-bit

context, we can use constant memory for up to 512 different keys. If the amount

of exponents exceed this threshold then texture memory is used. In practice the

threshold is slightly lower than 512 different keys as a small amount of constant

memory is used for other purposes.

Multiplication Operands: In an effort to increase the N×N multiplication

performance, we have allocated all of the on-chip fast shared memory for storing

and retrieving the most frequently accessed N -limb number of the N×N opera-

tion. Each thread is allocated 16 integers worth of space within shared memory

to store a 16-limb multiplicand. These shared memory storage techniques are

used for all versions of N×N multiple precision multiplies (i.e. standard, square,

truncated). The less frequently accessed multiplier is retrieved from textures

where beneficial. For example the multiplications where the multiplier is p, q or

Montgomery related values | − p−1|R, | − q−1|R, |R2|p and |R2|q (for use in gen-

erating the Montgomery representation of the input) are all read from textures

as the memory locations accessed can repeat within and across threads. In the

context of RSA decryption these variables are assumed to be pre-calculated as

they are invariant with private key data. If these values are not stored within

the key they are pre-calculated on the CPU before handoff to the GPU.

Message Data: The input and output message data is not exceptional in this

implementation save that it cannot be coalesced due to the message stride of 16

32-bit integers within device memory. A convolution of multiple messages could

be an option to offset the lack of coalescing though this has not been explored.

128

It should be noted that during our tests, the cost of reading and writing message

data is relatively negligible, therefore coalescing would have little effect.

6.2.1.2 Results

The results for this radix based implementation is presented in Section 6.2.3 in

conjunction with the parallel approach described below. Note that two parts

of the exponentiation are not included in these implementations, the initial |c|p

and |c|q and the final CRT to recombine. This is also the case for all imple-

mentations reported in this chapter. These steps contribute little to the overall

exponentiation runtime and so the performance impact is expected to minor.

6.2.2 Parallel Approach

This approach uses the same macro structure as the algorithm used above, how-

ever it executes the various stages within the algorithm in parallel. Each thread

is responsible for loading a single limb of the input data, with 16 threads combin-

ing to calculate the exponentiation. Each thread undergoes the same high level

code flow, following the Sliding Window main loop, however here Montgomery

multiplication stages are implemented in parallel. This approach relies heavily

on inter thread communication, which has a performance overhead and also the

side effect that only one exponent is supported per CUDA block. As the num-

ber of threads per block in this implementation is limited to 240 due to shared

resource constraints, the number of 1024-bit RSA primitives per key is limited

to a minimum of 16. This is a hard limit in that CUDA code has undefined

behaviour if threads are divergent at points of synchronisation. The threading

model uses the same separation of message pairs, for p and q, as in Figure 6.1,

however, a single thread reads only a single integer.

The intensive N×N multiplies within Montgomery multiplication are paral-

lelised by their separation into individual 1×N limb multiplications. Each thread

is independently responsible for executing a single 1×N limb multiply. This is

followed by a co-operative reduction across all threads to calculate the partial

product additions. This parallel reduction carries with it an overhead where

more and more threads are idle. Figure 6.2 shows the distribution of the N×N

operation across the 16 threads and its subsequent additive reduction. It also

shows the use of shared memory to store the entire operation’s output and input

at each stage. As previously noted, the number of threads per block is limited

to 240, thus each RSA primitive can use up to 16KB / (240/16) worth of shared

memory. This allows for the entire N×N calculation to fit within shared memory.

129

Figure 6.2: N×N limb multiplication in parallel on a CUDA device.

Also shown in the Figure 6.2 are the synchronisation points used to ensure all

shared memory writes are committed before subsequent reads are performed. As

this code is the most intensive part of the exponentiation, these synchronisation

calls add a significant burden to the performance.

The optimisations applied to the different N×N multiplies, listed in the serial

approach, are not possible in the parallel approach. The squaring optimisation,

and also the modulo multiplication step, in general only execute half the limb

multiplies that are required compared to a full N×N multiply. However, the

longest limb within the N×N multiply dictates its overall execution time as all

threads within a warp must execute in lock step. Thus, although one thread only

executes a single multiply, it must wait until the largest 1×N multiply finishes.

Also, as each thread executes its own 1×N multiply separately, the cumulative

approach to addition must also be separated from the multiplication process.

Another issue with the parallel approach is that there are parts of the algorithm

which are duplicated across all threads, such as the main exponentiation loop

itself. All duplicated instructions are a loss of potential performance. Also,

the conditional subtract at the end of Montgomery reduction is executed in all

threads as the borrowed bit must propagate making the operation serial. The

results for this approach are presented below.

6.2.3 Radix Results

Figure 6.3 illustrates the performance of both the parallel and serial approaches

presented above. All measurements presented represent the number of 1024-bit

RSA decrypt primitives executed per second. The throughput rates are based

on the repeated execution of the various scenarios taking the average perfor-

mance. The exponents used were selected at random, though filtered to ensure

the hamming weight was close to bit width / 2. The x-axis refers to the number

130

Figure 6.3: GPU Radix based Montgomery Exponentiation: 1024-bit RSA De-
cryption.

of messages processed as a single batch by a single kernel execution. The serial

and parallel RSA results were generated by the execution of tests on System 3,

see Appendix D. All results presented within this chapter were generated from

running tests on the same system, unless otherwise indicated. It can be seen

that the GPU implementations depend on an increasing number of messages per

payload to approach their peak performance. This is due to having sufficient

numbers of threads to occupy the GPU, thus hiding memory read/write latency

and to a lesser extent to offset the fixed overheads associated with data transfer

and kernel calls. Figure 6.3 shows the advantage of the parallel approach over

the serial approach at lower primitives per kernel call due to an higher level of

occupancy. However, the performance bottlenecks of synchronisation, lack of

N × N multiply optimisations and operation duplication, limit the parallel ap-

proach. The peak performance was achieved using the serial approach at 5536.75

RSA 1024 primitives per second.

Also included in Figure 6.3, is the performance reported for the Crypto++

API for a 1024-bit RSA decrypt. Here we report the throughput rate for the same

processor as in Chapter 5, the Intel Core 2 Duo E6300 1.86GHz running on both

cores. The Crypto++ API employs the CRT approach described previously to

split the message in two. Also included are the performance measurements for

Openssl’s [100] speed test for 1024-bit RSA decryption running in both single

(SC) and dual core (DC) modes on an AMD Athlon 64 X2 Dual Core 3800+.

The OpenSSL version used was 0.9.8g. As can be seen at peak performance,

the serial approach on the GPU is over 4 times the speed of the fastest CPU

implementation. We can see that the serial approach becomes competitive with

131

the fastest CPU implementation at batches of 256 primitives.

Similar work was independently carried out by Szerwinski and Güneysu [121]

on an Nvidia GeForce 8800GTS GPU where throughput rates were stated for

1024-bit modular exponentiation. Their peak performance used a radix imple-

mentation, though they did not employ the CRT approach. To make the fig-

ures somewhat comparable we apply a correction factor of ×4 to their through-

put rates and correspondingly divide their minimum reported latency by four.

This compensates for the computational reduction given by using the CRT ap-

proach [69, p613]. We observe that they report results for both 1024 and 2048-bit

modular exponentiation and the performance scaling is in line with the correc-

tion factor used here. Thus, the maximum throughput reported is equivalent

to 3252 primitives per second for RSA-1024 CRT, though with a minimum la-

tency of approximately 1.7 seconds regardless of number of primitives executed

concurrently. As a point of comparison we achieve a throughput rate of 4707

primitives per second at a latency of 218ms or 1024 primitives per batch of pro-

cessing, i.e. a latency reduction of over 7 times. It is unclear as to the reason

for our latency improvement though it could be attributed to a decreased re-

liance on global memory. We have only plotted the graph of Szerwinski and

Güneysu’s results from the lowest number of message per batch corresponding

to the reported minimum latency, i.e. the time taken to process smaller batches

of messages remains the same. It is also worth noting that Nvidia unhelpfully

use the name 8800GTS to denote two different GPUs, one faster (∼120%) and

one slower (∼70%) than the 8800GTX. It is unclear as to which was used in the

work by Szerwinski and Güneysu as they quote a number of cores in their device

that match neither release (though is closer to the slower version of the GPU).

We observe that the parallel approach at no point is faster than both the serial

GPU approach and the CPU implementations. All figures include the transfer

of data to and from the GPU. We have not included the figures for execution

without transfer, however the overhead is small, in the order of 1-10 primitives

per second. This is a marked change from symmetric-key acceleration on GPUs

where the data transfer is a significant overhead due to its lower level of arithmetic

intensity. Asymmetric-key cryptography is more suited to an offload accelerator

card due to its inherent high arithmetic intensity. A final observation is the zig-

zag pattern created with the serial approach. This is due to the coarse grained

parallelism of the approach, whereby the performance is heavily dependent on

the number of primitives per batch matching the number of available processors

in the GPU. This is a consistent feature of the serial approach though we have

only highlighted the effect, via purposeful selection of batch sizes, at the higher

132

range of throughputs for visual clarity.

6.3 RNS Based Modular Exponentiation

The motivation for using a residue number system (RNS) to perform expo-

nentiation is an attempt to improve on the parallel approach in Section 6.2.

The goal is to reduce the number of messages per payload required for the

GPU to become competitive with the CPU. We recall briefly that a number

x within an RNS, is denoted as < x >a, where < x >a= (|x|a1
, |x|a2

...|x|an
)

and a is a set, {a1, a2...an}, called the RNS base whose members are co-prime.

< x >a can be converted into radix form, |x|A, using the Chinese Remain-

der Theorem (CRT), where A =
∏n

i=1 ai and is called the RNS’s dynamic

range. Numbers in RNS can perform multiplication, addition and subtraction

as: < x >a op < y >a= (||x|a1
op |y|a1

|a1
, ...||x|an

op |y|an
|an

), where op is +,

− or ×. < x >a op < y >a is equivalent to |x op y|A in radix form. As each

RNS operation is executed independently, it is suited to parallel processing. The

division operation can be problematic as we will see.

To illustrate RNS and its usefulness we use an example. Take a 16-limb

integer x and a modulus n whose factors are single limb co-primes, {n1, n2, ...n16}.

To generate a power of x mod n in radix representation we execute a 16 × 16

limb multiply followed by a Montgomery reduction. Using RNS, we first convert

x to modular representation < x >n. Then we execute 16 independent single-

precision modular multiplications. The result is then converted back to radix

representation using CRT. The conversion into and out of RNS is expensive,

however if the number of operations performed while in RNS form is high, the

savings can be large. Although RSA supports the use of moduli using multiple

factors, in practice RSA is normally implemented with two factors, p and q.

The use of RNS with the base {p, q} is essentially the basis of the Quisquater

and Couvreur RSA optimisation presented previously. As such, to use RNS to

further reduce the cost of modular exponentiation in the context of RSA another

approach is required.

6.3.1 Montgomery in RNS

As Montgomery multiplication consists largely of multiplication and addition,

there is a temptation to perform this using an RNS. However, two parts of the

algorithm cause problems within RNS. Referring to Algorithm 2.3, step 1 is a

multiply mod R. Considering R is only restricted to be relatively prime with

133

Input: < x >a∪b, < y >a∪b, (where x, y < 2N)
Output: < w >a∪b (where w ≡ xyB−1(mod N), w < 2N)

Base a Operation Base b Operation
1: < s >a←< x >a . < y >a < s >b←< x >b . < y >b

2a: — < t >b←< s >b . < −N−1 >b

2b: < t >a∪b⇐=< t >b

3: < u >a←< t >a . < N >a —
4: < v >a←< s >a + < u >a —
5a: < w >a←< v >a . < B−1 >a —
5b: < w >a=⇒< w >a∪b

Table 6.1: Kawamura et al. [53]: Montgomery multiplication in an RNS.

and larger than the modulus, there is scope to select an R that also consists

of relatively prime factors suitable for use as an RNS base. Given a sufficient

dynamic range for this base, all multiplies and additions could be successfully

performed in the RNS. In the same algorithm, step 3 requires a division by R.

A divide in modular arithmetic is performed by multiplication by the inverse.

However, the inverse of R, R−1, does not exist for mod R. Thus, these two

operations in step 1 and step 3 cannot be performed within the one RNS base.

Montgomery reduction in RNS approaches presented in papers by Posch and

Posch [105] and Kawamura et al. [53], show a way around this issue. They use 2

bases, one for the execution of the mod R operation, and the other for execution

of the divide. Thus one of the bases in effect acts as Montgomery’s R, the other

acts as a facilitator to represent R−1 and perform a division by inverse multipli-

cation. Table 6.1 contains an outline of Montgomery multiplication in an RNS

as presented by Kawamura et al. [53], which we largely base our implementations

upon. The RNS bases are denoted as a and b, where B =
∏n

i=1 bi is equivalent

to R in the standard algorithm.

The calculations in Table 6.1 are carried out in the two bases a∪ b, in essence

acting as a single large base. Step 2a executes a multiplication in base b alone,

achieving the mod B operation. We require conversion of the result into base a to

continue the calculations. This conversion from one base into another is called

base extension. Step 5a performs the division by B within base a alone, and

is followed by a second base extension. The most computationally expensive

part of this algorithm are the two base extensions. A naive base extension

can perform a full conversion of a number in an RNS into its fixed radix form

using CRT, and then convert into another RNS. However, the full conversion

via CRT is inefficient and is impractical to form part of the inner loop of an

exponentiation. A number of base extension techniques have been proposed. The

earliest approach proposed, by Szabo and Tanaka [120], was based on conversion

134

using a mixed radix representation as the intermediate format. Although faster

than the traditional CRT approach and parallelisable, it requires a high degree

of inter-thread communication. Improvements have been proposed based on a

form of CRT as shown in Equation 6.1, which aim to calculate k, the reduction

factor, in an efficient manner [53, 104, 119]. The base extension used for our

RNS implementations is described below.

6.3.2 Exponentiation using Kawamura on the GPU

Our Montgomery RNS implementation is based on the relatively efficient ap-

proach presented by Kawamura et al. [53], listed in Table 6.1. Its base extension

algorithm relies on the following representation of CRT.

x =

n
∑

i=1

(||x|mi
|M−1

i |mi
|mi

)Mi − kM (6.1)

where m is a set of n single limb moduli, M =
∏n

i=1 mi, Mi = M/mi and x < M .

If we compare this equation to the original CRT equation we can see that it is just

removing the mod M and replacing it with an explicit subtraction. This allows

the conversion process to involve only single precision operations. To see this we

look at an example where we convert < x >m into a new RNS with moduli m′.

To simplify the reading of Equation 6.1 further, let Ei = ||x|mi
|M−1

i |mi
|mi

, thus

we now can write

x =

n
∑

i=1

EiMi − kM. (6.2)

To further simplify, consider just the extension of < x >m into a single modulus

m′
1, i.e. we are calculating |x|m′

1
. This is performed by the following.

|x|m′

1
= |

n
∑

i=1

(|EiMi|m′

1
)− k|M |m′

1
|m′

1
(6.3)

Here Ei, for each i, can be calculated independently and thus in parallel. Its

calculation uses |M−1
i |m′

i
, which consists of invariant moduli. As such, it can be

pre-calculated for all moduli in m and m′, and used via a lookup table. |Mi|m′

1

and |M |m′

1
are also based on invariant moduli and can be pre-calculated for all

moduli in m and m′ and used via lookup tables. To calculate the base extension

for multiple moduli, m′, each residue, |x|m′

i
, is assigned to a separate thread

and calculated independently. However, on the right hand side of Equation 6.3,

k is unknown. We can rewrite Equation 6.2 by dividing across by M to give

135

k =
∑n

i=1 Ei/mi − x/M . Considering x/M < 1 and k is a whole number we can

say k = ⌊
∑n

i=1 Ei/mi⌋.

Kawamura et al. calculate this divide, ⌊
∑n

i=1 Ei/mi⌋, using an approxima-

tion based on the observation that mi can be chosen close to a power of 2. mi

is substituted for the nearest higher power of two, allowing a divide by bit shift.

Also Ei is approximated, using a restricted number of its most significant bits

(the emphasis for Kawamura’s approach is on VLSI design), via a function called

trunc(). k is calculated in a cumulative manner whereby the above approxi-

mated divide is carried out each iteration of the summation in Equation 6.3. The

result of the divide is added to a cumulation counter, counter. Each iteration,

k is set to ⌊counter⌋ and then is subtracted from counter. Thus k is {0, 1}

for each iteration, and as such selectively subtracts M . In Algorithm 6.1 we

present a version of Kawamura’s base extension algorithm which does not use

the trunc() approximation of Ei as there is no need for it in a 32-bit processor.

Also, as the divide by the nearest higher power is always set to 232, we can let

the counter accumulate Ei without modification. A check for 32-bit wrap on

the addition takes care of the application of k for each iteration. Note that the

algorithm only calculates a base extension for a single modulus for clarity. This

must be executed for each modulus in the new base, m′.

Algorithm 6.1 Kawamura base extension modified for a 32-bit processor.

Require: < x >m, m, m′
1, α

Ei = ||x|mi
|M−1

i |mi
|mi

(∀i)
for j = 1 to n do

α0 = α
α+ = Ej /* note α wraps at 232 on GPU */
if α < α0 then

r = |r + (| −M |m′

1
)|m′

1

r = |r + Ej|Mj |m′

1
|m′

1

return |x|m′

1
= r

In Algorithm 6.1, α is used to compensate for the approximations introduced

in the calculation of k. It must be higher than the maximum error caused by

the approximations, however lower than 2N [53], where N is the word bit length

of the GPU. As we have removed the error due to approximation of Ei the only

determinant of the size of the error is the distance between the moduli used and

their next power of 2. This puts a restriction on the number of moduli that can

be used with this technique. In effect, this base extension algorithm can be used

in the context of 1024-bit RSA with 32 and 16-bit moduli, while 12-bit moduli

requires the use of a different method. We use 32-bit moduli as we will see in

136

Section 6.3.3, this size provides the best performance.

For RSA-1024 using the CRT approach, we require two sets of 17 32-bit

moduli for use as the two RNS bases a and b from Table 6.1. This is due to

the moduli p and q being 512 bits, and a requirement that the dynamic range of

the RNS bases is sufficient to represent numbers mod p and q without overflow.

Kawamura et al. also specify further constraints (see paper for more details [53])

on the dynamic range, though two sets of 17 32-bit moduli where the moduli are

the closest 34 primes to 232 is sufficient. Note we interleave the moduli in the

two different sets to give a reasonable distribution of the dynamic ranges.

Groups of 17 consecutive threads within a CUDA block execute co-operatively

to calculate a modular exponentiation. Given that there are two RNS bases

consisting of 17 moduli, each message is split into 2 groups of 2 × 17 residues.

That is 17 residues for each base, and 2 groups for c1 and c2 related to p and q.

Each thread reads in two residues, |x|ai
and |x|bi

. Thus, a single thread executes

both the left and right sides of the Montgomery RNS algorithm, see Table 6.1, for

a pair of residues. This ensures each thread is continuously busy. We make the

general observation that RNS exponentiation requires the use of bases that have

dynamic ranges larger than some multiple of the input data units. Therefore for

data units with a size based on a power of 2, the number of moduli in the RNS

base will be slightly higher than a power of 2. Using an RNS based algorithm,

as above, on highly parallel devices such as the GPU can lead to an awkward fit

as many such devices are designed to suit threads used in groups of powers of 2.

As the residues are in groups of 17, we employ a padding scheme for the input

message data whereby the start address used by the first thread of a CUDA

block is aligned to a 128-bit boundary. We also pad the number of threads

per block to match this padding of input data, which allows a simple address

mapping scheme while allowing for fully coalesced reads. The CUDA thread

allocation scheme for ensuring even distribution across available SMs and also

correct padding is show in Table 6.2, where RNS SIZE is the number of moduli

per base, MAX THREADS PER BLOCK is a predefined constant dependant

on shared resource pressure of the kernel and BLOCK GROUP is the number of

SMs in the GPU.

Revisiting Algorithm 6.1, we see that for each new modulus we are extending

to, the calculation of Ei is required for all mi members of m. Also recall that a

single thread is responsible for performing the extension to a single new modulus.

Thus all Eis will be calculated for all new moduli, leading to much redundancy.

To reduce the overhead of calculating Ei, as the number of moduli in the new base

match the number in the originating base, we can distribute its calculation one

137

total threads = noMsgs ∗RNS SIZE ∗ 2
max msgs per block = ⌊MAX THREADS PER BLOCK/RNS SIZE⌋
blocks required = ⌈noMsgs ∗ 2/max msgs per block⌉
blocks required = ⌈blocks required⌉BLOCK GROUP

threads per block = ⌈total threads/blocks required⌉
threads per block = ⌈⌈threads per block⌉RNS SIZE⌉WARP SIZE

Table 6.2: CUDA thread allocation scheme for RNS based modular exponentia-
tion.

Ei per thread. First, each thread is responsible for calculating a single Ei, after

which a synchronisation barrier is used to ensure all new Ei values can be safely

used by all threads. As discussed in Section 6.2, this synchronisation barrier,

along with the general performance issues with thread divergence, dictates that

only a single exponent can be used for each CUDA block of threads. Thus for

RSA-1024 using RNS on the G80, a single exponent must be used a maximum of

once for every 15 primitives (256 threads per block / 17 threads per primitive).

With regards to the shared memory use, we use two different locations for storing

the values of Ei. The storage locations are alternated for each subsequent base

extension. This permits a single synchronisation point to be used, rather than

two: one before and one after the generation of Ei, which is necessary when only

one location is used for storing the values of Ei.

We also use shared memory to accelerate the most intensive table lookup

corresponding to |Mj|m′

i
in the base extension. Specifically regarding the bases

a and b used in the Montgomery multiplication in an RNS algorithm, Table 6.1,

at the start of each kernel call all threads within a block co-operate in loading

into shared memory the entirety of the two arrays, |Aj|bi
and |Bj |ai

via texture

lookups. This load into shared memory must be performed during kernel exe-

cution as unfortunately shared memory has no way of being initialised via the

CUDA runtime API before kernel execution. The exponent is treated in the

same manner as in the radix based pencil-and-paper approach. The base related

variables, ai, bi, | − A|bi
, | − B|ai

, |A−1
i |ai

, |B−1
i |bi

, | − p−1|bi
, | − q−1|bi

, |p|ai

and |q|ai
are all stored in textures and accessed at the start of each thread. As

each thread only requires access to a single word for each of these variables and

they are constant across the thread’s execution of the entire exponentiation they

are stored in registers. These variables are based on the moduli a and b and as

such never change and can be pre-calculated once. Those based on p and q are

pre-calculated once per key and either retrieved from the key itself or from a

cache.

Each thread executes an exponentiation of the input data for its own pair of

138

RNS moduli using Sliding Window. The Sliding Window data is generated in

much the same manner as in the radix approaches except that each thread is re-

sponsible for generating the Sliding Window powers for its own RNS moduli only.

The threads work independently apart from the collaborative generation of Ei

for base extension. Each thread is also responsible for generating a Montgomery

representation of its inputs and at the end, the undoing of the Montgomery rep-

resentation. The results for 17 threads make up the 34 residues that are used to

generate the final output either mod p or q using CRT. This step is performed

on the CPU. Future work involves the investigation of an efficient mechanism for

performing a full CRT on the GPU.

6.3.3 Single Precision Modular Multiplication on the GPU

The most executed primitive operation within Montgomery RNS is single-precision

modular multiplication. On the Nvidia CUDA hardware series the integer oper-

ations support operands up to a maximum size of 32 bits. Integer multiplies are

reported to take 16 cycles, where divides are not quoted in cycles but rather a rec-

ommendation to avoid if possible [93]. In light of this, we present an investigation

into 6 different techniques for achieving single-precision modular multiplication

suitable for RNS based exponentiation implementations.

1. 32-bit Simple Long Division: Given two 32-bit unsigned integers we

use the native multiply operation and the umulhi(x,y) CUDA intrinsic to

generate the low and high 32-bit parts of the product. Because we cannot divide

a 64-bit number directly we treat the dividend as a 4 16-bit limb number and

the divisor as a 2 16-bit limb divisor. Then we use standard multiple-precision

division to generate the remainder [58].

2. 32-bit Division by Invariant Integers using Multiplication: We make

the observation that the divisors within an RNS Montgomery implementation,

i.e. the base’s moduli, are static. Also, as we select the moduli, they can be

chosen to be close to the word size of the GPU. Thus we can assume two things.

Firstly, all moduli can be treated as invariant divisors, and secondly, all invariant

divisors can be treated as normalised (i.e. they have their most significant bit

set). These two observations allow us to use an optimised variant of Granlund

and Montgomery’s [38] approach for division by invariants using multiplication.

The basic concept used to calculate n/d is to find a sufficiently accurate approx-

imation of 1/d in the form m/2x. Thus the division can be performed by the

multiplication of n∗m and cheap byte shifts for division. The requirement for the

139

n = x× y, n1 = hiword(n), n0 = loword(n)
ns = n0 >> (N − 1)
if(ns > 0) n0 = n0 + d
t = hiword((m× (n1 + ns)) + n0)
q1 = n1 + t
dr = (n− (d << N)) + ((2N − 1− q1)× d)
r = loword(dr) + (d ∧ hiword(dr))

Table 6.3: Granlund and Montgomery’s division by invariants optimised for GPU
and RNS.

divisors to be invariant is due to the overhead in calculating m outweighing the

savings using multiplication if m is calculated for each division. We pre-calculate

m for each of the base moduli used and transfer them to the GPU for use via

texture lookups.

The algorithm in Table 6.3 removes all normalisation related calculations

from the original algorithm. It also rearranges some of the calculations to suit

the efficient predication available on the G80. Inputs: N is the word bit length on

the GPU; single word multiplier and multiplicand x and y; m is a pre-calculated

value dependent on d alone; d is the divisor. Output: r, the remainder. Some of

these operations require 2 word precision and thus require extra instructions on

the GPU. hiword() indicates the most significant word of a two word integer,

where loword() indicates the least significant word. For a thorough explanation

of the concepts involved, refer to Granlund and Montgomery [38].

3. 32-bit Reduction by Residue Multiplication: In this approach we

design an algorithm that executes modular multiplication without division in

the context of select residue number systems, which is faster than the previous

approach. Recall that the moduli comprising the RNS bases used can be selected

close to the GPU’s maximum single word value. There are 93 32-bit primes

between 232 and 232 − 2048 of which we use 34 to act as the moduli of our two

RNS bases. Thus, in the context of the residue number systems used, we can

state for all moduli, d, the following holds:

|232|d < 211. (6.4)

Note, we use the convention that given a 2-limb number a, we write a1 to signify

the high 32-bit limb and a0 to signify the low 32-bit limb. Given 32-bit single

limb inputs x, y and d, we wish to calculate |z|d, where z = xy. Let r = |232|d.

Note r can be calculated efficiently using a single subtract as d is normalised.

140

Using r, we can rewrite |z|d as:

||z1r|d + |z0|d|d. (6.5)

Given the upper bound on r from 6.4, we can state that z1r < 243. If we further

rewrite |z1r|d as:

||(z1r)1r|d + |(z1r)0|d|d (6.6)

we can state that (z1r)1r < 222. Combining 6.5 and 6.6 we can write:

|z|d = |||(z1r)1r|d + |(z1r)0|d|d + |z0|d|d.

Considering that (z1r)1r < 222, (z1r)0 < 232, z0 < 232 and that ∀d : d − 222 >

(232 − d)× 2, we can state:

z′ = (z1r)1r + (z1r)0 + z0

, where z′ ≡ z(mod d) and z′ < 3d. Thus we can perform the modular multi-

plication |xy|d via multiplies and conditional subtraction. We list the steps in

algorithmic form in Algorithm 6.2. The functions hiword() and loword() are

the same as previously described. This approach benefits from being able to use

CUDA’s umul24 limited precision fast multiply instruction in the calculation of

(z1r)1r.

Algorithm 6.2 32-bit Reduction by Residue Multiplication.

Require: Single limb integers x, y, d, r, where d > 232 − 2048, r = 232 − d.
z = x× y
z0 = loword(z)
z1 = hiword(z)
z1r = z1 × r
(z1r)0 = loword(z1r)
(z1r)1 = hiword(z1r)
(z1r)1r = (z1r)1 × r
z′ = (z1r)1r + (z1r)0 + z0

if z′ > d then
z′ = z′ − d

if z′ > d then
z′ = z′ − d

return z′

4. 32-bit Native Reduction using CRT: Recall that the RNS bases consist

141

of moduli that are relatively prime. We can also further stipulate that each mod-

ulus is the product of two co-prime factors. Using a modulus with two co-prime

factors p and q, we can represent the modular multiplication input values, x and

y, as |x|p, |x|q, |y|p, |y|q. Thus we have a mini RNS representation and as such

can multiply these independently. We use CRT to recombine to give the final

product. As p and q can be 16-bit, we are able to use the GPU’s native integer

modulus operator while maintaining 32-bit operands for our modular multipli-

cation. This approach is described in the Moss et al.’s paper [75].

5. 16-bit Native Reduction: We can use 16-bit integers as the basic operand

size of our modular multiplication, both input and output. We can then simply

use the GPU’s native 32-bit integer multiply and modulus operators without any

concern of overflow. However, we need to maintain the original dynamic range

of the RNS bases when using 32-bit moduli. We can achieve this by doubling the

number of moduli used in each base. Note that as a larger number of relatively

prime moduli is required to represent the bases, and the moduli are capped at

232, the contribution of each subsequent modulus to the dynamic range dimin-

ishes. However, there is sufficient surplus dynamic range when using the original

17 × 2 32-bit integers, such that the simple doubling of the number of 16-bit

moduli meets the dynamic range requirements.

6. 12-bit Native Reduction: This is the same concept as the 16-bit na-

tive approach above, though using 12-bit moduli and as such 12-bit operand

sizes. We can then use the much faster floating point multiply and modulus

operators without overflow concerns. Again we need to maintain the dynamic

range by approximately tripling the original 32-bit moduli. Also as mentioned,

there is an issue where the Kawamura approximations require the base moduli

to be within a certain range of the next power of 2. This is not discussed further

here, though note that a full 12-bit implementation would require the use of a

different base extension method than the one described previously.

6.3.3.1 Results

We tested the above approaches by processing the same amount of data, 232

bytes, executing modular multiplication operations, reading and accumulating

from and to shared memory. The results can be seen in Table 6.4. We can

see that the 12-bit and 16-bit approaches show the best performance, however

considering the figures report the number of 12-bit and 16-bit modular multipli-

142

Modular Multiplication Approach Modular multiplications per second
1. 32-bit LongDiv 2.89 * 109

2. 32-bit Inverse Mul 3.63 * 109

3. 32-bit Residue Mul 4.64 * 109

4. 32-bit Native+CRT 1.12 * 109

5. 16-bit Native 9.42 * 109

6. 12-bit Native 23.97 * 109

Table 6.4: GPU Modular Multiplication throughput using a variety of techniques.

cations respectively, we must compensate for the loss of resolution to compare

the results. Firstly, the data unit sizes used in the modular multiplications deter-

mine the sizes of the moduli used in the residue number systems. Secondly, as we

have seen, the base extension executes in O(n) time across n processors, where n

is the number of moduli in the RNS base. Concretely, assuming a fixed number

of processors, throughput reduces at a rate of n2 as n increases. Lastly, from

experimentation, the base extension step in Montgomery RNS is the most inten-

sive part of our implementations consuming over 80% of execution time. Given

12-bit moduli we require approximately three times the number of moduli and

two times the moduli for 16-bit moduli compared to 32-bit moduli. The 12-bit

reported figures are compensated by an approximated factor of (9× 0.8) = 7.2,

and the 16-bit figures are compensated by a factor of (4× 0.8) = 3.2. When we

reduce the 12-bit and 16-bit results according to these factors we can see that

the most efficient approach for use in Montgomery RNS is 32-bit Reduction by

Residue Multiplication.

6.3.4 RNS Results

Figure 6.4 shows the throughput of our RSA-1024 RNS implementation using

CRT, Sliding Window and 32-bit modular reduction using the Reduction by

Residue Multiplication as described previously. The tests were executed multiple

times with selection of the exponent as in the radix tests. The peak throughput

achieved is 3653 message decryptions per second. Comparing the peak perfor-

mance of the Crypto++ CPU implementations listed in Figure 6.3 we can see

that the peak performance for our RNS implementation has over 2.5 times higher

throughput. Also included in Figure 6.4 is the peak RNS performance from inde-

pendent work by Szerwinski and Güneysu [121] executing on an 8800GTS GPU

at 1759 primitives per second for RSA-1024 CRT. Like in the radix implemen-

tation we have applied a correction factor of ×4 to their performance rating of

1024-bit modular exponentiation using RNS without CRT. The figures reported

143

Figure 6.4: GPU RNS based Montgomery Exponentiation: 1024-bit RSA De-
cryption.

include this correction factor. As in the radix results, we have only plotted the

graph for [121] from the point of the reported minimum latency. We have also

included as a historical reference, a previous RNS implementation on an Nvidia

7800GTX by Moss et al. [75] to show the improvements possible due to the ad-

vances in GPU hardware and software libraries. They report a performance of

175.5 true 1024-bit exponentiation operations per second, which we have again

multiplied by 4 and use as an estimate of the runtime for RSA-1024 CRT de-

cryption. As we can see from the figure there is pressure to increase the number

of concurrent messages sent to the GPU to achieve performance. However, as

we will see in the next section this pressure is more relaxed when compared to

the radix approach presented earlier in the chapter.

6.4 Radix vs RNS on the GPU

We use Figure 6.5 to illustrate the effectiveness of our RNS implementation at

accelerating RSA in comparison to our radix based implementations. As can be

seen the RNS implementation gives superior throughput with much smaller num-

ber of messages per kernel call. The point at which the serial radix approach

becomes faster than the CPU is at ∼256 messages, where the RNS approach

has better performance at 32 messages per kernel. The greater performance at

smaller message numbers is due to a higher GPU occupancy for the RNS ap-

proach over the serial radix approach. The RNS approach also does not suffer

from the extreme levels of synchronisation during a Montgomery multiplication

144

Figure 6.5: RNS vs Radix: 1024-bit RSA Decryption.

as the parallel radix approach. Using RNS can greatly improve the GPU’s ability

to provide feasible acceleration for RSA decryption, or any public-key crypto-

graphic scheme where the modulus and exponent change with a low frequency.

It is clear from Figure 6.5 that an adaptive approach to exponentiation would

provide the best overall performance, switching from an RNS based implemen-

tation at low message requirements, to a radix based approach at high message

requirements.

6.5 Conclusions

In this chapter we have presented implementations of modular exponentiation

suitable for asymmetric-key cryptography. We have focused on 1024-bit RSA de-

cryption running on an Nvidia 8800GTX and demonstrated a peak throughput

of 0.18 ms/op giving a 4 times improvement over a comparable CPU implemen-

tation. We have shown that an adaptive approach to modular exponentiation

on the GPU provides the best performance across a range of usage scenarios. A

radix based serial implementation of Montgomery exponentiation gives the best

performance in the context of a high number of parallel messages, while an RNS

based Montgomery exponentiation gives better performance with fewer messages.

We show that an optimised RNS approach gives better performance than a CPU

implementation at 32 messages per kernel call and that the pencil-and-paper

approach proves better than the RNS approach at 256 messages.

Also covered in the chapter is the applicability of the GPU to general asymmetric-

145

key cryptography, where the observation is made that peak performance is only

achievable in the context of substantial key reuse. In the case of 1024-bit RSA

using RNS, peak performance requires the key to change at a maximum rate of

once per 15 messages, and once per 32 messages when using a serial pencil-and-

paper approach. Thus the GPU can be effectively used in an RSA decryption

and signature capacity where it is common for a server to use a limited number

of keys.

RNS based approaches are highly dependent on efficient support of single

precision modular multiplication, which the chapter illustrates is non trivial on

the GPU. In this context we have explored a variety of techniques for achieving

efficient modular multiplication and show that a novel approach suited to RNS

and the GPU gives the best performance. The GPU could offer improved perfor-

mance with RNS based approaches if future architectures provide efficient native

modular operations. Also the performance of the radix based approach suffers

greatly due to the 16 cycles required to execute a 32-bit integers multiplication.

If this is improved in the future to operate at a similar rate to floating point

processing, we could see a 4× improvement in the reported rates.

146

Chapter 7

GPU Accelerated Cryptography

as an OS Service

Symmetric-key algorithms such as AES, DES, ARIA; symmetric-key modes of

operations; and asymmetric-key algorithms such as RSA, DSA and those based

on ECC have recently been explored in the context of GPU acceleration [27,

40, 43, 44, 65, 75, 121, 129, 130]. It has been demonstrated that the GPU can

act as an effective accelerator of symmetric-key algorithms using sufficiently large

buffers and of asymmetric-key algorithms using a sufficient number of concurrent

primitives. Despite the existence of these new approaches, there remains no way

for OS kernel services or userspace applications to make use of these implementa-

tions in a practical manner. The use of these implementations require interaction

with GPU specific interfaces such as the CUDA API, which is inconvenient for

application developers and unavailable to kernel services. With the increasing

number of GPU accelerated cryptographic algorithms, there is a need to provide

an efficient and standardised operating system wide interface to these implemen-

tations. To overcome this shortcoming, this chapter investigates the integration

of GPU accelerated cryptographic algorithms with an established service virtual-

isation layer within the Linux kernel. The OpenBSD Cryptographic Framework

(OCF) provides the basis for such a virtualisation layer.

The original OCF was developed for OpenBSD and has since been ported to

FreeBSD [61], NetBSD and Linux [95]. It was created to provide uniform access

to cryptographic accelerator functionality by hiding hardware specific details

behind a standardised API. It provides access to this functionality for kernelspace

services as well as normal userspace applications and APIs. For our investigation

we use the Linux port of the OCF and the 2.6.26 Linux kernel. Although we

do not directly use the native linux-crypto (Crypto API) project [63], which has

in-built support for some crypto-cards, we note that the OCF acts as a wrapper

147

for this library. We did not use linux-crypto for this work due to its current lack

of support for asymmetric algorithms and the fledgling status of its userspace

interface, however the main contributions in this chapter are also relevant to this

project.

The main contributions of this chapter are: the effective integration of the

GPU within the OCF model; the observation that the GPU interface is userspace

only and the mechanisms introduced to allow it to be part of a kernel service;

the introduction of a new memory management system within the OCF to al-

low efficient handling of memory transfers between multiple address spaces; and

also an implementation of a general purpose multi-request batching scheme for

asymmetric-key requests with regard to the GPU. The only previous attempt to

provide a form of uniform access to GPU crypto acceleration involved AES via

an OpenSSL engine by Rosenberg et al. [112]. This implementation was appli-

cable to userspace applications only and reported a 0 to 3% improvement over

the CPU.

The motivation for this work is to provide a standard method of access to

the latest GPU crypto acceleration work to all components within an operating

system, with minimal loss of performance. This will allow application, kernel and

driver developers to transparently include the GPU as part of their cryptographic

solutions. As previously observed the GPU has a requirement of high work loads

to achieve its peak performance. By using a centralised framework, which is

used for all system-wide cryptographic needs, we increase the likelihood of high

occupancy on the GPU and thus its potential to act as an effective crypto-

accelerator. OS constructs and functions mentioned throughout this chapter are

briefly described in Appendix C.

7.1 OCF Background

Figure 7.1 shows a high level view of the OCF framework. The core component

of the framework, the main “Crypto” layer, provides two APIs - the producer

API for use by crypto-card device drivers and the consumer API for use by other

kernel subsystems. An ioctl interface, which uses the /dev/crypto device file,

provides a mechanism through which normal userspace applications can issue

cryptographic requests. This interface is provided by the “Cryptodev” layer and

uses the consumer API to pass on userspace requests to the Crypto layer. Device

drivers can register their support for various cryptographic algorithms with the

Crypto layer. Cryptographic requests received directly by the Crypto layer or

sent via the Cryptodev layer are matched with capable devices and issued to the

148

Figure 7.1: Original OCF Architecture.

corresponding device driver. The device driver ID is recorded within the request,

which is returned to the requesting application or kernel component along with

the results of the processed request. Further requests can be issued to the same

device within the OCF by maintaining the driver ID within the request or if left

unset the OCF will again select a suitable device dynamically.

7.2 Integration of GPU and OCF

7.2.1 Overview

The OCF provides a standardised method for the integration of any crypto-

graphic accelerator device driver using its producer API. This API allows a de-

vice driver to register itself and its supported algorithms with the OCF, making

it a target for processing cryptographic requests. The device driver is responsible

for registering four callback functions with the OCF, which are used for the set

up and tear down of symmetric algorithm sessions and also for the processing

of symmetric and asymmetric requests. We have created a GPU cryptographic

driver that fulfils the producer API requirements. The driver currently supports

AES and modular exponentiation with CRT, suitable for RSA-1024. Supporting

these two algorithms allows an analysis of the main issues arising from GPU

integration with the OCF for both symmetric and asymmetric functions.

The algorithms supported by the GPU driver are the peak performing CUDA

implementations presented in Chapters 5 and 6. The CUDA interface is pro-

vided via a userspace runtime library and as such requires its usage to be from

userspace processes. Unfortunately Nvidia do not provide a driver that allows

the direct control of their cards from within the kernel. This restriction forces

all interactions with their cards to originate from userspace processes, making

the provision of CUDA services from within the kernel a challenge. To overcome

this restriction, we have split our GPU driver into two parts, a kernelspace driver

149

Figure 7.2: OCF and GPU: High Level View - Different Address Space Problem.

and a userspace daemon.

Figure 7.2 shows a high level overview of the GPU driver integration into the

OCF. It illustrates the separation of the GPU driver into the kernelspace part,

Gpucrypt ; and the userspace part, Gpucryptd. Gpucryptd follows the normal

daemon convention, and as such runs as a high privilege background OS process.

Gpucryptd is responsible for receiving cryptographic requests from Gpucrypt

and processing them using Nvidia’s userspace runtime API. A major disadvan-

tage of this separation is the use of extra address spaces within the processing

pipeline making data transfer more complex. Extra address spaces can result in

a critical bottleneck in performance when processing requests unless memory is

carefully managed. We explore this issue in full within the next topic. Another

disadvantage of the driver separation is the introduction of two extra OS mode

switch points within the processing pipeline. This becomes more of an overhead

when the number of cryptographic requests increase, particularly for small re-

quest buffer sizes. Unfortunately there is no way to avoid these mode switches,

however since the GPU only suits cryptographic acceleration with large work-

loads and high arithmetic intensity we will see that this overhead has limited

effect.

7.2.2 Memory Management

When using devices that handle high volumes of data transfer it is common

practice to ask the driver to allocate the memory used in these transfers. This

has the advantage that the driver knows what type of memory (contiguous/non-

contiguous, zone location) suits the corresponding device for DMA transfers. It

is also common practice that allocated memory is shared between the driver

and the calling process, either by driver allocation (mmap() kernel function) or

by mapping userspace pages (get user pages() kernel function). If memory is

not shared then userspace processes must undergo a copy of memory between

user address space and kernel address space using the copy from user() and

150

Figure 7.3: Illustration of the Cryptodev Layer Memory Management Overhead.

Figure 7.4: Performance of the copy from user() Function.

copy to user() Linux kernel functions. Using an abstraction framework like

the OCF, or the linux-crypto project, removes the direct line of communication

required for standard requests for driver memory allocation, either by userspace

processes or kernelspace subsystems.

Integration of the GPU with such a framework emphasises this deficiency

due to two factors. First, the GPU requires large volumes of data for symmetric

algorithms to reach its performance potential as seen in Chapter 5. The larger

the volumes of data, the worse the memory copy overhead. The OCF Cryptodev

layer implements a copy from and to userspace policy for data transfer. Figure 7.3

shows the Cryptodev layer’s performance with and without these copies as the

buffer sizes increase. To explain the drop in performance of the Cryptodev layer,

we note that it uses the copy from user() and copy to user() kernel functions

151

to transfer memory between userspace and kernelspace. We test the performance

of copy from user(), shown in Figure 7.4, and can see that the memory copy

loses efficiency as the buffer sizes increase. Second, one cannot give memory to

the Nvidia driver and request it to be used for DMA acceleration, the memory

must be requested from the driver. Thus, even using a direct I/O approach (as

in the new linux-crypto userspace API), where userspace pages are mapped in

by the kernel on request, we must still perform a memory copy into and out of

GPU DMA memory. Thus for any device that has DMA memory restrictions,

it can be beneficial to have a mechanism for allowing the framework’s drivers to

manage their own memory.

We have added a new memory management system to the OCF that allows

a consumer component (userspace application or kernelspace component) to di-

rectly use memory that is managed by the OCF drivers. This system allows

the GPU driver to reduce the number of memory copies required during request

processing to zero. Each memory allocation is recorded centrally by the OCF

as a new memory mapping, which stores the driver’s address (map ptr) and the

consumer component’s address (app ptr) of the allocated memory. map ptr is

the address the driver uses to refer to the allocated memory, which would nor-

mally be a kernelspace address, however in the case of the GPU it will belong to

the Gpucryptd daemon address space. The app ptr is the address the consumer

component uses to refer to the memory and will belong to a userspace processes’

address space if the OCF was called via the Cryptodev interface, or otherwise

belong to the kernel address space.

Figure 7.5 illustrates our implementation of the memory mappings for all

consumer components. We create a separate mapping space, indexed by the

current thread’s thread group ID, to store all mappings for each consumer

component (the ID is zero in the case of kernel consumer components). This

ensures allocated memory can only be accessed by the process that requested

the allocation. Within each space the mappings are grouped according to the

device that allocated the memory. If memory allocation fails due lack of device

support for the new memory management system, where possible we still wish

to avoid the memory copies performed by the Cryptodev layer. An allocation

request can be tied specifically by the consumer to a particular underlying device.

In this case, if the device fails to allocate memory, then this failure is reported to

the consumer. Otherwise, when a memory allocation fails, the Cryptodev layer

allocates its own memory for sharing with the userspace consumer. As such,

the Cryptodev layer maintains its own memory mappings. The following is a

detailed account of how mappings are created, removed and used within the new

152

Figure 7.5: Crypto and Cryptodev Layers: Memory Mapping Internal Structure.

memory management system. The new memory management API is listed in

Appendix A.1.

7.2.2.1 Memory Map Creation

Userspace, allocation request: A userspace process makes a request for mem-

ory via a new ioctl added to the Cryptodev layer. This allocation request can

suggest a specific device to carry out the allocation or allow the OCF to choose

a device and report the used device back to the consumer. The standard mmap()

system call is not used as it cannot support device specification in this way.

The OCF relays the allocation request to the device driver, which performs the

allocation and returns the underlying memory pages and map ptr to the OCF.

The OCF takes these pages and manually calls the internal kernel version of

mmap(), which generates a new virtual memory area (VMA) for the userspace

process. We use the returned pages from the device driver to map to this VMA,

and return the VMA start address to the userspace process. In the case where

no device can be found to fulfil the allocation request and a device identifier is

not explicitly stated in the request by the user, the Cryptodev layer allocates its

own kernel memory, and maps this to the calling process’ VMA. The VMA start

address is the pointer used by the userspace process and is the aforementioned

app ptr. The OCF uses the app ptr and map ptr to add a memory map to the

appropriate “USpace” as shown in Figure 7.5. We illustrate an example of a

userspace process allocation request to the GPU in Figure 7.6. We can see six

cases of mode switch between user and kernel mode; four of them involve the

added trip out of and back into the kernel due to userspace CUDA calls. Here

we have highlighted mode switch 1 and 2. The above explains the mapping of

kernel memory to userspace memory to eliminate a potential memory copy at

mode switch 1. We discuss the GPU driver part of the new memory manage-

ment system, which eliminates the copy at mode switch 2 in Section 7.2.3. The

153

Figure 7.6: New OCF Memory Allocation: Cryptodev to GPU.

remaining mode switch is handled internally by the CUDA runtime.

Userspace, fork: On fork, a child process will have shared access to OCF

allocated memory. Allocated memory returned by the OCF is set as always

shared. Supporting private memory by implementing a copy-on-write procedure

or executing a new allocation for each fork were deemed unnecessary consider-

ing that a child process can allocate its own memory. We share the memory

between parent and child by overriding the VMA’s vm open() kernel function,

which is called by the kernel when a new memory reference is created, such as

on fork(). When this function is called, we create a new Cryptodev or Crypto

memory mapping, within a new mapping space representing the process’ new

address space. Note that light-weight processes automatically share allocated

memory as the VMAs of the processes are shared.

Kernelspace, allocation request: A process in kernel mode, or a kernel com-

ponent, requests memory directly from the Crypto layer using the new

crypto alloc() function. This processes the request as above, selecting an ap-

propriate device. However, instead of dealing with a userspace process’ VMA,

the OCF returns a kernelspace pointer, which references the new memory. The

memory returned is not necessarily within the kernel address space, in the case of

the GPU it belongs to the Gpucryptd address space. Thus, the OCF selectively

performs a vmap() to map the memory into the kernel virtual address space if

necessary. The kernelspace pointer returned is the app ptr in this context, and

is used to create a new memory map in the Crypto layer within the kernel space

mappings, see “KSpace” in Figure 7.5.

7.2.2.2 Memory Map Removal

Userspace: A userspace process can free OCF allocated memory by executing

the munmap() Unix command or by terminating. On such an event the kernel

154

Figure 7.7: Crypto and Cryptodev Layers: Memory Mapping Translation Pro-
cess.

calls the vm close() kernel function for the allocated memory’s VMA, which

we have overwritten. If this process is the last to hold an open reference to the

shared memory we issue a free command to the Crypto layer for device allocated

memory or to the Cryptodev layer for Cryptodev allocated memory. After the

memory is freed, the memory map is removed from the appropriate Crypto or

Cryptodev memory map USpace.

Kernelspace: Kernelspace components issue a free directly to the Crypto layer

via the new crypto free() function. Unlike the Cryptodev free process above,

the OCF must ensure that there exists a valid mapping for the kernelspace pointer

for the specified device. If found, a free command is issued to the device driver

and on return the memory mapping is removed from the kernel mapping space,

KSpace.

7.2.2.3 Memory Map Translation

Userspace: All buffer pointers within cryptographic requests received via the

Cryptodev layer interface are processed for potential address translation. First,

the Crytpo layer is called to find a mapping that matches the userspace pointer

(app ptr) and the device specified within the request. This is done by finding

the mapping space corresponding to the calling process using its thread group

ID. Once the space is found we scan for a matching map within the correspond-

ing device list of memory mappings. If a match is found, the device address

(map ptr) recovered replaces the userspace pointer within the cryptographic re-

quest and can be used directly by the device without any copies taking place.

If no match is found, we repeat a similar process for any Cryptodev allocated

155

memory. If still no match is found we default to the original OCF behaviour

of using kmalloc() and the copy from/to user() kernel functions to copy the

userspace buffers into the new kernelspace buffers. Figure 7.7 gives a brief illus-

tration of the interactions between the Crypto and Cryptodev layer during this

translation. The original OCF behaviour should possibly be upgraded to use

the get user pages() call, as in the linux-crypto project, to default to using

direct I/O when no mapping is found thereby eliminating the use of the expen-

sive copy from/to user() kernel functions. The cryptographic request is always

tagged internally to ensure the device driver can detect if a request pointer is a

native device address or a normal kernelspace address.

Kernelspace: Cryptographic requests received via the Crypto kernel interface

undergo a similar procedure as above, except only the kernel mapping space is

searched and only the Crypto memory mappings are searched. Considering that,

as kernel mode processes are trusted, we provide the ability for these processes

to translate the allocated memory before the request is sent to the Crypto layer.

This allows the kernel processes to use native device driver pointers in their re-

quests with tagging thus avoiding translation overhead.

Existing consumers: Care has been taken to ensure legacy consumers can

continue to use the OCF with minimal impact to performance. Regarding cryp-

tographic requests made via the Cryptodev interface, the new memory manage-

ment system will only impose a small translation overhead for userspace applica-

tions not using OCF allocated memory. This overhead consists of the failure to

retrieve a USpace for requests, which is very fast. For processes in kernel mode

using the Crypto layer directly, the overhead depends on how many mappings

are being used by other kernel components, as this determines the size of the

translation search space.

7.2.3 GPU Driver and Daemon

Here we discuss in detail the GPU driver component within the OCF and in

particular its separation into a kernel driver and a userspace daemon. As previ-

ously mentioned this separation is necessary due to the requirement of using a

userspace API to communicate with Nvidia’s GPUs. If Nvidia provided kernel

level access to its device drivers this separation could be avoided, as would the

extra kernel to user mode switches. Figure 7.8 illustrates both the Gpucrypt

driver and Gpucryptd daemon components and an overview of how they cooper-

ate to fulfil the requests delivered by the Crypto layer. This is further discussed

156

Figure 7.8: GPU Driver Gpucrypt and GPU Daemon Gpucryptd.

below.

/dev/gpucrypt: for the purpose of providing a communications channel be-

tween the two components we have created a new OS character device file called

/dev/gpucrypt. On OCF start-up, the Gpucrypt driver module is initialised and

connects itself with the /dev/gpucrypt device file. The Gpucryptd component

can subsequently open this device file and communicate with Gpucrypt via ioctls.

These ioctls are used for initial handshake of Gpucryptd with Gpucrypt when

the daemon sets up shared buffers for use in request processing. It also uses the

interface to send a “ready for work” and “shutdown” signals. When the Gpu-

crypt driver receives these signals it correspondingly registers and unregisters

with the OCF Crypto layer. The /dev/gpucrypt device is most intensively used

to co-ordinate the processing of cryptographic and memory requests. When no

work is available on the request queues, the Gpucryptd daemon calls the driver

to passively wait for more work by putting itself to sleep. Thus, whenever work

is received from the Crypto layer the driver calls wake on the daemon process’

wait queue. Whenever work is finished and requires returning to the driver, the

daemon uses an ioctl to signal that the work is finished, to remove the work from

the queue and to call the Crypto layer for request return. The ioctls are listed

and detailed in Appendix A.2.

Processing Requests: the Gpucrypt driver implements four shared request

queues, one for each type of OCF request supported: symmetric, asymmetric,

alloc and free requests. The advantage of using separate queues for each request

type is that it simplifies queue management. It allows a straightforward group-

ing of cryptographic requests for batching purposes rather than dealing with a

single queue of mixed requests. These queues are allocated by the Gpucryptd

157

daemon at start-up and memory mapped into the Gpucrypt driver, thus allow-

ing efficient transmission of request data. When the Gpucrypt driver receives a

requests from the OCF, it copies all the necessary instructions into the relevant

queue. All pointers used in the requests at this stage have undergone address

translation, and the addresses used within the queue are from the Gpucryptd

daemon address space. Thus, the Gpucryptd daemon does not have to worry

about address mapping, it can treat all pointers as native in a normal manner.

Cryptographic Requests: the Gpucrypt driver supports multi-threaded and

asynchronous cryptographic requests, helping to increase the concurrency of re-

quests on the process queues. Calls from the Crypto layer to process a symmetric

or asymmetric request are returned immediately after the Gpucrypt driver has

queued the request and signalled for the Gpucryptd process to awaken if neces-

sary and process the request. All manipulations of the queues are thread safe.

The only time a cryptographic request blocks is when the corresponding queue

is full. The results of the processed requests are returned asynchronously when

the Gpucryptd daemon issues an ioctl to instruct the driver that it is finished.

This in turn calls the Crypto layer to inform it that the request is finished.

Memory Requests: as with standard memory allocation and free operations,

we have implemented these as blocking requests. Apart from blocking the con-

sumer thread, memory requests do not block any other request from being pro-

cessed within the OCF. Figure 7.6, which served as an example of an OCF alloc

request, can now be discussed in the context of Gpucrypt and Gpucryptd. To

service an allocation request, the Gpucrypt driver first puts the allocation de-

tails on the shared alloc request queue. The Gpucryptd daemon processes this

by executing the cudaMallocHost() function call, which allocates pinned DMA

accelerated memory. The returned address is placed back on the shared request

queue, which is then used by the Gpucrypt driver to access the underlying pages.

On initialisation of the Gpucryptd daemon, it registers with the Gpucrypt driver

its internal task kernel pointer. This is used to retrieve access to the daemon’s

underlying virtual memory areas and pages. A note should be made that the

virtual memory area used to reference the CUDA allocated pages is flagged with

VM IO. Device driver programmers commonly use this flag to prevent memory

from being included in core dumps, however it also has the effect of treating

the memory area as backed by non system RAM. For I/O mapped memory it is

necessary to restrict access to the underlying pages as they don’t exist in RAM,

however in our experience, CUDA only returns RAM backed memory. We must

temporarily disable this flag in order to retrieve the underlying pages, though we

take the precaution of acquiring the Gpucryptd’s memory map semaphore during

158

this period. Our experience is that this technique has successfully returned the

underlying pages to the Crypto layer in all of our tests.

Request Order: maintaining separate shared queues has advantages as stated

above, however it has a disadvantage of not automatically preserving the original

request ordering between the differing types of requests. This can cause faults

when memory requests are run out of order with respect to cryptographic re-

quests. If we solve this problem using a single request queue, then batching is

less effective as the queue requires processing in order. This can lead to memory

requests unnecessarily splitting groups of cryptographic requests. The solution

adopted for this problem was the use of read-write semaphores within the OCF.

We have used a read-write semaphore for each mapping space (i.e. one per con-

sumer process) within the OCF and found the solution to give minimal overhead.

Each cryptographic request is responsible for acquiring a read-write semaphore

for reading if a memory translation has occurred and releasing the semaphore on

request completion. Each memory request must acquire a read-write semaphore

for writing, which ensures the memory request is the only request for the con-

sumer process within the OCF pipeline. This ensures that any translations that

were valid at the start of the processing of request, remain so until the end. The

use of read-write semaphores as opposed to normal semaphores allows the most

common type of request, i.e. cryptographic requests, that share a mapping space

to exist concurrently within the OCF pipeline. Also if no memory translation

is used, e.g. legacy consumer processes, then no semaphores are used as in the

original OCF.

Driver Removal: a driver can be removed at any time, and thus we must

deal with the case of allocated memory when such an event occurs. Requests

can be migrated to another device by the OCF and thus memory allocated for

one device can be sent to another device. The Cryptodev layer sees this event

as a failed translation and defaults to copying the memory from the userspace

process, thus the requests will continue to proceed, however at a slower pace.

To avoid this slow down the consumer process must monitor the requests for a

change in device used and if a change occurs the OCF allocated memory should

be freed and allocated again by the new device. If no OCF allocated memory

is used then no action is required. Note that even though the device may have

freed the memory, its pages are kept alive due to the consumer process’ reference.

Requests sent directly to the Crypto layer will also fail the translation stage and

the memory will be treated as a standard kernelspace memory pointer. Again

159

the kernel consumer thread must monitor requests for changes in the device used

and reallocate memory when this occurs.

7.2.4 Security

We look at each of the changes made to the OCF in terms of their security

implications. The new memory allocation functionality requires that all mem-

ory returned is automatically zeroed to protect from leaking information. The

use of memory translation for userspace requests bypasses the need for the

copy to/from user() kernel functions. These kernel functions perform impor-

tant validation, ensuring that the addresses are part of the calling process’ ad-

dress space. We ensure that this validation is maintained by only searching for

translations within a mapping space which is indexed by the thread group ID.

This combined with the fact that the mappings within the space only contain

userspace pointers, which are generated by the kernel on behalf of the process,

ensure that any match found during translation are valid userspace addresses

for that process. During translation we also check the size of the buffers spec-

ified within the cryptographic requests, to ensure no buffer overflow will occur.

Regarding the Gpucrypt driver, it must be ensured that the /dev/gpucrypt file

is accessible by the root user only. If this is not the case, then any userspace

program may connect to the Gpucrypt driver and receive OCF cryptographic

requests.

7.3 Concurrent Request Processing

7.3.1 Symmetric Request Batching

Symmetric-key request batching has already been covered via a runtime com-

ponent in Chapter 5 and is not discussed further in the context of the OCF.

However, it is worth noting that the OCF API model is based on separate stor-

age of data and keys, and so does not immediately suit the payload data model.

This leads to the requirement of a new API, or a modification of the current

one to include such a concept and is left for future work. Also of note, and not

covered previously, is that apart from the overheads shown in Chapter 5, e.g.

the direction of threads via a generic mapping layer and mode of operation type,

there is a consideration of OS process switching. As we will see in Section 7.4.2,

the OS process switching overhead in a multithreaded environment can become

a limiting factor in request queue filling, and thus a factor in GPU throughput.

160

7.3.2 Asymmetric Request Batching

The OCF is more suitable to the batching of asymmetric-key requests than

symmetric-key requests. This is due to the lack of sensitivity of throughput

rates to data movement, i.e. asymmetric-key requests have a high arithmetic

intensity. Thus, we can use the OCF’s existing API for asymmetric requests

and flexibly pre-process the input data to suit the GPU. We present a mapping

layer in which threads can process multiple different requests in a general man-

ner, similar to the symmetric mapping layer in Section 5.3.2. We also include a

selection of input data pre-processing methods, which the OCF performs, that

significantly affect the final GPU throughput.

Single Request: Currently the OCF does not support a method of execut-

ing more than one asymmetric cryptographic operation within a single request.

The framework does provides the ability to chain multiple requests with a link

list. This gives the ability to send in a single call multiple requests to the Crypto

or Cryptodev layer. We have made a small change to the OCF API to allow

the request’s input buffers to contain multiple instances of its input vectors.

For example, in relation to modular exponentiation, this permits a request to

contain multiple bases for each exponent/modulus pair (analogous to multiple

messages per key). Although only giving a slight performance improvement, it

simplifies the process for clients to send multiple requests with a single key. We

are reluctant to make any modifications to existing API structures for reasons of

compatibility with existing applications, thus this change is suggestive and can

be safely omitted if compatibility is required.

General Purpose Request Batching: We have based our asymmetric-key

implementation on the serial radix algorithm for CRT modular exponentiation

suitable for RSA-1024 presented within Chapter 6. This involves spawning a

new CUDA thread to handle the exponentiation of each base. As there can be

multiple bases per request, and one thread per base, we require a mechanism

that allows each thread to dynamically discover its request data. We must also

take into consideration that the base, modulus and exponent for each operation

is split into two, due to the CRT technique. Recall that this involves using the

prime factors p and q of the modulus n to generate smaller pairs of bases, mod p

and q, and smaller pairs of exponents, mod p− 1 and q − 1.

Figure 7.9 illustrates the mechanism used to direct the threads to their corre-

sponding data. As in Chapter 5, we direct all even numbered CUDA blocks to p

related data and all odd CUDA blocks to q related data. The base data is config-

161

Figure 7.9: Mechanism for Processing Multiple Distinct Asymmetric-Key Re-
quests.

ured in a manner so that each CUDA thread can simply scale their global thread

ID to find the offset of their base data. During the preprocessing stage (dis-

cussed next), we generate a message to request index, labelled Msg2ReqIndex.

This index is used to translate the message number, i.e. the base number within

the full batch of requests, to the OCF request number. The request number is

used to generate an offset into the modulus, exponent and related per request

data. In the figure we can see that the modulus, exponent and related data is

split into two groups. This allows a simple conditional addition of a single offset

to the request offset to direct a thread to the p or q related data depending on

whether the CUDA block is odd or even.

Request Preprocessing: The Gpucryptd daemon can have access to multiple

asymmetric requests at any one time. The GPU’s processing performance of

these requests can depend greatly on the order in which they appear within the

GPU buffers. Concerning an efficient modular exponentiation implementation,

the code path taken is largely dependent on the exponent. When the GPU exe-

cutes modular exponentiations with different exponents within the same CUDA

warp, we experience thread divergence and a cost is incurred. This is because

of having to execute the separate code paths serially rather than concurrently.

The more varied the exponents within a warp, the higher the warp cost, and

thus the higher the CUDA block cost, up to a limit. We have measured the

different warp costs for a GPU execution of a modular exponentiation in various

divergent scenarios and the cost ranges between 1 and 2.5, where 1 is equal to

the minimum run time of a non-divergent modular exponentiation. Ideally we

162

would be able to efficiently take any array of varying sized and keyed requests

and reorder them to derive the minimum total cost, or runtime.

We can draw a loose analogy between this problem and the perfect packing

version of the 2-dimensional strip packing problem [108]. If we let the cost of

each CUDA block become the height of an object, the width of the object is 1

and the width of the container is the number of available SMs, then we wish

to minimise the height of the container holding all the objects. The analogy is

not exact as we also have the added complexity that the height of each object,

i.e. the CUDA block cost, can vary depending on how requests are ordered. To

find the optimal solution to this is computationally impractical. However, we

can use heuristics to arrive at a reasonable solution. If we first consider that the

block cost increases whenever an exponent changes within the array of requests,

we should sort all requests according to their exponent, thus creating a list of

non-divergent groups of requests. We perform this sort by an approximation,

using only the first integer of the exponent, giving a good accuracy/efficiency

trade off. We label this approach as “1 pass”.

We do not have control over the order in which the Nvidia driver chooses its

CUDA blocks for execution when an SM becomes free, however it is reasonable

to assume it follows a first fit approach, i.e. whenever an SM is free it takes

the next lowest block by ID and assigns it to the SM. A reasonable close to

optimal approach to solving the strip packing problem is to use the first fit

descending heuristic. We follow this heuristic by sorting the non-divergent groups

in increasing order of the number of operations within each group. This ensures

that the most costly CUDA blocks occur in the lower block IDs. We call this

approach “2 pass” as it involves the 1 pass sort above and an extra sort.

Both the 1 and 2 pass techniques are contrasted with no sorting (0 pass) in

various scenarios in Figure 7.10. The scenarios are run outside of the OCF as

they concern modular exponentiation batching on the GPU in general and not

just in the context of the framework. The tests consisted of sending multiple

requests to the GPU for concurrent execution. The size of each request within

each test was randomly chosen in a guided manner. The “Large” tests restricted

the sizes of the requests (the number of bases per request) to be high, typically

100-300; the “Small” tests contained only small requests, typically 1-10; and

the “Mixed” tests contained a random mixture of large and small request sizes.

Each test was run with a varying probability for each request to be followed by a

request with the same exponent and modulus, i.e. the same key. This is labelled

“Collision Probability”, with 1 meaning all requests are using the same key and

1/512 meaning a 1 in 512 chance of two requests chosen at random from the

163

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

M
es

sa
ge

s
P

ro
ce

ss
ed

 P
er

 S
ec

on
d

Collision Probability

0 Pass Large
1 Pass Large
2 Pass Large
0 Pass Mixed
1 Pass Mixed
2 Pass Mixed
0 Pass Small
1 Pass Small
2 Pass Small

Figure 7.10: Comparison of Pre-processing techniques for RSA-1024 Request
Batching.

test having the same key. This collision probability simulates a multithreaded

environment sending requests to the OCF with differing numbers of system wide

keys.

Figure 7.10 presents the relative performance of the 0, 1 and 2 pass techniques

within each scenario. It can be seen that the 0 pass approach underperforms in

all scenarios. The 1 and 2 pass techniques mostly perform the same with a

general slight overhead noticeable for the 2 pass approach. The 2 pass approach

substantially outperforms the 1 pass approach when the collision probability is

low and there is a mix of request sizes. The performance improvement of 2

pass at a collision probability of 1/512 is 24%. Small requests are more costly

than large requests as the rate of change of the exponent is higher. These small

messages when mixed randomly between lower cost large requests, form a layer

of thinly distributed costly warps. It is beneficial to move these costly small

requests into a small number of high cost blocks as the block costs converge on a

relatively small overhead. This increases the number of low cost blocks that can

run concurrently and finish while the high costs blocks complete. We recommend

the use of this 2 pass approach due to its better performance in this scenario and

relatively small overhead in the general case.

164

Figure 7.11: Performance of GPU accelerated AES using the OCF.

7.3.3 Request Pipelining

In the scenario where we have multiple cryptographic requests outstanding on

the Gpucryptd daemon queue, we have the opportunity to split the processing

and return of requests into two concurrent operations. The CUDA API allows

for the execution of a kernel on the GPU asynchronously. The Gpucryptd dae-

mon permits both asymmetric and symmetric CUDA modules (see Figure 7.8) to

retrieve more requests from the queue without returning. The daemon also sup-

ports callbacks to return completed requests. This allows the Gpycryptd daemon

to delegate the flow control of request retrieval and request return to the cryp-

tographic modules. Thus, when implementing a cryptographic algorithm for the

GPU, it is straight forward to overlap the return of previously completed requests

with the execution of the next requests. We present the effects of pipelining in

Section 7.4.1.

7.4 Performance

7.4.1 Symmetric-Key Performance

To analyse the overhead of using the OCF for symmetric-key performance, we

use an AES module based on the peak performance implementation presented in

Section 5.1.3 combined with OCF symmetric-key requests. Figure 7.11 shows the

performance of AES when operating on different sized buffers with and without

going through the OCF. The non-OCF version of the implementation running in

ECB mode, is labelled as “Standalone”. We compare this standalone version to

165

four other tests. Two tests were performed using normal userspace processes to

initiate the requests and thus go via the Cryptodev layer of the OCF, labelled as

“Cryptodev with/without MM”. The remaining two tests were performed using

a kernel thread which initiated the requests directly via the Crypto layer of the

OCF, labelled “Crypto with/without MM”. The “with MM” and “without MM”

tags, refer to variants of the tests whereby we either include our new memory

management system or use the original OCF memory management respectively.

We can see that the two tests which use the OCF and the new memory

management system, perform with a small overhead compared to the standalone

version. Based on the Cryptodev interface, the average percentage overhead

of using the OCF is 3.4%, with a range of 9.3% for the smallest request buffers

through to 0.2% for the largest buffers. The spread in overhead percentage is due

to the smaller request buffers requiring more calls through the OCF to perform

the same amount of processing compared with larger request buffers. Although

it cannot be seen here, there is a slight advantage to executing the cryptographic

requests from the kernel as the Cryptodev layer overhead is removed.

The two tests, which are performed without the new memory management

system, experience a substantial reduction in performance as the buffer sizes

increase. This is due to having to perform extra memory copies for each transi-

tion between address spaces. The shape of the graphs can be understood when

compared to Figure 7.4. The reason for “Crypto without MM” outperform-

ing “Cryptodev without MM”, is that the direct calls to the Crypto layer from

kernelspace eliminates one of the address space transitions, thus reducing the

number of memory copies performed. The reason for ”Crypto without MM” not

covering the full range of buffer sizes is that it hits the default maximum vmap()

limit in the kernel. ”Cryptodev without MM” is also limited in the buffer sizes

used due to the original limit imposed by the OCF. These limits can be removed,

though the results show little difference.

Figure 7.12 is used to investigate both multithread scalability and pipelin-

ing, as discussed in Section 7.3.3, for symmetric-key processing on the GPU.

The “Single Thread” test is the same as “Standalone” in Figure 7.11, involv-

ing multiple iterations of symmetric-key requests with varying buffer sizes. The

multithreaded tests consist of executing the same amount of operations as the

Single Thread test, using the same sized requests, however the requests are split

across 20 threads. One of the multithreaded test runs using the previously men-

tioned request pipelining, and the other without. Note that the multiple threads

referred to are the consumer threads making requests to the OCF, the Gpu-

cryptd daemon itself remains a single thread. It can be seen at small buffer sizes

166

Figure 7.12: Multithreaded performance of GPU accelerated AES using the OCF.

Figure 7.13: Performance of GPU accelerated RSA-1024 using the OCF.

that the multithreaded scenario using the pipeline slightly out performs the sce-

nario without pipeline use. It achieves this improvement from asynchronously

returning request results, thus hiding (or partially hiding) the return cost to the

consumer. Both of the multithreaded tests taper prematurely in performance as

the buffer size increases. This is presumed to be due to the multithread version

of these tests requiring 20 times more active memory at any one time than the

single thread version. Thus the performance degrades due to increased pressure

on system memory.

167

Figure 7.14: Concurrency and GPU accelerated RSA-1024 using the OCF.

7.4.2 Asymmetric-Key Performance

For our tests of asymmetric-key performance we use OCF asymmetric-key re-

quests in combination with a CUDA module based on the peak performance

modular exponentiation approach for RSA-1024 presented in Chapter 6. Fig-

ure 7.13 shows a comparison of running a standalone version of this implementa-

tion and using the implementation via the OCF Cryptodev layer from a userspace

process. We can see here that there is no discernible difference in performance, in

fact it is difficult to see there are two plotted graphs in the figure. This is due to

the high arithmetic intensity inherent in the modular exponentiation algorithm

and thus the OCF overhead is relatively quite small. The average percentage

overhead of using the OCF via the Cryptodev interface compared to the stan-

dalone version is 0.4%, with a range of 0.6% for the smallest number of messages

per request to 0.1% for the largest. A related point is that we have performed

these tests with and without the new memory management system and also with

and without pipelining as in the symmetric-key tests above. The results were in-

distinguishable from the standalone version due to the small overhead associated

with data transfer through the OCF compared to the work done on the GPU.

Figure 7.14 illustrates the behaviour of the OCF when processing multiple

asymmetric-key requests with the same key concurrently. We achieve concur-

rency by using multiple threads via the Cryptodev interface. As it is a blocking

interface there is no other way a userspace thread can achieve concurrency. We

also test concurrency via direct kernel calls to the Crypto layer, which per-

mits asynchronous request execution. This permits multiple outstanding re-

quests within the Gpucrypt request queue at one time using a single kernel

168

thread. The “Concurrency Level” label in the figure refers to either the number

of threads (Cryptodev test) or the number of concurrent requests sent asyn-

chronously (Crypto test). All tests, both multithreaded and single threaded,

perform the same total number of asymmetric operations. Thus, as the concur-

rency increases the number of messages per request decreases, shown in brackets

on the x-axis. We have highlighted the performance improvement when pro-

cessing requests consisting of 112 primitives concurrently versus serially. This

improvement is due to the use of batching as described in Section 7.3.2. From

Figure 7.14 we can also see that the multithreaded tests lose performance as the

concurrency level increases. The main reason for this performance degradation

is the inability to maintain an occupied GPU. In the tests, as the concurrency

increases the request sizes decrease, the OS has a harder time to deliver suf-

ficient numbers of requests to the queue for batching due to process switching

overheads. This relates to the reason the Crypto test outperforms the Cryptodev

test. The OS does not have to reschedule processes as frequently to deliver the

same amount of data to the GPU.

7.5 Conclusions

We have seen that the GPU can be effectively integrated into the OCF with

careful design of a driver consisting of a kernelspace OCF driver and a userspace

daemon. The chapter shows that there is an average overhead of 3.4% when

using the OCF for AES over a standalone implementation. In the context of

RSA-1024 we see that there is a very low 0.3% average overhead when compared

to a standalone version. A new memory management system within the OCF

was shown to be critical in maintaining this performance for symmetric-key op-

erations. Without its use we see a drop in performance of over 50% when using

the OCF’s kernelspace Crypto interface, and over a 70% drop via the OCF’s

userspace Cryptodev interface.

We presented a new general purpose mechanism for processing multiple

asymmetric-key requests on the GPU and found that the preprocessing of mixed

key requests is crucial to maintaining performance. We have also shown the ef-

fectiveness of integrating this mechanism as part of the OCF and its use within

multithreaded and asynchronous scenarios. The most important factor regard-

ing performance in these scenarios is the ability of the OS to schedule multiple

threads efficiently so as to provide enough work for the GPU to reach peak per-

formance. We have seen that GPU accelerated cryptographic functions can be

made available in a uniform manner to all OS components, both in-kernel and

169

userspace, via the OCF without excessive overhead.

170

Chapter 8

Review and Outlook

The aim of this thesis was to investigate the feasibility and performance of us-

ing commodity graphics processors for the execution of cryptographic functions.

We have seen that it is possible to use standard off-the-shelf GPUs to provide

significant performance improvements over CPUs for both symmetric-key and

asymmetric-key algorithms. However, we have also seen that such improvements

are not applicable to all cryptographic scenarios. The GPU presents a number of

obstacles to achieving high performance. The majority of the work in this thesis

has been concerned with implementation techniques that minimise the effect of

these obstacles, and the highlighting of the cryptographic scenarios that reduce

the exposure to these obstacles. The following is a summary of the conclusions

reached in each of the chapters. Afterwards we present thoughts on broader im-

plications, which we hope are relevant to cryptography in the context of future

generations of highly parallel devices similar to the GPU.

Appendix B.2 lists the disparity between system bus (CPU to GPU) band-

width and the on-board bandwidth between the GPU and device memory. For ex-

ample, the GeForce 8800GTX has 86.4GB/s device memory bandwidth, whereas

the PCIe system bus has a peak bandwidth of 4GB/s. In Chapter 3 we point out

that the relatively slow system bus speeds is one of the main GPU performance

bottlenecks for applications that require large amounts of data transfer. We have

seen that efficient data transfer across the system bus is critical to performance

for symmetric-key processing. Chapter 3 discusses the relatively straightforward

manner in achieving maximum system bus transfer rates for DX10 GPUs via

CUDA. However, when using DX9 GPUs via OpenGL, it is necessary to inter-

act with a complex array of configuration states that can affect transfer rates

in unpredictable ways. We introduced two new tools that can be used to in-

vestigate this array of configuration states. Using these tools, we outline the

numerous pitfalls that can lead to transfer rate reduction through slight miscon-

171

figuration of the OpenGL pipeline. The tools can also be used to investigate

the asynchronous efficiency of data readback from the GPU to the CPU. We

present the many pitfalls where configuration states can unexpectedly disable

asynchronous readbacks or diminish asynchronous readback efficiency. These

tools were used to minimising the data transfer bottleneck in all of the presented

DX9 symmetric-key implementations.

Chapter 4 presents a number of AES implementations on DirectX 9 hard-

ware using OpenGL. One of the main bottlenecks to AES performance on DX9

hardware is texture access rates. Two types of texture lookups are used, one

for assisting in the execution of an optimised AES approach, and one for sim-

ulating XOR operations. The second type is used because XOR operations are

not supported by the programmable units within DX9 GPUs. We presented

two approaches to simulate the XOR operation using 8-bit and 4-bit lookups

from pregenerated tables. We can avoid the use of these lookup tables if XOR

is performed in the ROP stage of the pipeline. However, using the ROP stage

requires one pipeline pass per XOR. Our results show that the overhead of multi-

ple pipeline passes per AES block is a lot less than using table lookups. Texture

lookups are the primary bottleneck to performance of AES, even when the ROP

XOR approach is used. The presented implementations are I/O bound as the

addition of a small number of extra arithmetic instructions has no effect on

the throughput rate, meaning that the kernel programs are blocked on memory

access.

The fastest AES approach uses the ROP XOR technique, and gives a peak

throughput rate of 870Mb/s on a GeForce 7900GT. This implementation was the

first demonstration of AES, or any symmetric-key algorithm, on DX9 hardware

with similar speeds to the traditional CPU. We show that a large payload size

is required to reach this peak performance. This reduces the applicability of the

GPU to latency insensitive applications. The chapter also discussed a previously

reported issue of an OpenGL based AES implementation consuming 100% of

CPU cycles while processing on the GPU. This is of concern if the GPU is to be

used as a cryptographic co-processor. We show that for our fastest ROP based

AES implementation, ∼75% of the CPU cycles are free to execute other work

while the GPU is executing.

Chapter 5 shows that AES can execute efficiently on DirectX 10 hardware

using CUDA. A number of different AES implementations are explored, with

an approach based on multiple lookup tables residing in shared memory proving

the fastest. Using the CRT mode of operation, the implementation achieved a

throughput rate of 7,234Mb/s, and 17,571Mb/s without data transfer across the

172

system bus. These are the fastest AES rates reported on a GPU. Comparing to

a similar era CPU, the GPU implementation provides a ∼2.5x and ∼6x increase

in performance with and without data transfer respectively. In comparison with

the next fastest GPU based AES implementation, we see a ∼2x increase in

performance. The speed improvement over the DX9 generation of GPUs is in

the order of ∼8 times. Again, we see the need for large payloads of data in the

range of 256KB to 512KB before throughput rates approach peak performance.

Many cryptographic applications use much smaller buffer sizes and as such do

not suit direct offload to the GPU unless multiple such buffers can be batched

together efficiently. Another concern is that some security protocols use serial

modes of operation, such as IPSec and CBC. We have shown the GPU can

implement serial modes, however one thread is responsible for the processing

of a full message. As such, the requirement for multiple messages, and large

payloads, is even more applicable than when executing parallel modes.

The peak throughput rates reported in this chapter are based on an optimised

implementation of AES. That is, with many hardcoded assumptions such as data

location, data size, cryptographic algorithm used, single message, single key, etc.

We introduce a data model and a serialisation approach, which generates data

streams representing meta data for symmetric-key processing, suitable for offload

to the GPU. Using this data model, serialisation and a mapping scheme we can

use the GPU via a cryptographic API in a practical context. This abstraction

layer incurs a performance overhead of 16% to 45% compared to the optimised

implementation. The higher the message count and the smaller the message size

within a payload, the more expensive the overhead is. The main cause of this

overhead is an index and descriptor stream generation and lookup. These support

the mapping between threads and associated data and processing instructions.

An increase in message count sees an increase in index and descriptor stream size,

which reduces the effectiveness of the on-chip caches. Also presented in Chapter 5

is an analysis of the execution of different modes of operation. The ordering

of serial and parallel mode message execution within a payload is important

with regard to processing performance. This is illustrated by a comparison of

different message arrangements, which shows that careful ordering results in large

performance improvements over random ordering.

Chapter 6 presents a number of successful implementations of large integer

modular exponentiation on DirectX 10 hardware suitable for asymmetric-key al-

gorithms. The two main categories of techniques we employed were based on

different number representation systems, radix and RNS. In comparison with a

CPU implementation of RSA-1024, we see a ∼4x and ∼2.6x performance im-

173

provement for the peak radix and RNS based approaches respectively. The re-

curring constraint of high data amounts is also applicable to these results. Using

the same CPU comparison, the RNS approach requires 32 messages per pay-

load to be faster, whereas the radix approach requires 256 messages per payload.

RNS proves faster at reduced data sizes due to its increased parallelism. The

RNS approach presented, splits RSA-1024 across 34 threads, whereas the fastest

radix approach is split across just two threads. An increase in parallelism for

the radix based approach was investigated. We distributed the work across 32

threads, however at no payload size point did this approach prove faster than

either the RNS or serial radix approaches. For best modular exponentiation per-

formance on the GPU an adaptive approach should be used, whereby smaller

payload sizes use an RNS implementation and larger payload sizes transition to

a radix implementation.

The effect of using multiple different keys within a payload was analysed

in the context of RSA-1024 and the peak RNS and radix based approaches. To

achieve peak performance, assuming sufficient data is available, it was determined

that the key should change at a maximum rate of once per 15 messages when

using the RNS based approach and once per 32 messages when using the radix

based approach. These restrictions are due to the underlying SIMD architecture

and the synchronisation functionality of the GPU. In general, the GPU based

implementations of modular exponentiation are bound by the speed of device

memory read and writes. In the context of the RNS approach, we presented

multiple attempts to improve the rate of single-precision modular arithmetic due

to the slow speed of integer divide execution on the GPU. Also, in the context

of the radix approach, one of the main performance issues is the slow integer

multiply operation, taking 4 times the number of cycles as floating point multiply.

These factors may improve in the future, however the GPU is primarily a graphics

acceleration device and as such focuses the transistor budget on efficient floating

point operation. Perhaps with the growth in GPGPU popularity we will see an

increase in integer efficiency within these devices.

We saw the successful integration of the peak AES and RSA implementations

presented in previous chapters as part of an operating system service in Chap-

ter 7. The implementations were integrated into the OpenBSD Cryptographic

Framework, an established OS virtualisation layer used to abstract users from

cryptographic implementations, both software and hardware. This integration

allows transparent use of GPU implementations by both kernelspace compo-

nents and userspace applications. One of the main stumbling blocks with the

integration is that CUDA is a userspace runtime library, and as such cannot be

174

interacted with directly from kernelspace. We implemented a kernelspace driver

and userspace daemon pair to provide a mechanism for the kernel to “request”

processing from CUDA. The OCF performs poorly when processing large buffers

due to memory copy costs. To remove this cost, we implemented a new memory

management system within the OCF to eliminate all memory copies. This is

an important improvement for the GPU, which would otherwise incur multiple

memory copies between address spaces. In comparison to the optimised AES and

RSA implementations, the OCF integrated versions result in an average overhead

of 3.4% for AES and 0.3% for RSA. Also shown in this chapter was the integra-

tion of a new general purpose mechanism for processing multiple asymmetric-key

requests on the GPU with the OCF. The ordering of mixed key requests is shown

to be important to performance. Also highlighted was the significant impact of

OS thread scheduling efficiency on performance with regard to multithreaded

and asynchronous client requests.

8.1 General Lessons

The GPU can be viewed as an example of a highly parallel processor for general

purpose computation, and as such some of the conclusions related to this work

can be seen as being applicable to similar devices. We can view the following

conclusions as applicable to current highly parallel devices as well as to future

highly parallel devices, such as future GPU architectures. We have seen a con-

stant pressure to maintain a high occupancy on the GPU. A failure to do so

results in substantial performance loss. Regarding similar highly parallel proces-

sors, occupancy will continue to be a concern and affecting their suitability to

general problems. One of the main criteria for high cryptographic throughput on

the GPU is the processing of large numbers of blocks or messages for each kernel

execution. In data parallel processing, the number of data elements largely de-

termines the number of active threads. Also, in highly parallel devices the ALUs

are generally simplified. It follows that this type of device relies on both a high

arithmetic intensity and a high number of threads for memory latency hiding. As

such, for highly parallel devices in general, we expect their ability to out-perform

standard CPU implementations to be dependant on scenarios that require bulk

cryptographic processing. We expect that symmetric-key and asymmetric-key

processing performance on highly parallel devices will produce throughput rates

dependent on payload size as has been presented in the figures throughout this

thesis.

A technique used to increase the computational density of an architecture is

175

to use a SIMD or vector design, where a single instruction is issued to a group

of simple execution units. This approach is commonly used in the design of

highly parallel devices. Nvidia DX10 GPUs, as we have seen, use 8-wide SIMD

multiprocessors, with the same instruction issued to each of the 8 ALUs for 4

consecutive cycles. AMD’s first DX10 GPU uses 16-wide SIMD clusters, where

each cluster processes a 5-wide very long instruction word instructions. Intel’s

Larrabee is based around a 16-wide vector processing unit. We have seen the

issues this wide processing width can have on performance. If thread branching

occurs within a thread group, the group size tending to relate to the vector or

SIMD width, the processor can suffer from occupancy problems where processing

units are left idle. Relating to asymmetric-key processing, this occupancy issue

occurs when a key is changed within a payload. The exponent determines the

flow of control, thus different exponents can cause thread divergence. We have

also seen this for symmetric-key processing when serial and parallel modes of

operations are mixed, or when serial mode messages of different sizes are mixed.

The conclusions drawn in this thesis regarding key change, message sorting and

thread mapping for efficient cryptographic processing are expected to be relevant

to similar highly parallel processors.

We have seen that thread synchronisation presents a functional restriction on

the key change rate supported for RSA. This is due to a general problem related

to branching within a group of co-operating threads. If threads are to co-operate

as a group, the group size tending to relate to the underlying hardware, some

form of synchronisation barrier is required at which point all threads wait to

proceed. However, if some threads within the group branch and never reach

such a synchronisation barrier, unexpected results may occur. It is likely that

highly parallel processors will provide some form of synchronisation mechanism

between threads and will run into a similar issue regarding multiple key support.

Also, throughout this research we have endeavoured to make efficient use of

scarce per-thread on-chip memory, for example, the use of a compressed index

for general symmetric-key mapping. Similar memory restrictions are likely on

other highly parallel devices and as such careful on-chip memory use will continue

to be an area of optimisation. In general, it is expected that for payloads with

small amounts of cryptographic work, or those with a high rate of key change

for asymmetric-key work, the traditional CPU will continue to perform best.

However, in terms of relatively large and homogeneous cryptographic workloads,

the best performance is likely to continue to be found on the GPU and other

highly parallel processors.

176

8.2 Future Work

It would be of interest to implement AES and RSA on new and upcoming ar-

chitectures. AMD have recently released the first DX11 compliant GPU. As of

yet there are no cryptographic implementations using the Stream SDK, AMD’s

CUDA equivalent. Also of interest would be an investigation into the new

OpenCL [56] standard. This standard is a vendor neutral approach for par-

allel programming on heterogeneous platforms. AMD GPUs, Nvidia GPUs, and

Intel’s Larrabee, currently do, or shortly will, support OpenCL. While cryp-

tographic implementations based on OpenCL are preferable to developing and

maintaining per vendor implementations, the performance overhead of being ven-

dor neutral needs to be gauged. Another architectural improvement of note is

the upcoming native AES instructions part of Intel’s Advanced Vector Exten-

sions [49]. Informal reports suggest that a performance improvement of 3x is

expected over an equivalent CPU without such instructions.

An investigation is required into the suitability of using the GPU in security

sensitive contexts. Possible attacks and best practices for secure use should be

detailed. For example, CUDA provides a unique memory space for each thread

executing kernel calls. The robustness of using this for memory protection in the

context of all the GPU access methods should be explored. The work presented

in this thesis has only considered the feasibility and performance issues related

to accelerating cryptographic functions. Until a security analysis is performed,

it can only be recommended that the GPU be used within a trusted computing

context where untrusted users do not have access to the system.

Future work specific to symmetric-key cryptography on the GPU includes an

investigation into authenticated encryption modes of operation. This is expected

to draw similar conclusions to the modes analysis in Chapter 5, as the authenti-

cated encryption modes largely divide into parallel (e.g. GCM [68], CWC [59])

and serial (e.g. CCM [126], EAX [6]) approaches. Regarding asymmetric-key

cryptography it would be interesting to see the scalability of the RSA implemen-

tations for larger key sizes, such as 2048 or 4096-bit, in light of the increase of

certain on-chip memory resources in newer GPUs. Finally, an ongoing observa-

tion should be made regarding the gap in performance between the CPU and

GPU. Recently this performance gap appears to be widening in favour of the

GPU. Benchmarking the presented implementations on newer GPUs and CPUs

would help confirm, in a cryptographic context, whether this performance trend

is continuing or is the increase in CPU cores negating this difference.

177

Bibliography

[1] AMD. ATI CTM Guide: Technical Reference Manual, Version 1.01.

http://ati.amd.com/companyinfo/researcher/documents/

ATI CTM Guide.pdf.

[2] AMD. ATI Stream Technology.

http://www.amd.com/stream.

[3] AMD. Fusion Project.

http://fusion.amd.com/.

[4] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-

toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,

V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks.

Technical report, NASA Ames Research Center, Moffett Field, CA, USA,

March 1994. RNR Technical Report RNR-94-007.

[5] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption - How to

Encrypt with RSA. In International Conference on Advances in Cryptology

- Eurocrypt, pages 92–111, Saint-Malo, France, May 1995. Springer.

[6] M. Bellare, P. Rogaway, and D. Wagner. A conventional authenticated-

encryption mode, September 2003.

[7] D. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM

on Graphics Cards. In International Conference on Advances in Cryptology

- Eurocrypt, pages 483–501, Cologne, Germany, April 2009. Springer.

[8] E. Biham. A Fast New DES Implementation in Software. In Fast Software

Encryption, pages 260–272, Haifa, Israel, January 1997. Springer.

[9] I. Blake, G. Seroussi, and N. Smart, editors. Advances in Elliptic Curve

Cryptography. Second Edition. Cambridge University Press, 2005.

178

[10] D. Blythe. The Direct 3D 10 System. ACM Transactions on Graphics,

25(3):724–734, July 2006.

[11] A. Boeing. Survey and future trends of efficient cryptographic function

implementations on GPGPUs. In Australian Digital Forensics Conference,

pages 59–69, Perth, Western Australia, December 2008. Security Research

Centre, Edith Cowan University.

[12] I. Buck. Data Parallel Computing on Graphics Hardware. In Siggraph:

Graphics Hardware Panel, San Diego, USA, July 2003.

http://graphics.stanford.edu/∼ianbuck/GH03 datapargfx.pdf.

[13] I. Buck, K. Fatahalian, and P. Hanrahan. Gpubench: Evaluating gpu

performance for numerical and scientific applications. In ACM Workshop

on General Purpose Computing on Graphics Processors (Poster Session),

LA, USA, August 2004. ACM.

[14] D. Cook, R. Baratto, and A. Keromytis. Remotely Keyed Cryptographics

Secure Remote Display Access Using (Mostly) Untrusted Hardware. In

ICICS05 Conference Proceedings, pages 363–375, Beijing, China, December

2005. Springer.

[15] D. Cook, J. Ioannidis, A. Keromytis, and J. Luck. CryptoGraphics: Secret

Key Cryptography Using Graphics Cards. In RSA Conference, Cryptogra-

pher’s Track (CT-RSA), pages 334–350, San Francisco, CA, USA, February

2005. Springer.

[16] N. Costigan and P. Schwabe. Fast Elliptic-Curve Cryptography on the

Cell Broadband Engine. In AFRICACRYPT: International Conference

on Cryptology in Africa, pages 368–385, Gammarth, Tunisia, June 2009.

Springer-Verlag.

[17] N. Costigan and M. Scott. Accelerating SSL Using the Vector Processors in

IBM’s Cell Broadband Engine for Sony’s PlayStation 3. Cryptology ePrint

Archive, 2007/061, 2007.

[18] S. Coutinho. The Mathematics of Ciphers: Number Theory and RSA Cryp-

tography. A. K. Peters, Ltd., 1999.

[19] Crypto++ Library.

http://www.cryptopp.com/.

179

[20] J. Daemen and V. Rijmen. The Block Cipher Rijndael. In The Interna-

tional Conference on Smart Card Research and Applications, pages 277–

284, Louvain-la-Neuve, Belgium, September 1998.

[21] J. Daemen and V. Rijmen. AES submission document on Rijndael,

Version 2, September 1999.

http://csrc.nist.gov/archive/aes/rijndael/

Rijndael-ammended.pdf.

[22] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans-

actions on Information Theory, 22:644–654, November 1976.

[23] W. Diffie and M. Hellman. Privacy and Authentication: An Introduction

to Cryptography. IEEE, 67(3):397–427, March 1979.

[24] W. Ehrsam, C. Meyer, J. Smith, and W. Tuchman. Message verification

and transmission error detection by block chaining. US Patent 4074066,

February 1978.

[25] H. Feistel. Cryptography and Computer Privacy. Scientific American,

228(5):15–23, May 1973.

[26] M. Feldhofer, K. Lemke, E. Oswald, F.-X. Standaert, T. Wollinger, and

J. Wolkerstorfer. D.VAM.2: State of the Art in Hardware Architec-

tures. ECRYPT: European Network of Excellence in Cryptology, IST-2002-

507932, September 2005.

[27] S. Fleissner. GPU-Accelerated Montgomery Exponentiation. In Inter-

national Conference of Computational Science, pages 213–220, Beijing,

China, May 2007. Springer.

[28] Folding@home Distributed Computing.

http://folding.stanford.edu/.

[29] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol, Version 3.0,

November 1998.

http://www.mozilla.org/projects/security/pki/nss/ssl/.

[30] J. Fung and S. Mann. OpenVIDIA: parallel GPU computer vision. In

ACM International Conference on Multimedia, pages 849–852, New York,

USA, November 2005.

180

[31] H. Garner. The Residue Number System. In IRE-AIEE-ACM ’59 (West-

ern): Papers presented at the western joint computer conference, pages

146–153, San Francisco, California, March 1959. ACM.

[32] GNU Multiple Precision Arithmetic Library.

http://gmplib.org/.

[33] D. Göddeke. GPGPU: Basic Math Tutorial. Technical report, FB Math-

ematik, Universität Dortmund, November 2005. Ergebnisberichte des In-

stituts für Angewandte Mathematik, Nummer 300.

[34] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort:

High performance graphics coprocessor sorting for large database man-

agement. In ACM SIGMOD International Conference on Management of

Data, pages 325–336, Chicago, USA, June 2006.

[35] N. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A Memory Model

for Scientific Algorithms on Graphics Processors. In ACM/IEEE Super-

computing Conference, page 89, Florida, USA, November 2006. ACM.

[36] N. Govindaraju, N. Raghuvanshi, and D. Manocha. Fast and Approximate

Stream Mining of Quantiles and Frequencies Using Graphics Processors. In

ACM SIGMOD International Conference on Management of Data, pages

611–622, New York, USA, June 2005.

[37] GPGPU Online Community.

http://gpgpu.org/.

[38] T. Granlund and P. Montgomery. Division by Invariant Integers using

Multiplication. In Conference on Programming Language Design and Im-

plementation, pages 61–72, Orlando, Florida, June 1994. ACM.

[39] K. Gray. Microsoft DirectX 9 Programmable Graphics Pipeline. Microsoft

Press, 2003.

[40] O. Harrison and J. Waldron. AES Encryption Implementation and Anal-

ysis on Commodity Graphics Processing Units. In CHES: International

Workshop on Cryptographic Hardware and Embedded Systems, pages 209–

226, Vienna, Austria, September 2007. Springer-Verlag.

[41] O. Harrison and J. Waldron. Optimising Data Movement Rates for Parallel

Processing Applications on Graphics Processors. In 25th International

181

Conference on Parallel and Distributed Computing and Networks, pages

251–256, Innsbruck, Austria, February 2007.

[42] O. Harrison and J. Waldron. TransferBench Tool, 2007.

http://www.cs.tcd.ie/∼harrisoo/transferBench/.

[43] O. Harrison and J. Waldron. Practical Symmetric Key Cryptography on

Modern Graphics Hardware. In USENIX Security Symposium, pages 195–

209, San Jose, CA, USA, July 2008. Usenix Association.

[44] O. Harrison and J. Waldron. Efficient Acceleration of Asymmetric Cryp-

tography on Graphics Hardware. In AFRICACRYPT: International Con-

ference on Cryptology in Africa, pages 350–367, Gammarth, Tunisia, June

2009. Springer-Verlag.

[45] O. Harrison and J. Waldron. GPU Accelerated Cryptography as an OS

Service, September 2009.

https://www.cs.tcd.ie/publications/tech-reports/reports.09/

TCD-CS-2009-36.pdf.

[46] O. Harrison and J. Waldron. Public Key Cryptography on Graphics Hard-

ware. In Eurocrypt: Annual International Conference on the Theory and

Applications of Cryptographic Techniques (booklet), pages 65–72, Cologne,

Germany, April 2009.

[47] M. Hill and A. Smith. Evaluating Associativity in CPU Caches. IEEE

Transactions on Computers, 38(12):1612–1630, 1989.

[48] Intel. Accelerated Graphics Port, V3.0, Interface Specification, 2002.

http://download.intel.com/support/motherboards/desktop/sb/

agp30.pdf.

[49] Intel. AVX: New Frontiers in Performance Improvements and Energy

Efficiency, March 2008.

http://software.intel.com/en-us/articles/intel-avx-new-

frontiers-in-performance-improvements-and-energy-efficiency.

[50] N. Jacob and C. Brodley. Offloading IDS Computation to the GPU. In

Annual Computer Security Applications Conference, pages 371–380, Miami

Beach, FL, USA, December 2006. IEEE Publishing.

182

[51] K. Järvinen, M. Tommiska, and J. Skyttä. Comparative Survey of High-

Performance Cryptographic Algorithm Implementations on FPGAs. IEE

Proceedings - Information Security, 152(1):3–12, 2005.

[52] A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by

Automatic Computers. Doklady Akad. Nauk SSSR, 145:293–294, 1962.

[53] S. Kawamura, M. Koike, F. Sano, and A. Shimbo. Cox-Rower Architecture

for Fast Parallel Montgomery Multiplication In Advances in Cryptology.

In International Conference on Advances in Cryptology Eurocrypt, pages

523–538, Bruges, Belgium, May 2000. Springer.

[54] G. Kedem and Y. Ishihara. Brute force attack on UNIX passwords with

SIMD computer. In USENIX Security Symposium, pages 8–8, Washington,

D.C., USA, 1999. USENIX Association.

[55] A. Keromytis, J. Wright, and T. de Raadt. The Design of the OpenBSD

Cryptographic Framework. In USENIX Annual Technical Conference,

pages 181–196, San Antonio, Texas, USA, June 2003. Usenix Association.

[56] Khronos Group. OpenCL - The open standard for parallel programming

of heterogeneous systems.

http://www.khronos.org/opencl/.

[57] D. Kirk and W-m. Hwu. ECE 498 AL: Programming Massively Parallel

Processors. 2009. Chapter 4: CUDA Memories.

[58] D. Knuth. The Art of Computer Programming, Volume 2. Addison-Wesley,

3 edition, 1997.

[59] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conven-

tional authenticated encryption mode, January 2004.

[60] D. Kwon, J. Kim, S. Park, S. H. Sung, Y. Sohn, J. H. Song, Y. Yeom,

E-J. Yoon, S. Lee, J. Lee, S. Chee, D. Han, and J. Hong. New Block

Cipher: ARIA. In International Conference on Information Security and

Cryptology, pages 432–445, Seoul, Korea, November 2003. Springer.

[61] S. Leffler. Cryptographic device support for FreeBSD. In Usenix, BSD

Conference, pages 69–78, San Mateo, California, USA, September 2003.

Usenix Association.

[62] R. Lidl and H. Niederreiter. Introduction to finite fields and their applica-

tions. Revised Edition. Cambridge University Press, 1994.

183

[63] linux-crypto (Crypto API).

http://mail.nl.linux.org/linux-crypto/.

[64] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST concerning

AES Modes of Operations: CTR-Mode Encryption, 2000.

[65] S. Manavski. CUDA Compatible GPU as an Efficient Hardware Accelerator

for AES Cryptography. In IEEE International Conference on Signal Pro-

cessing and Communications, pages 65–68, Dubai, November 2007. IEEE

Publishing.

[66] W. Mark, R. Glanville, K. Akeley, and M. Kilgard. Cg: A system for

programming graphics hardware in a C-like language. ACM Transactions

on Graphics, 22(3):896–907, July 2003.

[67] M. Matsui. How Far Can We Go on the x64 Processors? In Fast Software

Encryption, pages 341–358, Graz, Austria, March 2006. Springer.

[68] D. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM),

2005.

[69] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, October 1996.

[70] Microsoft. DirectX 10.

http://msdn.microsoft.com/directx/.

[71] Microsoft. DirectX 9.0.

http://msdn.microsoft.com/en-gb/library/bb318659(VS.85).aspx.

[72] Microsoft. Microsoft High-Level Shading Language.

http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx.

[73] Microsoft. Shader Model 4.0.

http://msdn.microsoft.com/en-us/library/bb509657(VS.85).aspx.

[74] P. Montgomery. Modular multiplication without trial division. Mathemat-

ics of Computation, 44:519–521, 1985.

[75] A. Moss, D. Page, and N.P. Smart. Toward Acceleration of RSA Using 3D

Graphics Hardware. In IMA International Conference on Cryptography

and Coding, pages 364–383, Cirencester, UK, December 2007. Springer.

184

[76] National Institute of Standards and Technology. FIPS-46-3: Data Encryp-

tion Standard, July 1977.

[77] National Institute of Standards and Technology. FIPS-81: DES Modes of

Operation, December 1980.

[78] National Institute of Standards and Technology. FIPS-186-2: Digital Sig-

nature Standard (DSS), January 2000.

[79] National Institute of Standards and Technology. FIPS-197: Advanced

Encryption Standard, November 2001.

[80] National Institute of Standards and Technology. Special Publication 800-

38A: Approved Block Cipher Modes of Operation, December 2001.

[81] National Institute of Standards and Technology. Special Publication

800-56A - Prime Curve Examples, March 2007.

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/

KS ECC Prime.pdf.

[82] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Pro-

gramming with CUDA. ACMQueue, 6(2), April 2008.

[83] Nvidia. CUDA - Compute Unified Device Architecture.

http://developer.nvidia.com/object/cuda.html.

[84] Nvidia. CUDA Occupancy Calculator.

http://developer.download.nvidia.com/compute/cuda/

CUDA Occupancy calculator.xls.

[85] Nvidia. Nvidia NV4X Family: The GeForce 6 Series, 2004.

http://www.nvidia.com/page/geforce6.html.

[86] Nvidia. PBO Texture Performance Tool, 2004.

http://developer.download.nvidia.com/SDK/9.5/

Samples/samples.html.

[87] Nvidia. GeForce 7 Series: Nvidia GPU Programming Guide, Version 2.5.0,

2005.

http://developer.nvidia.com/object/gpu programming guide.html.

[88] Nvidia. Nvidia G7X Family: The GeForce 7 Series, 2005.

http://www.nvidia.com/page/geforce7.html.

185

[89] Nvidia. Technical Brief: Fast Texture Downloads and Readbacks using

Pixel Buffer Objects in OpenGL. TB-02011-001 v01, August 2005.

http://developer.nvidia.com/object/fast texture transfers.html.

[90] Nvidia. Nvidia G8X Family: The GeForce 8 Series, 2006.

http://www.nvidia.com/page/geforce8.html.

[91] Nvidia. Technical Brief: Microsoft DirectX 10: The Next-Generation

Graphics API. TB-02820-001 v01, November 2006.

http://www.nvidia.com/page/8800 tech briefs.html.

[92] Nvidia. Technical Brief: NVIDIA GeForce 8800 GPU Architecture

Overview. TB-02787-001 v01, November 2006.

http://www.nvidia.com/page/8800 tech briefs.html.

[93] Nvidia. Nvidia CUDA: Programming Guide, Version 2.1, December 2008.

http://developer.download.nvidia.com/compute/cuda/2 1/

toolkit/docs/NVIDIA CUDA Programming Guide 2.1.pdf.

[94] Nvidia. Nvidia G200 Family: The GeForce 200 Series, 2008.

http://www.nvidia.com/object/geforce family.html.

[95] OCF-Linux Project Homepage.

http://ocf-linux.sourceforge.net/.

[96] M. Olano and A. Lastra. A Shading Language on Graphics Hardware: The

PixelFlow Shading System. In SIGGRAPH ’98: Proceedings of the 25th

annual conference on Computer graphics and interactive techniques, pages

159–168, Orlando, Florida, USA, July 1998. ACM.

[97] OpenGL ARB, D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL

Programming Guide: The Official Guide to Learning OpenGL, Version

2.1. Addison-Wesley Professional, sixth edition, 2007.

[98] OpenGL ARB, Framebuffer Object Extension: ARB frambuffer object,

August 2008.

[99] OpenGL ARB, Pixel Buffer Object Extension: ARB pixel buffer object,

December 2004.

[100] OpenSSL Open Source Project.

http://www.openssl.org/.

186

[101] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn,

and T. Purcell. A Survey of General-Purpose Computation on Graphics

Hardware. Computer Graphics Forum: The International Journal of the

Eurographics Association, 26(1):80–113, March 2007.

[102] PCI-SIG. PCI Express Specifications, 2009.

http://www.pcisig.com/specifications/.

[103] N. Pilkington and B. Irwin. A Canonical Implementation of the Advanced

Encryption Standard on the Graphics Processing Unit. In ”Research in

Progress Papers” Section of the ISSA 2008 Innovative Minds Conference,

Johannesburg, South Africa, July 2008.

[104] K. Posch and R. Posch. Base Extension Using a Convolution Sum in

Residue Number Systems. Computing, 50(2):93–104, 1993.

[105] K. Posch and R. Posch. Modulo Reduction in Residues Numbers Systems.

IEEE Transactions on Parallel and Distributed Systems, 6(5):449–454, May

1995.

[106] J-J. Quisquater and C. Couvreur. Fast Decipherment Algorithm for RSA

Public-Key Cryptosystem. Electronics Letters, 18(21):905–907, 1982.

[107] A. Rege. Nvidia: Shader Model 3.0, 2004.

ftp://download.nvidia.com/developer/presentations/2004/

GPU Jackpot/Shader Model 3.pdf.

[108] M. Riffa, X. Bonnairea, and B. Neveub. A Revision of Recent Approaches

for Two-dimensional Strip-packing Problems. Engineering Applications of

Artificial Intelligence, 22(4-5):823–827, June 2009.

[109] R. Rivest. The RC4 Encryption Algorithm. RSA Data Security Inc., March

1987.

[110] R. Rivest. The MD5 Message-Digest Algorithm, April 1992. RFC 1321.

[111] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

21(2):120–126, 1978.

[112] U. Rosenberg. Using Graphic Processing Unit in Block Cipher Calcula-

tions. Master’s thesis, University of Tartu, 2007.

187

[113] R. Rost. OpenGL Shading Language. Addison-Wesley Professional, second

edition, 2006.

[114] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, June

2002.

[115] RSA Laboratories. PKCS #5 v2.1: Password-Based Cryptography Stan-

dard, October 2006.

[116] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code

in C, Second Edition. John Wiley & Sons, Inc., 1996.

[117] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,

T. Juan, and P. Hanrahan. Larrabee: A Many-Core x86 Architecture for

Visual Computing. ACM Transactions on Graphics, 27(3):1–15, August

2008.

[118] M. Seshadrinathan and K. Dempski. Implementation of Advanced Encryp-

tion Standard for encryption and decryption of images and text on a GPU.

In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, pages 1–6, Anchorage, AK, USA, June 2008. IEEE

Publishing.

[119] P. Shenoy and R. Kumaresan. Fast Base Extension Using a Redundant

Modulus in RNS. IEEE Transactions on Computers, 38(2):292–297, 1989.

[120] N. Szabo and R. Tanaka. Residue Arithmetic and its Applications to Com-

puter Technology. McGraw-Hill, 1967.

[121] R. Szerwinski and T. Güneysu. Exploiting the Power of GPUs for Asym-

metric Cryptography. In International Workshop on Cryptographic Hard-

ware and Embedded Systems, pages 79–99, Washington DC, USA, August

2008. Springer.

[122] The Snort Open Source Network Intrusion Prevention and Detection Sys-

tem.

http://www.snort.com/.

[123] S. Tzeng and L.-Y. Wei. Parallel white noise generation on a GPU via

cryptographic hash. In Symposium on Interactive 3D Graphics and Games,

pages 79–87, Redwood City, CA, USA, February 2008. ACM.

188

[124] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos, and S. Ioanni-

dis. Gnort: High Performance Network Intrusion Detection Using Graphics

Processors. In International Symposium On Recent Advances In Intrusion

Detection (RAID), pages 116–134, Boston, MA, USA, September 2008.

Springer.

[125] S. Venkatasubramanian. The Graphics Card as a Stream Computer, June

2003.

[126] D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC

(CCM), 2002.

[127] T. Wollinger, J. Guajardo, and C. Paar. Security on FPGAs: State-of-

the-art implementations and attacks. ACM Transactions on Embedded

Computer Systems, 3(3):534–574, 2004.

[128] T. Yamanouchi. AES Encryption and Decryption on the GPU. GPU Gems

3, pages 785–804, 2007.

[129] J. Yang and J. Goodman. Symmetric Key Cryptography on Modern

Graphics Hardware. In ASIACRYPT, pages 249–264, Kuching, Sarawak,

Malaysia, December 2007. Springer.

[130] Y. Yeom, Y. Cho, and M. Yung. High-Speed Implementations of Block Ci-

pher ARIA Using Graphics Processing Units. In International Conference

on Multimedia and Ubiquitous Engineering, pages 271–275, Busan, Korea,

April 2008. IEEE Computer Society.

189

Appendix A

OCF Extensions

A.1 New Memory Management Interface

The following lists the interface extension for the Crypto and Cryptodev layers

within the OCF to support the new memory management system.

A.1.1 Crypto Layer Interface

crypto alloc(): pass in the size and optionally the device ID for memory alloca-

tion. Returns a kernelspace pointer and the device that performed the allocation.

If the allocation fails null is returned.

crypto free(): pass in a pointer returned by crypto alloc().

crypto translate(): pass in a pointer returned by crypto alloc(). Returns

a device space pointer if a mapping is found.

A.1.2 Cryptodev Layer ioctl Interface

CIOCALLOC: this takes in an allocation request structure as a parameter, which

specifies the requested buffer size and suggested device ID. The same structure

is used to return the userspace pointer and actual device used for the allocation.

A.2 Gpucrypt ioctl Interface

The following ioctls are used to communicate with the Gpucrypt device via

/dev/gpucrypt. These are used by the Gpucryptd userspace daemon to co-

operate with the OCF to complete cryptographic requests.

190

GPU REGISTER * REQ BUF: this is a series of ioctls which Gpucryptd driver ex-

ecutes on startup to register shared request queues for each type of OCF request

supported by the GPU driver. * refers to ALLOC, FREE, KPROCESS (asymmetric

request processing) and PROCESS (symmetric request processing).

GPU READY: after the request buffers are created, shared and initialised and all

state is ready for operation, the Gpucryptd daemon registers itself as ready for

work with the Gpucrypt driver. The driver, on receipt of this ioctl, issues a reg-

ister command to the OCF to inform it that it is ready to start receiving requests.

GPU WAIT FOR WORK: the Gpucryptd daemon process cycles through the request

queues, continually processing any available work. When there are no more re-

quests to process, rather than continually scanning it calls the Gpucrypt driver

to wait for work using this ioctl. On receipt of this request the Gpucrypt sleeps

the calling process on a kernel wait queue. When work is subsequently received

from the OCF, the Gpucryptd is woken by calling wake on this wait queue, thus

releasing Gpucryptd to finish the rest of the ioctl and return to userspace to

process the new work.

GPU RETURN * REQ: on finishing of a request, the Gpucryptd daemon uses this

series of ioctls to deliver the work back to the OCF. This ioctl calls the OCF

crypto done() function, which can either process the registered callback function

for the request immediately or allow the OCF return queue kernel thread to do

so later. An application that has a long callback function may configure the

cryptographic request to not execute an immediate callback as the callback is

normally run in interrupt context. However, when the GPU is used, crypto done

is called from within process context, specifically the Gpucryptd context, and

thus long callback functions are less problematic and thus the use of the separate

return queue kernel thread can be avoided. * refers to ALLOC, FREE, KPROCESS

(asymmetric request processing) and PROCESS (symmetric request processing).

GPU SHUTDOWN: this ioctl is called on shutdown, which in turn unregisters the

Gpucrypt driver from the OCF.

191

Appendix B

Hardware

B.1 Processor Details

Table B.1 lists the factory gate prices and release dates of the CPUs used for

comparisons against the GPU following the methodology stated in Chapter 4.

The Intel Pentium 4 processor used for comparison in Chapter 4 was referenced

from the Crypto++ project website. The exact processor model is not listed on

the website, though it is quoted as a Prescott 2.93GHz. CPUs matching these

details have release dates ranging from 12/2004 to 09/2005. Also, we could not

source the price for any of these matching CPUs. To give an estimation, we list

a Pentium 4 Prescott chip for which a price could be sourced.

B.2 Memory Bandwidth

Tables B.2 and B.3 highlight the difference in bandwidth between system bus

transfer rates and on-card device memory transfer rates of GPUs and system bus

types used in this thesis.

B.3 GeForce 8800GTX Memory

Table B.4 lists the physical memory types and sizes available on the DirectX 10

GPU used in this thesis, the Nvidia GeForce 8800GTX.

192

Processor Clock Factory Price (1000s) Release Date

AMD Athlon X2 3800+ 2.0 GHz $299 May 2006

AMD Athlon 64 3700+ 2.2 GHz $272 May 2005

Intel Core 2 Duo E6300 1.86 GHz $224 Aug 2006

Intel Pentium 4 630 3.0 GHz $224 Mar 2005

Table B.1: List of CPUs used for comparisons.

GeForce 6600GT 14.4 GB/s

GeForce 7900GT 42.2 GB/s

GeForce 8800GTX 86.4 GB/s

Table B.2: Bandwidth rates between relevant GPUs and on-card device memory.

AGP 8x 2 GB/s

PCIe v1.x x16 4 GB/s

Table B.3: Bandwidth rates of relevant system bus types.

Type Location Size

Registers On-chip 8912 32-bit registers × 16 SMs

Shared Memory On-chip 16KB × 16 SMs

Constant Cache On-chip 8KB × 16 SMs

Texture Cache On-chip 8KB × 16 SMs

Device Memory On-card 768MB

Table B.4: Physical memory types and sizes for the GeForce 8800GTX

193

Appendix C

Operating System Terms and

Functions

Kernelspace

Userspace Most operating systems operate in two different modes,

kernel and user mode. These modes are used to give a

basic privilege separation, where processes running in ker-

nel mode have direct access to the underlying hardware,

and processes running in user mode only have access to

these resources indirectly. A kernel refers to the processes

that make up the core services of an OS such as process

management, memory management, hardware interaction.

The kernel processes run in kernel mode. All other pro-

cesses, such as normal applications, run in user mode and

can only access memory, create other processes, access the

hardware by requesting these services from the kernel. The

kernel has exclusive access to a reserved portion of virtual

memory, kernel memory, which all processes running in

kernel mode share. Processes running in user mode have

their own memory address space allocated from a separate

portion of virtual memory, user memory. Kernelspace is an

informal term commonly attached to processes running in

kernel mode and the memory that is reserved for its use.

Userpsace is used to refer to user mode processes and their

accessible memory.

194

Mode Switch A switch between user and kernel mode. For exam-

ple, this can occur when a userspace process requests

a kernel service via a system call. There is an over-

head associated with a mode switch, in that the CPU

state must be backed up and subsequently restored to

support seamless execution of the userspace process.

VMA Virtual Memory Area: this is a kernel structure, which

is used to denote a contiguous region of virtual memory

assigned to a process.

Page A basic unit of memory used by a memory management

system, which can exist within RAM or in secondary

storage.

ioctl I/O Control. Userspace access mechanism to Ker-

nelspace.

kmalloc() Kernelspace function that allocates contiguous memory

using the SLAB allocator, which is designed to optimise

sub-page sized allocations.

get free pages() Kernelspace function that allocates contiguous memory

for processes in kernel mode in multiples of the system

page size.

get user pages() Kernelspace function that returns the underlying pages

given a userspace process and pointer to memory.

mmap() Userspace function that maps a portion of a file (or ex-

isting allocated memory in the case of shared memory),

into the virtual address space of the calling process.

munmap() Userspace function that releases the mapping of a

userspace pointer to the underlying mapped object.

vmap() Kernelspace function that maps pages into kernelspace

memory.

fork() Userspace function that spawns a child process.

vm open() Kernelspace function, attached to a VMA, that is called

by the kernel when a new reference is created to said

VMA.

vm close() Kernelspace function, attached to a VMA, that is called

by the kernel when an existing reference is removed to

said VMA

195

copy from user() Kernelspace function that copies data from userspace

memory to kernelspace memory.

copy to user() Kernelspace function that copies data from kernelspace

memory to userspace memory.

196

Appendix D

System Specifications

The following is a list of system specifications that were used to generate the

experimental results presented within the thesis.

Operating System Fedora Core 4, 32-bit

OpenGL Version 2.1

Cg Version 1.4.0.4

Nvidia Driver Version 1.0-8762

System CPU 1GHz AMD Athlon 800

System Memory 512MB

Graphics Card GeForce 6600GT

Graphics Bus AGP 8x

Graphics Card Memory 128MB

Table D.1: System 1

Operating System Fedora Core 4, 32-bit

OpenGL Version 2.1

Cg Version 1.4.0.4

Nvidia Driver Version 1.0-8762

System CPU 2.2GHz AMD Athlon 64 3700+

System Memory 2GB

Graphics Card GeForce 7900GT

Graphics Bus PCIe x16

Graphics Card Memory 256MB

Table D.2: System 2

197

Operating System Fedora Core 9, 32-bit

CUDA Version 2.0

Nvidia Driver Version 1.0-9755

System CPU 2.4GHz AMD Athlon 64 X2 3800+

System Memory 2GB

Graphics Card GeForce 8800GTX

Graphics Bus PCIe x16

Graphics Card Memory 768MB

Table D.3: System 3

198

	Acknowledgements
	Abstract
	Related Publications
	Glossary
	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Aim
	Motivation
	Contributions

	Background and Related Work
	DX9 Compliant Graphics Hardware
	Hardware Overview
	Programming Interface
	Textures
	General Purpose Computation
	Restrictions and Performance Considerations

	DX10 Compliant Graphics Hardware
	Departure from DX9
	Hardware Overview
	Nvidia DX10 Compliant Hardware

	Programming Interface - CUDA
	Restrictions and Performance Considerations
	Memory
	Branching
	Thread Co-operation
	Occupancy
	Instruction Throughput
	Data Transfer
	Execution Model
	Tool Chain

	Shader Model 3.0 versus Shader Model 4.0

	Symmetric-Key Cryptography
	AES
	Single Cipher Round
	Full Cipher
	Implementation

	Block Cipher Modes of Operations
	Parallel Modes
	Serial Modes

	Asymmetric-Key Cryptography
	RSA
	Modular Arithmetic Fundamentals
	Basics
	Chinese Remainder Theorem
	Integer Representation
	Montgomery Reduction
	Exponentiation

	Related Work
	Cryptography and Graphics Hardware
	Symmetric-Key Cryptography
	Asymmetric-Key Cryptography
	Other

	GPU Data Transfer
	OpenGL Imaging Pipeline
	Transfer Tools
	Download Tool
	Overview
	Tool Details
	Usage Notes
	Observations

	Readback Tool
	Overview
	Transfer Rate Mode
	Asynchronous Behaviour Mode
	Usage Notes
	Observations
	Transfer Rate Observations
	Asynchronous Behaviour Observations

	DX10 Data Transfer
	Conclusions

	Symmetric Cryptography on DX9 Hardware
	The GPU and AES
	XOR Approaches
	8-bit XOR
	4-bit XOR
	ROP XOR
	Results

	AES on DX9 Hardware
	AES Lookup Tables
	AES Input Data
	AES Implementations
	Results

	GPU as an AES Co-Processor
	Results

	Conclusions

	Symmetric Cryptography on DX10 Hardware
	Block Based AES Implementation
	Mapping AES to CUDA
	AES and G80 Memory
	Results

	Payload Data Model
	The Data Model
	General Use Implications

	Applied Data Model
	Descriptor Serialisation
	Thread to Message Mapping
	Padding
	Payload Combining

	Modes Of Operation
	Parallel MOOs
	Serial MOOs
	Mixed MOOs and Message Sizes

	Conclusions

	Asymmetric Cryptography on DX10 Hardware
	Implementation Commonalities
	Radix Based Modular Exponentiation
	Serial Approach
	Memory Usage
	Results

	Parallel Approach
	Radix Results

	RNS Based Modular Exponentiation
	Montgomery in RNS
	Exponentiation using Kawamura on the GPU
	Single Precision Modular Multiplication on the GPU
	Results

	RNS Results

	Radix vs RNS on the GPU
	Conclusions

	GPU Accelerated Cryptography as an OS Service
	OCF Background
	Integration of GPU and OCF
	Overview
	Memory Management
	Memory Map Creation
	Memory Map Removal
	Memory Map Translation

	GPU Driver and Daemon
	Security

	Concurrent Request Processing
	Symmetric Request Batching
	Asymmetric Request Batching
	Request Pipelining

	Performance
	Symmetric-Key Performance
	Asymmetric-Key Performance

	Conclusions

	Review and Outlook
	General Lessons
	Future Work

	Appendices
	OCF Extensions
	New Memory Management Interface
	Crypto Layer Interface
	Cryptodev Layer ioctl Interface

	Gpucrypt ioctl Interface

	Hardware
	Processor Details
	Memory Bandwidth
	GeForce 8800GTX Memory

	Operating System Terms and Functions
	System Specifications

