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Abstract

Pervasive computing looks beyond the age of the personal computer to a time when everyday

devices will be embedded with technology and connectivity. The goal of pervasive computing is

to make such devices available throughout the physical environment to support people's usual

activities with timely interventions without overwhelming them with inappropriate responses.

So far, a number of research e�orts have investigated di�erent approaches to managing

the complexities of developing these types of environments with varying degrees of success.

The di�culty still remains as to how to develop a pervasive computing environment that can

support the integration and organisation of devices and applications in a spontaneous and

robust manner. The problem is partly attributed to the highly dynamic and unpredictable

nature of these types of environments, and is often further hampered by the limited resources

found on devices.

The technology for pervasive computing is reaching a point where it is possible to convert

may everyday environments into interactive spaces. Typically, these spaces have been designed

from the ground up to support the anticipated needs of users, and are usually pre-installed

and maintained over the period during which they are in use. Conceptually, these e�orts are

centralised in their approach, in that, e�orts are focused around coordinating the resources of

a particular geographical location in meeting the demands of users. However, in the future,

the construction of pervasive computing environments is more likely to evolve accidentally

from physical spaces as technology is incorporated into the space over time. This suggests

there is a need to support the assembly of pervasive computing environments in a more ad-hoc

fashion.

To address this point this thesis presents a highly-decentralised method of organising the
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components of a pervasive computing environment, supporting spontaneous interaction be-

tween entities and providing robust system-wide behavior. The inspiration for this work stems

from nature and the observations made by the French biologist Grassé on how social insects co-

ordinate their actions using indirect communication via the environment, a phenomenon that

has become known as stigmergy. In the stigmergic approach there are fewer dependences be-

tween entities allowing for the incremental construction and improvement of solutions without

adversely e�ecting the rest of the pervasive computing environment. This thesis encapsulates

this approach in a model that is used to underpin a framework for pervasive computing.

A prototypical implementation of the model is provided by Cocoa. Cocoa supports the use

of stigmergy to build self-coordinating environments that promote the autonomy of entities.

Designed to both support and complement the use of stigmergy, the framework employs a

distributed architecture organised in a peer-to-peer fashion. To ease the implementation and

deployment of entities Cocoa supports a programming abstraction encapsulated in a high-level

scripting language. The scripting language exploits the methodologies used by social insects

to construct a society of autonomous entities capable of responding to the environment in a

stigmergic manner.

In order to validate the contribution of the thesis a select number of application scenarios

from a range of di�erent domains have been implemented using the Cocoa framework. The

evaluation is used to demonstrate how a model based on stigmergy can be used to provide a

highly-decentralised method of organising the components of a pervasive computing environ-

ment. In addition, the evaluation shows how such an approach can support the spontaneous

interactions of autonomous entities and provide robust system-wide behavior.
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Chapter 1

Introduction

Advances in technology are allowing pervasive computing to look beyond the realm of the per-

sonal computer (PC) to a time when everyday devices will be embedded with technology and

connectivity. It is expected that large numbers of these devices will populate environments to

such an extent that the physical and computational infrastructures will become so integrated

that they will be transformed into spaces capable of supporting the activities of those who

use them. The goal for pervasive computing is to ensure that the assistance provided is done

in a timely manner without overwhelming users with inappropriate responses.

Pervasive computing has been used in a wide variety of areas including education where it

has been used to support students in attending lectures [1, 16], and in o�ces to assist workers

in meetings [78, 64] or in group collaborative sessions [153]. It has also been used in scienti�c

laboratories to support the work of scientists [60, 62], and in the home to ensure the e�cient

usage of resources [107]. In addition, pervasive computing has also been used to support the

elderly in the home [111] and to guide tourists [33].

The technology for pervasive computing is reaching a point where it is possible to convert

many everyday environments into interactive spaces capable of supporting the activities of

users. However, to develop a pervasive computing environment requires the consideration

of new and alternative approaches to system design as traditional methods of development

do not fully address the requirements of pervasive computing. For pervasive computing it

is necessary to develop methods of supporting the integration and organisation of devices
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and applications in a spontaneous and robust manner. This task is made considerably more

di�cult by the highly-dynamic and unpredictable nature of these types of environments and

the limited resources often found on devices.

The research presented in this thesis addresses some of these issues. Firstly, the thesis

proposes an alternative method of constructing pervasive computing environments based on

the swarm intelligence technique of stigmergy [58]. Secondly, the thesis uses the concept

of stigmergy to describe a highly decentralised method of organising the components of a

pervasive computing environment that supports spontaneous interaction between entities and

provides robust system-wide behavior. Using this approach the thesis presents a framework

that supports the use of stigmergy in building self-coordinating environments that promote

the autonomy of entities. Lastly, the thesis describes a programming abstraction encapsulated

in a high-level scripting language for developing pervasive computing applications.

The proposed approach seeks to establish a method for assembling pervasive computing

environments in a more ad-hoc fashion. The objective is to allow pervasive computing en-

vironments to evolve incrementally from physical spaces as the technology is incorporated

into the space over time. This di�ers from current approaches where pervasive computing

environments have typically been designed from the ground up to support the anticipated

needs of users, and are usually pre-installed and maintained for the duration that they are in

use. Conceptually, these e�orts are centralised in their approach, in that, their focus is on co-

ordinating the resources of a speci�c geographical location in meeting the demands of users.

However, the future of pervasive computing lies in allowing physical spaces to evolve into

pervasive computing environments with the inclusion of technology over time. The approach

proposed in this thesis seeks to support such an approach.

This chapter begins with an introduction to the area of pervasive computing describing

the general concepts and motivation for pervasive computing, and outlining the technologies

that have spurred this area of research. The chapter continues by introducing the concepts of

context and stigmergy and, following this, highlights the aims of the research presented here

and outlines the methodology used in conducting it. To conclude, the chapter presents the

main research contributions made by this work.
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1.1 Pervasive Computing

When Mark Weiser wrote his seminal paper on ubiquitous computing1 [167] he recognised

that the world of computing was moving towards an era where everyday devices would be

embedded with technology and connectivity. He realised that the widespread proliferation of

these devices would require a change in how people use and interact with computers. In [168]

Weiser wrote:

�Ubiquitous computing is the method of enhancing computer use by making many

computers available through the physical environment, but making them e�ec-

tively invisible to the user� [168]

The statement indicates that the objective of ubiquitous computing is to transform physical

spaces into interactive environments capable of reacting to, and meeting the needs of those

who occupy them. However, the statement also illustrates Weiser's belief that for us to

interact with hundreds of nearby wirelessly interconnected computers it is necessary for them

to disappear from our awareness so that they may truly become an integral part of our daily

lives.

Underlying this new wave of computing are advances in technology that have allowed

computational devices to populate the environment around us in ever greater numbers. It

is now reaching a point where the quantitative relationship between humans and computers

has shifted so signi�cantly from the time when many users shared only a single computer

to a situation where many computers now share the attention of only a single person. The

increasing number of devices in our environment provides the initial infrastructure that makes

pervasive computing a possibility.

However, the vision proposed by Weiser is more than just the quantitative relationship

between humans and computers, it also describes how an environment composed of hundreds

of these devices are to interact with those who use it. The aim is to provide users with

timely interventions that assist them with their current task without overwhelming them
1Ubiquitous computing has also become known as pervasive computing and in this thesis both terms are

used interchangeability.
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with inappropriate responses. Weiser describes this as calm computing [166] where technology

requires little or no attention from users but is just there ready to be used when required.

Not surprisingly, the concept poses a number of substantial research challenges: integrating

devices into an environment so they may sense and interact appropriately with users; sup-

porting the spontaneous interoperability between devices to ensure their seamless integration

into the environment; coordinating the behavior of devices to ensure a coherent environment

can form; providing a system that can scale to the large collection of devices that are expected

to be interwoven into the environment; ensuring a system behaves robustly in the presence

of frequent failures of devices; supporting the high degree of mobility that is inevitable with

users moving objects from one location to another; and maintaining the privacy of users who

use the environment.

The task of accomplishing these challenges is made considerably more di�cult by the

general dynamic and unpredictable nature seen in these types of environments, and the often

limited resources found on devices.

1.2 Enabling Technologies

The development of pervasive computing environments would not be possible without a num-

ber of key enabling technologies. Sensors have allowed computational devices to observe

their surrounding environment and react to it. The availability of wireless communication

has allowed devices to be distributed across the environment in a more ubiquitous manner.

The abundance of small, cheap, portable devices has provided the backbone to this new era

of computing. The work presented in this thesis is technology independent but assumes an

underlying infrastructure capable of supporting a pervasive computing environment. This

section therefore provides an overview of these technologies.

1.2.1 Sensors

To disappear into the background of society computers must �rst become part of it. This

they achieve by sensing their surrounding environment. The information obtained allows
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devices to adapt their behavior to meet the current situation. The process ensures that

devices will always act appropriately in supporting the actions of users in their immediate

environment. The increased variety of sensing technologies available at reasonable prices has

allowed everyday objects to be embedded with these technologies allowing them to become

part of society. For example, Point Six [147] provides a number of wireless sensors capable

of measuring air temperature, humidity, and pressure. Their sensors run on batteries with a

lifespan of up to 5 years and transmit data to receivers that can be up to 180 meters away.

The current generation of pervasive computing systems uses a wide variety of sensors, some

of which are basic o�-the-shelf components adapted for pervasive computing while others have

been speci�cally designed to operate within these kinds of environments. For example, the

Adaptive House [108] uses a number of sensors embedded into a house to detect the ambient

illumination, room temperature, sound level, and motion of users to predict the inhabitants

needs and to manage energy usage in a more e�cient way. AT&T's sentient computing

project [2, 65] has developed a location system called BAT [165]. The BAT system uses a

combination of radio frequencies (RF) and ultrasound signals to provide very accurate location

information in three dimensions. Transmitter devices, known as bats, are attached to objects

or given to users. The signals transmitted are received by devices placed in the ceiling. Using

the information from three of these devices, the location of a bat device can be triangulated

to high degree of accuracy. AT&T have used the system to build a series of location-aware

applications. For example, applications that followed users from one computer to another, or

a service that routes telephone calls to the nearest phone beside a person. The Tea project

[142] has attached photo-diodes, accelerometers, passive IR sensors, plus temperature and

pressure sensors to a mobile phone, so that the device can change its behavior to suit the

situation it is in.

While the advances in sensing technologies have allowed pervasive computing applications

to gain a better understanding of the surrounding environment there are issues that arise

from their use in these types of environments. The accuracy of sensors can vary considerably

leading to a degree of uncertainty in the reliability of the readings obtained from sensors. Often

pervasive computing systems tackle the issue through the use of sensor fusion techniques to
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provide both more reliable and higher-level information on the environment. This derived

information is generally described in pervasive computing as context information [42]. An

introduction to context information is provide in section 1.3.

1.2.2 Communications

Wireless communication is playing an integral part in the development of pervasive computing

as it encourages the ubiquitous nature of these types of environments. It ensures devices can

retrieve information and coordinate their actions at any point without the restriction of having

to be physically connected to a network. It allows devices to move through an environment

and to be located in places that would not normally be covered by a wired network. A number

of wireless technologies are used, some of which have been developed for generic use while

others have been speci�cally designed for pervasive computing.

In projects such as Aura [56], Gaia [134] and the Stanford Interactive Workspace Project

[78] the IEEE 802.11 [73] standard has been used in combination with a wired Ethernet

network to provide the underlying communication network for the environment. IEEE 802.11

is a wireless network standard that can typically span a building, or campus of up to a few

kilometers is size. The standard is able to operate in either of two modes; an infrastructural

mode that relies on base stations to mediate communication between nodes and an ad-hoc

mode which allows peer communication between nodes. When used in combination with

ad-hoc routing protocols, such as AODV [119], the ad-hoc mode can provide full multi-hop

communication between nodes. The nominal bandwidth of the IEEE 802.11b standard is

11Mbps, though the newer IEEE 802.11g standard can achieve 56Mbps.

In contrast to IEEE 802.11, a set of wireless technologies support short-range communi-

cation; generally in the range of 10s of meters. Bluetooth is one of the main technologies

to be used at this range. It is normally used to connect and exchange information between

personal devices such as personal digital assistants (PDAs), mobile phones, laptops, personal

computers, printers, and digital cameras. Its normal bandwidth is 1Mbps. Bluetooth is de-

veloped by a consortium of interested parties that include Ericsson, Sony, IBM, Intel, Nokia

and Toshiba. IrDA is another technology used in these types of networks. It uses infra-red
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signals to perform short-range line of sight communications between devices and is used in a

similar fashion to bluetooth. A number of wireless networks have been designed speci�cally

for severely energy constrained devices where the consumption of power has to be kept to

a minimum. Normally these type of networks are used within sensors networks [82] or for

connecting devices such as those developed by the Smart-Its project [72].

While wireless communication networks encourage the ubiquitous nature of pervasive com-

puting, they do increase the complexity of building these types of environments. Unlike tra-

ditional wired networks, which tend to be static, the nodes forming a wireless network are

extremely dynamic within a pervasive computing environment. These nodes may have vary-

ing degrees of mobility but they are continuously moving through the environment and may

enter or leave a network for any number of reasons. For example, a mobile node may move

out of range of other nodes causing a partition in the network or a node may fail due to the

lack of power or a fault within the device. Any pervasive computing system has to assume

that failure and disconnected operations are the norm and not the exception and so must

develop appropriate mechanisms for dealing with it.

1.2.3 Devices

The abundance of small, cheap, portable computing devices is the backbone to Weiser's vision

of pervasive computing. It is these devices that provide the computational infrastructure for

transforming the environment into an interactive space capable of supporting the activities

of those who inhabit it. The current generation of pervasive computing environments use a

wide selection of devices to accomplish this some of which are freely available from vendors

while others have been speci�cally designed to be embedded into everyday objects.

In one of the �rst pervasive computing environments [164] Want et al. developed and

experimented with three di�erent types of devices: ParcTabs, ParcPads, and Liveboards.

ParcTabs were small hand-held devices that provided an information doorway to users. Par-

cPads were larger notebook-sized devices and Liveboards were yard-sized interactive screens

that could be placed in o�ces or at other locations within the Xerox PARC facility. Together

these provided the computational infrastructure for the environment and the experiments
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performed by Want et al.

In more recent projects such as the Stanford Interactive Workspace Project [78] or the

Intelligent Room [64], a combination of workstations, notebooks, tablet PCs, and PDAs are

used to provide the infrastructure for the environment. The devices that are in these projects

come in a range of sizes and would typically incorporate wireless technologies such as IEEE

802.11, Bluetooth, or IrDA and may utilise touch-sensitive screens and stylus for user input

instead of using a keyboard. Some of the newer generation of PDAs also include a number of

sensors, including biometric sensors, embedded into the device to determine light intensity,

location, and to read �nger prints.

In contrast, the TEA project [142] uses mobile phones to support the activities of users.

The mobile phones incorporates a number of sensors that can be used to adapt the behavior

of the phone. For instance, in a noisy environment the phone changes its pro�le to increase

the volume of the ring tone used. In general, mobile phones provide an ideal platform for

pervasive computing due to there widespread use in society. The next generation of phones

now integrate personal information management and mobile phone capabilities on the same

device. In doing so, they provide a very �exible platform for developing pervasive computing

applications.

Another project, called Smart-Its [72], has developed small devices of only a few cen-

timeters in size that can be embedded into everyday objects. They incorporate a number of

sensors and wireless communication and are designed to augment and interconnect artifacts

within a pervasive computing environment. So far, they have been used to augment chemical

containers to detect and alert potential hazardous situations [155], embedded into tables to

track activity [143], and connected to skis to determine the performance of skiers [101, 102].

A similar project to Smart-Its is the Smart Dust project [82]. The Smart Dust project

has developed an extremely small device called a Mote. It features a range of on-board

sensors and has an integrated wireless network capability. The Smart Dust project has also

developed specialised protocol stack for communication to allow the ad-hoc routing through

large networks of Motes. Originally developed for wireless ad-hoc sensor networks Motes are

now increasing being used in pervasive computing to augment everyday objects.
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The progress of technology is reaching a point where computational devices are getting

smaller and more numerous. It is possible to embedded large collections of these devices into

our surrounding environment without us even knowing of their existence. While these de-

vices provide the backbone for pervasive computing, a variety of issues arise from their wide

spread proliferation within the environment. Unlike personal computers, which tend to be

static and fairly robust, the devices forming a pervasive computing environment are extremely

dynamic. Typically, they are small devices with limited resources for power, computation,

communication, and storage. They also have varying degrees of mobility that allow them to

move through the environment. While exepcted advances in storage capabilities will partly

alivate this problem the limitations and tradeo�s between power, computation, and commu-

nication are anticipated to remain for the foreseeable future. A pervasive computing system

must assume that due to their mobility and limited resources that failure will be common

place and so must create mechanisms to ensure the robust behavior of the environment can

be maintained.

1.3 An Introduction to Context

An important aspect of meeting Weiser's vision for calm computing [166] is the ability for

systems to observe and understand what is occurring within the environment and to use this

information to adapt their behavior to suit the situation. This is an important requirement

of pervasive computing and is necessary for any system if it is blend seamlessly into the

background and to determine correctly how it is to interact with users. The use of context, i.e.

the information that is derived from data retrieved from sensors embedded in the environment,

has provided the means of accomplishing this.

1.3.1 Context

Schilit and Theimer [139] de�ne context as a �collection of nearby people and objects, as well

as the changes to those objects over time�. According to Schilit et al. [138] the important

aspects of context are: where you are, who you are with, and what resources are nearby. They
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also note that context is more than just the location of users, but includes other information

such as lighting, noise levels, social situations. For Brown et al. [18], a user's context is

determined by a collection of information such as their location, the season, temperature.

Pascoe [118] de�nes context to be the subset of physical and conceptual states of interest to a

particular entity. However, as Dey et al. [42] points out many of the above de�nitions are too

speci�c. They observe that context is about the whole situation relevant to an application

and de�ne context as:

�Context is any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.� [42]

De�nitions of context vary considerably within the research community. However, some key

concepts can be drawn from the literature. Namely, that context describes the state of the

environment that is relevant to an entity. Where the identity of the entity, the time, the

location of the entity, and the task being performed play a primary role in describing an

entity's context.

1.3.2 Context-Awareness

Dey et al. [42] de�ne context-awareness as the use of context to provide relevant information

and/or service to the user. Brown et al. [18] de�ne context-aware applications as those that

change their behavior according to the user's context. Schilit et al. [138] de�ne it as the

ability of software to adapt to the location of use, nearby people, and devices. There are a

number of interpretations of context-awareness though the general consensus is that a system

is context-aware if it uses or adapts to the context information derived from the surrounding

environment.

The majority of pervasive computing systems use and adapt to context in a number of

ways. For instance, they recon�gure systems to handle the changing availability of resources,

react to users, and adapt the behavior of a system to meet the requirements of users. However,
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there are a number of issues with using context information in pervasive computing. For

instance, there is a level of uncertainty with the accuracy of the context information being

provided due to the inherent inaccuracies of sensors. Another issue arises over the timeliness

and frequency in which the context information is updated by the system to maintain the

freshness of the information in use. There is also a question of how best to model the context

information used to represent the environment in the system. While problems do exist with

the use of context information, its use is what allows systems to meet Weiser's vision for

pervasive computing.

1.4 Swarm Intelligence

The potential of simple behaving entities was �rst noted by biologists in their observations

of colonies of social insects. They noticed that through local interactions of individuals,

a colony of insects could produce complex collective behaviors at the colony level. These

type of behaviors are also seen in �ocking birds and shoals of �sh and are considered to be

highly distributed and largely self-organising. The mechanisms used to organise these types

of systems and the collective behavior that emerges from them has become known as swarm

intelligence. Bonabeaus et al. [12] describes swarm intelligence as the attempt to design

algorithms or distributed problem-solving devices inspired by the collective behavior of social

insect colonies and other animal societies. The ability of these simple behaving entities to

produce complex behaviors has not gone unnoticed and has provided the inspiration for several

research initiatives [47, 45, 46, 95, 23, 83] that used the same coordination mechanisms to

solve a range of computer-related problems. One of the coordination mechanisms used is

known as stigmergy.

1.4.1 Stigmergy

In 1959, the French biologist, Grassé observed that social insects could co-ordinate their ac-

tions through the environment without having to directly communicate with each other. They

do this using a phenomenon known as stigmergy [58]. He also noticed that the local interac-
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tions between insects resulted in the emergence of colony-wide behavior. Holland et al. [71]

showed that stigmergy provides a mechanism that allows the environment to structure itself

through the activities of the entities within the environment. The state of the environment,

and the current distribution of entities within it, determines how the environment and the

entities will change in the future. This approach provides a robust, self-organising environ-

ment, which allows entities to coordinate their behavior in a highly decentralised manner. It

is important to stress that individual entities have no particular problem solving knowledge,

and that coordinated behavior emerges due to the actions of the society. It also worth noting

that while no direct communication is used between individual entities, communication is still

maintained through the medium of the environment.

The trail-laying and trail-following used by many species of ants [12, 41] when foraging

for food is a classical example of the use of stigmergy in nature. Ants deposit pheromones

on their way back from a food source. Foraging ants follow such trails. The process has been

shown to be self-organising [41] and capable of optimizing on the shortest path to the food

source [57]. The nest building of social wasps [160] is another example of stigmergy used

within nature. Nests are built up from wood �bers and plant hairs and cemented together

with salivary secretions. These are then moulded by the wasp to form the di�erent parts of

the nest. Wasps coordinate the construction of a nest by each individual observing the local

structure of the nest and deciding where to build the next part of the nest. Another example

is the corpse gathering behavior seen in some species of ants. Worker ants pick up corpses

in the nest and drop them in locations of higher concentrations to form piles of corpses in a

process which acts to clean the nest.

1.4.2 Harnessing the Principles of Stigmergy

The idea of simple insects, with little memory or ability to exhibit any real intelligence, maps

well to pervasive computing where small devices with limited resources are spread across the

environment. The large number of devices expected to be deployed into our society matches

the scale at which these colonies of social insects work. The constant interaction between

devices of a pervasive computing environment also ties in neatly with how social insects

12



Chapter 1. Introduction

interact with each other. While the environment social insects use to coordinate their actions

can be represented in a pervasive computing system by the context information derived from

sensors.

The indirect communication mechanisms harnessed by social insects provide a means of

decoupling devices and applications. Having fewer dependencies between components allows

the overall system to be less fragile and more robust to disturbances in the environment. The

system can grow organically and decay gracefully with the environment, as new devices are

added and old ones upgraded or removed, without having an adverse e�ect on the overall

system. The spontaneous interaction of devices and applications can be achieved as commu-

nication is realised through the common medium of the environment. The use of stigmergy

allows us to harness the robust, self-organising, coordinating mechanisms of social insects,

which are all desirable attributes for pervasive computing.

The thesis proposes to use the principles of stigmergy to create a pervasive computing en-

vironment, where context information from surrounding entities and the environment provide

a common medium for an indirect communication mechanism to be used by entities. The

social insects observed by Grassé are represented as entities within the pervasive computing

environment. An entity is a person, place, or object as de�ned by Dey [42]. Co-ordinated

behavior arises from entities observing their environment and reacting to the received context

information according to a set of simple rules.

1.5 Research Scope, Aims and Methodology

The objective of the research presented in this thesis is to assess the use of stigmergy in

supporting the development of pervasive computing systems. More speci�cally, the objective

is to mimic the methodologies used by social insects to construct a society of autonomous

entities capable of supporting spontaneous interaction between entities and providing robust

system-wide behavior for a pervasive computing environment. The primary research aims are

therefore to:

• Investigate the issues relating to the development and deployment of pervasive comput-
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ing systems.

• Understand the implications of using techniques based on the phenomena of stigmergy

to construct pervasive computing environments.

• Develop a model based on these techniques for developing pervasive computing environ-

ments.

• Use the model to develop a framework that supports the use of stigmergy to build

self-coordinating environments that promote the autonomy of entities.

• Evaluate the e�ectiveness of using such an approach by developing a series of prototype

scenarios to access the implications of using these techniques.

The methods used in conducting the research presented use a rigorous survey of the literature

and available information, modeling of techniques, the design and implementation of a pro-

totype to indicate the feasibility of such an approach, and an evaluation to understand the

implications of using the proposed techniques.

1.6 Research Contribution

The work presented in this thesis has focused primarily on the investigation of techniques

based on stigmergy in the design and implementation of pervasive computing environments.

Consequently, the main contributions of the thesis can be summarised as follows:

• An overview of pervasive computing systems with respect to the integration and organ-

isation of devices and applications within these types of the environments.

• A highly decentralized method for organising components of a pervasive computing

environment that supports spontaneous interaction between entities and provides robust

system-wide behavior.

• A framework, called Cocoa, that supports the use of techniques based on the phenomena

of stigmergy to build self-coordinating environments which promote the autonomy of

entities.
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• A programming abstraction encapsulated in a high-level scripting language that gen-

eralises the methodologies used by social insects to construct a society of autonomous

entities capable of responding to the environment in a stigmergic manner.

1.7 Thesis Outline

The following is an outline of the remainder of the thesis. Chapter 2 reviews Weiser's vision

of ubiquitous computing and investigates the challenges posed by the area of research. The

chapter then continues to examine a variety of relevant research projects and reviews their

e�orts in overcoming the challenges of ubiquitous computing. Chapter 3 presents a set of

requirements that are used to in�uence the design and implementation of the framework.

The requirements are drawn from an analysis of the related work presented in chapter 2. The

chapter also introduces the natural phenomenon of stigmergy and investigates how it can

be used to address the requirements. From this analysis, the chapter develops a model that

the framework can support. Chapter 4 presents a programming abstraction in the form of a

high-level scripting language that can be used to develop pervasive computing applications.

Chapter 5 presents a prototypical implementation of the stigmergic model described in chapter

3 and of the scripting language described in chapter 4. To evaluate the e�ectiveness of the

framework chapter 6 discusses a select number of application scenarios that demonstrate the

use of the framework in development of pervasive computing environments.
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Background and Related Work

In order to set the scene for the thesis and provide necessary background for the work to

be presented here, this chapter examines a number of research projects and reviews their

e�orts to overcome the hurdles posed by pervasive computing. Particular attention is paid

to understanding the mechanisms used to integrate devices and applications into pervasive

computing environments and to understand how they are organised within it. The chapter also

notes the methodology used in their construction and the methods employed in developing

applications for them. The aim is to gain a better understanding of the complexities of

building pervasive computing environments and to develop an insight into how the current

state of the art might be improved. The chapter begins with an introduction to pervasive

computing.

2.1 Pervasive Computing

In 1991 MarkWeiser wrote his seminal paper [167] on ubiquitous computing. It was the start of

what has become an alternative vision for the use of computers in society. Wieser had realised

that, as the number of computers increase within society, it would become increasingly more

di�cult to use them in any meaningful way. He believed that it was necessary to move away

from the conventional concept of the personal computer to an approach where physical spaces

would be made up of computational devices, that would be integrated into everyday objects
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and embedded with technology and connectivity. In this world, people would be continually

interacting with hundreds of interconnected devices that would meld into the background and

e�ectively become invisible to those who use them. In his paper [167] Weiser wrote that:

�The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it.� [167]

The statement illustrates Weiser's belief that for technologies to truly become an integral

part of our daily lives it is necessary for them to disappear from our awareness, to be so

ingrained in our psyche that it is not necessary to have to think about using them. This

would enable computer users to focus beyond the tools and so concentrate on their goals.

Ubiquitous computing de�nes a technology that does not require our constant attention but

at the same time is ready to be used at a glace.

In developing his vision of ubiquitous computing Weiser recognised that the millions of

personal computers inhabiting society were largely isolated and disconnected from it and

were, in fact, mostly getting in the way of people. He recognised that computers were not

disappearing into the background but were increasingly demanding the attention of users.

Weiser realised that the relationship between humans and computers had to change to one

that ensured computers became �vastly better at getting out of the way� [168] of people.

He realised for this to happen computers needed to become part of the �natural human

environment� [167] and that it was necessary for them to �vanish into the background� [167]

of our society. He argues that for computers to truly become an integral part of our lives it

necessary for them to totally disappear from our awareness.

�Such a disappearance is a fundamental consequence not of technology, but of

human psychology. Whenever people learn something su�ciently well, they cease

to be aware of it.� [167]

In considering the statement above it is clear that ubiquitous computing is more than just

the development and deployment of technology into physical spaces it also encompasses how

people perceive and interact with such technology. Whether or not the technology is allowed
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to be �interwoven into the fabric of society until it becomes indistinguishable from it� [167]

depends on how it is perceived and used. It is only when it is accepted that such technology

can be thought as ubiquitous.

Ubiquitous computing requires a fundamental change in how computers are perceived

and used in our society and demands a total rethink of how such systems are designed and

implemented. For researchers the main question still remains: �how do technologies disappear

into the background?� [167]. The answer lies in the widespread proliferation of devices that

are su�ciently small and cheap enough to be built into everyday objects. The goal is to make

these devices so pervasively distributed across society that they become such an intrinsic part

of peoples lives that they no longer recognise them as computers. It is also necessary to have

e�cient, low-powered devices that can operate for considerable periods of time without having

to change the source of power or maintain them in anyway. Devices need to be forgotten about

and having to constantly support them in this manner does not allow them to meld into the

background of society. With the increased numbers of devices expected to occupy ubiquitous

computing environments it would become problematic to maintain devices in the same manner

as we do with traditional forms of computing. As can be observed in the statement below,

Weiser also noted that the real power of ubiquitous computing is only achieved when all the

devices in the environment can interact with each other. It is therefore essential to provide a

network that facilities the interconnection of devices.

�The real power of the concept comes not from any one of these devices; it emerges

from the interaction of all of them.� [167]

Furthermore, for devices to become interwoven into the fabric of society it is necessary for

them to understand the �human environment� [167]. If they are unable to comprehend what is

occurring in the environment it makes it extremely di�cult for devices to behave in a manner

that will allow them to move into the background. Knowledge of the surrounding environment

is an important facet of ubiquitous computing and can be consider as a prerequisite for most

scenarios. The use of context information [42, 138, 18] has allowed many systems, some of

which are discussed later in the chapter, to cope with this requirement. They use context

in a number of ways to adapt the system to meet the requirements of the environment. For
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instance, to recon�gure a system to handle the changing availability of resources, or to adapt

the behavior of the system to meet the requirements of the user.

Weiser observed [167] that the technology required for ubiquitous computing comes in three

parts: �rstly, cheap, low-powered computers; secondly, software for ubiquitous computing

applications; and lastly, a network that brings them all together. The thesis concentrates on

the second requirement with the aim of providing a highly decentralized method for organising

components of a ubiquitous computing environment that supports spontaneous interaction

between entities and provides robust system-wide behavior. The objective is to develop a

framework capable of supporting Weiser's vision for ubiquitous computing. The next section

investigates the challenges in building such systems, while the following section reviews the

e�orts made be previous projects in tackling this objective.

2.2 Building System Software for Pervasive Computing

Weiser's vision of pervasive computing brings with it challenges not normally associated with

traditional forms of computing: devices embedded in physical objects and places; the often

restricted computational and network resources found in these types of environments; the high

degree of mobility that is inevitable with users carrying objects from one location to another;

the often inaccurate readings obtained from sensors; and the use of wireless networks to

interconnect devices in the environment. Together with Weiser's vision of having technology

meld into the background of society, they make supporting pervasive computing a complex

and di�cult task. A number of research e�orts [86, 135, 81, 50, 92, 40, 126] have identi�ed

similar challenges in developing system software for supporting pervasive computing and in

the discussion to follow the thesis focuses on those challenges that appear to be common to

all.

2.2.1 Integration into the Real World

Kindberg et al. [86] note the physical integration of computers into the world as one of the

main characteristics and challenges of pervasive computing. They argue that this can only
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be achieved by providing low-level software interfaces to physical sensors and actuators, and

high-level abstractions that allow applications to sense and interact with the environment.

It is therefore essential for the system software used to support these applications to

abstract the complexities of dealing with the real world. It is not practical for applications to

deal with all the low-level details of the physical world. It is necessary to provide high-level

abstractions that applications can use to understand their environment and interact with it.

The challenge for system software is to deliver appropriate levels of abstraction that allow

applications to have enough understanding of the real world to enable them to disappear

into the background while ensuring there is su�cient low-level support for retrieving and

manipulating the physical environment.

Dey's Context Toolkit [44, 43] provides one example of how this can be achieved. The

toolkit consists of three main types of components: widgets, servers, and interpreters. The

context widgets provide applications with a software abstraction that allows access to context

information while hiding the complexities of dealing with sensors. Context servers collect

context information related to particular entities and allow applications to receive noti�cations

of the context of particular entities. Context interpreters are used to transform context

information into di�erent formats or interpretations and can be queried by applications. The

design of the Context Toolkit provides low-level abstractions for dealing with sensors while

also providing high-level abstractions that can be used by applications in understanding their

surrounding environment.

The Geometric Model [22] used in the EasyLiving [146] project is another example. The

Geometric Model provides applications with a spatial view of the entities in their surrounding

environment. The model uses measurements from sensors to de�ne geometric relationships

between the entities. Once enough sensor data has been retrieved, EasyLiving applications

can query the model to explore the di�erent relationships between the entities. The Sentient

Computing e�ort at AT&T Laboratories in Cambridge [2] provides applications with a similar

model of the real world that can be shared between users and applications.
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2.2.2 Adapting to a Changing Environment

Henricksen et al. [81] argue that adaptation is necessary in order to overcome the intrinsically

dynamic nature of pervasive computing environments. Kindberg et al. [86] emphasise the

need for adaptation in coping with the volatility principle where they state that the design

of such systems should assume that the set of participating users, hardware, and software is

highly dynamic and unpredictable. It is clear from this that the mobility of users, devices

and software components leads to a situation where the virtual and physical environments

are continuously changing. Moreover, the changing behavior of users makes it necessary for

pervasive computing systems to have an inbuilt ability to adapt their con�guration to both

take advantage of available resources and to meet the changing requirements of users.

Adaption needs to occur at a number of points in a pervasive computing system to allow,

for instance, the adaption of content, the tailoring of user-interfaces for di�erent devices, and

to make optimal use of the resources available in the environment. In the Intelligent Room

[64] an agent-based system [35] is used that dynamically adapts the binding between agents

to meet the changing resources and capabilities of the environment. The Stanford Interactive

Workspace Project [78] uses a smart clipboard that allows content from one application to

pasted into it and copied from it by other applications, in the process, transparently adapt-

ing the content to meet the requirements of the other application. The Gaia [134] project's

application framework [69, 131], based the on the Model-View-Controller [88] user interface

paradigm, allows the separation of inputs, outputs, and the processing parts of the application

making it possible to dynamically build and adapt applications to suit the available resources.

For example, by changing the view component it is possible to adapt the user interface to

re�ect the device used by users to view the application. The challenge for pervasive com-

puting systems, as highlighted in [86], is that adaption needs to take place without human

intervention.

2.2.3 Interoperability of Pervasive Computing Components

The development of pervasive computing systems, as indicated by [50] and [135], should be

accomplished in an accidental manner over a period of time and not in any structured manner.
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The system evolves as users introduce new components into their physical environment. Over

the life time of a system it can be expected that a wide range of heterogeneous components

will be integrated into the environment or will potentially move through it on a regular basis.

It is not possible to �reboot the world, let alone rewrite it� [86] every time additional compo-

nents need to be integrated into the system. These types of systems need to be able to grow

organically and decay gracefully with the environment as new components are added or old

ones upgraded or removed. It is necessary for components to be able to spontaneously interop-

erate to ensure their seamless integration into the environment. Kindberg et al. [86] describes

this as spontaneous interoperation. They believe it to be one of the main characteristics of a

pervasive computing system. Edwards et al. describe it as impromptu interoperability [50] -

not just the simple ability to interconnect, but the ability to do so with little or no advance

planning or implementation.

The underlying goal is to ensure that components of varying functionality and origin can

spontaneously interact with each other with little or no prior knowledge. Henricksen et al.

[81] suggest that to accomplish this components will need to be able to dynamically acquire

knowledge of each other's interfaces and behaviors in order to learn how to interact with

unknown components. Edwards et al. [50] believe that it is implausible to expect all classes

of devices or services to be known to others and that further work should concentrate on

standardising communication at the syntactical level (protocols and interfaces) and leave the

semantics of component interaction to developers. Davies et al. [40] argue that the design

of such systems should be done in an open and extensible manner so that components can

be rearranged to form applications unforeseen at the time of deployment. Kindberg et al.

[86] considers a number of approaches to tackling the problem of spontaneous interoperation,

including service discovery systems that dynamically locate components that match the cri-

teria of the component, and the provision of a common interoperation model that allows all

components of the pervasive computing system to interact.

The challenge is to ensure the spontaneous interoperation between pervasive computing

components. The goal is to minimize the role of humans in resolving the tensions of integrating

these components seamlessly into the environment so that they can move into the background
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of society and become invisible.

2.2.4 Scalability

One of the features of pervasive computing is the large number of devices and software compo-

nents likely to be involved in any environment. It is only to be expected as these environments

grow in size that the intensity of interactions will increase with the number of devices, software

components, and users inhabiting the space. Thus, the scalability of pervasive computing sys-

tems is considered [135, 81, 49] a critical problem due to the often limited bandwidth, energy,

and computational power of devices typically founded in these types of systems.

Satyanarayanan [135] suggests one avenue of research is to look at the idea of localised

scalability. They recognised that the density of interactions with any particular entity falls

o� as one moves away from it. In other words, the interactions with nearby entities are

of more relevance to a user than those occurring at a distant location. Satyanarayanan et

al. argue that pervasive computing systems can use this fact to obtain scalable solutions

by severely reducing the interactions between distant entities. Kindberg et al. [86] draws a

similar conclusion with the boundary principle. He suggests that pervasive computing system

designers should divide the world into physical environments with boundaries that demarcate

their content. The idea is to use administrative, territorial, and cultural considerations to

de�ne each environment. The objective is not to have one single pervasive computing system

that is unable to scale but numerous systems managing di�erent parts of the world.

A number of projects have utilised these ideas to ensure scalable solutions can be obtained.

For example, the Intelligent Room [64] groups agents together into societies representing

di�erent users and physical spaces. Each society can then manage its own resources and

control how it interacts with other societies and users. Aura [56] draws on Kindberg et al.

[86] notion of the boundary principle to scale their architecture, in that, they de�ne the

boundaries of the environment administratively and interconnect the environments through

a nomadic �le system [136]. For pervasive computing the challenge is be able to allow these

systems scale e�ciently to large numbers of devices and software components without a�ecting

the experience of those who use them.
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2.2.5 Robustness

It is accepted [86, 40, 126] that due to the highly dynamic state of pervasive computing envi-

ronments that failure is to be expected. The occurrence of failure can, in part, be attributed

to the increased use of wireless networks. The limited range and interference due to nearby

structures are the usual causes for the unreliability of these types of communication networks.

The failure of hardware due its fragile nature or the limited lifetime of batteries also leads to

the routine failure associated with pervasive computing. The often inaccurate readings from

sensors contributes to the unreliability of the system software. The inherent mobility of users

and components also contributes to failures. System developers have to realise that failure

is common place in these types of environments and to achieve robust system behavior it is

necessary to address the problem from the start.

Pervasive computing systems have tackled the problem in a number of di�erent ways.

The Interactive Workspaces Project [78] uses a decoupled communication model to provide

applications with asynchronous communication. The loose coupling of components ensures

that applications are less a�ected by the failure of other components in the system. Com-

ponents of the Gaia [134] infrastructure periodically advertises their presence with a heart

beat. The system removes the failed components when a heart beat has not been received

after a designated period of time. It then rearranges the remaining components to meet the

requirements of the environment if possible.

The overall challenge for pervasive computing systems is to be able to degrade gracefully

with disturbances in the physical and virtual environments without adversely a�ecting the

experience of users in the space. To ensure that transient failures do not cause cascading

failures, and that in recovery the whole system should not be made unavailable.

2.2.6 Security and Privacy

Both Davies et al. [40] and Satyanarayanan [135] note the social and legal di�culties that

pervasive computing has with privacy. They recognise the concern of users and the possibilities

for these systems to be abused. The issue is particularly complicated, in that, to allow devices

and applications to adhere to Weiser's vision of calm computing [166] they must be able to
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obtain information about users to anticipate what is required from them. However, this

knowledge is sensitive and can easily be exploited against a user and potentially lead to a

serious loss of privacy. The consequences are that users will become dissatis�ed and unwilling

to participate in the environment. In these cases users have to be able to trust that their

information will not be misused or ensure the mechanisms used to obtain the information

maintains the anonymity of the user.

Kindberg et al. [86] also highlights the problem of security, which is very much interrelated

with the issue of privacy in many ways. Pervasive computing systems need to prevent the

unauthorised use of devices to prevent their misuse and access to private data. For people the

decision to grant access is made intuitively through indept understanding of the trade-o�s of

conceding to a request. In pervasive computing traditional methods of securing computing

systems are not easily applied when the spontaneous interoperation between components is

sought. This is particularly the case when components do not have priori knowledge of one

another or have a trusted third-party on which they can rely on. In these situations it is

necessary to determine the trustworthiness of users while maintaining the balance between

granting access and preserving the privacy of users.

A number of projects are in the process of addressing these issues. For instance, the

SECURE project [24] has built a trust engine for determining the trustworthiness of users and

of components within an pervasive computing environment. Priyantha et al. [128] have also

built a location-based system, called Cricket, that allows a user's trusted device to passively

determine its location, hence, maintaining the user's anonymity within the environment.

2.2.7 Programming Frameworks

In [86], Kindberg et al. wonder what it means to write a �Hello World� for a pervasive com-

puting environment. In doing so they recognise the fact that building applications for these

types of environments is very di�erent from developing traditional applications. Programming

frameworks used in pervasive computing have to address di�erent concerns to those found in

more traditional scenarios, in that, they must focus on minimising the distractions to users,

on supporting the integration of devices or applications into the environment, and on facil-
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itating the incremental development of environments. It is necessary for such programming

frameworks to de�ne suitable programming abstractions that separate the complexities of

dealing with underlying infrastructure - sensors, actuators, and networks - while providing

developers with an expressive means of constructing applications that are capable of adapting

to the environment. The design of such frameworks must also consider that pervasive com-

puting environments are developed in an incremental fashion over a period of time [86, 50].

Frameworks have to be designed in such a way that allows them to support the incremental

construction and improvement of solutions without adversely e�ecting the rest of the system.

Henricksen et al. [81] also argue that there is a need to provide methods that allow for the

rapid development and deployment of pervasive computing environments. They suggest that

such tools are required to support the number and diversity of software components in such

environments. The challenge for pervasive computing is to provide a programming framework

with a suitable programming abstraction that allows for the rapid and extensible development

of pervasive computing systems.

2.2.8 Summary

In the previous sections the chapter outlined some of the main challenges facing pervasive

computing in building system software that can support the development of these types of

environments. In general, the challenges are all interrelated with Weiser's central idea of

making computers disappear from our awareness: pushing them into the background of society

so that they can truly become an integral part of our lives.

2.3 Pervasive Computing Projects and Initiatives

A number of research initiatives and projects have been investigating di�erent aspects of per-

vasive computing since Mark Weiser �rst outlined the area of research in the early 1990's. The

following section explores a number of these projects and investigates how they address the

challenges of building system software for pervasive computing environments. The projects

surveyed re�ect current trends in pervasive computing research while also showing the diver-
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sity of approach used in overcoming these challenges.

Section 2.3.1 describes the user-centric approach taken by Aura [56] in managing the

tasks of users as they move from one pervasive computing environment to another. The Am-

biente project [153], described in section 2.3.2, demonstrates how a human-centered approach

supported through the use of computer augmented artifacts can assist in the collaboration of

users. Section 2.3.3 shows how the Adaptive House [108] uses a proactive approach in learning

the behavior of users in order to anticipate their needs in the future. The Intelligent Room

[64] in section 2.3.4 demonstrates how an agent based system can be used to support the

activities of users in a pervasive computing environment. Section 2.3.5 outlines the sentient

computing [2] approach developed by AT&T Laboratories, in particular, the section describes

how a geometric model of the environment in combination with an API that exploits spatial

facts within such a model can be used to change the behavior of applications. Section 2.3.6

describes the work of the Stanford Interactive Workspace Project [78]. They have developed

an approach that provides users of pervasive computing environments with access to services

that support their work and collaboration with other users in a workspace environment. In

developing the system the Interactive Workspace Project has focused on providing a portable

system that is both extensible and robust. The Gaia project [134] described in section 2.3.7

demonstrates how pervasive computing environments can provide users with access to ser-

vices that are independent of the user's location. The approach is centered on managing the

computational presence of mobile users ensuring that as users move from one location to an-

other that their associated computational sessions can be migrated with them. Section 2.3.8

describes the approach taken by the One.World project [60, 61, 62] in constructing pervasive

computing applications for highly dynamic environments. They have focused on dynamically

connecting devices and coordinating their actions seamlessly to help users complete tasks in

the environment.

The proceeding sections outline in greater detail the methodologies used in these research

projects and the mechanisms applied in the integration of devices and applications into a

pervasive computing environment. Other background information relating to the thesis, such

as the concept of stigmergy and the scripting languages used in pervasive computing systems,
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are reviewed in later chapters. The next section begins with a review of the Aura project.

2.3.1 Aura

The aim of the Aura project [56] is to provide users of pervasive computing environments

with access to services that are independent of the user's location. To achieve this the Aura

project has focused on managing the �computational presence� of mobile users ensuring that

as users move from one location to another their associated tasks are able to move with them

in a transparent manner. In so doing, Aura takes a user-centric approach to managing users'

tasks and to adapting the available resources to meet the needs of users in a proactive manner.

2.3.1.1 A Task-Driven Approach

Garlan et al. [56] use a task-driven approach for Aura. Each task represents a particular aspect

of what a user wants to achieve. For example, a task may be the organisation of a conference,

or the preparation of a presentation by a user. The user's computational presence in the

environment is modeled as a collection of these tasks. As users move from one environment to

another the tasks associated with them are migrated by Aura so that the user may continue

to work on the tasks. During this process Aura also renegotiates the support for the tasks

in relation to the resources and capabilities of the given environment. The tasks in Aura are

represented as a series of abstract services. Examples, of abstract services could be a text

editing service, or a video playing service. Suppliers of these services are provided at each

location at which Aura is present. When a user starts a task the system brings up all the

services and �les associated with that task. On �nishing a task, or when a user moves out of

the environment all the information associated with the task is checkpointed and stored for

later retrieval.

2.3.1.2 Aura Architecture

The Aura architecture [148] is shown in �gure 2.1. Coda [136] provides Aura with support

for nomadic, disconnectable, and bandwidth-adaptive �le access. It supports the mobility

of users between environments and ensures the robust behavior of the system through its
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Figure 2.1: Aura architecture.

nomadic �le system. Coda also provides Aura with some support for security and privacy, in

that, the data being stored is encrypted. Odyssey [137] is used to monitor resources within

the environment and to adapt the con�guration of Aura to maximise the use of available

resources in each of the environments.

Prism, the task manager in combination with the Environment Manager and Context

Observer provide the functionality for supporting the task-driven approach adopted by Aura.

In each environment an instance of each of these components is provided. The Environment

Manager keeps track of all the suppliers of services that are available in the environment and

ensures that the most appropriate services are chosen when reconstructing a task for a user.

It is also responsible for providing access to the distributed �le system, Coda.

Prism manages and coordinates the migration of all information related to user tasks

from one environment to another. It also, when necessary, �nds alternative con�gurations

for supporting user tasks when the available resources are insu�cient to meet the successful

completion of the task. It achieves this by monitoring the services supporting the task. When

a service can no longer complete the task a query is made to the Environment Manger by

Prism for an alternative service that is capable of doing so. The abstract notion of services

helps Aura to adapt the available resources to the tasks in each of the environments and in so

doing provides it with a �exible approach to adapting to the resources and capabilities that

are available. Prism also manages the user transition between di�erent tasks and monitors

the context observer for changes in context information that might e�ect the system. If any
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changes are observed Prism makes the necessary adjustments for the pervasive computing

environment to continue to operate.

Context information is provided by the Context Observer, the design of which, is based

on [80]. It uses a database abstraction, with an SQL-like query language, to retrieve context

information from the environment. It provides the Aura architecture with the ability to

integrate into the environment abstracting the low-level complexities of dealing with sensors

and providing a high-level abstraction that can be used to query the state of the physical

environment. The information gained allows Prism to adapt its behavior to suit the users in

the environment.

It would also appear that Garlan et al. [56] draws on Kindberg et al.'s [86] notion of the

boundary principle to scale their architecture. They de�ne the boundaries of an environment

administratively. In practice this appears to correspond to a physical location such as a room

or building. In each of these environments their exists a single instance of the architecture as

described above.

2.3.1.3 Developing Pervasive Computing Environments with Aura

Developing a pervasive computing environment with Aura is centered on the provision of

service suppliers for the di�erent types of services and various resource con�gurations in

the di�erent environments. In the current implementation of Aura the majority of service

suppliers wrap existing applications. For instance, the text editing service is based on Emacs

and Microsoft Word, while the video playing service is provided by Media Player and Xanim.

The Aura architecture makes the assumption that the di�erent types of services it requires

to reconstruct a task will be available in each of the environments to which the user moves.

While this may be the case for the majority of common services it may not be for all. In

these cases Aura may not be able to start a task for the user at that location. While it would

appear that it is relatively easy to install a supplier for a service at a certain location it may

not be possible to use that type of service until it has been rolled out to a su�cient portion

of the Aura environments that the user inhabits as it would not be possible to reconstruct

those tasks based on that service.
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2.3.1.4 Summary

Aura provides a user-centric approach to the development of pervasive computing environ-

ments. It pays particular attention to the migration of a user's computational presence from

one environment to another. It models this presence as a series of tasks that are represented

as a collection of abstract services and �les. As users move into an environment their tasks

move with them and are recon�gured to map onto the resources that are available in the

environment.

2.3.2 Ambiente's Cooperative Project

Streitz et al. developed the concept of Cooperative Buildings [153] to provide �exible and

dynamic environments that provide cooperative workspaces supporting communication and

collaboration between users. Their aim was not only to support human-computer interactions

but to assist in human-human cooperation and communication by using real world artifacts

as the interface to information and as the means of supporting the collaboration and commu-

nication between users. iLand [154] is the realisation of this concept and provides a workspace

for assisting human creativity within a meeting scenario. It uses computer-augmented objects

- Roomware [153] - to provide information and support for group and individual interaction

within the iLand environment. In taking this approach Streitz et al. have used a human-

centered design where the human may also be part of a group or organisation.

2.3.2.1 Roomware

The concept of Roomware [153] was conceived by Streitz et al. as a way of creating �exible,

dynamic landscapes, that could integrate real architectural spaces with virtual information

spaces in a way that supports the cooperation and communication of one human to an-

other. So far Streitz et al. have created a number of Roomware components; an interactive

electronic wall (DynaWall), an interactive electronic table (InteracTable), networked chairs

(CommChairs), and a smaller interactive table called the ConnecTable. All of which can be

seen in Figure 2.2.

DynaWall is a large interactive display of 4.5 m in width and 1.1 m in height. It is
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Figure 2.2: Roomware: ConnecTable, CommChair, DynaWall, InteracTable.

constructed from three touch sensitive rear-projected whiteboards. The display is used in

iLand to aid teams to display and interact with large amounts of information. Users interact

with the display by using gestures to create, move, and delete information objects from the

display. The CommChairs are mobile chairs with either an in-built computer or docking point

for a laptop. The chair allows users to communicate and share information with people in

other chairs or with other Roomware components such as DynaWall. From the chair the

user can annotate these remote workspaces as well as making their own personal notes within

their own private workspace. The InteracTable is a table with a vertical touch-sensitive

display embedded into the top of the table. It is designed to be used by groups of up to

six people. Gestures are used by the group to manipulate the di�erent information objects

and annotations can be provided through the use of voice and/or pen. ConnecTable is a

smaller version of the InteracTable and has been designed by Streitz et al. for individual

work or for cooperation between small groups. Each of these components, with the exception

of DynaWall, use wireless communication and have their own independent power source.

This allows the users to con�gure the Roomware components in the desired way. However,

the movement is limited to the range of the wireless communication as iLand is based on a

client/server architecture.
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2.3.2.2 iLand Infrastructure

Streitz et al. use the Roomware components to support the collaboration and communica-

tion between users in the iLand environment. In order to support the functionality of these

components Tandler has developed the Basic Environment for Active Collaboration with

Hypermedia (BEACH) [156, 157] system for supporting synchronous collaboration and inter-

action between Roomware components. BEACH is horizontally organised in four layers - core,

models, generic, modules - which de�ne increasing levels of abstraction and vertically by �ve

models - interaction model, physical model, user-interface model, tool model, and document

model - that separate the basic concerns of the infrastructure. The abstractions provided by

BEACH, in particular the physical model, help to remove the low-level complexities of dealing

with the real world and so aid the physical integration of the Roomware components into the

iLand environment.

To ensure a clear separation of concerns Tandler uses di�erent models for interaction, the

physical environment, user interface, tools, and documents. The document model describes

all objects related to a document. The tool model provides descriptions of tools that can be

used in conjunction with the user interface, for instance, toolbars and document browsers.

The user interface model de�nes alternative user interfaces that can be used with each device

in the iLand environment. The physical model provides representations of the real world. The

interaction model de�nes the means by which users can control and manipulate the di�erent

components of the system. All the models are implemented as shared objects except for the

interaction model object which is local to each Roomware component. The sharing of objects

allows for several users or devices to access the objects at the same time.

The core layer of BEACH, which is based on COAST [145], provides the means of achiev-

ing this. COAST provides BEACH with a shared-object space that allows the distribution,

replication, and synchronisation of objects across the iLand environment. The core layer

also provides additional functionality for event handling and sensor management. The layer

ensures the spontaneous interoperability between the Roomware components in the iLand

environment. However, COAST is based on a client/server architecture where each of the

Roomware components runs one or more BEACH clients that synchronise with a central
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server. Such an architecture may be subject to issues of scalability and reliability due to the

use of centralised components to coordinate the Roomware components.

Directly above the core layer is the model layer. The model layer provides an implemen-

tation of the basic models that are used in implementing the higher layers. For instance,

the layer provides interfaces for manipulating documents, for user interfaces, and models for

di�erent styles of interaction within the iLand environment. Based on the model layer the

generic layer provides a set of components that support the basic functionality that is required

for supporting most teamwork and meeting situations. For example, the components at this

level support informal handwritten scribbles, as well as private and public workspaces for

collaboration between users. In additional to the generic layer is the modules layer, which

provides extra support for de�ning functionality for speci�c tasks not handled by the compo-

nents in the generic layer. Currently, this layer is used in iLand to support creative teams in

collecting ideas during brain storming sessions.

It should be noted that BEACH requires a considerable amount of computational re-

sources and is not suitable for small devices such as PDAs. Also, the infrastructure requires

continuous network connectively to support the synchronous collaboration between devices

in the iLand environment. This does not lead to a robust pervasive computing system as

wireless communication used in the roomware components is not considered to be reliable.

Also, the infrastructure is primarily built for supporting meetings, braining-storming sessions

and it would appear that it may be di�cult to use it develop other types of environments.

2.3.2.3 Developing Roomware Components with BEACH

Developing pervasive computing environments with BEACH is centered around the creation

of Roomware components for the environment. In the iLand environment a number of such

components - DynaWall, InterTable, CommChairs, and ConnecTable - were developed to

assist groups of people in creative sessions. In BEACH the development of these Roomware

components is centered on the generic layer as this layer de�ne the concrete classes that are

used to implement the generic support for the components. For example, the DynWall consists

of three machines each with a wall mounted display. The physical model at this layer would
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de�ne a roomware component of three machines with their displays combined into one large

display area. The user interface model would de�ne the display as one large segment in which

a document browser is placed. The document model would de�ne the workspace.

2.3.2.4 Summary

Ambiente's Cooperative Project have developed a system for supporting the communication

and collaboration between groups of users in a workspace environment. Their approach is cen-

tered around the concept of Cooperative Buildings [153] and the use of computer-augmented

objects to provide information and support for group and individual interaction in a pervasive

computing environment. The iLand [154] environment is the initial prototype of the concept,

which is based on a collection of Roomware components that are supported by BEACH. While

BEACH is e�ective in abstracting the complexities of supporting the collaboration of users

there are concerns with its ability to scale to larger a environment and to provide a robust

service in the face disturbances within the environment. The work presented in this thesis

looke to address these issues through the use of techniques based on the natural phenomena

of stigmergy.

2.3.3 The Adaptive House

The aim of the Adaptive House [108] is to provide a proactive approach to learning the

behavior of users in order to allow a system predict the future needs of users in a pervasive

computing environment. To achieve this Mozer et al. renovated a school (see �gure 2.3)

into a two bedroom house. In the process they incorporated a large network of sensors

and actuators to sense and control various environmental aspects of the house including the

lighting, heating, and ventilation. Their objective in installing the network was to incorporate

the ACHE system [107] which would allow the house anticipate the needs of the inhabitants

and to conserve energy within it.

To determine the usage being made of the house Mozer et al. equipped the house with a

wide range of sensors to detect the state of the lights, speed of the air conditioning fans, and

the temperature of each of the rooms. It was also necessary for them to have information on
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Figure 2.3: The Adaptive House 1926.

the temperature of the water heater, the energy used by the heater, the outside temperature,

and the energy being used by the furnace. To detect the location of the inhabitants the house

was augmented with a number of motion detectors in each of the rooms. In total Mozer et al.

used approximately 75 sensors to gauge the environmental state of the house. They also used

22 lighting banks to allow the ACHE system to control the intensity of the lighting as well as

to turn it on and o� and a number of other actuators to control the speed of the ceiling fans,

to turn on and o� the water heater, gas furnace and electric space heaters. All the devices

were connected together over the house's power line using an X-10 network.

2.3.3.1 ACHE

ACHE [107] is the underlying system that regulates the behavior of the Adaptive House. It

monitors the activities of the inhabitants to anticipate their needs and to alter the state light-

ing or heating in the house. To achieve this the ACHE system uses the large sensor network

embedded in the house to sense the state of the house and the activity of the occupants.

Mozer et al. use neural networks in combination with reinforcement learning techniques to

decipher the sensor data and to predict the future behavior and usage of the house. Having

determined the probable usage the ACHE system is able to adapt the di�erent environmental

systems to meet the predicted needs of the occupants and to conserve energy within the house.

The basic system architecture [107] of ACHE, as shown in �gure 2.4, is replicated in each of

the control domains: lighting, heating, and ventilation.
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Figure 2.4: System architecture of ACHE.

The sensor readings gained from the network are fed into a state transformation component

and occupancy model. These determine the current state of the house and the whereabouts

of the inhabitants. The predictor components use the information provided by the state

transformation component and occupancy model to predict future usages of the house. For

example, the occupancy patterns of the house for the next hour or the expected water usage

in that time. Using the current and future state of the environment the setpoint generator

determines the most appropriate pro�le to which to set the di�erent environmental systems.

The pro�le is passed to the device regulator to modify the devices in the house to achieve the

required state.

ACHE has been shown [110, 109] to provide quite an e�ective mechanism for adapting

the environmental aspects of a residential home to the needs of the inhabitants. However,

as the system runs on a single server it is unclear how it could scale to a larger building or

whether it be used across several buildings. There is also a concern as to how robust the

system is to failure of the main server or whether the data stored in the occupancy models,

state transformation components, or predictor components can persist across reboots. It

should also be noted the Adaptive House is static in that there is no expectations that new

components will be incorporated into the environment. This questions the ACHE system's

ability to spontaneously interoperate with new components.
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2.3.3.2 Summary

The Adaptive House shows how it is possible to adapt a system over time to the changing

behavior of users through the use of neural networks and reinforcement learning techniques.

While the ACHE system has proven to be quite e�ective in achieving this it neglects in other

respects to fully support pervasive computing. For instance, how the system is to scale to

large environments, or how the spontaneous interoperation between arbitrary components is

achieved. It should also be noted Mozer et al. do not describe a programming model that

can be used to develop other types of pervasive computing environments and as such would

appear to be limited to the control of environmental systems within a residential house. The

work presented in the thesis addresses these issues through the provision of an alternative

programming abstraction for developing pervasive computing environments.

2.3.4 Project Oxygen - The Intelligent Room

The Intelligent Room [34], developed by Coen, was the initial project that started MIT's

research into pervasive computing. MIT's interest has now evolved into an initiative called

Project Oxygen that includes a new version of the Intelligent Room [64]. The Intelligent

Room is a conference room containing a number of cameras, microphones, sound system,

smart boards, visual displays, and a number of other sensors and actuators. The aim of the

project is to provide a human-centered approach capable of supporting the activities of users

in a pervasive computing environment. The underlying system for the environment is based

on an agent system called Metaglue [121, 35].

2.3.4.1 An Agent-Based System

Hanssens et al. [64] use an agent-based system to control and develop applications for the

Intelligent Room. In their approach an agent represents any software component with the

ability to communicate and to provide functionality to other agents in the environment. These

may include an agent to control a light switch or an agent to provide a fully featured word

processing application for users. Hanssens et al. group these agents in societies to represent

and to act on behalf of a user or a particular space. By structuring the agents in this way they
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are able to scope the interactions within the societies and to limit unnecessary interactions

between societies making it possible for the system to scale in an acceptable manner.
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Figure 2.5: Intelligent Room Architecture.

Agents are used as the basic component for the Intelligent Room. The system architecture

(see �gure 2.5) consists of four layers working at increasing levels of abstraction. The commu-

nication layer - MetaGlue [35] and HyperGlue [64] - contains software components that are

used to mediate communication within a society and also between societies. The next layer

- Rascal [54] - coordinates access to the resources of the society. The next layer consists of

a context-aware component - ReBa [90] - that uses context information to provide relevant

services to users, a GUI management component that controls the graphical user interfaces

for applications, and a multi-modal component that contains methods for di�erent modes of

user input, such as gestures and speech recognition. At the top is the application layer which

interacts directly with users.

Metaglue [35] is the agent system used by the Intelligent Room. It is developed in Java to

provide low-level support for building software agents for pervasive computing environments.

It is designed to aid communication and provide fault tolerant mechanisms for coordinating

the actions of agents. The system uses a post-compiler that runs over the Java class �les

to generate new byte code that runs on the MetaGlue Virtual Machine. To support the de-

velopment of agents Metaglue adds a number of language primitives to the Java language, a

detailed description of which can be found in [121]. They are used by MetaGlue to dynamic

load and connect agents together, and to tie agents to particular resources within the envi-
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ronment. Communication between agents is achieved via a publish-subscribe mechanism or

through the direct invocation of methods. The MetaGlue system is also designed to handle

the failure of agents, in that, it is capable of restarting crashed agents in a manner that is

transparent to other agents. Using MetaGlue in the Intelligent Room has allowed Hanssens

et al. to provide a robust method of handling the failure of components and a means of

abstracting such issues from higher-level agents. The dynamic binding of agents also provides

the Intelligent Room with the means of adapting to changing agent con�gurations.

HyperGlue [64] enables inter-communication between societies of agents. In each society

there is an ambassador agent that represents the grouping to the rest of the environment.

These ambassador agents advertise their society and locate other societies so requests for

resources and exchange of information can be made. The discovery mechanism used by

ambassador agents is based on the Intentional Naming System (INS) [3]. The common com-

munication model that MetaGlue provides in combination with the discovery mechanisms

provided by HyperGlue ensures that the agents in the di�erent societies are able to sponta-

neously interoperate with each other. Such functionality allows Hanssens et al. to seamlessly

integrate components into a pervasive computing environment.

Rascal [54] is used to coordinate how the resources in the pervasive computing environ-

ment are used. The main function of Rascal is to arbitrate between requests for resources and

to enforce access control for the system. It is composed of a knowledge base, a constraint sat-

isfaction engine, and a framework that allows interaction with agents. The knowledge base is

used to hold information about resource requirements, while the constraint satisfaction engine

arbitrates the requests of agents for similar resources. Each society of agents manages and

controls access to their own resources. Cross-space requests for resources are made through

the ambassador agent. The use of Rascal provides the Intelligent Room with a way of man-

aging resources and a means of adapting the con�guration of agents to meet the availability

of resources in the environment.

Controlling the behavior of each society is a behavioral system called RaBa [64]. The

design [90] of which is heavy inspired by the work of Brooks [15] on subsumption and in part

by that of Williams et al. [172]. Subsumption is a layered architecture that was developed
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by Brooks to control the behavior of mobile robots when moving through unfamiliar envi-

ronments. The system works by exploiting various levels of competence. Each level de�nes

a particular class of behavior for the robot. Higher levels de�ne more speci�c desired classes

of behaviors. In addition, these higher levels can suppress, or subsume, lower-level behaviors

by changing their output. Hanssens et al. view the Intelligent Room as an immobile robot

and have use Brooks's layered approach to control the behavior of their pervasive computing

environment.

ReBa collects context information from agents to build up a higher level representation of

the activity being performed by users in the physical environment. Hanssens et al. call this

representation the activity context. For each activity (or sub-activity) being performed by a

user a Behavior agent is used to represent it. In its simplest form each behavior contains a

rule that responds to a user action by performing a particular reaction (output). Depending

on the order of activities performed by users a series of behaviors can be activated by the

system. An activity can be performed within another activity creating a layering of behaviors

activated one on top of each other. For example, a presentation behavior can be activated

on top of a meeting behavior, or it could be activated on top of a casual gathering behavior

creating a di�erent reaction in the physical environment. The ReBa component provides the

Intelligent Room with the means of changing its behavior, in so doing, it allows the Intelligent

Room to adapt to meet the needs of users.

User input and graphical user interfaces are managed separately from application logic.

An application can receive user input via speech, gesture, and pointing devices. To allow users

in di�erent locations to interact with the same application Hanssens et al. have created a

distinction between the application agent and the graphical user interface of the application.

To transparently manage each user interface a GUI Manager agent runs locally on each device

with a display. The manager can request a user interface from the application and load it

locally onto the screen where a user can control it and share it with other users. Separating

the inputs and outputs from the application logic makes it possible to dynamically compose

applications to suit the available resources within the Intelligent Room. This makes it easier

to adapt the applications to environment and to the needs of the user.
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2.3.4.2 Using Agents to Build Pervasive Computing Applications

In the approach advocated by Hanssens et al. the development of pervasive computing en-

vironments is centered around developing agents for the various sensors, actuators, compu-

tational devices, and application logic used in the environment to represent the di�erent

physical spaces or users. The agent system used by Hanssens et al. and the abstractions that

it provides helps to remove the complexities of dealing with the physical environment, easing

the physical integration of devices while also aiding the development of applications for these

environments. So far the system has been been used to build the Intelligent Room [64] and

a number of application for it. For instance, Fire [55] is an information retrieval interface

that allows users to use more natural modes of communication such as speech and gesture to

retrieve information from the Internet. The Meeting Manager [120, 113] provides support for

users who are having a meeting within the Intelligent Room. It helps users plan and manage a

meeting while at the same time records the meeting with contextual cues that can be used to

search the recording of a meeting at a later stage. It also provides a summary of the meeting

that it sends to each participant at the meeting.

2.3.4.3 Summary

The Intelligent Room provides a human-centered approach to the development of pervasive

computing environments. They pay particular attention to supporting the interactions be-

tween users and also the interaction of users with the physical spaces they occupy. To support

these interaction they have developed an architecture based on the agent system MetaGlue.

The agents are grouped into societies to represent and to act on behalf of various users and

physical spaces.

2.3.5 AT&T Laboratories - Sentient Computing

Sentient computing [2] uses sensors and other resource data to maintain a model of the real

world that can be shared between users and applications. Addlesee et al. use this model

to allow applications to make observations of the real world and to adapt their behavior

correspondingly. The system developed to harness this approach provides a geometric view
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of the world, tracking the location and monitoring the state of physical objects and users

with it. The developement of applications is achieved through an API that uses spatial facts

derived from the model to trigger changes in application behavior.

2.3.5.1 A Sentient Computing System

The sentient computing system uses a three-tier architecture [2, 65] to maintain a model of

the real world. On the top tier are resource monitors and location sensors [165] that feed

the system with information on the state of the physical objects. The applications that use

the model are also located at this level. In the middle tier are a set of CORBA objects that

represent the physical objects within the environment. At this level is also a spatial monitor

that determines the spatial relationships between physical objects. On the bottom tier is an

Oracle database that is used to provide persistence for the system.

An object-oriented data modelling language - Ouija [149] - is used to generate the CORBA

objects on top of the database. These objects are stored in the database as rows of data and

associated operations are written in PL/SQL. PL/SQL is a procedural extension to SQL

that was developed by Oracle to allow manipulation of their database. The Ouija modelling

language provides a CORBA mapping for PL/SQL and a means of persistently storing the

state of objects. This allows the sentient computing system to handle failure and to provide

a more robust service to applications. The CORBA objects generated with Ouija are used

to represent the various physical objects within the environment. The resource monitors

and the location service update the state of these objects via the corresponding CORBA

objects. Changes in the state of the physical objects, such as location, are then propagated

to applications via an event service.

Resource monitors are installed on all networked machines and are use to provide informa-

tion on machine activity, resource usage, and network point-to-point bandwidth and latency.

They periodically report changes to objects in the database via the CORBA interface gener-

ated by Ouija. The location system - BAT [165] - provides the primary source of information

on the location of physical objects. It is an extremely accurate location system though it re-

quires the preinstallation of base stations into areas where the location of objects is required.
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All location information is also feed back into the system.

Conceptually, the architecture provides a centralised system that maintains a model of

the real world through the use of sensors and which allows applications to adapt their behav-

ior through observations of this model. While the use of a centralised system may ease the

implementation there has to be concerns that the chosen architecture will not be able to scale

to incorporate larger areas or more detailed models of the real world. However, the high-

level abstraction that this approach provides does aid the physical integration of applications

into an pervasive computing environment while also allowing them to adapt their behavior

to changes in the environment. Though, it should be noted that there is no common coordi-

nation mechanism that allows for interoperability between arbitrary application components.

Applications can only use the observations from the model to change their behaviour and

have no means in this architecture of communicating with other components to coordinate

their behavior. There is also no means of securing access to those viewing the model which

may lead to concerns of privacy for users.

2.3.5.2 Programming with Space

To develop applications Addlesee et al. use an API that exploits spatial facts between physical

objects to trigger changes in application behavior. This is achieved through the use of the

spatial monitor located on the middle tier of the architecture. The spatial monitor translates

absolute location events generated by the system into relative location events. These events

can be used by applications to determine relative spatial facts about physical objects of

interest to them, for instance, whether a person is standing in front of a workstation or not.

To receive these events applications need to associate a particular containment space around

an object and to register a callback to the monitor the space for di�erent spatial facts. The

spatial monitor can then deliver relevant events to the application which, in turn, allows the

application to change its behavior.

Addlesee et al. have used the approach to develop a series of follow-me type applications.

For instance, using Virtual Network Computing [51] one of the follow-me applications created a

desktop that followed its owner from desktop to desktop. Another follow-me application allows
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a person to route telephone calls to the phone beside them. A number of other applications

have also been developed such as Lifestreams [52, 2], which keeps track of the stream of

documents accessed in a time-line that functions as a users diary of their electronic life, or

a browser that allows people to see what is happening in the building. The majority of the

applications developed can be classi�ed as location aware systems. The use of other types

of information does not appear to in�uence the behavior of the system in any signi�cant

way. This would seem to be a drawback as it limits what can be achieved if other forms of

information could be used to change the behavior of applications.

2.3.5.3 Summary

Addlesee et al. [2] have developed an approach based on the concept of sentient computing

for developing pervasive computing environments. In it sensors and other resource data are

used to maintain a model of the real world that can be shared between users and applications.

It pays particular attention to the geometric relationships between physical objects and uses

a spatially aware API to de�ne the behavior of applications. While the programming model

provides an initiative approach to developing pervasive computing applications the underlying

system is limited due to its centralised nature and particular focus on the use of location

information.

2.3.6 Stanford Interactive Workspace Project

The aim of the Interactive Workspace Project [78] is to provide users of pervasive computing

environments with access to services that support their work and collaboration with other

users in a workspace environment. To achieve this the Interactive Workspace Project has

focused on the ability to move data transparently between applications and displays within

the environment, the ability to move control of applications between devices to minimise the

disruption to users in collaborative sessions, and the ability of applications to dynamically co-

ordinate their actions to support the activities of users. In doing so, the Interactive Workspace

Project have taken a user-centric approach to mananging the interactions of users with the

environment.
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2.3.6.1 iROS a Pervasive Computing System

To support the collaborative sessions of users Johanson et al. have developed a system, called

iROS [78], to manage the interactions of users within these types of pervasive computing

environments. The component architecture of iROS can be seen in �gure 2.6. The Event

Heap [77] is a distributed event service based on a tuplespace model [28]. It provides the

communication infrastructure for the dynamic coordination of applications. The Data Heap

supports the movement of data from one application or device to another through the provision

a repository that automatically converts the format of the data to best suit the application

or device accessing the data. The iCrafter system [127] is used for service advertisement

and invocation and is, in many respects, quite similar to Jini [162] except that invocations

are mediated through the Event Heap. iCrafter also provides an additional service for the

automatic generation of user interfaces for services such as a light, projector, or application

within the environment.

Event Heap Other APIs

State
manager

Service
invocation

Service
discovery

iCrafter

Data
Heap

Persistent Store File Stores

Interactive workspace application

Key: = Standard iRos= Other infrastructure

Figure 2.6: The iROS component structure.

These three subsystems - event heap, data heap, and iCrafter - are designed to handle the

user modalities of moving data, moving control, and the dynamic coordination of applications

within the environment. Together, they also provide additional functionality for supporting

the development of pervasive computing environments. The common coordination mechanism

used by the Event Heap allows for the interoperability between arbitrary components, while

the loose coupling provided by a tuplespace model ensures that failure of components does

not signi�cant e�ect the rest of the system. The simple functionality of the Event Heap also

ensures the portability of the system to a wide variety of platforms easing the inclusion of

new applications and devices. However, the current implementation of the Event Heap uses
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T-Spaces from IBM [174], which is a client-server based implementation of a tuple space. It

would appear [77] that with this implementation there are issues with the performance and

scalability of the system. Even though Johanson et al. [78] look to use Kindberg et al's [86]

notion of the boundary principle to administratively bound the size of the environment to

allow their system to scale there would still seen to be a problem.

The Data Heap's ability to act as a smart clipboard signi�cantly helps the iROS system

to transparently adapt content to the requirements of applications and devices. The ability

to adapt is also helped by iCrafter's capability to generate user interfaces for services. This

is achieved through templates which can be used to adapt the interface to suit the available

resources in the environment. The iCrafter system also allows the composition of services

enabling the iROS system to adapt applications to suit user requirements. This is facilitated

through the use of a service discovery mechanism that is mediated via the Event Heap.

The mechanism allows components of the iROS system to discover and to spontaneously

interoperate with other components aiding their composition.

However, while the abstractions provided by iROS help to construct pervasive computing

environments there appears to be no high-level abstraction for sensors that can be used to

tailor the behavior of applications. This hinders the physical integration of applications and

devices into the environment and restricts the proactive nature of such environments. It

should also be noted that the iROS system is logically centralised with the Event Heap acting

as the hub for interactions within the environment. While this has it advantages, as discussed

above, it does act as a central point of failure for the system which questions its robustness

even though Shankar et al. [126] and Johanson et al. [77] suggest that it is not signi�cant

problem. Also, the fact that applications use the Event Heap as a broadcast medium allows

users to over see the communications of applications other than their own queries the ability

of the iROS system to protect the privacy of users and the security of user data.

2.3.6.2 iRoom a Pervasive Computing Environment

With the iROS system the Interactive Workspace Project have created an environment called

iRoom. iRoom is a meeting room that allows users to collaboratively work together. The
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room provides users with wall-mounted displays, called interactive murals, and a table with

a display inserted into it. These pieces of equipment provide the focus for the meeting room

and for the interactions with the system. Users can also bring their laptops and PDAs into

the iRoom and have them seamlessly integrate into the environment. Participants making a

presentation at the meeting can use their laptop to display their material on the interactive

mural. The other participants at the meeting can make suggestions or modify the material

using the PointRight system [79] that allows users to control the pointer on the interactive

mural from their own laptop. It is also possible for users to control other devices in the room

via their laptop or PDA using a user interface generator.

2.3.6.3 Developing Applications with iROS

In the iROS system the Event Heap is the only component an application is required to use

to become part of the system. However, the development of applications is more centered

around the provision of services using the iCrafter subsystem. In iRoom services are used to

control the lights, the projectors, and also to build applications for the meeting room. Many of

these applications are existing applications that have been wrapped using the iCrafter service

API to enable there inclusion within the environment. For example, Microsoft's Power Point

application is wrapped in a iCrafter service to allow it to be used in the iRoom to make

presentations.

2.3.6.4 Summary

The Interactive Workspace Project [78] have developed a pervasive computing system that

supports the collaborative work of users within a workspace environment. It pays particular

attention to the ability of users to move data between applications, for users to move control

of applications between devices, and for applications to be able to coordinate their behavior in

a dynamic manner. In tackling these concerns the Interactive Workspace Project built iROS

a logically centralised system that manages and coordinates the interactions of users within a

localised environment. An alternative system is presented in the thesis were a decentralised

approach is developed to allow the ad-hoc assemble of pervasive computing environments.
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2.3.7 Gaia

Similar to the Aura project [56] the objective of the Gaia project [134] is to provide users of

pervasive computing environments with access to services that are independent of the user's

location. To achieve this the Gaia project has concentrated on managing the computational

presence of mobile users ensuring that, as users move from one location to another, their

associated computational sessions can be migrated with them in a transparent manner. In

so doing, Gaia takes a user-centric approach to managing the interactions of users with the

environment and to adapting the available resources to the needs of users in a proactive

manner.

2.3.7.1 Active Spaces

To support the mobility of users in a pervasive computing environment Roman et al. [134]

de�ne an active space as a physical space that is constrained by well-de�ne physical boundaries

containing tangible objects, heterogeneous network devices, and users performing a range of

activities that are supported by a context-aware infrastructure. The aim for Roman et al.

is to enhance the ability of mobile users to interact with and con�gure their physical and

virtual environments in a seamless manner. To achieve this they use the idea of sessions.

Session associate data and applications with a user. A user's computational presence in the

environment is modeled as a collection of these sessions which Roman et al. call the user's

virtual space. As users move from one active space to another the sessions associated with

them are migrated by Gaia to allow the user to continue their work. During the migration

Gaia renegotiates the support for the sessions and maps the applications and data to the

available resource in the active space.

2.3.7.2 The Gaia Operating System

The Gaia Operating System (Gaia OS) manages the resources and provides the services for

an active space. The design of the Gaia OS is based on a traditional operating system but

at a di�erent level of abstraction. Gaia OS abstracts a physical space and the resources

it contains into a single programmable entity that can be used to build active spaces. It
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looks to match the services found in traditional operating systems - program execution, I/O

operations, �le-system manipulation, communications, and error detection - to manage the

resources and provide support for user interaction and mobility within a pervasive computing

environment. It is a component-based distributed operating system that operates on top of

existing operating systems and is based on the K2 operating system [87]. The system, as

shown in �gure 2.7, consists of a component management core around which a set of core

services - event manager, context service, presence service, space repository, and context �le

system - provide support for users and application development.
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Figure 2.7: Gaia architecture.

The component management core is a component-based system that supports the dis-

tribution, remote execution, and management of components. It is responsible for creating,

destroying, and uploading components to any of the computational nodes within the active

space. The component management core is implemented using CORBA. The event manager

distributes events and provides a decoupled communication model for the active space. The

use of such a communication provides increased system reliability and ensures a robust system

capable of handling failure of components. The events are used in active spaces to notify in-

terested components of new services, the entry of people, errors, and other application speci�c

events.

The context service [130] provides Gaia with context information that can be used to

adapt the behavior of applications. The service is structured in a similar fashion to Dey's

Context Toolkit [44, 43] but also uses a �rst-order logic and boolean algebra to frame rules

and to de�ne queries. The component helps to abstract the low-level complexity of dealing

with sensors and provides a high-level abstraction that can be used by components to query
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the state of the physical environment. The approach taken by the Gaia project supports the

physical integration of components into a pervasive computing environment.

The presence service is used to monitor the state of resources within the environment. It

keeps track of applications, services, devices, and users entering and leaving the environment.

Interested parties are noti�ed of changes through the event service. The space repository stores

information on all software and hardware entities within the active space and allows appli-

cations to browse and retrieve entities. The space repository learns of new entities through

noti�cations from the presence service. On a user entering the active space the space reposi-

tory retrieves the user's pro�le and stores it for later retrieval. The space repository acts as a

service discovery mechanism for Gaia allowing applications to locate suitable resources during

instantiation. Such a services aids the spontaneous interoperation of arbitrary components in

the active space and also helps with adapting applications to the available resources in the

environment.

The context �le system [67, 68] is a context-aware �le system that uses context information

to simplify access to data. The �le system uses the context associated with each �le to

construct a virtual directory hierarchy that can be queried at a later stage by applications.

In the active space it is used to store personal data and to save the state of user sessions so

they may be retrieved at a later stage. On a user entering an active space the context �le

system automatically locates the user's data and makes it accessible to the components of

the active space. It is at this stage that any active sessions are mapped to the active space.

The context �le system also eases access to data by reorganising and retrieving the data in

a format suitable to the user's preferences or device characteristics. The use of such a �le

system helps to adapt the content to suit the available resources in the environment.

It would also appear that Roman et al. [134, 132] draws on Kindberg et al's [86] notion of

the boundary principle to scale their infrastructure. They de�ne the boundaries of an active

space administratively. This would appear, in practice, to correspond to physical locations

such as an o�ce, or meeting room. In each of these active spaces exists a single instance

of the Gaia OS that manages the resources in this space and controls how the environment

interacts with mobile users.
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2.3.7.3 Developing Applications with Gaia

Developing pervasive computing environments with Gaia is centered around the application

framework that is implemented on top of the Gaia OS. The application framework [69, 131] is a

component architecture based on the Model-View-Controller [88] user interface paradigm. The

framework allows the partitioning of applications over groups of devices that can coordinate

where the input is taken from, how the state of the application is presented, and where the

application processing takes place.

The application framework uses four main components: the model, presentation, con-

troller, and coordinator. The model implements the application logic. It also provides meth-

ods for storing and synchronising the application state, as well as providing an interface for

accessing the functionality of the application. The presentation component provides a repre-

sentation of the application state, for instance, by use of a graphical or audio representation, or

a variation in the temperature or lighting in the environment. In any case the representation

provided by the presentation component is any external e�ect to the physical environment

that can be perceived by users. The controller alters the state of the application through

mapping sensor inputs onto the model's interface. Examples of controllers may be a keyboard

or a mouse but may also include changes in context. The coordinator manages the above

three components. The model, presentation, and controller provide the main building blocks

of application while the coordinator provides the application's meta-level functionality.

How these components are arranged to form an application is achieved independently of

any particular active space through the use of generic application descriptions. The applica-

tion framework uses two types of description �les: application generic descriptions (AGD),

and application customized descriptions (ACD). The AGD provides a generic template for

an application that is independent of any active space. It describes the components required

to compose the application including the name, type, and number of instances needed. The

ACD is a customised description of the AGD that �ts the resources of a particular active

space. The ACD is de�ned using a high level scripting language called LuaOrb [31]. LuaOrb

is based on the interpreted language called Lua [74]. The ACD is generated by the active

space if one is not already available from the user. Both the ACD and AGD are stored in the
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user's context �le system and also provide the means of storing session information for the

user.

When a user enters an active space the presence service detects the user. The presence

service publishes an event to notify other components of the user's presence. The space

repository receives the event and retrieves the user's pro�le and stores it locally. The context

�le system at the same stage locates the user's data and makes it accessible to the components

of the active space. Other user devices can also be registered at this time. Any sessions

activated by the user, or by the context requirements of the applications are then mapped

to the active space. It is then possible for users to manipulate the inputs and outputs of

applications to suit their needs.

The application framework provides Gaia with a �exible approach to structuring appli-

cations. By separating the inputs, outputs, and application logic of the application it allows

Gaia to dynamically build applications to suit the available resources of an active space. It

also serves as a means of adapting user sessions to any active space that a user may enter.

The scripting mechanism used in the AGD and ACD also aid the rapid development of appli-

cations and help the incremental growth of the active space. However, there is an assumption

that the components required to make the application will be available in all the active spaces.

While this may the case for a large majority of components it may not be for all. In these

cases the applications are unable to restart if the key components are not available. This

subsequently causes user sessions to be inaccessible.

2.3.7.4 Summary

The Gaia project [134] has developed an infrastructure that supports the creation of user-

centric, resource-aware, context-sensitive mobile applications. Mobile users are able to seam-

lessly interact and con�gure their physical and virtual environments in any of the active spaces

they enter. Sessions allow data and applications to move transparently with users from one

active space to another. On a user entering an active space the user's sessions are automat-

ically mapped to the resources in the space. This ensures that data and applications are

always available to users.
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2.3.8 Portolano - One.World

The aim of the One.World project [60, 61, 62] is to develop applications that can continually

adapt to a changing computing environment while still supporting the activities of users as

they move through the physical world or switch devices. To achieve this the One.World project

has focus on developing a system with services that ease the development of applications in

managing the constant changes in the environment. In taking this approach One.World seeks

to expose applications to change so they may implement their strategies to handling the

transition.

2.3.8.1 The One.World Approach

Grimm et al. [60, 61, 62] identi�ed that a key challenge in building pervasive computing

applications is the highly dynamic nature of the environments in which they operate. They

observed that for applications to function properly within such environments they must be

able to continuously adapt to the movement of users and the changes in the environment.

To accomplish this they de�ned three requirements that should be satis�ed. In the �rst re-

quirement, they advocate that as users move through the physical environment the execution

context of their applications changes all the time. To avoid users having to manually con�gure

applications they believe it is necessary to expose applications to contextual change to allow

them implement their own strategies for managing the transitions. The second requirement

de�nes the necessity to allow the dynamic composition of components to the point where

they can just plug together without the intersession of users. Grimm et al. believe that this

is necessary to avoid the impracticability of asking users to manually perform the composi-

tion. Lastly, to support collaboration of users it is necessary to make easy to access saved

information and to be able to share information between components.

2.3.8.2 The One.World Architecture

The One.World architecture is shown in �gure 2.8. Grimm et al. uses the four foundation

services in the One.World architecture to directly address the requirements of change, dynamic

composition, and the pervasive sharing of data. The system services, which are based on the
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Figure 2.8: One.World architecture.

foundation services, provide additional services. These act as the main building blocks for

applications in the One.World architecture. Grimm et al. organise the One.World architecture

using a user/kernel split with the libraries, system utilities, and applications running in user

space while the foundations services and system services are in the kernel.

The virtual machine, which in this case is a Java virtual machine, is used to provide a

common execution platform to ensure that, at the lowest level, applications and devices are

composable. Tuples are used to de�ne a common data model for sharing information among

applications. Tuples in the One.World architecture are records with named �elds and are

self-describing in that applications can dynamically determine the �elds and their types. In

using a common data model Grimm et al. not only eases the sharing of information but

also encourages interoperability between arbitrary components. All communication between

components in the One.World architecture, whether local or remote, is achieved through

the use of asynchronous events. The exchange of events is achieved through the import or

export of event handlers by components. The approach exposes applications to changes in the

environment allowing them to adapt their behavior accordingly. The mechanism also helps to

maintain loose coupling between applications and to increase system reliability by providing

a system capable of handling component failure in a robust manner.

Environments are the main mechanism used to structure and compose applications within

the One.World architecture. They act as containers that serve to store tuples, application
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components, and other environments. The environments form a hierarchy with a single root

on each device. Applications are required to have at least one environment to store applica-

tion state though may contain several nested environments. All outer environments in the

One.World architecture have total control of the environments they contain and are able to

interpose on their interactions with the kernel and the outside world. The mechanism al-

lows applications to be dynamically composed through the nesting of one environment within

another. It also makes it possible to adapt and change the behavior of applications to suit

di�erent situations. The functionality of applications can also be extended in an incremental

fashion using this mechanism. For example, the provision of additional security mechanisms,

or a replication service.

System services build upon the foundation services to provide additional functionality

for meeting speci�c application needs. For instance, the query engine allows applications to

search tuples using �lters. The structured I/O service lets applications access stored tuples

in environments. The operations - put, read, query, listen, and delete - used in the structured

I/O service are atomic and can also be grouped into transactions to provide one atomic unit.

To use structure I/O applications bind to the environment's tuple storage and then perform

operations on the bound resource. If the tuple storage is remote it instead binds to the network

endpoint for the environment's tuple storage. In either case the bindings are controlled using

leases [59]. The approach limits the time applications have access to environment's tuple

storage while also allowing the One.World system to detect failure and to recover from it.

Together, the query engine and the structured I/O service to simplify the access to data for

applications.

Asynchronous events form the basis of communication in the One.World architecture. The

distribution of these events across the network is done using the remote event passing service.

To use the service components need to export event handlers under symbolic descriptors to the

system. Interested parties, using the discovery service, can then locate and disseminate events

to these components. The discovery service provides One.World applications with a number

of options. For instance, it is possible to determine the binding time. This allows applications

to determine when discovery is performed; early binding allows applications to �rst �nd
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the resource and bind to it before sending a number of events, while late binding combines

the discovery and event routing in one operation. The second option allows applications

to disseminate events to a single matching resource, or multicast the event to all matching

resources. In designing these facilities the goal of the One.World architecture has been to

provide a �exible approach that could support a rich set of communication patterns. However,

while this is achieved, there are a number of concerns with how the system scales. Currently,

the discovery service is centralised, in that, one device is elected by the One.World devices to

act as the discovery service for the network segment. There does not appear to be any bounds

limiting the size of the pervasive computing environment that it serves and it potentially, as

[62] indicates, will not be able to service requests in an acceptable time.

The checkpointing service is used to capture the execution state of an environment tree.

It is stored as a tuple where it can be retrieved at a later stage by the One.World archi-

tecture and restored so that it can then resume normal execution. The migration service

gives One.World the ability to move or copy an environment from one device to another.

Together, the checkpointing and migration services help to provide application persistency

and a method for recovering from major failures such as a device's batteries running out. The

migration service also allows components to migrate with users as they move through the

physical environment.

However, while the data-centric abstractions provided by the One.World architecture help

construct pervasive computing environments there appears to be no high-level abstractions

for sensors or actuators that can be used by applications to tailor their behavior and integrate

into the physical environment. This has the a�ect of hindering the physical integration of

applications and devices into the environment. It should also be noted that the One.World

architecture does not explicitly provide security mechanisms for controlling access to environ-

ment's tuple storage or determining the propagation of the events.

2.3.8.3 Building Applications with One.World

Developing pervasive computing applications with One.World is centered on around the pro-

grammatic structure of the environment. Applications in One.World are required to have at
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least one environment to store application state but may span several nested environments

if required. The environment are used to store tuples, other application components, and

to receive and send events. Access to threads, network sockets, and �les are restricted and

applications are required to only use the abstractions provide by the One.World architecture.

The execution of applications is event-driven. Graphical user interfaces can be developed with

Java's Swing toolkit which are able to run on top of One.World. However, as Grimm et al.

note [61, 62] there are some limitations to developing pervasive computing applications with

One.World. For instance, an application requires a class to access a tuple. This is a problem

when environments are migrated to devices where the class cannot be retrieved resulting in the

tuple being inaccessible to the application. Also, the use of Java's Swing toolkit for graphical

user interface posed problems for Grimm et al. when migrating applications to devices with

di�erent screen characteristics.

2.3.8.4 Summary

One.World have developed an approach that focues on adapting applications to meeting the

demands of users in highly dynamic environments. To manage and support applications

Grimm et al. has developed the One.World architecture. In it environments are used as the

main mechanism for structuring and composing applications while tuples form the basis of

communication and data storage between the environments.

2.3.9 Other Pervasive Computing Projects

The projects and initiatives detailed in the previous sections show the diversity of approach

used in tackling the challenges posed in developing pervasive computing environments. In

providing a full picture of the current state of the art there are a number of other projects

worthy of mention. The following paragraphs outline their contributions.

The EasyLiving [146] project, at Microsoft, has been researching a number of technolo-

gies for pervasive computing. Their basic infrastructure uses an agent-based system called

InConcert, and a spatial model that de�nes geometric relationships between entities [21, 22].

The EasyLiving project uses the relationships between entities as the primary means of un-
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derstanding the behavior of users in the space. By tracking certain objects and users in the

space the EasyLiving project looks to adapt the behavior of applications to meet the expec-

tations of users. The project relies heavy on a number of vision systems [89, 26] to track and

recognise users and objects in the environment. They also use another system called RADAR

[7] to track users. RADAR uses the strength of IEEE802.11 signals to determine the location

of users.

MUSE [30] is a middleware architecture for pervasive computing environments being de-

veloped at the UCLA Multimedia Systems Laboratory. The MUSE infrastructure uses Jini

[104] based services in combination with Bayesian networks to fuse raw sensory information

into context information. Two of the primary services within the MUSE infrastructure are

the sensor service and the sensing service. The sensor service represents the di�erent sensors

in the environment and acts as the proxy between the physical sensors and the other services

and applications. The sensing service's main role is to provide other services and applications

with context information. Using the Jini Lookup Service pervasive computing applications

can �nd the appropriate sensing service and obtain the context information that is required.

eClass [1, 16], also know as Classroom 2000, investigates the impact of pervasive computing

on education. The members of the Georgia Institute of Technology's Future Computing

Environments Group (FCE) have built a prototype classroom environment. It captures the

typical interactions that you might expect within a university lecture. The di�erent streams

of information are then integrated into a web interface which provides a summary of what

happened in the lecture. The Zen* system provides the underlying infrastructure for eClass.

It provides a number of tools for supporting lecturers in the preparation of their presentation,

the capture of the presentation, and the integration of all captured materials into a form that

then can be accessed at a later stage by students.

The Aware Home [85] research initiative is led by the members of Georgia Institute of

Technology's Future Computing Environments Group (FCE). The have built a house, called

the Aware Home, which is used as a test bed for developing technologies and techniques for

enabling the creation of pervasive computing environments. Their research ranges from the

fundamental sensor technologies, to middleware for building context-aware applications, to a
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varied array of pervasive computing applications aimed towards helping the elderly. Dey's

Context Toolkit [44, 43] provides the underlying infrastructure for many of the applications

used in the Aware Home. The Aware Home initiative developed a number of pervasive comput-

ing applications. Some, as mentioned in [111], support the elderly in the home while others

are based on more traditional application scenarios. For instance, the Digital Family Por-

trait [112] reconnects family members by providing a qualitative sense of a distant relative's

well-being while striking a reasonable balance between privacy and the need for information.

ParcTab [164] was one of the �rst pervasive computing systems to be built. It was de-

veloped at Xerox PARC to explore the capabilities and impact of pervasive computing in

an o�ce setting. The system consists of various mobile and stationary devices such as the

ParcTab, ParcPad, and the LiveBoard. The ParcTab is a small handheld device. The Parc-

Pad is a tablet size unit and the LiveBoard is a large electronic display. Devices were able to

communicate wirelessly through an infra-red network and could also be located to a particular

room. The project paid particular attention to the networks, device technologies, and human

computing interaction used in developing these types of environments. The work done at

Xerox PARC has provided the inspiration for most of the projects and initiative mentioned

in previous sections.

2.4 Summary and Conclusions

Weiser's vision of pervasive computing ignited a �eld of research that is now only starting

to get to grips with the concepts outlined in his seminal paper [167]. The beginning of this

chapter introduced his in�uential vision, a vision that realised the world of computing needed

to move away from the conventional concept of the personal computer to an era where physical

spaces would be composed of hundreds of computational devices that would be so interwoven

into the fabric of everyday life that they become indistinguishable from it. In general, the

challenges facing pervasive computing are interrelated with Wieser's central theme of making

computers disappear from our awareness, ensuring that they can remain in the background

of our society without requiring our conscious intervention in maintaining their presence.

To gain a greater understanding of the challenges facing pervasive computing the chapter
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presented a number of research projects and reviewed their e�orts in overcoming the hurdles

posed by pervasive computing. The projects surveyed re�ected current trends in pervasive

computing research while also showing the diversity of approaches used in overcoming these

challenges. The research surveyed lead to a number of observations that have formed the

basis of this thesis. The observations identi�ed were as follows:

• The literature suggests that the majority of pervasive computing systems can be char-

acterised as conceptually centralised infrastructures that coordinate the resources of

a speci�c geographical location. In some cases users are able to relocate their work

from one environment to another. In contrast, chapter 3 presents a highly decentral-

ized method for organising the components of a pervasive computing environment that

supports spontaneous interaction of entities and the ad-hoc assembly of environments.

• The current state of the art would indicate that particular focus has been paid on un-

derstanding the challenges of developing pervasive computing environments in a number

of well de�ned cultural boundaries. For example, meeting rooms, or o�ces are some

prime examples. The systems supporting these environments are typically tailored to

suit the devices - large mount displays, laptops, PDAs - and to meet the requirements of

developing applications in these types environments. In chapter 5 the thesis looks to de-

�ne a framework that supports the ad-hoc composition of everyday objects not normally

considered in the literature. Providing a framework that allows pervasive computing en-

vironments to emerge from physical spaces as pervasive computing objects accumulate

in the environment.

• Research has shown that context information is important in adapting the behavior of

pervasive computing systems. This fact is used in chapter 3 to create a model where the

context information of a local environment is used to manage the behavior of entities.

• Related research suggests that appropriate software architectures ease the development

and deployment of pervasive computing applications. In chapter 4 and 5 the thesis looks

to advance state of the art by presenting an alternative framework that supports the

self-organisation of pervasive computing environments and promotes the autonomy of
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entities. A high-level scripting language that simpli�es the implementation and deploy-

ment of applications by allowing for the incremental construction and improvement of

solutions.

• Research indicates that decoupled communication models have fewer dependences be-

tween components allowing the overall system to be less fragile and more stable to

disturbances in the environment. This type of communication model is used in chapter

5 to ensure that robust system behavior can be achieved.
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Chapter 3

A Stigmergic Model for Pervasive
Computing

The chapter motivates the design of a framework intended to provide support for developing

pervasive computing environments. The framework supports a highly-decentralised method

of organising the components of a pervasive computing environment that allows spontaneous

interaction between components and provides robust system-wide behavior. More precisely,

the framework has been designed to provide developers with a convenient method of developing

pervasive computing applications that eases deployment and supports the incremental growth

of the environment. The inspiration for the approach stems from nature and the observations

made by Grassé on how social insects coordinate their actions using indirect communication

via the environment, a phenomenon known as stigmergy [58]. The design of the framework

exploits these observations to allow the self-coordination of pervasive computing environments

thereby promoting the autonomy of entities. To develop an understanding on how such an

approach could work, this chapter describes a model based on the concept of stigmergy that

underpins this framework for pervasive computing.

The chapter begins by presenting a set of requirements used to in�uence the design and

implementation of the framework. The requirements are drawn from an analysis of the re-

lated work presented in chapter 2. This analysis highlights a number of limitations in current

research when considering the ad-hoc composition of pervasive computing environments. Sec-
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tion 3.2 introduces the natural phenomenon of stigmergy. It describes how social insects are

able to use the environment as an indirect mechanism for coordinating their activities. The

mechanism has been shown to be a highly-decentralised method of coordinating collections

of interacting entities. Section 3.3 investigates how stigmergy can be used to successfully ad-

dress the requirements. Section 3.4 describes a model based on stigmergy that the framework

supports. The �nal section provides a summary of the chapter.

3.1 Analysis and Requirements

This section draws on the observations made in chapter 2 to establish a set of requirements

that can be used to create a framework for supporting the ad-hoc composition of perva-

sive computing environments. The primary objective of this analysis is to identify the core

architectural features required of a framework to support the next generation of pervasive

computing environments.

3.1.1 The Next Step for Pervasive Computing

Technology for pervasive computing is reaching a point where it is becoming possible to

convert many everyday environments into interactive spaces. As can be seen from chapter 2

particular focus has been placed on environments such as o�ce spaces, lecture theatres, and

research laboratories. Typically, these interactive spaces have been designed from the ground

up to support the anticipated needs of their users and to evaluate the technology deployed

in the space. The environments are usually pre-installed and maintained over the period in

which they are in use. However, as Edwards et al. [50] point out, it is unrealistic to expect

all pervasive computing environments to be constructed in this manner. They believe that

physical spaces are more likely to evolve accidentally into pervasive computing environments

as technology is incorporated into the space. Kindberg et al. express a similar view in [86]

where they argue that pervasive computing systems will tend to form accidentally over the

medium-to-long term.

This would suggest that pervasive computing environments need to be assembled in a
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more ad-hoc fashion than has previously been the case. The approaches highlighted in the

previous chapter do not readily apply themselves to this form of development. They appear

to be more conceptually centralised approaches that focus their e�orts around coordinating

the resources of speci�c geographical locations. For instance, in the Stanford Interactive

Workspaces project [78] mediates all interactions for the iRoom environment are mediated

through the iROS system. It is responsible for managing all the resources at that particular

location. While users are able to bring their laptops and PDAs into the space and have them

seamlessly and transparently integrated into the room they cannot operate outside of this

environment unless the iROS system has been installed at that location. It does not allow the

ad-hoc interaction and coordination of components at locations other than those that have

been predetermined. The system is conceptually a centralised infrastructure that restricts

components forming pervasive computing environments to locations where the system has

already been installed. While this method may work well for developing pervasive computing

environments from the ground up it would be less appropriate to composing environments in

the more ad-hoc manner anticipated by Edwards et al. [50].

In this form of development pervasive computing environments emerge from spaces through

the migration and accumulation of technology at a particular location. There is no master

plan that guides the development or any expert overlooking the construction of the environ-

ment. It evolves through ordinary people moving and integrating new technology into a space.

Where an environment emerges depends totally on how the occupants arrange the technol-

ogy. Unlike Aura [56], Gaia [134], or some of the other projects mentioned in chapter 2 the

installation of a pervasive computing system into a physical location is not a prerequisite for

the environment to form or to operate at those locations. For these types of environments

devices and applications need to be able to spontaneously interact at any time and at any

place without having to mediate their behavior through a central authority at each speci�c

location.

In allowing environments evolve in an ad-hoc fashion it makes it possible for them to

emerge at hotspots of activity where users require and want to use them and so give an

illusion that they are always available. Kindberg et al. [86] also observe that through the
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inclusion of new technology or the rearrangement of what is already there that new usage

models can be adopted by the occupants. The environment continuously changes and adapts

to how those in the space use it and rearrange the technology. It is not bounded by the same

constraints normally imposed on a system speci�cally designed to operate at a particular

location; it changes as users move technology into or out o� the space. Changes may occur

slowly over a period of time or at a much faster rate depending on how the space is being

used.

The system software for managing such an environment needs to be di�erent to that used in

AT&T's Sentient Computing Project [2, 65], the Adaptive House [108], Aura [56], or the other

projects previously described in chapter 2. In these types of environments the components

- devices, physical artifacts, software components, and services - that comprise the system

must be organised in a highly decentralised manner. Unlike many of the systems presented

in chapter 2 there is no central component in the environment to manage access to resources

or coordinate how di�erent components in the environment interact with each other or with

those using the environment. The components are in fact the system and as such have to be

able to spontaneously interact with each other to coordinate their behavior in a distributed

manner. The environment can be though of as a collection of interacting components that

through their ad-hoc interactions can form a pervasive computing environment capable of

providing services for those occupying the environment.

3.1.2 Requirements for a Pervasive Computing System

In this section we identify the requirements that need to be satis�ed in order to support the

type of pervasive computing environments discussed in the previous section. The require-

ments are drawn both from this vision and from the observations made in chapter 2 on the

challenges posed to pervasive computing and on the projects reviewed. The emphasis is on

enabling infrastructure-free systems that provide a highly-decentralised method of coordinat-

ing collections of interacting entities, more over, the focus is on the middleware aspects of

building such systems rather than other concerns of pervasive computing. In meeting this aim

the following section outlines the core set of architectural features required of a framework
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that is capable of supporting these types of pervasive computing environments.

R1: Support the physical integration of components into the environment.
For the type of environments envisioned in the previous section as well as for many other

pervasive computing environments it is important to abstract the complexities of dealing

with the real world to ensure that components can easily be integrated into the physical

environment. To achieve this goal it is necessary to provide high-level abstractions that allow

components to sense and interact with the physical environment without the di�culties of

dealing with low-level devices such as sensors or actuators. The framework needs to provide

mechanisms for retrieving data from sensors and fusing it together to produce a reliable view

of the environment. In so doing, it must alleviate the uncertainty typically associated with

dealing with unreliable sensors. It must also cope with the highly dynamic nature of pervasive

computing environments where sensors and actuators can be inserted into, or removed from

the system at any time. These concerns need to be addressed if the framework is to support the

physical integration of components into the environment. Overall, the challenge is to deliver an

appropriate level of abstraction that allows components to gain enough understanding of the

real world while ensuring there is su�cient low-level support for observing and manipulating

the environment.

R2: Support the autonomy of components. A key characteristic of these types of

environments is the autonomous nature of the components of which they will be comprised.

Each component is an independent entity with the ability to move through the environment

unrestricted. It does not depend on other components to operate and is responsible for man-

aging and controlling its own behavior within the environment. While each component is

self-regulating its behavior can be in�uenced by those occupying the space and the subse-

quent behavior of other components. The autonomous nature of components ensures that the

environments envisaged in section 3.1.1 can emerge at any location as their movement is not

restricted to a particular location or their behavior curtailed by other components.
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R3: Support spontaneous interoperability between arbitrary components. From

the discussion presented in section 3.1.1 it is clear that the environments envisioned are

developed in an accidental manner over a period of time and not in any structured manner.

These type of systems evolve as those using the space introduce or remove components from

the environment. Over the life time of the environment it can be expected that a wide range

of heterogeneous components will be integrated into the environment or will move through

it on a regular basis. It can therefore be assumed the components comprising the system

will have little prior knowledge of the other parts of the environment with which they will

interact. Consequently, it is important that components be able to spontaneously interact

with each other with little or no prior knowledge. To achieve this the framework needs to

provide mechanisms that allow components to discover other parts of the environment or to

develop common interoperation models to which components can comform and which assist

them in interacting with one another in a spontaneous manner. Overall, the goal is to ensure

all components can be seamlessly integrated into the environment in a manner that allows

the system to grow organically and decay gracefully as new components are added and old

ones upgraded or removed.

R4: Support the decentralised coordination of component behavior. Contained

in these pervasive computing environments are large collections of autonomous components

capable of spontaneously interacting with each other. To ensure a coherent environment can

be formed it is necessary for these components to be able to coordinate their behavior in a

way that provides a meaningful experience to users. A centralised approach is not a feasible

approach to coordinating these types of environments as they are not structured around any

particular focal point, whether that be a physical location, person, or single component. It

is envisioned that these environments form from the coordination of an arbitrary collection

of components and it is therefore necessary for the framework to provide a decentralised

mechanism for coordinating the behavior of components within the environment.

R5: Provide a scalable solution. One of the features of pervasive computing and of the

environments presented in section 3.1.1 is the large number of components expected to be
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interwoven into the environment. It can be assumed that, as these environments grow, the

intensity of interactions will increase with the number of components and users inhabiting the

space. Thus, the scalability of the system is of particular concern especially when considering

the limited resources - bandwidth, energy, and computational power - found in these systems.

A number of projects [56, 34, 78, 134] have solved the problem by bounding the environment

to a well-de�ned physical space, such as an o�ce or room, to limit their size. However, it

is not possible to use this same approach to develop the type of environments presented in

section 3.1.1 as they are not limited to or bounded by any particular room or physical space.

Components are free to roam across the entire environment and to interact with any other

part of the environment they �nd of interest. It is therefore conceivable that a pervasive

computing environment could span a series of cultural boundaries that would have typically

been used by other projects [56, 34, 78, 134] to scope the intensity of interactions. Hence, it is

necessary for the framework to develop alternative mechanisms that can scope the interactions

between components in a way which allows the system to scale but does not a�ect the overall

experience of users.

R6: Ensure the robust behavior of the system. In pervasive computing it has to be

recognised that failure of components occurs on a regular basis. The causes may be due to

the fragile nature of some of the hardware used, to the limited life span of batteries, or the

unreliability of some wireless networks. Whatever the reason it is necessary for the system to

be able to absorb the underlying changes to ensure the environment can behave in a robust

fashion. The framework must ensure that the failure of one component does not lead to a

knock on e�ect of other components failing within the environment. There is a need to keep

failure of components localised to the point where it has occurred and not allow it to spread.

The overall goal is to ensure the pervasive computing system can handle disturbances in the

environment without adversely e�ecting the operation of all the components in the space.

R7: Support incremental construction and improvement of solutions. In develop-

ing the environments described above it has to be expected that they will evolve incrementally

over a period of time. It cannot be assumed that an environment of this nature can be de-
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veloped or installed in one go. The framework used to support such an environment has to

be designed in such a way that it will allow the incremental construction and improvement of

solutions without adversely e�ecting the rest of the environment. To aid development and the

deployment of components it is also necessary to separate the complexities of the underlying

system with the compositional side of de�ning component behavior. This should also assist

the rapid development and evolution of the environment.

R8: Mobility. With the expected migration of technology and the anticipated movement

of users within the environments described in section 3.1.1, it must be assumed that there will

be a high degree of mobility among pervasive computing environments of this nature. In these

situations the components that form the environment and those that occupy it are continously

moving through the physical environment reacting to and coordinating their actions with other

parts of the environment. While the components are autonomous in nature and capable of

spontaneously interacting with the other parts of the environment it is necessary to ensure

mechanisms are in place to make the movement of users and components largely transparent

to developers and that the spontaneous interoperability between arbitrary components is not

e�ected by their mobility.

R9: Adaptability. There is a high probability that the mobility of users and of the com-

ponents that comprise a pervasive computing environment will lead to a situation where the

environment is continuously changing. This is particularly the case for the type of environ-

ments envisioned in section 3.1.1 where autonomous components roam across the environment.

To overcome this situation it is necessary for components to be able to adapt their behavior

to use whatever is available in the immediate environment. The framework needs to provide

a means of allowing this adaption to take place by providing components with a view of the

environment they can use to adjust their behavior. The challenge is to achieve this with little

or no outside intervention.

R10: Security and Privacy. Privacy is of great concern to users and is a particularly

complicated issue for pervasive computing and one that causes a great number of concerns
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[40, 135, 86]. To allow devices and applications to move into the background of society they

must be able to obtain information about users to anticipate what is required from them.

This knowledge is extremely sensitive information that can be easily exploited against a user

but is critical for the successful operation of a pervasive computing environment. There is

a serious potential for the loss of privacy which may lead to users being dissatis�ed and

unwilling to participate in the environment. In such cases a user must be able to trust that

the information will not be misused by the environment or ensure the mechanisms used to

obtain the information maintains the anonymity of the user. The issue of privacy is also

very much interrelated with that of security. Pervasive computing systems need to prevent

the unauthorised use of devices to prevent their misuse and access to private data. For

people the decision to grant access is made intuitively through indept understanding of the

trade-o�s of acceding to a request. Traditional methods of securing computing systems are not

easily applied to decentralised systems such as those envisaged in section 3.1.1 or for pervasive

computing in general. It is therefore necessary for the framework to develop methods that can

determine the trustworthiness of users in these situations while still maintaining a comfortable

balance between granting access and preserving the privacy of users.

3.1.3 Existing Support of Requirements

The review presented in chapter 2 of pervasive computing revealed a wide range of approaches

used to support the development of pervasive computing environments. Based on the set of

requirements identi�ed in section 3.1.2 we investigate the extent to which state-of-the-art

environments support these requirements.

While each of the projects supports a number of the requirements critical for developing

the type of pervasive computing environments presented in section 3.1.1 there is currently

no one system that provides support for all requirements. Table 3.1 illustrates the set of

requirements for which support is required and evaluates whether the projects presented in

chapter 2 are capable of satisfying them. In the table, a bullet (•) indicates support for the

requirement, while a small circle (◦) shows limited support, and no circle or bullet dictates

there is no support for the requirement.
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R1 Support the physical in-
tegration of components
into the environment.

• • ◦ • • • • • • ◦

R2 Support the autonomy
of components.

◦ ◦

R3 Support the sponta-
neous interoperability
between arbitrary
components.

• • • • • • • •

R4 Support the decen-
tralised coordination of
component behavior.

R5 Provide a scalable solu-
tion.

• • •

R6 Ensure the robust be-
havior of the system.

• ◦ • •

R7 Support incremental
construction and im-
provement of solutions.

◦ ◦ • • • •

R8 Mobility. • • • •
R9 Adaptability. • ◦ • • ◦ • • • ◦ ◦
R10 Security and privacy. ◦ ◦

=no support ◦=limited support •=supported

Table 3.1: Features provided by the state-of-the-art approaches to develop pervasive com-
puting environments.
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Chapter 2 has identi�ed a number of projects capable of providing adequate high-level

abstractions for sensing and interacting with the physical environment (e.g., Aura, Gaia, Ea-

syliving). Other approaches provide mechanisms to support the spontaneous interoperability

between arbitrary components (e.g., Stanford Interactive Workspace Project, Project Oxy-

gen). Projects such as Aura and Gaia provide scalable solutions though not in a form which

can be usefully applied to fully ful�lling requirement R5. A number of the other projects have

developed methods that allow the environment to behave robustly in the face of disturbances

(e.g., One.World, Standford Interactive Workspace Project). It can also be seen from table

3.1 that the majority of projects are capable of supporting the incremental construction and

improvement of solutions to some degree, though it must be pointed out that this has not

been achieved for the environments presented in section 3.1.1. The ability to adapt to a

changing environment is supported by a number of the projects most notably by Aura and

Gaia. The approach used by these projects also allows support for the mobility of users from

one environment to another.

While some of the projects - Gaia, Aura, Project Oxygen - have managed to successfully

ful�l the majority of the requirements they fail to implement two of the key requirements

for developing the type of environments discussed in section 3.1.1, namely support for the

autonomy of components and the decentralised coordination of component behavior. These

are central to the development of the type of environments presented in section 3.1.1 and

consequently have a knock-on e�ect to how the other requirements are implemented. It is

also notable that the security and privacy of users is not addressed fully by any of the projects

investigated.

3.1.4 Summary

From the observations made at the end of chapter 2 we identi�ed what we consider to be the

next step for pervasive computing. Section 3.1.1 outlined this proposal and described the type

of pervasive computing environments we envision while section 3.1.2 provided the requirements

necessary for building these types of environments. The last section investigated the extent

to which the projects presented in chapter 2 have met the stated requirements. It was found
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that while a number of the projects have addressed some of the main requirements they

fail to implement the key requirements for developing the type of environments envisioned.

With this mind, the next section investigates swarm intelligence techniques, in particular, the

natural phenomenon of stigmergy with the aim of applying these techniques to developing a

framework capable of satisfying the requirements stated in section 3.1.2.

3.2 Swarm Intelligence - Stigmergy

Natural systems such as �ocking birds and colonies of social insects have inspired a number

of research e�orts in robotics [71], in pattern detection and classi�cation [20], and communi-

cation networks [83]. The potential of these collections of simply-behaving entities was �rst

observed by biologists when studying colonies of social insects. They noticed that through

local interactions of individuals a colony of insects could produce complex collective behaviors

at the colony level. It has also been discovered that the coordination of individuals' activities

does not require any supervision and produces a system that is a highly decentralised and is

largely self-organising. The mechanisms used to organise these types of systems and the col-

lective behavior that emerges from them has become known as swarm intelligence. Bonabeau

et al. [14] de�ne swarm intelligence as the collective behavior that emerges from a group of

social insects. In [12], Bonabeau et al. describe it as the attempt to design algorithms or

distributed problem-solving devices inspired by the collective behavior of social insect colonies

and other animal societies. Kennedy et al. [84] goes further by describing swarm intelligence

as any loosely structured collection of interacting entities.

Biologists have observed that interactions between entities in these types of natural sys-

tems can occur either directly or indirectly. Flocking birds or shoals of �sh are a prime

example of natural systems using direct interaction to coordinate their activities. Birds use

visual contact with their neighbours to stay together, to coordinate turns, and to avoid obsta-

cles. Shoals of �sh use a similar approach to swim in tight formation. Indirect interactions are

more subtle. Entities use the environment to mediate their communication. Indirect interac-

tion occurs when an entity changes the environment and other entities respond to the modi�ed

environment in some way. This type of interaction is more commonly know as stigmergy.
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3.2.1 Stigmergy

Stigmergy was �rst introduced by a French biologist called Grassé. He observed that social

insects could coordinate their actions through the environment without having to directly

communicate with each other, a phenomenon that he called stigmergy [58]. He also observed

that through the local interactions of insects a colony-wide behavior could emerge. Beckers

et al. [11] suggests that the origin of the word stigmergy is derived from the roots stigma

'goad' and ergon 'work', thus implying a sense of incitement to work by the products of

work. However, Parunak [116] provides an alternative derivation and suggests that the term

is formed from the Greek words stigma 'sign' and ergon 'action' and so therefore captures the

notion of an entity's actions leaving signs in the environment that in�uence the subsequent

actions of other entities. In any case the concept of stigmergy has been applied to a series of

di�erent �elds since it was �rst discovered by Grassé in 1959. The literature would indicate

that Grassé's de�nition of stigmergy has been interpreted and applied in a number of di�erent

ways as discussed in the following section.

Research would generally show that stigmergy is a form of communication used by en-

tities to coordinate their activities. Mason [96] describes stigmergy as communication that

is mediated through changes in the environment. Caro et al. [27] describe it as the indirect

communication that takes place among individuals through modi�cations induced in the en-

vironment. Valckenaerks et al. [161] argue that it is a form of asynchronous interaction and

information exchange between agents mediated by an active environment. D'Angelo et al.

[38] de�ne stigmergy as cooperation without communication. Beckers et al. [11] describe it as

the indirect communication between agents through the sensing and modi�cation of the local

environment. Thus, the literature clearly indicates that stigmergy is an indirect communica-

tion mechanism that is mediated through modi�cations of the environment. Communication

occurs when one entity changes the environment and another entity senses the modi�cation

and reacts to it.

Various research e�orts have derived di�erent understandings of what constitutes indirect

communication between entities. In the context of social insects [12] indirect communication

manifests itself through the deposits of chemicals - pheromones - in the environment or the
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physical transformation of the environment as seen in the nest building of wasps. In the work

by Mataric on autonomous agents [97, 98] indirect communication is based on the observed

behavior, not communication, of other agents and its e�ects on the environment. Mataric

refers to this type of communication as the modi�cation of the environment rather than direct

message passing between agents. Mason [96] has a similar view in that communication takes

place through the environment rather than direct signal transmissions. In a taxonomy on agent

coordination and cooperation Parunak et al. [117] view the information �ow in stigmergy as

the non-message interactions between agents. In general, the majority of research [71, 83, 11]

considers that indirect communication is mediated through some form of environment.

Di�erent varieties of stigmergy have been distinguished. Theraulaz et al. [160] describe

two forms, quantitative stigmergy and qualitative stigmergy. Bonabeau et al. [12] also char-

acterise stigmergy in a similar fashion though they also use the term discrete stigmergy in-

terchangeably with qualitative stigmergy. In quantitative stigmergy the stimulus varies in a

quantitative manner. A prime example is the construction of termite mounds where workers

add pheromones to soil pellets they place on a growing mound. The pheromone �elds and

gradients that subsequently appear in�uence where individuals place their pellets, which is

normally at the highest concentration of the pheromone. By placing the pellet at an already

high concentration of pheromone, termites create a positive feedback mechanism that stim-

ulates the construction of the rest of the structure. The structure initially emerges from the

ampli�cation of random deviations of pellet placement and stabilises through the negative

feedback of the decay of pheromone in the environment over time. Systems using quantitative

stigmergy are generally considered to be self-organising as they typically subscribe to the four

basic ingredients [12] that self-organisation relies on: positive feedback, negative feedback,

ampli�cation of �uctuations, and multiple interactions between individuals.

Qualitative stigmergy di�ers from quantitative stigmergy in that it is based on a discrete

set of stimuli types. In this case insects change their behavior in response to qualitatively

di�erent stimuli. For example, an insect would respond to a type 1 stimulus with behavior

A and a type 2 stimulus with behavior B. The nest building of social wasps [12, 160] is an

example of qualitative stigmergy used in nature. Nests are built up from wood �bers and
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plant hairs and cemented together with salivary secretions. This is then moulded by the wasp

to form the di�erent parts of the nest. The process starts with the construction of a pedicel,

which attaches the nest to some physical structure. The wasps continue by building two cells

on top of the pedicel and from there start to add cells to the outer circumference of the nest.

After a row of cells has been completed the wasp starts on the next row. The decision to build

a new cell at a location is in�uenced by the number of adjacent cell walls that have previously

been constructed. A wasp receives qualitatively di�erent stimuli in a location where there is

one cell wall to a location where two or three cell walls are available. The probability of a

wasp adding a new cell increases with the number of adjacent cell walls already in place. The

process forms closely packed parallel rows of cells that have a symmetric radial or bilateral

shape around the initial cells. Bonabeau et al. [12] argue that due to the stimuli being

qualitatively di�erent that it is not possible to amplify the stimulus through positive feedback

and so self-organisation is di�cult to achieve through this form of stigmergy. Camazine et al.

[25] and Bonabeau et al. [12] suggest that this type of stigmergy is a form of self-assembly,

in that, the building elements, mediated by the actions of individual entities, self-assemble to

form the appropriate structure.

Other research e�orts have classi�ed stigmergy in a variety of di�erent ways. Holland

et al. [70, 71] de�ne two forms of stigmergy: active and passive. Active stigmergy is when

an entity's behavior is a�ected by a qualitative or quantitative e�ect in the environment.

Passive stigmergy occurs when a previous action a�ects neither the choice nor the parameters

of subsequent actions but does e�ect the �nal outcome. Holland et al. describes this type

of stigmergy as being very close to purely physical situations where a constant force changes

the environment in such a way as to change the force's future e�ect on the environment. An

example of this type of stigmergy is the formation of sand dunes through air moving over their

surface, and meandering rivers via the water which �ows through them. Another example,

used by Stone et al. [150], is if one agent turns o� the main water value to a building, the

e�ect of another agent turning on the kitchen tap is altered.

White et al. [171] and Brueckner [19] have an alternative classi�cation of stigmergy based

on Wilson's observations [173]. They de�ne two types of stigmergy: sematectonic and sign-
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based. Sematectonic stigmergy is where entities guide their work through the evidence of

previous work accomplished. Sign-based stigmergy occurs when marker deposits are excreted

into the environment to in�uence the subsequent behavior of entities. The classi�cation is

very similar to the Theraulaz et al. [160] de�nition of qualitative and quantitative stigmergy.

To aid understanding of the di�erent classi�cations of stigmergy table 3.2 provides a summary

of the points made.

Categories of Stigmergy.

C
la
ss
�c

at
io
ns

Theraulaz et al.
[160] & Bonabeau
et al. [12]

quantitative qualitative

White et al. [171]
& Brueckner [19] sign-based sematectonic

Holland et al. [71] active passive
The type of stimlus
involved.

Individuals modify
their behavior to
a stimulus that
varies in a quanti-
tative manner.

Individuals change
their behavior to
qualitatively di�er-
ent stimuli.

When a pervious
action e�ects nei-
ther the choice nor
the parameters of
subsequent actions
but does e�ect the
�nal outcome.

Self-organisation
involved. yes

Self-assembly in-
volved. yes

Example. The construction
of termite mounds.

The nest building
of social wasps.

The formation
of sand dunes
through the move-
ment of air over
the surface.

Type of inter-
actions between
individuals.

Indirect communication mediated through modi�cations of the
environment.

Table 3.2: A summary of the classi�cations used to categorise the di�erent forms of stigmergy.

In developing these types of systems Holland et al. [71] suggest that there is a minimum

set of requirements that entities and the environment need to process if they are to support
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stigmergy. They are as follows:

• Entities should be able move through the environment.

• Entities need to be able to act on the environment.

• The environment must be able to be changed locally by entities.

• Changes in the environment need to persist long enough to e�ect the behavior of entities.

Stigmergy can be de�ned as an indirect communication mechanism that allows entities to

structure their activities through the local environment. It has also been shown to be a

primary ingredient in coordinating the complex behaviors seen in social insects. In the next

section the thesis explores how stigmergy has been use in computer-related research.

3.2.2 Research Inspired by Stigmergy

The potential of social insects has not gone unnoticed. Several research initiatives have looked

to harness the coordination mechanisms used by these types of natural systems to develop

techniques and algorithms for solving a range of computer-related problems. The following

section highlights a number of them.

One of the classical behaviors of some species of ants is the trail-laying and trail-following

they use when foraging for food. Ants deposit a pheromone on their way back from a food

source. Foraging ants follow such trails. The process has been experimentally shown to be

self-organising [41] and to optimize on the shortest path from the nest to the food source [57].

The phenomena uses quantitative stigmergy to coordinate the behavior of the colony. The

ant foraging behavior inspired a problem solving technique called ant colony optimization

(ACO) [47, 45]. The ACO algorithm creates a colony of arti�cial ants that cooperate to �nd

solutions to di�cult discrete optimization problems. It has been applied to the travelling

salesman problem [46], routing in communication networks [171, 27, 83], vehicle routing [23],

and the quadratic assignment problem [95]. Both Dorigo et al. [47] and Bonabeau et al. [12]

illustrate the use of the ACO algorithm in a number of other examples.
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The concept of stigmergy has also had a signi�cant in�uence on the area of behavior-

based robotics. Beckers et al. believe that the ��t between stigmergy and behavior-based

robotics is excellent� [11]. They argue that conventional robots were too slow to cope with

the interactions of multiple robots and too expensive to build in large numbers with which

to experiment. They suggest that by using behavior-based architectures, such as Brooks'

subsumption architecture [15], in conjunction with stigmergy a more feasible solution can be

obtained. To test their approach they built a number of small robots (21x17cm). The robots

were equipped with two infra-red sensors, a pressure sensitive gripper for pushing objects

around, and a very simple internal behavioral script that manages the behavior of the robots.

The task they choose to use to investigate how such a system would behave was based on the

corpse-gathering behavior of ants. The robots would push pucks (4cm in diameter, and 2.5cm

in height), which were evenly distributed in the environment, into a single tight cluster. After

carrying out a series of experiments varying the number of robots used and robot con�guration

Beckers et al. observed that over a period of time the robots where able to form a single cluster

of pucks. Similar work was also produced by Holland et al. [71]. He investigated how simple

robots could be used to sort di�erent coloured frisbees into clusters. Werger also used the

concept of behavior-based robotics with stigmergy to particularly good e�ect. He developed

a team of robots to compete in RoboCup97 a robotic football competition held in Japan

[170, 169]. His team �The Spirit of Boliva� was entered in the mid-size robot league, where

no global data is available between robots and only local sensing is permitted. Even so the

Spirit of Boliva team was able to display planned for, interactive team cooperation. In the

end Werger's team was the only team to have defeated one of the champions and the only

team not to concede any goals.

Stigmergy has also been used in agent-based systems to coordinate the actions of agents

in solving particular problems. For example, Brueckner and Parunak [20] use the concept of

stigmergy to �nd global patterns across spatially distributed real-time data sources. Their

motivation was to develop a system for the early detection of large-scale bio-terrorist attacks

on the civilian population. They deployed a large population of simple mobile agents in a

distributed network of processing nodes. The agents would move across the nodes in search of
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places with a strong spatial gradient in the data. Agents collectively coordinate their search

through the deposits of pheromones at each node. The pheromones serve as a means of

attracting other agents to potentially interesting patterns which in turn reinforces the presence

of the pattern. Valckenaers el al. [161] have also used an agent-based system coordinated

by stigmergy to control manufacturing processes. The software architecture uses a world

model of the manufacturing process that maintains the pheromones in the environment and

the location of agents in the system. System behavior - control of the manufacturing process

- emerges from the activities of the agents reacting to pheromones in the environment. In

[63], Gulyas proposes another system for coordinating the behavior of mobile agents using

stigmergy. Again, agents can move from one node to another writing messages - cues - to a

blackboard for other agents to act upon. In the same way that pheromones evaporate over

time, the messages placed in the blackboard gradually disappear. Mamei and Zambonelli [94]

have also relied on the concept of stigmergy to coordinate collections of interacting agents in

an active environment. Their approach is centered around a tuple space mechanism which

acts as the environment for the agents. The agents can observe the environment by reading

the tuples and can modify it by inserting new tuples into the space.

3.3 Using Stigmergy in a Pervasive Computing Environment

The literature shows a number of biologically-inspired research e�orts which have used stig-

mergy as a basis for tackling various computer related problems. The mechanisms used to

organise these types of systems and the collective behavior that emerges from them is also an

appealing construct for pervasive computing. In the following sections this thesis adopts the

principles of stigmergy to design a system that can be used to provide a highly decentralised

method of organising the components of a pervasive computing environment. The section �rst

examines whether such an approach can produce a system capable of supporting the type of

environments previously discussed in section 3.1.
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3.3.1 Collections of Interacting Entities

The idea of simple insects, with little memory or ability to exhibit any real intelligence,

maps well to pervasive computing where devices with limited resources are spread across the

environment. The large number of devices expected to be deployed into our society matches

the scale at which these colonies of social insects work. The constant interaction between

components of a pervasive computing environment also ties in neatly with how social insects

interact with each other. It would appear that a colony of social insects are in many ways

very similar to a pervasive computing system where large collections of interacting entities

roam across the environment. The question is whether the same coordination mechanisms

used by social insects, especially stigmergy, can be harnessed in a similar way to manage

the components of a pervasive computing system over the life time of the environment. If

this is indeed possible it can be expected that the same highly decentralised mechanisms

used to coordinate colonies of social insects can be applied to developing pervasive computing

environments.

3.3.2 Autonomy and Decentralised Coordination

In applying the principles of stigmergy to pervasive computing it should be possible to harness

the same mechanisms of coordinating large collections of interacting entities as social insects

utilise, and in so doing, provide a predominately decentralised method of organising and con-

trolling groups of components in a pervasive computing environment. This is achieved by

components moving through the environment and using local interactions, mediated via the

environment, to coordinate their actions with other parts of the system. As with the social

insects presented in section 3.2 the components of a pervasive computing system modify their

local environment to in�uence the subsequent behavior of other components, a natural phe-

nomena which has already been shown to be highly decentralised and largely self-coordinating

in colonies of social insects. It should also be stressed that individual entities need have no

particular problem solving knowledge, and that coordinated behavior emerges due to the

actions of the society. In a pervasive computing environment it can be expected that the

coordinated actions of components would be capable of providing services for those occupying
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the space.

In taking this approach it is possible to meet one of the main requirements highlighted

in section 3.1.2 for developing the type of pervasive computing environments discussed in

section 3.1.1; supporting the decentralised coordination of component behavior. An under-

lying feature associated with these types of decentralised systems is that the entities control

and manage their own behavior within the environment and are as such autonomous. This

can be seen in social insects such as a colony of ants where each individual manages its own

behavior in relation to the rest of the colony. Such behavior would ful�ll the requirement to

support the autonomy of components within a pervasive computing environment as described

by requirement R2 - autonomy of components - in section 3.1.2. It can also be argued that

the inherent mobility of entities in a stigmergic system is su�cient to meet the main aspects

of requirement R8 - mobility.

3.3.3 Spontaneous Interoperability

In a stigmergic system the environment acts as a shared medium through which entities

communicate. Each entity manipulates the local environment in a way that is eventually

recognisable to other entities in the surrounding area. For some social insects this takes

the form of pheromone deposits, for others, like the wasps described in section 3.2.1, it is

achieved through the construction of cell walls. In either case the alterations performed by

the entities are universally understood by all entities involved making it possible for them

to spontaneously interact with each with little or no prior knowledge of the other entities.

Used in pervasive computing the environment should also provide a common interoperation

model capable of allowing components to interact in a spontaneous manner. It provides a

common interface that all components must use if they are to coordinate their actions. For

components to use this interface they must to able to perform two basic operations. First,

each component needs be able to sense their local environment to detect any stimulus that

might e�ect their behavior. Secondly, components must be able to change the state of the

local environment. These changes need to persist long enough in the environment to e�ect the

subsequent behavior of other components, and typically, may consist of components displaying
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information, or physically altering the environment in some way. The environment is acting

as a common shared service to all components making it possible to seamlessly integrate any

arbitrary component into the interactive environment with minimal human intervention. It

allows for the impromptu interoperability that Edwards et al. [50] advocates is necessary

for the successful operation of a pervasive computing environment. Using such an approach

makes it possible to ful�ll requirement R3 - spontaneous interoperability - for a pervasive

computing environment.

3.3.4 Robust, Adaptable Environments

One of the advantages of using techniques based on stigmergy in pervasive computing is

that it allows a system to harness the same robust, self-coordinating mechanisms observed

in colonies of social insects. It provides a very �exible approach of adapting a system to a

changing environment. These properties have been observed throughout the literature. For

example, Theraulaz and Bonabeau noted the 'relative stability of coordinated algorithms with

respect to perturbations' [159]. Also, in the work performed by Beckers et al. they observed

the system was 'able to cope with occasional robot failure' [11].

The robust nature of these types of systems is an attractive property for pervasive com-

puting where the system is generally considered to be highly dynamic and unpredictable. In

particular, the indirect communication mechanisms used by social insects provide a means of

decoupling components within the system. This is achieved as communication between social

insects is mediated through the local environment and not directly between them. Applied

to pervasive computing it leads to a situation where there are fewer dependences between

components making the overall system less fragile and more stable to disturbances in the en-

vironment. It keeps the failure of components localised to the point where this has occurred

and prevents it from spreading to other components in the environment. This is possible due

the autonomous nature of components and the level of indirectness provided by stigmergic

systems.

It must also be noted that the �exibility provided by stigmergic systems and ability for

them to adapt to changing environments is one of the more interesting characteristics provided
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by these type of systems for pervasive computing. There ability to adapt can be seen in

a number of adaptive routing protocols used in communication networks [171, 27, 83] or

particular stigmergic models [13, 12] based on task allocation or the division of labor observed

in some species of social insects. These systems can be seen to adapt both at the level of the

colony and that of each of the individuals in the colony. To achieve the equivalent functionality

in pervasive computing each component needs to mimic the same type of behavior as those

performed by social insects. In this case they have to be able to observe the modi�cations

being made in their local environment and have the ability to act upon them. At the same

time they must also be able to make changes to the local environment. By using such an

approach it is possible to ful�ll requirements R6 - robust behavior - and R9 - adaptability -

speci�ed in section 3.1.2.

3.3.5 Simple, Scalable Solutions

In observing a colony of social insects you can't help but notice the scale at which these

organisms work. A swarm of raiding army ants (Eciton burchelli) may contain up to 200,000

workers raiding a dense phalanx 15m or more wide [12, 25]. What is also evident is each

individual is simply constructed, in that, they have no particular problem solving knowledge

and are simply following a basic set of instructions that allow them to react to the environ-

ment. Beckers et al. [11] commented on this when they performed a series of experiments

with collections of robots they built to investigate the use of stigmergy. Holland et al. [71]

also noted the simple set of instructions used to control the robots in their experiment on

stigmergy. Parunak [116] also notes 'the logic for individual agents is much simpler than for

an individually intelligent agent'.

All interactions in a stigmergic process are mediated through the local environment. By

using this fact in a pervasive computing system it is possible to ensure that a scalable so-

lution can be obtained. In these cases entities are only interested in observing the state of

the environment local to them as it is only this part of the environment that in�uences their

behavior. Applying the same process to pervasive computing would severely reduce interac-

tions with distant locations, therefore, allowing the system to scale more gracefully. Both
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Satyanarayanan et al. [135] and Kindberg et al. [86] have identi�ed the usefulness of applying

such an approach. Satyanarayanan et al. proposed the idea of localised scalability. They

recognised that the density of interactions with any particular entity falls o� as one moves

away from it. They suggest that this fact can be used to help provide scalable solutions for

pervasive computing. Kindberg et al. draw a similar conclusion with the boundary principle.

They argue that system designers should divide the world into physical environments that

demarcate their content.

It should also be noted that the simple nature of individual entities implies there is very

little processing power required for them to operate. For pervasive computing this would

indicate components are able to run on extremely small platforms such as Smart-Its [72]

or allow embedding several components into more powerful devices without raising issues of

scalability. Mason [96] also points out that stigmergic systems use minimal communication.

Used in pervasive computing the communication required to operate a successful environment

is signi�cantly reduced, aiding the scalability of the environment and utilising the limited

resources in a more e�cient manner. It is clearly evident by applying the principle of stigmergy

to the design of a pervasive computing framework that it should be possible to ful�ll the

requirement R5 - scalable solution - outlined in section 3.1.2.

3.3.6 Incremental Construction and Improvement of Solutions

It can be argued that the autonomous nature of individuals and the manner in which each

individual is simply constructed allows such systems to be totally extensible, in that, new

entities can always be added and updated when necessary. This is possible due to the loose

coupling associated with entities of stigmergic systems and their ability to adapt to a changing

environment. Applied to pervasive computing the autonomous nature of individual compo-

nents and the loose coupling between them ensures a pervasive computing system can always

grow and decay with the addition of new components and the upgrade or removal of old ones.

It allows components to be developed separately and to be installed into the environment

when they are ready. Over the life time of the environment new components can always

be inserted into the system without causing di�culty to the rest of the environment. More
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importantly, their ability to adapt will ensure new components can be incorporated into the

operation and functionality of the existing environment. The simple nature of entities in

stigmergic systems should also aid the rapid development and evolution of the environment.

As noted in the previous section they are simply constructed, in that, they generally follow a

basic set of instructions to determine how they react to the environment. This characteristic

can be exploited in pervasive computing to provide a programming interface that can aid

the rapid development of components. Harnessing these types of abilities makes it possible

to construct a pervasive computing environment incrementally over a period of time. In so

doing, it ful�lls requirement R7 - incremental construction - speci�ed in section 3.1.2.

3.3.7 Providing an Appropriate Level of Abstraction

In section 3.1.2, requirement R1 - physical integration - is concerned with abstracting the com-

plexities of dealing with the real world to ensure that components can easily be integrated into

the physical environment. The aim is to provide high-level abstractions that give components

enough understanding of their environment while ensuring there is su�cient low-level support

for observing and manipulating the environment. To address these concerns a pervasive com-

puting system needs to provide a programming abstraction that allows components to sense

and interact with the physical environment without the di�culties of dealing with low-level

devices such as sensors and actuators.

In stigmergic systems large collections of entities move across the environment. Each of

these entities would typically have the ability to sense the part of the environment that e�ects

their behavior. They also have the ability to manipulate their environment in a manner that

may in�uence the subsequent behavior of other entities. Applied to pervasive computing each

component would use a number of sensors to detect the environment and have a series of ac-

tuators that would allow them to manipulate it. The use of stigmergy in pervasive computing

imposes a certain structure on the system and each of the components in that system, however,

this is not su�cient to provide the high-level abstractions sought by requirement R1 - physi-

cal integration. To address these concerns a pervasive computing system will have to provide

additional support in the way of a programming abstraction that encapsulated the structure
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of a stigmergic system but provides the high-level abstractions sought by requirement R1 -

physical integration.

3.3.8 Security and Privacy

Providing security for pervasive computing environments and ensuring the privacy of the users

who use them cannot be addressed directly via the use of stigmergy, though, it does not restrict

its inclusion at a later stage. It is possible to argue that since the information in a stigmergic

system is kept in the local environment and does not propagate beyond this point that all

components and users know of each others existence and so could be considered not to invade

on ones privacy. Such features provide a certain level of privacy, however, there may still be

some concerns and additional means of securing access to this information may be required

to ensure the privacy of users can be maintained. It should also be noted that there are no

means of restricting the unauthorised use of devices in a stigmergic system. These type of

systems have no means of determining the trustworthiness of users as require by requirement

R10 - security and privacy. In conclusion, it can stated that the use of stigmergy on its own

cannot address requirement R10 - security and privacy - as described in section 3.1.2.

3.3.9 Summary

It would appear in principle that the concept of stigmergy can be used to address the majority

of the requirements stated in section 3.1.2. Table 3.3 provides a summary of the requirements

addressed. In the table, a bullet (•) indicates the requirement has been satis�ed, while a

requirement with no bullet shows that the it cannot be addressed directly through the use of

stigmergy. Of the requirements that cannot be directly satis�ed via the use of stigmergy, R1 -

physical integration - is addressed in chapter 4 where a programming abstraction encapsulated

in a high-level scripting language is de�ned. Requirement R10 - security and privacy - is not

directly addressed by the thesis.
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Requirement Supported
R1 Support the physical integration of components into the environ-

ment.
R2 Support the autonomy of components. •
R3 Support the spontaneous interoperability between arbitrary com-

ponents.
•

R4 Support the decentralised coordination of component behavior. •
R5 Provide a scalable solution. •
R6 Ensure the robust behavior of the system. •
R7 Support incremental construction and improvement of solutions. •
R8 Mobility. •
R9 Adaptability. •
R10 Security and privacy.

=no support •=supported

Table 3.3: Summary of requirements addressed.

3.4 A Stigmergic Model for Pervasive Computing

The previous sections have shown, in principle, that the concept of stigmergy can be used

to build the type of pervasive computing environments envisioned in section 3.1. Section

3.2.1 started with an outline of the concept and its use in biological systems, while section

3.2.2 showed how the concept has been successfully applied to a number of computer-related

problems. The last section took the observations gained from these sections to examine

whether a similar approach could be used to build the environments described in section 3.1.

It was found that the use of stigmergy in their construction could help address the majority

of the requirements necessary to successfully build them. This section looks to continue the

work done in previous sections by formulating a model based on the principle of stigmergy

that can be used to develop a framework for pervasive computing. The section starts with an

overview of the model.

3.4.1 Overview of Model

In modelling a system based on stigmery there are three things that need to be determined,

the �rst is the environment that collections of interacting entities will use to coordinate their
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behavior, secondly, are the entities that will use the environment, and thirdly, the means

for the individual entities to sense this environment, determine how they react to it, and

manipulate it.

In this case it is proposed to use the general principles of stigmergy to create a model

for pervasive computing where context information from environmental sensors provides the

common environment for the indirect communication between entities. The social insects

observed by Grassé [58] are represented as entities in the model. An entity is a person, place,

or object as de�ned by Dey [42]. Entities roam across the environment and act on it by

changing their behavior to modify the local environment. The changes in the environment

are subsequently re�ected in the context information derived from the environmental sensors.

Coordinated behavior arises from entities observing their local environment and reacting to

the resulting context information according to some rules.

The following sections provide a more detailed description of the model. The next section

starts by describing the environment and type of stimulus it provides to entities. The section

3.4.3 continues by providing a more detailed description of how the entities involved are

modelled. Section 3.4.4 describes how these entities sense their local environment. Section

3.4.5 outlines the process each of these entities uses to regulate their behavior in the pervasive

computing environment, while section 3.4.6 details how the environment is physically changed

by the entities.

3.4.2 The Environment

Whether arti�cial or biological a system using stigmergy is structured around a collection

of autonomous entities and the environment they use to mediate their communication. In

colonies of social insects, such as termites, the environment is represented by pellets of soil

laced with pheromones that have been placed on a growing mound. The resulting stimulus

provides the colony with a way of constructing a termite mound. For the nest building

seen in social wasps the environment is the structure of the nest itself. For the experiment

performed by Holland et al. [71], where simple robots are used to push frisbees into clusters,

the environment is the collection of frisbees that the robots are moving around. In the classical
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trail-laying and trail-following behavior observed in some species of ants the environment is

the pheromones deposited by the ants into the physical environment. In Antnet [27], where

stigmergy is used to route packets through a communication network, the environment is the

network and each of the nodes on it. To apply stigmergy to pervasive computing it is evident

that it is necessary to �rst determine the environment entities will use to coordinate their

behavior.

Section 3.2.1 identi�ed two main forms of stigmergy - quantitative and qualitative. In

quantitative stigmergy the stimulus varies in a quantitative manner. Qualitative stigmergy

di�ers from quantitative stigmergy in that it is based on a discrete set of stimuli. Quan-

titative stigmergy is typically achieved in nature through the deposits of pheromones into

the environment, while qualitative stigmergy is done through the physical manipulation of

the environment as with the nest building of social wasps. To build a pervasive computing

environment with quantitative stigmergy the components would need to able to deposit ar-

ti�cial pheromones into the environment. This could possibility be achieved in either of two

ways. Entities could physically deposit substitute pheromones, such as RFID tags, into the

physical environment as Mamei et al. [93] has attempted to do. These deposits could then be

read by other entities thus having an e�ect on their subsequent behavior. However, such an

approach would most likely be prohibitively expensive and would leave an unwanted residue

in the physical environment. The alternative would be to provide entities with a means of

depositing arti�cial pheromones in a virtual environment. Building such an environment for

the type of pervasive computing environments discussed in section 3.1.1 could prove to be

extremely challenging. Entities would need to be able to maintain the state of the environ-

ment so that a consistent view could be provided to all entities in the local environment. To

achieve this in a system that is highly decentralised and where entities interact on an ad-hoc

basis is a particularly di�cult problem. It is also confounded by the nature of the information

being stored which is typically tied to the geographical location in which it is deposited. To

maintain the information at those locations requires the presence of a computational node,

however, for the type of environments envisaged this may not be possible with the result that

information may be lost.
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Qualitative stigmergy may provide a more suitable approach for pervasive computing. In

this type of stigmergy entities change their behavior in response to qualitatively di�erent

stimuli. Typically, this is achieved through entities physically changing the environment in

some way and other entities reacting to the alteration. Used in pervasive computing the

environment would translate into the physical space occupied by users and other everyday

objects. Through the use of actuators entities would be able to physically manipulate this

environment. For example, an entity could turn on a light, display information on a screen,

or even alter what is playing on a jukebox. Other entities, using sensors, would be able to

sense these alterations and react to them. Each of these entities would receive qualitatively

di�erent stimuli from the changes made to the environment by other entities so triggering

di�erent behavior from them. It must also be noted that this type of environment can always

be changed locally by entities and the changes made to it are more likely to persist in the

environment long enough to e�ect the subsequent behavior of other entities. These charac-

teristics allow such an environment to meet the minimum requirements, set out by Holland

et al. [71] and highlighted in section 3.2.1, to support stigmergy.

Instead of directly using the raw data from sensors it is proposed to use context information

derived from sensors to provide the common environment for the indirect communication used

by entities. Context information is any information that can be used to characterise a situation

[42]. It is typically used in pervasive computing [61, 134, 78, 64, 56] to adapt and tailor the

behavior of a system to meet the requirements of a user. However, in this case it is used to

describe the local environment for an entity. It provides a much higher level of representation

of the physical environment than would otherwise be possible from viewing the raw sensor

data. A combination of sensor fusion techniques are typically used to fuse the sensor data

together to provide this representation. The process also helps to remove the ambiguity

normally associated with interpreting sensor readings from the environment.

To build up this representation entities use the sensors in their vicinity to sense the

state of the physical environment. The sensors would typically measure di�erent aspects

of the environment local to them. The data retrieved from these sensors allow entities to

derive the context information that they subsequently use to coordinate their activities in the
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environment. Where the sensors are placed and how they are con�gured in relation to the

entities is discussed later in section 3.4.4.

3.4.3 Entities

It seems logical to represent the social insects observed by Grassé [58] as entities in a pervasive

computing system, where an entity is a person, place, or object. This choice of entity is

in most part in�uenced by Dey's de�nition [42] of an entity. Though, it should also be

noted that a person, place, or object are either physically or computationally the active

entities in a pervasive computing environment and it is these entities which form the bulk

of interactions in the environment. So by de�ning an entity in this way we look to create

a large collection of interacting entities that can coordinate their behavior through the use

of stigmergy. The environment, as described above in section 3.4.2, provides entities with

the medium to coordinate their behavior. For these entities to use this environment, and to

support stigmergy, they need to satisfy the requirements set out by Holland et al. [71] and

highlighted in section 3.2.1 - they must �rstly be able move through the environment, and

secondly, be able to act on it.

Some entities will be highly mobile while others may move irregularly or not at all. How-

ever, when viewed together in the context of the type of pervasive computing environments

being developed it can be expected that enough activity can be generated to support a stig-

mergic system. The mode used by these entities to move through the environment may vary

depending on the entity. It can be assumed that a large portion will be self-propelled, in that,

they are able to move through the environment under their own means. People, autonomous

robots, or vehicles are good examples of such entities. Other groups may exploit these en-

tities to roam across the environment by attaching to them or being carried by them. Such

an example could be a PDA used by a person or a radio in a car. As these entities roam

through the environment it is also important that they are able to act on it. This implies

that each entity must �rst be able to observe their local environment, and secondly, be able to

change it. The previous section outlined how this can be achieved in a pervasive computing

environment. Sensors allow entities to determine the context information of the local envi-
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ronment and through the use of actuators they are able to manipulate it according to a set

of conditions. Under this mapping the chosen entities are capable of satisfying the minimal

requirements, set by Holland et al. [71], to support stigmergy. To determine how each of these

entities are modelled in a pervasive computing environment it is �rst necessary to understand

how individual entities adapt their behavior to changes in the local environment.
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Figure 3.1: Stigmergic Model.

Figure 3.1 provides an overview of this process. It shows how each entity in the system can

change its behavior in response to qualitatively di�erent stimuli. The �rst step is to examine

the local environment of the entity and to provide it with a representation it can use to

adapt its behavior. This requires the entity to sense its local environment and to retrieve any

context information that may be of use to it. How this information is retrieved is discussed

in greater detail in section 3.4.4. The next stage dictates how each entity responds to the

di�erent stimuli found in the local environment. It �rst examines the context information

of the local environment to determine whether the right stimuli are present to trigger any

of the entity's behaviors. The process maps the entity's local environment onto the set of

behaviors the entity can exhibit. Typically, it follows a prede�ned set of rules that allow the
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entity to react to the local environment. More detail is provided in section 3.4.5. The last

stage of this process involves executing the speci�c behaviors that have been triggered. Each

of these behaviors de�nes how the entity reacts to a particular stimulus. The actuators used

to implement the behavior allow the entity to physically change the local environment. Such

alterations in the environment e�ect the subsequent behavior of the other entities, thereby

initiating a stigmergic response. Section 3.4.6 describes in greater detail the mechanisms that

allow entities to change the environment.

3.4.4 Sensing the Environment

In biological systems such as social insects each individual in the colony has an in-built ability

to sense the environment around them. Using sight, smell, or touch they are able to detect rel-

evant changes in the environment that allow them to coordinate their actions using stigmergy.

In pervasive computing sensors provide the technology that allow computational devices and

applications to sense the physical environment around them. For the entities, described in

section 3.4.3, to sense their local environment they need to use sensors. In biological systems

each individual uses a �xed collection of senses to determine the environment. These are

permanently associated with each individual. The equivalent con�guration for entities in a

pervasive computing system is to use a set of sensors directly connected to each entity. Figure

3.2(a) provides an illustration of such a con�guration. However, for pervasive computing their

are other possible con�gurations that should be considered and which may provide a better

solution.

Figure 3.2 illustrates three possible sensor con�gurations that could potentially be used

in such a system. The �rst, as described above, permanently associates a collection of sen-

sors with each entity. The sensors are not shared between entities and the entity only uses

those sensors in its collection to determine the context information of the local environment.

Typically, these sensors would be physically connected to the entity in some way and would

move with the entity as it roams through the environment. Such a con�guration would help

satisfy requirement R2 - autonomy of components - as each entity would be self-contained in

its ability to sense the local environment. However, for pervasive computing detecting the
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Each of the black dots represents a sensor in the environment. A solid line connecting the sensor to the
entity indicates a permanent association between the two, while a dotted line shows the sensor is only
temporally assoicated with the entity.
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EntityC


(a) Each entity is permanently
connect to a collection of sensors.

EntityA


EntityB


EntityC


(b) Sensors embedded into the
environment. Entities discover
those sensors they wish to use
and temporially connect to them.

EntityA


EntityB


EntityC


(c) Entities are permanently con-
nected with a number of sensors
and termporally assoicated with
other sensors they wish to use.

Figure 3.2: Possible Sensor Con�gurations.

state of the environment is a complicated task due to the unreliability of sensors and the

di�culty of interpreting the data correctly. Therefore, such an approach may not provide the

best results as the limited set of sensors might not be able to provide a reliable picture of the

local environment. Entities would have to carry a large selection of sensors to be con�dent in

sensing their local environment correctly. While entities with large resources may not have a

problem, others, running on smaller resource constrained devices may have.

An alternative is the sensor con�guration shown in �gure 3.2(b). In this case sensors are

embedded into the physical environment and are not directly associated with any particu-

lar entity but shared between them all. To sense the environment entities retrieve data from

sensors in their vicinity by temporally connecting to them. As they move through the environ-

ment they continue to select sensors that provide them with data on the local environment.

To be able to dynamically discover and use the data from the sensors in this way entities

would require a certain level of knowledge on the of types sensors that they wish to use. A

type of metadata that would describe the location of the sensor, its coverage, data provided

by the sensor, accuracy of the data, and frequency of the data produced by the sensor would

most likely be required by the entity. This would allow entities choose the right sensors to

use in their vicinity and ensure they are able to interpret the data received from the sensor.
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The use of such an approach would provide entities with a greater selection of sensors as

they are embedded into the environment and accessible to all entities. This should give entities

access to a greater number of sensors with which to sense their local environment, while also

eliminating the need for entities to maintain sensors so reducing the burden on each entity.

However, it does increase the complexity as entities would be required to discover the sensors

as they move through the environment. They would also have to retrieve the data from the

sensors. Furthermore, the autonomy of entities would also be reduced as entities would require

other parts of the pervasive computing environment to provide them with information on the

local environment. A more serious issue for this approach is it requires the pre-installation

of the sensors into the environment before it can be used. This is contrary to the type

of pervasive computing environments envisioned in section 3.1 where the environments are

intended to evolve in an ad-hoc fashion, emerging at hotspots of activity where users require

and want to use them. This implies that the location of the interactive environment is not

know beforehand, making the pre-installation of the sensors into the environment particularly

di�cult to achieve.

By combining some of key concepts from the �rst approach and those from the last it

may be possible to obtain a better solution. Figure 3.2(c) provides an illustration of such an

approach. In this con�guration entities are permanently associated with a selection of sensors

that allow them to sense the basic parameters of their environment. As they move through

the environment they can also select and use the data from sensors connected to other entities

and those embedded within the environment. The same method of discovering and connecting

to the sensors is used as in the previous approach. By sharing sensors at this level entities can

cooperate in obtaining a better understanding of their local environment without the burden

of having to maintain a large collection of sensors. In this way they can gain access to a wide

selection of sensors while still maintaining their autonomy in the environment. The approach

also avoids the need to pre-install sensors into the environment as they can be embedded in

each entity.

The environmental sensors provide entities with a means of determining the context in-

formation of the local environment. It is the context information that is used as the common
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medium for the indirect communication between entities and not the raw sensor data. Using

the above sensor con�guration entities can apply di�erent sensor fusion techniques to fuse

the data received from sensors. This allows entities to determine the context information of

the local environment and remove the ambiguity typically associated with sensor readings. In

practice, entities can use one of two approaches to achieve this. They can either accomplish

it on their own by taking all the available sensor data from the environment to capture the

context information of the local environment. This has the potential to be quite expensive and

resource intensive for the entity. The other option is to allow entities cooperate in determining

the context information of the local environment. In this way entities derive context informa-

tion for di�erent parts of the environment and share it with those in its vicinity. Together the

entities can build up an entire picture of the environment. Such an approach would reduce

the cost of sensing the environment while still allowing entities to maintain their autonomy

within the environment.

While the proposed approach to sensing the local environment does not strictly follow

that used by individuals in a biological system using stigmergy it is felt that by providing a

such cooperative approach to sensing the environment entities would have a better chance of

retrieving the context information from the local environment in a timely manner. It should

also be noted that the approach satis�es the requirements outlined in section 3.1.2.

3.4.5 Interpreting the Local Environment

In this model entities change their behavior in response the qualitatively di�erent stimuli. The

context information derived from the sensors provides entities with the means of describing

these discrete changes in their local environment. Entities use the stimulus that this provides

to adapt their behavior. How an entity's behavior changes depends on the type of stimuli that

e�ects their behavior and on the behaviors the entity can perform in the pervasive computing

environment. It can be expected in these types of environments that entities will have a �nite

set of behaviors they can use to change the state of the environment. For example, a door

can either open or close, or a jukebox can play music, pause, or stop playing. Each of these

behaviors would utilise the di�erent actuators embedded in the environment to physically
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alter it. To determine how individual entities respond to changes in their local environment it

is necessary for them to examine the context information for the presence of any stimuli that

might change their behavior. If a discrete stimulus is found in the environment the behavior

relating to can be triggered, thereby changing the physical environment for other entities and

allowing them to react to it.

The method of mapping an entity's current view of the environment onto the behaviors

they exhibit is a matter that needs further consideration. Each entity in this model has the

ability to respond to their own discrete set of stimuli types. What might e�ect the behavior

of one entity may e�ect another in a di�erent manner or not at all. To achieve this each

entity has to be able to examine their local environment, identify the stimuli that e�ect their

behavior, and map that onto the behaviors which will eventually change the environment. A

rule-based approach would appear to be the most appropriate means of accomplishing this.

Such an approach has been found to be quite e�ective in a number other systems [96, 48, 71]

using stigmergy. It typically uses a minimal amount of computation and requires little or no

internal state to run. This makes it especially suited to pervasive computing where resource

constrained devices are the norm. Furthermore, the minimal amount of computation involved

means the system can act in a timely manner and allows it to respond quickly to a rapidly

changing environment.

De�ning the individual behavior of each entity is achieved through specifying a set of

rules that map stimuli found in the local environment onto the behaviors exhibited by each

entity. Programming of these rules are done via a scripting language described in chapter 4.

The scripting language de�nes a discrete set of stimuli that in�uence the entity's behavior in

terms of the context information observed in the local environment. The resulting contextual

predicates allow the scripting language to de�ne a set of rules for mapping the entity's local

environment onto the behaviors it can perform in the pervasive computing environment.

3.4.6 Manipulating the Environment

The indirect communication used by social insects to interact is mediated through modi�ca-

tions of the local environment. This is achieved in either one of two ways depending on the
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Each of the small black squares represents an acquator in the environment. A solid line connecting the
acquator to the entity indicates a permanent connection between the two, while a dotted line shows the
entity is only temporally assoicated with the actuator.

EntityA


EntityB


EntityC


(a) Each entity is permanently
connected to a collection of ac-
tuators.

EntityA


EntityB


EntityC


(b) Actuators are embedded into
the environment. Entities dis-
cover those actuators they wish
to use and temporially connected
to them.

EntityA


EntityB


EntityC


(c) Entities are permanently con-
nected to a number of actua-
tors and termporally connected
to other actuators they wish to
use.

Figure 3.3: Possible Con�gurations for Actuators.

type of stigmergy used. For quantitative stigmergy deposits of pheromones are made into

the environment. In qualitative stigmergy individuals typically physically change the envi-

ronment in some way. The nest building of social wasps is a prime example of such behavior.

In this model entities use qualitative stigmergy to coordinate their actions within a pervasive

computing environment. On sensing a speci�c stimulus entities trigger the particular behav-

ior relating to it. The implementation of these behaviors uses the di�erent actuators in the

environment to perform the behavior. These allow the entity to physically manipulate the

state of the pervasive computing environment. Section 3.4.2 has already described how the

use of actuators allows entities to modify such an environment.

As with the sensor con�gurations, discussed in section 3.4.4, there are also a number of

possible con�gurations that can be used for actuators in a stigmergic model for pervasive

computing. Figure 3.3 provides an illustration of these con�gurations. The �rst, permanently

connects a series of actuators to each entity. The actuators are not shared between entities and

are only used by the entity to perform speci�c behaviors in the environment. The con�guration

is basically equivalent to the one used by social insects. An alternative to that approach is

the one shown in �gure 3.3(b) in which the actuators are embedded into the environment

and are not directly associated with any particular entity but shared between them all. As
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entities move through the environment they dynamically discovery the actuators they require

to implement a speci�c behavior. A similar mechanism to that used to locate sensors in

section 3.4.4 is required to discover actuators in the environment. The last option combines

the concepts from the �rst two approaches. Figure 3.3(c) provides an illustration of this

approach. In this con�guration entities are permanently connected to a number of actuators.

As they move through the environment they can also discover actuators connected to other

entities and those embedded within the environement and use them in combination with the

ones they have to perform di�erent behaviors.

The �rst option ensures that all the actuators required to perform a behavior are always

available for the entity to use. This should make it possible for the entity to act in a more

timely manner as there is no need to discover or establish a connection to the actuator, in doing

so, allowing the entity to respond quickly to a rapidly changing environment. Furthermore,

such a con�guration promotes the autonomy of the entity as it is self-contained in its ability

to modify the local environment.

The second con�guration, shown in �gure 3.4.4, provides a good solution for an interactive

environment where the location of the environment has been predetermined. This type of

con�guration requires the per-installation of the actuators into the environment before it

can be used by entities. The advantage of the approach is that is allows entities to reuse

actuators in the environment and so reduce the need for duplicate components in the system.

In combination with the sensor con�guration, shown in �gure 3.2(b), it could provide a very

good solution where both the sensors and actuators are embedded in the environment. The

entities would roam across the environment choosing the sensors and actuators they wish to

use to implement their stigmergic behavior. Unfortunately, the type of pervasive computing

environments envisioned in section 3.1 evolve in an ad-hoc fashion, implying, that the location

of the interactive environment is not know beforehand. This makes it particularly di�cult

to pre-install the actuators in the location prior to the entities using it. Therefore, such a

con�guration is not a viable option for this model.

The last con�guration in some way provides a solution to this problem by directly connect-

ing the actuators to the entities and allowing entities to share them as well as the actuators
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embedded within the environment between themselves. However, it is not clear that the ad-

ditional access to actuators gives any extra bene�t to the entity other than increasing the

complexity of using them. In this case the model allows entities to have a �nite set of be-

haviors they can use to alter the state of the environment. It is arguable that access to an

increased selection of actuators would facilitate the improved implementation of the behaviors

for the entity. There is also the prospect that entities won't be able to �nd the actuators they

require to implement a speci�c behavior or there is an increased period of time required to

discover and connect to an actuator. Such issues a�ect the entities ability to respond to a

rapidly changing environment. This is also a problem that a�ects the second approach.

It would appear that the �rst con�guration, shown in �gure 3.3(a), is the best approach

for the type of pervasive computing environment being built. In this case all the behaviors for

the entity can be implemented by actuators directly connected to the entity. The approach

ensures entities can always react e�ciently to the environment without the need of additional

support.

3.4.7 Summary

The model presented in this section provides a highly decentralised method of managing the

behavior of entities in a pervasive computing environment. It allows individual entities to

change their behavior in response to a discrete set of stimuli. Over time coordinated behavior

can emerge as di�erent entities change their behavior in response to those changes made by

other entities to the environment. Context information from environmental sensors provides

the common medium for this indirect communication. It describes the physical state of a

pervasive computing environment and any changes made to it are re�ected in the context

information derived from it. In this model entities share the cost of sensing the environment

through their cooperation in the sharing of sensor data and the context information extracted

from it. Entities modify the local environment through the use of actuators directly connected

to each entity. The individual behavior of an entity is determined by a set of rules. Each of

these rules map a particular stimulus onto a set of behaviors an entity can perform in the

pervasive computing environment.
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3.5 Key Features of Model

The last section presented the basis of a model founded on the concept of stigmergy that can

be used to develop a framework for pervasive computing. This section provides a summary

of that model in terms of a formal representation that may be used in implementing the

framework. It starts by �rst de�ning what the local environment of an entity is. It continues

by de�ning the behaviors entities use to change the state of the environment and the process

used to respond to di�erent stimuli found in the local environment. The following sections

outline the process in more detail.
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Figure 3.4: Using Stigmergy in an Pervasive Computing Environment

3.5.1 The Local Environment

The context of an entity ei in the environment at time t is represented by Cei(t). It is the

context information used to describe the situation of the entity. Equation 3.1 de�nes E(t),

the set of all entities that exist at time t.

E(t) = {e : e is an entity ∧ e exists at time t} (3.1)

Figure 3.4(a) represents the context of every entity in the pervasive computing environment

at a particular time. It is the global context CG(t) of the environment and is de�ned by

equation 3.2. The global context describes the state of the whole environment at a particular

instance in time.
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CG(t) = {Cei(t) : eiεE(t)} (3.2)

All information contained in CG(t) is not required by each individual entity, as the behavior

of an entity is only dictated by the context of its local environment. Figure 3.4(b) illustrates

a subset of the context information relevant to an entity. It represents the local environment

and de�nes the entity's contextual view CVen
(t), as de�ned in equation 3.3. It holds all context

information in CG(t) that is relevant to the situation of entity en at time t. An entity's context

Cei(t) is included in entity en's contextual view if the entity is within a certain proximity. The

notion of proximity is used to de�ne what is local to the entity. This is captured in equation

3.3 where the function L(ei, en) is used to determine proximity and returns true if entity ei

is within the required proximity of entity en.

CVen
(t) = {Cei(t) : Cei(t)εCG(t) ∧ L(ei, en) = true} (3.3)

3.5.2 De�ning Entity Behavior

The behavioral set B, shown in �gure 3.4(c) and de�ned in equation 3.4, represents a �nite

set of behaviors that entities can use to change their local environment. For example, a light

can either turn itself on or o�, or a jukebox can play music, pause, or stop playing. The

behavioral set de�nes how entities can change their behavior to modify the environment.

B = {b : b is a behavior of an entity} (3.4)

3.5.3 Reacting to the Local Environment

The last stage manages how each individual entity adapts its behavior to re�ect changes

in the local environment. Equation 3.6 de�nes the function M for mapping CVen
(t) onto

P(B)1. CVe(t), de�ned in equation 3.5, represents the collection of all contextual views. The

function maps the entity's context information from the local environment onto a behavior,

thus initiating a stigmergic response to the environment. For example, if set B is de�ned by
1The power set of behavioral set B.
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�gure 3.4(c) and CVe2
(t) is the contextual view of e2 at time t then function M could possibly

map CVe2
(t) onto P(B) as follows M(CVe2

(t)) = {b3}.

CVe(t) = {CVei
(t) : eiεE(t)} (3.5)

M : CVe → P(B) (3.6)

The proximity function L, the behavioral set B, and the M function provide three prim-

itives that de�ne how individual entities behave in response to changes in the local context

state of the environment. Over time system-level behaviors may emerge as di�erent entities

change their behavior in response to the changing state of their local environment.

3.6 Summary

The chapter has argued that the use of swarm intelligence techniques, such as stigmergy, can

help in the construction of pervasive computing environments. Section 3.1 used the observa-

tions made in chapter 2 to sketch an outline of the next generation of pervasive computing

environments that addresses some of the short comings of the environments presented in chap-

ter 2. The following analysis establishes a set of requirements for developing such pervasive

computing environments and determined the extent to which the state of the art supports

them. The chapter then proceeded in section 3.2.1 to outline the phenomena of stigmergy

while section 3.2.2 reviewed its use in other areas of computer science research. Section 3.3

examined how stigmergy could be used to build pervasive computing environments and indi-

cated how it could be used to address the requirements stated in section 3.1.2. Section 3.4

developed the understanding gained from section 3.3 to present a model based on the concept

of stigmergy that can be used to develop a framework for pervasive computing, while the last

section provided a more formal representation of this model that can be used in implementing

the framework.

The aim of the chapter has been to develop a highly decentralised approach to organising

components of a pervasive computing environment that supports the spontaneous interac-
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tion between entities and provides robust system-wide behavior. The use of stigmergy has

provided a means of achieving this. It has enabled an approach, encapsulated in the three

primitives presented in section 3.5, for developing pervasive computing environments. While

the proposed approach has similarities to software agents, in that an entity can be thought

of as an agent, it di�ers from conventional agents in the approach used to communicate and

coordinate entity behavior.

Of the requirements stated in section 3.1.2 only one cannot be fully supported through

the use of the model presented in section 3.4 and 3.5. Requirement R1 - physical integration

- looks for to support the physical integration of components into the environment and as

stated in section 3.3.9 cannot be supported through the direct use of stigmergy. The next

chapter looks to address the situation by providing a high-level scripting language, which will

aid in ful�lling requirement R1 - physical integration.
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De�ning Entity Behavior

This chapter looks to advance the concepts introduced in the previous chapter to develop

a programming model, encapsulated in a high-level scripting language, to ease the imple-

mentation and deployment of pervasive computing applications. Focusing on de�ning entity

behavior, the chapter describes a scripting language that can be used to specify the behavior

of an entity in relation to their surrounding environment. The inspiration for the scripting

language is drawn from the stigmergic model developed in chapter 3.

In proposing a scripting language the objective has been to provide those developing

pervasive computing environments with a tool that combines expressiveness and simplicity

with the ability to abstract the complexities of dealing with the underlying technologies. The

aim is to allow developers concentrate their e�orts on characterising the behavior of pervasive

computing environments rather than low-level system development, and to provide a means

of facilitating the incremental construction and improvement of solutions over the lifetime of

the environment. In addition, the goal is to develop an approach that provides support for

requirement R1 speci�ed in section 3.1.2 - supporting the physical integration of components

into the environment. The scripting language provides the high-level abstractions needed to

ful�ll this requirement.

The use of scripting technologies, as highlighted by Ousterhout [115], allows for the ac-

celerated development of pervasive computing applications, which can evolve rapidly over

time. For pervasive computing these characteristics are imperative for the healthy evolution
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of the environment. It cannot be assumed that a pervasive computing environment will re-

main static, it must grow with its participants and change its behavior to suit them. Using a

scripting language will also help avoid the �big messy C program(s)� that Coen [36] observed

when developing pervasive computing environments. It provides the glue to combine com-

ponents, while separating the complexities of the underlying system from the creative side

of characterising the behavior of the entities within the pervasive computing environment.

While of use scripting technologies does come at a cost, in that, the interpretation can be

slow and in general consume more resources than directly executed code, it is out weighed by

the advantages that such an approach provides.

The stigmergic model de�ned in chapter 3 provides the foundations on which this scripting

language is built. In particular, the three primitives de�ned in section 3.5 - the proximity

function L, the behavioral set B, and the M function - form the basis of the language. Each

of these primitives are de�ned in the scripting language and collectively determine how an

entity behaves in the pervasive computing environment. The following sections outline in more

detail the approach taken after a review of current scripting technologies used in pervasive

computing is provided.

4.1 Current Scripting Technologies

Scripting technologies have been used in pervasive computing to both de�ne the behavior of

components and to specify how those components are composed to build pervasive computing

environments. Their use in these roles has helped pervasive computing systems to abstract

the complexities of the underlying system, and aided the rapid development of applications

for these types of environments.

An example of a project that has used scripting technologies to de�ne the behavior of

components is the TEA (Technology for Enable Awareness) [142] project. TEA uses a scripting

mechanism to describe basic actions to be performed by an application. The actions can be

performed when entering a context, when leaving a context, and while in a certain context.

Their framework concentrates on adapting the behavior of small devices such as mobile phones.

Brown et al. [18, 17] use scripting technologies for a similar purpose. In their stick-e system
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they use the Standard Generic Markup Language (SGML) to describe the context of when

a note is to be triggered. The approach provides an expressive means, which is extensible,

of de�ning a full range of contexts in which to trigger a note. Schmidt [140] extends this

approach by adding two further concepts - additional trigger attributes and the ability to

bundle context attributes into groups. The trigger attributes allow the triggering of actions

in a similar way to that of the TEA project in that actions can be performed when entering a

context, when leaving a context, and while in a particular context. The grouping of contexts

allows the system to trigger actions when one, all, or none of the grouped context attributes

are matched. The approach provides a more expressive means of describing how applications

can change their behavior.

Pinhanez de�ned an interval scripting language [125] to allow applications describe the

temporal behavior of components. Based on PNF-networks [122] Pinhanez et al. have used

the interval scripting language to create interactive environments such as SingSong [124] and

It/I [123]. These are story-based interactive systems that script the interactions between users

and the environment with the interval scripting language. The interval script describes the

temporal relationships between di�erent states of the environment, de�ning when to stop and

to start other actions. Pinhanez's PNF-networks are based on Allen [5] temporal intervals.

RCSM (Recon�gurable Context-Sensitive Middleware) [175] is another project that uses

scripting technologies to control the behavior of components. RCSM is an object-based frame-

work that uses an IDL-based language called CA-IDL to generate context-sensitive objects.

These objects run on a customised ORB that supports the communication and context-

awareness between objects. Developers use the CA-IDL language to de�ne context variables

that are used in temporal expressions within the script to trigger either local or remote method

invocations on objects in the pervasive computing environment.

Gaia [133] uses high-level scripting languages in a di�erent manner to the above, in that,

it uses scripts to compose the components of a pervasive computing system into applications

that can be used by those in the environment. As already discussed in section 2.3.7, Gaia has

an application framework based on the Model-View-Controller [88] user interface paradigm.

They use scripts, based on the interpreted language Lua [74], to describe how to combine the
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various components in the environment to form an application.

The scripting language described in this chapter applies some of the techniques used in the

above projects to de�ne entity behavior and to facilitate the emergence of pervasive computing

environments from collections of autonomous entities. In particular, the scripting language

uses similar methods to RCSM [175] in declaring context and triggering actions but extends

the approach to include the full range of temporal relationships used by Pinhanez [125] and

de�ned by Allen [5]. However, the approach also includes a number of novel techniques

for extending entity behavior and for facilitating the incremental development of pervasive

computing environments. The approach also includes methods for tailoring the behavior of

entities by the passing of context to the actions.

4.2 A Scripting Language for De�ning Entity Behavior

In the stigmergic model de�ned in chapter 3 entities roam across the environment and act on it

by changing their behavior to modify the local environment. The changes in the environment

are subsequently re�ected in the context information derived from the environmental sensors.

Coordinated behavior arises from entities observing their local environment and reacting to

the resulting context information according to some rules. It is proposed to use a scripting

language to specify these rules and in the process de�ne the behavior of the entity. Contextual

predicates specify the stimuli that allow the scripting language to coordinate the behavior

of an entity with the state of the local environment. Even though there are no scripting

primitives providing direct communication between entities, coordinated behavior can still be

programmed through the principle of stigmergy.

Using such an approach provides a highly decentralised method of managing the behavior

of entities in a pervasive computing environment. Individual entities can be programmed to

change their behavior to react to speci�c contextual stimuli. Over time coordinated behavior

can emerge as di�erent entities change their behaviors in response to the changing behaviors

of other entities. What is important to note is that each entity is developed individually to

react to the stimuli that is of interest to them. This allows the incremental development of

pervasive computing environments as new entities can be added and old ones upgraded at

110



Chapter 4. De�ning Entity Behavior

any point in the lifetime of the environment. In doing so, the scripting language aids in the

ful�lment of requirement R7 - supporting the incremental construction and improvement of

solutions - de�ned in section 3.1.2. The approach also provides a means of abstracting the

complexities of dealing with the underlying technologies, allowing those developing pervasive

computing environments to concentrate on the creative side of de�ning entity behavior. In

taking this approach the scripting language provides the high-level abstractions sought by

requirement R1 - supporting the physical integration of components into the environment -

de�ned in section 3.1.2.

In proposing a new scripting language the objective has been to provide a tool to simplify

the development of pervasive computing environments. Its role in such development is to

support developers in de�ning entity behavior. The high-level abstractions are expected to

facilitate those less experienced in developing such environments to specify entity behavior.

The system level development, such as the integration of sensors, is anticipated to be handled

by those with greater knowledge of the area. While there is an overhead in de�ning such a do-

main speci�c language, compared to using or extending an existing language, the advantaged

gained in providing the right level of abstraction out weights the disadvantage of having to

specify such a language. It should, however, be noted that a base language, in this case Java,

is used in combination with the scripting language for the system level development of the

environment. A more indept discussion of the development process and of the system level

development is provided in chapter 5.

The foundations of the scripting language are built upon the stigmergic model, in particu-

lar the three primitives de�ned in section 3.5 - L, B, and M - form the basis of the language.

L, the proximity function de�nes an area over which an entity has in�uence. B, the behav-

ioral set represents the set of possible behaviors an entity can use to manipulate the local

environment. The M function provides the means of mapping an entity's local environment

onto the behavioral set, B. Together, they allow the scripting language to de�ne how an

entity is to behave and how it is to coordinate its activities within a pervasive computing

environment. The following sections provide a more detailed description of the primitives

used in the language to de�ne entity behavior.
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4.3 Basic Structure

This section describes the main structure and capabilities of the scripting language. Section

4.3.1 starts with an overview of the language describing the basic structure and usage. Section

4.3.2 describes how L, the proximity function, is de�ned in the scripting language. Section

4.3.3 outlines how B , the behavioral set, is speci�ed for an entity. Section 4.3.4 describes

how the M function is de�ned. A full description of the grammar of the language can also be

found in appendix A.

4.3.1 Overview

The scripting language uses an interpreter that takes a text �le containing a description of

the desired behaviors and translates them into intermediate objects that the framework uses

to represent the behavior of individual entities. Details of the methods used to interpret

the script and to translate it into intermediate form are described later in chapter 5. The

behaviors described in the text �le characterise how a particular type of entity behaves in an

environment and can be reused for all entities of that type.
¨ ¥
1 de s k l i g h t extends l i g h t {
2 . . .
3 }

§ ¦
Listing 4.1: Declaring a script.

For instance, the code shown in listing 4.1 de�nes a script for an entity of type desklight.

Any entity that can be categorised as a desklight may use the behaviors described in the

script to regulate how they behave. The script de�nes these behaviors in terms of the three

primitives - L, B, and M - outlined in the stigmergic model, and which are described in more

detail in the coming sections. By using a script to characterise the behaviors of a particular

type of entity and not for a speci�c entity it makes it possible to reuse the script for all

entities of that type in a pervasive computing environment. Taking this approach makes the

development of entities easier and also promotes the reuse of code. However, there is a need
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entity


person
object
 place


light
 jukebox
 adult
 child
 room
 cinema


desk light
 teacher
 office


Figure 4.1: Script inheritance hierarchy.

to be able to tailor the behaviors de�ned in the script for di�erent sub-types of entity. For

example, a desklight can be categorised as a light but may behave in a subtly di�erent manner.

To manage these aspects the scripting language allows a script to inherit from another script

by extending a preexisting script. This allows the script to inherit the behaviors from a base

script and from there it can adjust the inherited behaviors to meet the requirements for that

sub-type of entity. In the example shown in listing 4.1, the desklight inherits from light. The

use of such an approach helps to promote the reuse of code but also aids in rapid development

and incremental construction of pervasive computing environments, in that, it is possible to

reuse existing functionality and to be able to extend it. The semantics of inheritance are

described in later sections.

As can be expected with inheritance relationships a tree-like hierarchical structure is

formed. The inheritance hierarchy for this language, see �gure 4.1, is in�uenced by the

presence of four prede�ned scripts - entity, object, person, place - that enforce a structure

on the hierarchy. The latter three - object, person, and place - represent the entities in the

stigmergic model with entity being the base script for these. The reason for imposing such a

structure is to match the type of entities de�ned in the stigmergic model and to ensure that

all entities developed with the scripting language are of that type. In the example shown in

listing 4.1, the desklight inherits from light but what can also be seen from �gure 4.1 is that
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light inherits from object which inherits from entity. While desklight script inherits behaviors

from light, it also indicates that it is a type of object and an entity.

The following sections describe the structures used to de�ne entity behavior, in so doing,

focuses on how the three primitives - L, B and M - are de�ned in a script and on the semantics

used for inheritance from a script.

(a) Radius (b) Polygon

F32
 F33


F34
F35


(c) Symbolic

Figure 4.2: Proximity

4.3.2 Proximity Function

In the scripting language, L, the proximity function can be de�ned as either a radius, polygon,

or symbolic area around an entity. Any context emanating from this region will be inserted

into the entity's contextual view as has already been described in section 3.5. In the �rst

example shown in listing 4.2 the proximity is set to be a 5 meter radius around the current

entity. This example can be seen in �gure 4.2(a).The next example uses pairs of coordinates to

de�ne a polygon: the unit of measurement is meters, and the reference point for the polygon

is the position of the entity. The polygon de�ned by the sample code is illustrated in �gure

4.2(b).
¨ ¥
1 proximity (5 ) // c i r l e
2 proximity (−5 ,−5 ,−10 ,5 ,−10 ,20 ,10 ,20 ,10 ,5 ,5 ,−5) // polygon
3 proximity ( "F32" ) // symbo l ic l o c a t i o n

§ ¦
Listing 4.2: Code for proximity functions.

Figure 4.2(c) shows the use of symbolic proximity, where a prede�ned area can be used

114



Chapter 4. De�ning Entity Behavior

to specify the proximity around an entity. This type of proximity is useful when there is a

strong de�nable boundary, such as a room or building. It helps �lter out interference from

entities which are nearby, but are not relevant to the current situation, i.e. are outside the

boundary. The last example shown in listing 4.2 illustrates how this kind of proximity can be

de�ned in the script, where it is set to an o�ce called F32. Typically, a symbolic proximity

is mapped to an absolute location, or relative location which is either speci�ed beforehand or

learnt during the lifetime of the entity. How this is achieved is described in more detail in

chapter 5.

The proximity function, L, must be de�ned for each entity so that it can determine the

scope of its local environment. This is typically achieved in the scripting language by calling

the proximity function at the beginning of the script to initialise L for the entity. However,

it may also be inherited from a base script if L is not de�ned in the extended script. A sub

script can also, if the current de�nition of L in the base script is not compatible, rede�ne L

by calling the proximity function in the script again. In essence, the proximity function, L,

has to be de�ned in the script or in one of its base scripts, in which case the de�nition used

for L is the last inherited one.

4.3.3 Behavioral Set

B, the behavioral set, de�nes the set of possible behaviors that can be performed by the

entity. The actual implementation of a behavior is not provided in the script but in Java

following a particular API de�ned by the framework. The speci�cation of the API is covered

in section 5.2.4.3. The script speci�es behaviors that a particular type of entity can perform.

It achieves this by declaring a behavior with a corresponding reference to the implementation

of that behavior. For example, in listing 4.3 behaviors on and o� are declared with reference

to the classes that implement the behavior for the entity. In this case, it is the behaviors

for turning a light on and o�. When the behavior is invoked it executes the Java code that

de�nes the speci�c behavior that allows the entity to manipulate the environment.

The declaration of a behavior for an entity can also be inherited from a base script. For

instance, the desklight from listing 4.1 could have inherited the on and o� behaviors from
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¨ ¥
1 behavior on = " i e . tcd . cs . l i g h t on "
2 behavior o f f = " i e . tcd . cs . l i g h t o f f "

§ ¦
Listing 4.3: Declaring behaviors.

light. It could then use them along with the behaviors it declares to de�ne how desklight

entities are to behave. It is also possible, if a particular inherited behavior does not suit, to

reassign the behavior to use a di�erent implementation. This may be required if a sub-type

of an entity uses di�erent actuators to manipulate the environment. An example of how this

can be achieved is shown in listing 4.4 where the on behavior is de�ned to use a di�erent

implementation for that behavior. Reassigning behaviors in this way does not e�ect how the

rest of the script operates.
¨ ¥
1 on = " i e . tcd . cs . d e s k l l i g h t on "

§ ¦
Listing 4.4: Reassigning behaviors.

4.3.4 M Function

The primary function of the scripting language is to identify the set of contextual stimuli

that in�uence an entity and to map them onto behaviors that allow entities to modify the

local environment. In the stigmergic model, de�ned in chapter 3, the M function provides

the means of mapping an entity's local environment onto B the behavioral set. To use the M

function in the scripting language it is �rst necessary to identify the parts of the environment

that act as stimuli to the entity. This is achieved by de�ning a set of predicates specifying

the context information that is of interest to the entity. These are true when matched by

information in the entity's current contextual view and can be used to determine the entity's

behavior. The code shown in listing 4.5 is one such predicate.

In this sample code the context called bobperson is declared. The keyword person de�nes

the predicate bobperson as identifying a part of the environment as a person with the name of

Bob. The location keyword indicates a position or area that is of interest to the predicate, in
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¨ ¥
1 context bobperson
2 bobperson . person = "Bob"
3 bobperson . l o c a t i o n = "O' Re i l l y House , F32"
4 bobperson . a c t i v i t y = any
5 bobperson . time = " lunch time"
6 bobperson . job = " teacher "
7 bobperson . music = " rock "

§ ¦
Listing 4.5: Declaring context predicate.

this case a symbolic location called �O'Reilly House, F32�. The activity keyword de�nes what

is happening in that part of the environment. In this example the predicate is interested in

Bob when doing any activity. The time keyword indicates a period, or point in time, which

in this case is the symbolic time of �lunch time�. The last two lines from the sample code

describe the job Bob does and speci�es the type of music he likes to listen to.

As the above example indicates the scripting language uses a vocabulary based on Dey's

[42] concept of primary and secondary context information to describe the parts of the environ-

ment that will act as the stimuli for regulating entity behavior. Primary context information

being identity, location, activity and time, while secondary context information describes any

other information that helps to de�ne the situation. The scripting language uses this approach

to de�ne context though it extends it with additional scripting constructs to provide a more

expressive means of describing the parts of the entity's local environment that will act as the

stimulus for the entity.
¨ ¥
1 somePredicate . p l ace = "O' Re i l l y House , F32" // p lace
2 somePredicate . person = "Bob" // person
3 somePredicate . ob j e c t = "Light " // o b j e c t "

§ ¦
Listing 4.6: Assigning identity context.

Listing 4.6 shows how a predicate can identify the parts of the environment that are of

interest to the entity. In this case it may be a certain place, as in the �rst example shown

in listing 4.6, or a particular person as indicated in the second line of listing 4.6, and lastly,

it may be an object in the environment that is of interest to the entity. The keywords place,
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person, and object allow the scripting language to specify these preferences in a predicate.
¨ ¥
1 somepredicate . l o c a t i o n = "53◦ 20 '1 "N, 6◦15 ' 1"W" // abso lu t e
2 somepredicate . l o c a t i o n = "10 ,15 : r e f=53◦20 ' 1"N, 6◦ 15 '1 "W" // r e l a t i v e
3 somepredicate . l o c a t i o n = "O' Re i l l y House , F32" // symbol ic

§ ¦
Listing 4.7: Assigning location context.

A predicate can also express interest in a particular location or area through the use of

the location keyword as shown in listing 4.7. The location can be speci�ed in terms of a GPS

coordinate as in the �rst example shown in listing 4.7, or as a relative coordinate as indicated

to in the second example, and also in terms of a symbolic location as in the last example in

listing 4.7. The relative coordinate is based on a reference point that acts as the origin and

an x/y coordinate. The x/y coordinates are given in meters and indicate the o�set from the

reference point. The reference point can be a GPS coordinate, another relative coordinate, or

a symbolic location. A symbolic location provides an abstract view of a location that typically

maps to a GPS coordinate or a relative location, though it can also map to a speci�c area as

in listing 4.7. It is possible to de�ne either a polygon or circular area as can be seen in listing

4.8.
¨ ¥
1 somepredicate . l o c a t i o n = " 0 , 0 , 1 , 1 , 0 , 1 : r e f=53◦ 20 '1 "N, 6◦15 ' 1"W"// ploygon
2 somepredicate . l o c a t i o n = "20 : r e f=53◦20 ' 1"N, 6◦ 15 '1 "W" // c i r c l e

§ ¦
Listing 4.8: Assigning an area for a location context.

A polygon is de�ned by pairs of coordinates and a reference point that acts as the origin

for the coordinates. A circular area is de�ned by a radius and a reference point that forms

the center of the area. Expressing an area in these forms can be di�cult and in practise it is

normal that a symbolic location is used instead to map these locations. It should be noted

that while symbolic context information can be used, the vocabulary needs to be agreed upon

beforehand to the extent that symbolic information is matched exactly by the framework.

How this is achieved is described in more detail in chapter 5.

Listing 4.9 shows how a predicate can identify activities in the environment that are of
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interest to the entity. In this case an activity context is de�ned in terms of a string literal as

listing 4.9 indicates. The signi�cance of this value to the behavior of the entity is left to the

developer to determine.
¨ ¥
1 somepredicate . a c t i v i t y = "jumping"

§ ¦
Listing 4.9: Assigning activity context.

It is also possible to de�ne a certain period, or point in time that an entity is interested in.

This allows the scripting language to ignore parts of the environment until the appropriate

time. A predicate can express this notion of time through the use of the time keyword as

shown in listing 4.10. Time can be speci�ed in terms of an absolute value as shown in the

�rst example of listing 4.10, a relative time as indicated in the second example, or as symbolic

value as in the third example, and also in terms of an interval or period of time as shown in

the last example of listing 4.10. Relative time is based on a reference point and an o�set that

de�nes the point in time. The reference point can be an absolute value, as shown in listing

4.10, or another relative time, or symbolic time. A symbolic time provides an abstract view

of time that typically maps to an absolute value or a relative value, though it can also map

to a period or interval of time. An interval of time is de�ned by a reference point and value

that denotes the duration of the period. The reference point, in a similar fashion to a relative

value, can either be an absolute, relative, or symbolic time.
¨ ¥
1 somepredicate . time = "Thu Mar 18 21 : 58 : 36 GMT 2004" // a b s o l u t e
2 somepredicate . time = " 10000 : r e f=31 August 2005 15 : 26 : 35 " // r e l a t i v e
3 somepredicate . time = " lunch time" // symbo l i c
4 somepredicate . time = " r e f=31 August 2005 15 :32 :58 ,20000 " // i n t e r v a l

§ ¦
Listing 4.10: Assigning time context.

In the scripting language secondary context information is declared by specifying any

key/value pairing. In the coding sample shown in 4.5 the bobperson predicate speci�es two

such pieces of context information. The �rst describes the job Bob does and the second

speci�es the type of music he likes to listen to. While de�ning secondary context in this way
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provides a �exible approach for describing such context the key/value pairings can be open

to interpretation by entities unlike the primary context information which is well de�ned. To

be able to use such context it is necessary to agree beforehand the meaning to the extent that

it can be matched by the framework.
¨ ¥
1 somepredicate . person = any //any person
2 somepredicate . ob j e c t= any //any o b j e c t
3 somepredicate . p l ace = any //any p lace
4 somepredicate . l o c a t i o n = any //any l o c a t i o n
5 somepredicate . a c t i v i t y = any //any a c t i v i t y
6 somepredicate . time = any //any time
7 somepredicate . job = any // secondary con t ex t − any job
8 somepredicate . music = any // secondary con t ex t − any music

§ ¦
Listing 4.11: The any keyword.

In the declaration of predicates the scripting language also de�nes the any operator. The

any operator allows the predicate to assign any value to a context and for that to hold true

when matching it with the entity's current contextual view. For instance, in the �rst example

in the listing 4.11 the any operator is used to show the entity is interested in any part of

the environment that is a person, or in the second example the entity is interested in any

object that is in its environment, and in the third example shown in listing 4.11 the entity is

interested in any part of the environment that can be thought of as a place. The any operator

can also be used to show the entity is interested in a particular part of the environment

that is at any location, doing any activity, or at any time, and to indicate that the entity is

interested in a part of the environment with a secondary context of any value. The use of the

any operator allows the scripting language to generalise on aspects of the environment rather

than speci�cally stating what interests it. This allows the scripting language to reason about

parts of the environment it might not know beforehand.

Once the required context predicates have been declared it is necessary to map the entity's

contextual view on the behavior set by identifying the stimuli in the local environment that

e�ect the entity's behavior and determining how the entity should modify its behavior in

response. How this is achieved in the scripting language can be seen in listing 4.13. In this
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¨ ¥
1 context darkroom
2 darkroom . p lace = "O' Re i l l y I n s t i t u t e , F32"
3 darkroom . a c t i v i t y = any
4 darkroom . l i g h t i n g = "dark"

§ ¦
Listing 4.12: Declaring context information for a dark room.

case, the mapping is accomplished when the context predicates bobperson (listing 4.12) and

darkroom (listing 4.5) are found to be matched in the entity's current contextual view. This

would indicate that Bob is in a place called �O'Reilly Institute, F32� with little light. On

obtaining a match for this predicate the behavior can then be triggered for the entity, which

in this case is the on behavior for a light. The general structure of the mapping statement

allows the developer to specify one or more context predicates that all must hold in the entity's

current contextual view for the mapping to be successful. All completed mappings map to

one or more behaviors in the entity's behavioral set B. These are speci�ed in the mapping

statement by the developer.
¨ ¥
1 map[ bobperson , darkroom ] onto{
2 on ( )
3 }

§ ¦
Listing 4.13: Example of mapping statement.

The declaration of context predicates and the de�nition of mappings for an entity can also

be inherited from base scripts. For instance, a script could inherit context predicates bobperson

(listing 4.12), and darkroom (listing 4.5) and use them along with other context predicates it

has declared to de�ne mappings. It is also possible, if a particular inherited predicate does

not suit, to assign di�erent values to a predicate. An example of how this can be achieved is

shown in listing 4.14 where the location context on the bobperson is changed from �O'Reilly

Institute, F32� to �O'Reilly Institute, F35�. It should be noted that reassigning values of

inherited context predicates also e�ects how the mappings de�ned in the base scripts are

performed. While this is a desirable attribute which allows a script to modify how mappings
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are triggered in the base scripts care needs to taken to avoid unwanted behaviors.
¨ ¥
1 bobperson . l o c a t i o n = "O' Re i l l y House , F35"

§ ¦
Listing 4.14: Changing the value of a context predicate.

Mappings are inherited from base scripts in the same way as behaviors and context pred-

icates and can be used by the extended script to dictate how the entity is to behave along

with the other mappings de�ned in the script. Tailoring how the inherited mappings operate

is achieved either by modifying the values of the predicates or by overwriting the mappings

to change the behaviors that are mapped.
¨ ¥
1 map[ bobperson , darkroom ] onto{
2 ha l f on ( )
3 }

§ ¦
Listing 4.15: Overwriting a mapping.

The sample code shown in listing 4.15 provides an example of how to overwrite a mapping

to change the behaviors that are triggered. In this case, the mapping shown in listing 4.13 is

overwritten to change the behavior it triggers from on to halfon. This is achieved by using

the same context predicates in the mapping statement as in the inherited mapping. It is

important to note that the context predicates have to match exactly otherwise the mapping

is considered separate from that of the inherited mapping and as such will not be overwritten.

The semantics for overwriting an inherited mapping with a mapping that provides a partial

match has not been de�ned at this time.

4.4 Mapping

The previous sections have outlined the basic structure of the scripting language and have

demonstrated how to trigger a behavior for an entity on encountering speci�c stimuli described

by fragments of context information. The recognition of one particular instance in time is

often not su�cient to capture the broader sense of what has occurred and it was necessary
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to �nd a more expressive means of performing the mappings that can also take into account

what has been observed beforehand. In�uenced by the work of Allen [5] and that of Pinhanez

et al's interval scripts [124] the section looks at another method that models the relationships

between intervals of time to capture these observations and de�ne entity behavior.
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Figure 4.3: Interval relationships

4.4.1 Allen's Temporal Intervals

An interval of time is a length of time marked o� by two distinct points in time representing

the start and end of the interval. In [4, 5, 6], Allen introduced a model that made it possible

to describe the relationship between two intervals of time. He showed that there are 13 such

possible relationships, as summarised in �gure 4.3.

Given any two intervals of time it is possible to use one of the relationships illustrated in

�gure 4.3 to describe how they are related. For instance, in taking a story such as the one

below:

John was not in the room when I touched the switch to turn on the light.

it is possible to use Allen's interval temporal logic to describe the above story as:

S overlap or meet L

S is before, meet, is imeet,

or ibefore R
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where S is the time of touching the switch, L is the time the light was on, and R is the time

that John was in the room.

The importance of Allen's work stems from its ability to provide a means of describing

the relationships between intervals without having to explicitly mention the interval duration

or specifying the relationships between the interval's extremities. These characteristics are of

value when it comes to capturing the broader sense of what is happening in an environment.

It can be used by the scripting language to describe the temporal relationships between

observations so when the described relationship is satis�ed the mapping can be triggered to

modify the behavior of the entity. The method is especially useful when you also consider the

the imprecise nature of the environments in which the entities are anticipated to operate.

4.4.2 Scripting Temporal Intervals

Based on Allen's interval temporal logic the script uses the primitive relationships de�ned by

Allen to describe temporal relationships between intervals of time. Entity behavior is then

triggered on observing the intervals in the correct temporal sequence. The context predicates

described in section 4.3.4 are used to de�ne the duration of the interval. The start of an

interval is determined when the context predicate becomes true, and the end is denoted on

it becoming invalid. The interval is deemed active between these two distinct points in time.

The script speci�es the relationships between intervals by de�ning a sequence of context

predicates. Once the intervals have occurred, as indicated by the script, the mapping can

occur and the behavior can be triggered.
¨ ¥
1 // contextA s t a r t contextB
2 map[ contextA , contextB ] [ contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.16: Mapping using temporal intervals.

For the purpose of illustration an example is used to explain in more detail the use of Allen's

interval temporal logic in the script. The sample code shown in listing 4.16 demonstrates
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the use of intervals in a mapping statement. It uses the context predicates, contextA and

contextB, to describe two di�erent intervals of time. The relationship between the intervals

can be de�ned as contextA start contextB, as per Allen's interval temporal logic. The square

brackets demarcate the start and end of the intervals, and de�nes the relationship between

them. Figure 4.4 shows graphically the relationship between the intervals.
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Figure 4.4: Interval - contextA start contextB.

In determining whether a mapping has been triggered the framework investigates each

subsequent contextual view to determine if the intervals are active. An interval is deemed

active when the context predicate is found to hold true in the entity's current contextual

view and each subsequent contextual view after that. The interval becomes inactive when the

predicate can no longer be found to be true. When the intervals are found to be active in the

correct temporal sequence, as described in the mapping, it is then that the mapping can be

triggered and the behavior of the entity changed to re�ect the state of the local environment.

In the example above, the relationship is satis�ed when both contextA and contextB become

active in the same instance with contextB remaining active for a period after contextA becomes

inactive at which point the mapping can be triggered. When a mapping can actually be trigger

is dependent on the interval and when it can be fully detected. This may only happen after

all the intervals have ended, as is the case for the �nish interval.

It is also possible to use the remaining 12 relationships de�ned by Allen to create di�erent

mappings. For instance, in the example shown in listing 4.17 contextA is before contextB.

In this case, the temporal relationship is satis�ed when the interval de�ned by the predicate
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¨ ¥
1 // contextA be f o r e contextB
2 map[ contextA ] [ ] [ contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.17: Mapping statement contextA before contextB.

contextA is active in advance of contextB becoming active, in that, there exists another period

of time that spans the time between the intervals as the empty square brackets indicate.
¨ ¥
1 // contextA meet contextB
2 map[ contextA ] [ contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.18: Mapping statement contextA meet contextB.

In the sample code shown in listing 4.18 the mapping statement triggers when the temporal

relationship contextA meet contextB is observed. This occurs when the interval de�ned by the

context predicate contextA ends at the same point in time that the interval contextB becomes

active. The mapping can be triggered at this point as the relationship has been satis�ed.
¨ ¥
1 // contextA ove r l ap s contextB
2 map[ contextA ] [ contextA , contextB ] [ contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.19: Mapping statement contextA overlaps contextB.

The listing 4.19 shows an example of a mapping statement using the temporal relationship

contextA overlaps contextB. In this case, the mapping will only be triggered when the end

point of the interval speci�ed by the predicate contextA overlaps the start point of the interval

de�ned by contextB. At this point the mapping can be triggered and the behaviors for the

entity can be invoked.

The sample code shown in listing 4.20 illustrates the use of the temporal relationship con-
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¨ ¥
1 // contextA during contextB
2 map[ contextB ] [ contextA , contextB ] [ contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.20: Mapping statement contextA during contextB.

textA during contextB within a mapping statement. To satisfy this relationship the mapping

must observe that the interval de�ned by the predicate contextA occurs after the start of the

interval de�ned by contextB but before the interval is inactive.
¨ ¥
1 // contextA f i n i s h contextB
2 map[ contextB ] [ contextA , contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.21: Mapping statement contextA �nish contextB.

In the sample code shown in listing 4.21 the mapping statement triggers when the temporal

relationship contextA �nish contextB is observed. This occurs when the interval de�ned by

the context predicate contextB becomes active before contextA but ends at the same point

in time as contextA becomes inactive. It is at this point that the framework can trigger the

mapping and invoke the behaviors associated with it.
¨ ¥
1 // contextA equa l s contextB
2 map[ contextA , contextB ] onto{
3 . . .
4 }

§ ¦
Listing 4.22: Mapping statement contextA equals contextB.

The listing 4.22 shows an example of a mapping statement using the temporal relationship

contextA equals contextB. For this mapping to be triggered the intervals de�ned by predicates

contextA and contextB must both be active at the same time. In other words, the intervals

most both start and end at the same point in time. The mapping for this temporal relationship

127



Chapter 4. De�ning Entity Behavior

can only be triggered when the framework observes both intervals becoming inactive at the

same time.
¨ ¥
1 // contextA i b e f o r e contextB
2 map[ contextB ] [ ] [ contextA ] onto { . . . }
3 // contextA imeet contextB
4 map[ contextB ] [ contextA ] onto { . . . }
5 // contextA i o v e r l a p s contextB
6 map[ contextB ] [ contextB , contextA ] [ contextA ] onto { . . . }
7 // contextA idur ing contextB
8 map[ contextA ] [ contextA , contextB ] [ contextA ] onto { . . . }
9 // contextA i s t a r t contextB
10 map[ contextA , contextB ] [ contextB ] onto { . . . }
11 // contextA f i n i s h contextB
12 map[ contextA ] [ contextA , contextB ] onto { . . . }
§ ¦

Listing 4.23: Other mappings using intervals.

The remaining relationships de�ned by Allen are the inverse of those used in the mapping

statements shown in listings 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, and 4.22, and as such operate

in a similar though opposite way. These mappings are shown in listing 4.23.
¨ ¥
1 // contextB s t a r t contextA , contextA f i n i s h contextB ,
2 // contextA during contextC
3 map[ contextB , contextC ] [ contextA , contextB , contextC ] [ contextC ] onto{
4 . . .
5 }

§ ¦
Listing 4.24: A more complex mapping statement.

More complex mappings can also be achieved by using multiple intervals as in the example

shown in listing 4.24 and illustrated in �gure 4.5. The relationships between these intervals

can be de�ned as follows: contextB start contextA, contextA �nish contextB, contextA during

contextC.

The use of Allen's interval temporal logic provides the scripting language with a more ex-

pressive means of performing mappings that takes into account what has occurred beforehand

and not just what has occurred at a single point in time. While it does increase the complex-

ity of the script, it is felt that the increased expressiveness gained by using Allen's temporal
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Figure 4.5: Interval - contextB start contextA, contextA �nish contextB, contextA during
contextC.

logic outweighs the additional di�culty in scripting the behaviors of entities. It should also

be noted that the mapping statements described in this section use the same semantics for

inheritance as those described in section 4.3.4.

4.5 Tailoring Entity Behavior

The previous sections introduced the concept of using temporal intervals to trigger the dif-

ferent behaviors of an entity. This provides entities with the ability to react to di�erent

contextual stimuli within the entity's local environment. In tailoring this process the script-

ing language provides a method for customising how the behavior is invoked. This allows

the scripting language to focus an entity's behavior on a particular part of the environment

within the entity's current context contextual view. It also allows entities to more accurately

adjust how the behavior is triggered to better suit di�erent situations that might be found in

the environment.

4.5.1 Passing Context Information

The parameters for the behaviors are constructed from the context information which has been

de�ned beforehand within predicates declared in the script, or from context information that

is held in the entity's current contextual view. The sample code in listing 4.25 demonstrates

how this can be achieved in the script language. The context information peter.music is passed
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to the play behavior on being invoked by the framework. For context information to be passed

the behavior must �rst be implemented to take a parameter. The context information passed

must also match what is expected by the behavior otherwise the invocation will fail. It is also

possible to pass the behavior more than one parameter though it needs to be speci�ed before

in the implementation of the behavior. Further details of how the framework passes context

to behaviors are described later in chapter 5.
¨ ¥
1 context pete r
2 pete r . l o c a t i o n = "O' Re i l l y I n s t i t u t e , F32"
3 pete r . music=" f o l k "
4 . . .
5 play ( pete r . music )

§ ¦
Listing 4.25: Passing context information to a behavior.

4.5.2 Using Embedded Functions

To access information held in the entity's contextual view the scripting language uses em-

bedded functions that allow the data in the contextual view to be analysed and context

information deduced without having to directly handle the data. The implementations of

the embedded functions are not provided by the scripting language but in Java following a

particular API de�ned by the framework. The speci�cation of the API is covered in section

5.2.4.3. To use a particular embedded function it must �rst be declared in the script or within

one of the base scripts of the script. An example of how a embedded function is declared can

be seen in listing 4.26. In this example the embedded function majority is declared with a

reference to the Java classes that implement the function.
¨ ¥
1 //Dec lar ing embedded func t i on major i ty .
2 e func t i on major i ty = " i e . tcd . cs . dsg . cocoa . Major ity "

§ ¦
Listing 4.26: Declaring embedded function.

The example shown in listing 4.27 illustrates how such an embedded function can be used
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in a script. The majority function, in this case, allows a developer to determine the value of

a piece of context information that is most prevalent in the entity's current contextual view.

In the example shown in listing 4.27 the context someperson acts as a �lter for the majority

function excluding any entities in the current contextual view that are not in the location

�O'Reilly Institute, F32 � or do not have any music preference. From the remaining context

the majority function is used to determine the majority value of the secondary context music

which is then passed as a parameter to the play behavior.
¨ ¥
1 //Dec lar ing con t ex t p r ed i c a t e someperson .
2 context someperson
3 someperson . l o c a t i o n = "O' Re i l l y I n s t i t u t e , F32"
4 someperson . music=any
5 . . .
6 //Using major i ty f unc t i on to determine parameter f o r behav ior
7 play ( major i ty ( someperson ) )

§ ¦
Listing 4.27: Using embedded function.

The context used by an embedded function, and which eventually gets returned, is dis-

covered through the �ow in which the function is being called. This is determined when the

script is initially loaded and interpreted. In the example taken, the majority function is called

within the play behavior which expects a parameter of secondary context music. The majority

function uses the discovered information to focus on the context to provided, in this case, the

play behavior with the majority value of the secondary context music that is currently in the

entity's contextual view.

The scripting language currently supports a number of embedded functions. These include

themajority function mentioned above, and also theminimum, random, minority, and average

embedded functions. These functions are declared in the entity script ( see �gure 4.1) so that

they may be accessed by all scripts. Developers can still extend the functionality of the

scripting language by either implementing their own embedded functions or changing the

behavior of an embedded function by reassigning a di�erent implementation of that function

as can be seen in listing 4.28.

The maximum and minimum functions allow the developer to retrieve the maximum or
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¨ ¥
1 //Assign new implmentat ion to major i ty f unc t i on .
2 major i ty = " i e . tcd . cs . dsg . cocoa . MajorityNewImpl"

§ ¦
Listing 4.28: Reassign embedded function.

minimum values for context information in the entity's current contextual view. The random

function randomly selects a piece of the context information in the entity's current contextual

view. Using majority function allows the developer to determine the value of a piece context

information that is most prevalent in the entity's current contextual view. The minority

function provides opposite functionality to that of the majority function. The average function

determines the average value for a particular context.

Currently the embedded functions are restricted to deriving the parameters to be passed

to behaviors. The embedded functions cannot be used to assign values to context predicates

as to do so would create a situation where the intervals are constantly being rede�ned. This

would lead to inconsistencies in determining whether a temporal relationship de�ned in a

mapping, or in this case rede�ned, has been satis�ed or not.
¨ ¥
1 //Determining parameter f o r someBehavior us ing
2 // func t i on s EFunction1 and Efunct ion2 .
3 someBehavior ( EFunction1 ( EFunction2 ( somePredicate ) ) )

§ ¦
Listing 4.29: Calling one embedded function within another.

It should also be noted that an embedded function can be called within another as the

sample code shown in listing 4.29 illustrates. However, for the embedded functions -minimum,

random, majority, minority, and average - currently implemented for the scripting language

it does not make sense to use this functionality as they typically only return a single context

value. The bene�t comes from embedded functions that return more than one value. In these

cases two or more functions can be used to achieve the desired result.
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4.5.3 Using the This Keyword

The behaviors described in a script characterise how a particular type of entity behaves in

the environment and can be reused by all entities of that type to de�ne their behavior. The

approach allows the framework to generalise the behaviors of entities and ensures there is

greater reuseability. However, in certain circumstances it is necessary to reference the entity

that is the subject of the script. To do so explicitly would impair the ability of the framework

to reuse code. There is a need to provide mechanism a for referring to this entity in the script.

The this keyword provides such functionality. It provides a reference to the contextual state

of the entity initialised with the script.
¨ ¥
1 //Dec lar ing con t ex t p r ed i c a t e L igh tOf f us ing the t h i s keyword .
2 context LightOf f
3 LightOf f . ob j e c t = this . ob j e c t
4 LightOf f . a c t i v i t y = "Off "

§ ¦
Listing 4.30: Using the this keyword to de�ne context predicates.

In listing 4.30 the this keyword is being used to de�ne the context predicate LightO�.

In this case the predicate uses the this keyword to identify the entity who is the subject of

the script. The same approach can also be used to pass context information to behaviors as

shown in listing 4.31.
¨ ¥
1 //Mapping s ta tement − contextA s t a r t contextB
2 map[ contextA , contextB ] [ contextB ] onto{
3 l i g h t on ( this . ob j e c t ) // Ent i t y behav ior c a l l l i g h t o n
4 }

§ ¦
Listing 4.31: Using the this keyword to pass context information.

4.5.4 Rede�ning P

While the proximity function, P , is usually set at the beginning of the script it can, if the

circumstances required it, be modi�ed during the lifetime of the entity through additional calls
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to the proximity function. Modi�cation of the proximity function are sometimes required by

entities when moving from one environment to another. For example, when a PDA moves

from a busy street to a o�ce it may rede�ne P to take into account its new environment.

Listing 4.32 provides one such example of the proximity function being rede�ned. Typically,

rede�ning the proximity function is done within the mapping statement as the example above

illustrates.
¨ ¥
1 //Mapping s ta tement − contextA f i n i s h contextB
2 map[ contextB ] [ contextA , contextB ] onto{
3 d i sp l ayP i c tu r e ( ) // Ent i t y behav ior c a l l e d d i s p l a yP i c t u r e .
4 proximity (8 ) //8 meter rad ius around e n t i t y .
5 }

§ ¦
Listing 4.32: Rede�ning P .

4.6 Summary

The chapter has described a high-level scripting language for scripting entity behavior in per-

vasive computing environments. Based on the stigmergic model developed in chapter 3 the

scripting language provides a programming model that combines expressiveness and simplic-

ity with the ability to abstract the complexities of dealing with the underlying technologies.

By focusing on de�ning entity behavior the scripting language allows developers to concen-

trate their e�orts on characterising the behavior of a pervasive computing environment rather

than system development while also aiding the incremental construction and improvement of

solutions over the lifetime of the environment.

In using a programming model based on a high-level scripting language the goal has also

been to develop an approach that provides support for requirement R1 speci�ed in section

3.1.2 - supporting the physical integration of components into the environment. From the

sample code presented in the chapter and descriptions provided it can be argued that the

scripting language provides the high-level abstractions sought by this requirement and which

allow components to sense and interact with the physical environment without the di�culties
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of dealing with low-level devices such as sensors and actuators.

The next chapter takes the stigmergic model developed in the previous chapter and the

scripting language proposed by this chapter and provides details of their implementation.
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Cocoa Framework

Previous chapters have introduced an alternative approach to constructing pervasive comput-

ing environments and have established a set of requirements for supporting their development.

Chapter 3 proposed a model capable of meeting these requirements. Based on the principles

of stigmergy it describes a method of building the type of pervasive computing environments

envisioned in section 3.1.1. The previous chapter builds on this work by introducing a pro-

gramming abstraction encapsulated in a high-level scripting language. It is based on the

stigmergic model de�ned in chapter 3 and provides a means for de�ning entity behavior in a

pervasive computing environment.

This chapter presents a prototypical implementation of the stigmergic model and of the

scripting language used to de�ne entity behavior. The current prototype is called Cocoa (CO-

ordinated COntext Awareness) [8] and has been implemented on Linux1 using Java2. The

chapter begins with an outline of the architecture of Cocoa and discusses the functionality

provided by the main components of the framework as well as the means by which these

components are used to develop individual entities. The chapter also describes the algorithms

used and the possible system con�gurations that can be applied along with a demonstration

that illustrates how individual entities are developed.
1Using version 9 of Redhat's linux distribution.
2Using Sun Microsystem's implementation, version J2SE 1.4.2.
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5.1 Architectural Overview

In developing the Cocoa framework it has been necessary to incorporate technologies that

both support and complement the use of stigmergy. The framework has been designed as a

distributed architecture organised in a peer-to-peer fashion. Each node in the architecture

represents an entity in the pervasive computing environment. A modular design is used to

aid both the extensibility and �exibility of the framework. This allows di�erent components

to be loaded at runtime depending on the entity. Each entity runs in its own computational

space. Entities may be located on the same device but they do not necessarily have to be.
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Figure 5.1: Cocoa Architecture

The architecture of Cocoa, as shown in �gure 5.1, primarily consists of �ve key components.

These re�ect the main functional parts of the framework. Sensor components provide the

interface to the physical sensors associated with the entity. Each sensor component represents

a sensor in the environment. Di�erent sensor con�gurations can be used depending on those

loaded into the framework at runtime. The sensor components provide the framework with

the ability to sense the physical environment. The data retrieved from the sensors is provided

to the context acquisition component. It uses the sensor data to capture context information

concerning the local environment. An open interface is provided by the component to allow

di�erent techniques or models to be plugged into the framework to interpret the sensor data.

The choice of model is determined at runtime to allow the framework match the model to the

entity's requirements.

As highlighted in section 3.4, the acquisition of context information uses a collaborative

137



Chapter 5. Cocoa Framework

approach, whereby each entity acquires the contextual state of the physical environment

around them and publishes it in their local environment where it can be used by other entities.

The process helps to distribute the cost of capturing context information as the entities can

share the information they have derived from sensors. The stigmergy runtime collects the

context information produce by the context aquisition component of the entity and of the

surrounding entities to determine the state of the local environment. The collated information

is then used by the stigmergy runtime to decide the future behavior of the entity. The

component applies the three primitives - the proximity function L, the behavioral set B, and

the M function - described in section 3.5 to de�ne the mechanisms for determining the state

of the local environment and behavior of each entity.

The communication drivers support a decoupled communication model that distributes

context and sensor data events. The current implementation allows di�erent communication

drivers to be plugged into the framework to suit both the middleware requirements (for

example quality of service, or real-time requirements) or network con�guration (for example

wireless ad-hoc networks, or wired Ethernet networks). This makes it easier to modify the

framework to suit a variety of environments. Binding the framework together is the scripting

language de�ned in chapter 4. It produces the intermediate objects used by the stigmergy

runtime to manage the entity's behavior. A more detailed description of the main components

is provided in the next section.

5.2 Main Components

This section describes the design choices and implementation details of the main components

- communication drivers, sensors, context acquisition, stigmergy runtime, scripting language

- of the framework and their relationship to the stigmergic model de�ned in chapter 3.

5.2.1 Communication Drivers

In the current implementation it is possible to plug in di�erent communication drivers to

suit both the middleware requirements and network con�guration. This provides a degree of
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�exibility that allows the framework to modify the con�guration of the entity to suit di�er-

ent environmental conditions. The communication drivers can be based on publish subscribe

mechanisms, tuple spaces, or other communication paradigms that provide a decoupled com-

munication model. This type of communication model is required to maintain the indirectness

between entities and ensure requirements R3: spontaneous interoperability, and R6: robust

behavior (section 3.1.2) can still be satis�ed. The current implementation provides two drivers,

one based on STEAM [99, 100] and another on Siena [29].
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Figure 5.2: Structure of Communcation Driver.

5.2.1.1 Context and Sensor Data Channels

The communication drivers are used to share environmental sensor data and context informa-

tion between entities in the local environment. To achieve this the driver provides two data

channels, one for sending and receiving context information, and another for sensor data. Fig-

ure 5.2 provides an overview of the driver. In each of these channels there are input and output

streams for the data. It is possible to add �lters to either of these streams. This allows the

framework to pre-process the data before it is written to or read from the stream, allowing the

framework to add extra functionaility. The order in which these �lters are inserted, or what

communication driver is used is decided at runtime when the components are initially loaded

into the Cocoa framework. Section 5.3 describes in more detail the initialisation process and
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the possible con�gurations that can be achieved.
¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 //Get con t ex t communication d r i v e r from framework .
3 ContextComms conComms ;
4 conComms=(ContextComms)Cocoa . components . r e t r i e v e (Cocoa .CONTEXT_COMMS) ;
5

6 // c rea t e a new p i ece o f con t ex t in format ion .
7 Context context = new Context ( . . . ) ;
8

9 // wr i t i n g con t ex t in format ion to channel .
10 contextComms . wr i t e ( context ) ;
§ ¦

Listing 5.1: Writing context information to channel.

Listing 5.1 provides an example of how the higher level components - sensor, context

acquisition, and stigmergy runtime - are able to use the communication driver. In this code

excerpt a cocoa component retrieves the context information channel and writes a piece of

context information to the channel. A similar process is use to write sensor data.
¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 //Get sensor communication d r i v e r from framework .
3 SensorComms senComms ;
4 senComms=(SensorComms )Cocoa . components . r e t r i e v e (Cocoa .SENSOR_COMMS) ;
5

6 //Read sensor data from channel .
7 SensorData data = senComms . readSensorData ( ) ;

§ ¦
Listing 5.2: Reading sensor data from channel.

In listing 5.2, a component obtains the sensor data channel from the framework and uses

it to retrieve sensor data from the channel. Again, a similar method is used by components

to obtain context information.

5.2.1.2 Concrete Driver Implementations

The Cocoa framework de�nes an abstract implementation of the communication drivers. Spe-

ci�c concrete implementations of the communication drivers need to be provided. The current
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prototype provides two implementations, one, which is based on the STEAM event service

[99, 100], and another that is based on Siena [29].

STEAM is an event-based middleware service that has been designed with pervasive com-

puting in mind. More speci�cally, it is intended for use within mobile environments using

wireless ad-hoc networks. STEAM exploits a number of novel techniques that allow it to

operate successfully within these types of environments. In particular, it uses geographical

information to limit the propagation of events through the environment to improve scalabil-

ity and achieve timely delivery of events. There are also no centralised components within

STEAM and subscription to events are made dynamically to nearby producers as entities

move through the environment. Events can also be �ltered based on the proximity of one

entity to another, which bounds the range within which event noti�cations are delivered. The

STEAM event service was chosen as it particularly suits the mechanisms that Cocoa promotes

and the type of environment in which it is anticipated that it will be deployed. A detailed

description of STEAM can be found in [99, 100].

Siena (Scalable Internet Event Noti�cation Architecture) [29] was developed at Politecnico

di Milano and has been designed to provide a scalable, general-purpose distributed event-

noti�cation service for internet scale applications. The system aims to provide an expressive

approach to de�ning events and �lters without sacri�cing scalability. Event clients interact

through a distributed hierarchy of servers whose purpose is to route events between clients.

Siena is a very di�erent event service to STEAM which is speci�cally designed to operate in

mobile ad-hoc environments. However, the current implementation of STEAM has di�culty

in operating properly within enclosed environments due to its reliance on GPS coordinates for

positioning. Siena can operate in these environments so provides the necessary communication

driver for indoor use and simulations.

The concrete implementations of the communication drivers are responsible for marshaling

and unmarshaling the sensor data and context information events to the underlying commu-

nication system. The type of events used and the mechanisms employed in converting the

data to and from the events is speci�c to each of the drivers, as are the con�gurations used in

initialising the drivers. In the case of the STEAM communication driver three event types are
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used, one for sensor data, a second for sensor metadata, and a third for context information.

The data is marshaled into key-value pairings that correspond to the structure of the data

being transmitted. Details of the sensor data and context information used are provided in

later sections. In contrast, Siena only uses two event types, one for sensor data and metadata,

and a second for context information. In this case the sensor data and context information

objects are serialised into a byte stream using Java's object serialisation. The result is placed

into an event, which can then be deserialised by entities receiving the events.

The con�gurations for either the STEAM or Siena event services are obtained from a

con�guration �le read in at runtime by the framework, details of which are provided in section

5.3. For Siena this includes the nearest Siena server that the framework can use to publish

and subscribe to sensor and context events. For STEAM it establishes the mode of operation

for the event service - either mobile or �xed. In �xed mode the entity is expected to be static,

while in mobile mode the STEAM consumer or producer is anticipated to move through the

environment. It also sets the range for the proximity �lter for the three event types. Proximity

�lters are used in STEAM to bound the range within which event noti�cations are delivered.

5.2.2 Sensors

In the stigmergic model, described in chapter 3, environmental sensors were shown to be an

integral part of an entity's ability to sense its surrounding environment. The data obtained

from the sensors allows entities to determine the contextual state of their local environment.

The changes detected in this environment give entities the ability to coordinate their behavior

with other entities in the pervasive computing environment. In this model entities are con-

nected permanently to a collection of sensors that allow them to sense the basic parameters

of their environment. As they move through the environment they can also use the data

from sensors connected to other entities. The sharing of sensor data at this level allows enti-

ties to cooperate in obtaining a better understanding of their local environment. To achieve

this the cocoa framework provides a sensor component for environmental sensors. It is an

abstract implementation of a sensor providing the basic functionality required for an entity

to use the sensor and to share the sensor data with other entities in the local environment.
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Speci�c implementations of this component are required for each type of sensor used by the

framework.

5.2.2.1 Sensor Component

Figure 5.3 illustrates the main parts of the sensor component. The SensorComponent is an

abstract class providing the basic functionality required for a sensor to be loaded into the

framework. It inherits from AbstractSensor which provides methods for accessing and re-

trieving the data from the sensors. To use a particular environmental sensor in the framework

a concrete implementation of the SensorComponent is required for the sensor to work. The

sensor can then be loaded into the framework at runtime and made available to the entity.

Figure 5.3: Class Diagram of Sensor Component.

The sensor component produces two types of sensor data, the �rst type - Data - represents

an actual sensor reading obtained from the sensor, the second type - Metadata - describes

the sensor, its location, the coverage of the sensor, the accuracy of the sensor, and type data

produced by the sensor. The sensor metadata is periodically disseminated through the sensor

channel of the communication driver to allow entities discover the sensor. The information

143



Chapter 5. Cocoa Framework

allows entities to select the right sensor to use and to interpret the data received from the

sensor. The sensor data is also written to this channel when readings from the sensor have

changed or after a period of time.

The sensor component uses a lease-based mechanism for both types of sensor data. This

is used to overcome the possibility of failure or disconnection from the sensor and to prevent

the use of stale sensor data in the context acquisition component. All sensor data written to

the communication driver is marked with a lease that demarks the period of time for which

the data is valid. It is also tagged with an identi�er of the sensor producing the data. This is

used to distinguish between di�erent sources of data allowing the entity to manage and use

the sensor data in a more e�cient manner. The framework, typically, uses a 32-bit randomly

generated number in combination with the metadata describing the sensor type to identify

each of the sensors in the environment. It is excepted that this should provide an adequate

method of avoiding duplicate sensor identi�ers within the same local environment.

As the sensor component produces sensor data it guarantees to reissue it before the lease

runs out or to provide a new reading if it is available before that happens. In this way the

context acquisition component is able to determine when a sensor is no longer available to it.

It can then remove any of the sensor data it retains for that sensor. This approach ensures the

freshness of the sensor data and prevents stale data being used in determining the contextual

state of the local environment.

5.2.2.2 Sensor Data

The readings from the physical sensor are placed by the sensor component into a Data object.

The Data object is designed to take one or more values for each sensor reading. For example,

a reading from a GPS device can be represented by two values, one for latitude, and another

for longitude. The sensor values are typed, in that, they can be represented as a long, �oat,

double, int, boolean, or string. In the case of a GPS coordinate two double values can be used

by the GPS sensor component to represent each of the sensor readings.

The code excerpt shown in listing 5.3 illustrates how the sensor readings are handled within

the framework, �rst, by creating the sensor values, in this case, the longitude and latitude
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¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 //Create l on g i t u d e and l a t i t u d e va l u e s . Dubl in in t h i s case .
3 DoubleSensorValue lon = new DoubleSensorValue ( 5 3 . 6 3 4 5 ) ;
4 DoubleSensorValue l a t = new DoubleSensorValue ( 6 . 2 5 4 3 ) ;
5

6 //Create Data o b j e c t f o r GPS data .
7 // l e a s e i s the per iod f o r which the data i s v a l i d .
8 // sensorID i s unique i d e n t i f i e r o f the sensor .
9 Data data = new Data ( l ea s e , sensorID ) ;
10

11 //Add sensor va l u e s to data o b j e c t .
12 data . addSensorValue ( " lon " , lon ) ;
13 data . addSensorValue ( " l a t " , l a t ) ;
§ ¦

Listing 5.3: Creating a GPS sensor reading.

values of a GPS coordinate, then by creating the Data object and specifying the lease and

the ID of the sensor producing the coordinate, and lastly, by adding the sensor values to the

data object. A similar approach is used for all sensor data produced by sensor components.

By structuring the sensor data in this way it is possible to support a diverse range of

data formats, allowing a large array of sensors to be able to provide data in a format that

can be presented to the other components in the framework. However, the generic format of

the sensor data necessitates the need for addition information - metadata - to describe the

data being provided. This is required if other entities in the environment are to be able to

dynamically use the data produced by the sensors.

5.2.2.3 Sensor Metadata

The framework uses metadata to describe the sensors in the environment and the data being

produced by them. The aim is to provide components with enough information for them to

dynamically select and use the data coming from the sensors. To achieve this the framework

provides components with a metadata model that can be used to characterise sensors and

the data they produce. Figure 5.4 provides an overview of this model. It currently supports

eight classi�cations that can logically be broken into two categories; those which characterise

the sensor, and those that identify the format of the data produced. While this model does
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not provide an extensive classi�cation of sensors compared to SensorML [37] it is a proof-of-

concept that is su�cient for addressing the needs of the Cocoa framework.
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Figure 5.4: Sensor Metadata Model.

The type metadata identi�es the variety of sensor data being produced by the sensor. For

instance, a GPS device would generate location data, while a thermometer would produce

temperature data. The data is used by the framework to choose particular types of sensor

data to determine the context information of the local environment. The frequency meta-

data de�nes the sampling rate of the sensor. The information is useful in determining the

speed at which the sensor data is being produced. The units metadata speci�es the units of

measurement used by the sensor. For example, a speedometer may have the data in miles

per hour or kilometers per hour. The accuracy metadata indicates the degree to which the

sensor component believes the sensor data to be a true re�ection of the environment. It is

expressed as a numerical value between 0 and 1. The ID metadata is the unique identi�er for

the sensor in the environment. The same identi�er is used to tag all the sensor data produced

by the sensor. In this way the framework is able to match the sensor data received with the

metadata of the sensor.

The format metadata de�nes the order and type of values being used by the sensor com-

ponent to disseminate sensor readings. It de�nes the format of the sensor data generated by

the component. Other components in the framework use this information to dynamically in-

terpret the data being produced by each of the sensor components. The code extract shown in
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listing 5.4 provides an example of how the sensor format metadata is de�ned for a GPS sensor

within the Cocoa framework. This sample code matches the GPS sensor reading generated

in listing 5.3.
¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 Metadata metadata = new Metadata ( ) ; //Create metadata o b j e c t .
3

4 //Create format metadata f o r gps sensor data
5 St r ing [ ] key = {" lon " , " l a t " } ;
6 int [ ] type = {FormatSensorInformation .DOUBLE,
7 FormatSensorInformation .DOUBLE} ;
8 FormatSensorInformation fmat = new FormatSensorInformation ( key , type ) ;
9

10 metadata . setFormat ( fmat ) ; //Add to sensor metadata o b j e c t .
§ ¦

Listing 5.4: De�ning metadata for GPS sensor.

The location metadata speci�es the physical location of the sensor. The location can be

expressed in terms of an absolute, relative, or symbolic value. An absolute value is de�ned as

a GPS latitude/longitude coordinate in the framework. A relative value de�nes the location of

the sensor in relation to another object, or location. A symbolic value represents an abstract

view of the sensor's location, for example, the sensor is located in �O'Reilly Institute, F32�,

or attached to �Jim�.

The coverage metadata de�nes the extent to which the sensor can sense. For example, a

thermometer located in the center of an o�ce can be excepted to reliably sense the temperature

of the whole o�ce, implying the coverage of the thermometer to be the boundaries of the

o�ce. If you take a passive infrared (PIR) sensor the coverage can be expected to be a conical

region in front of the sensor, in which, the sensor would detect the movement of a person.

The metadata model allows the coverage of a sensor to be de�ned as either a circle, polygon,

or symbolic area around the sensor.

The location and coverage metadata are probably the most important for an entity to

discover a sensor in the environment. Together they can be used to determine the location of

the sensor and from that ascertain whether the coverage is su�cient to allow the entity use

the sensor data from the sensor.

147



Chapter 5. Cocoa Framework

5.2.3 Context Acquisition

In the stigmergic model, described in chapter 3, it is the context information from the local

environment that is used as the common medium for the indirect communication between

entities. To obtain context information entities use the data produced by the sensors and

apply di�erent sensor fusion techniques to derive the context information they required to

determine the state of the local environment. The changes detected in context information

provide entities with the stimulus that they require to coordinate their behavior with other

entities in the pervasive computing environment. To achieve this the Cocoa framework pro-

vides a component for acquiring context information. Its purpose is to retrieve the sensor

data, to apply the most appropriate techniques to derive the context information, and then

to disseminate the context information to entities in the surrounding environment. The dis-

emination of the context information is done to support the cooperative model of sensing the

environment.

5.2.3.1 Context Acquisition Component

The context acquisition component uses the sensor channel of the communication driver to re-

trieve data from sensors attached to the entity and from those sensors shared by other entities

in the surround environment. The data gathered is used to determine context information for

the local environment. An open interface is provided by the component so that di�erent tech-

niques or models can be plugged into the framework to interpret the sensor data. The models

may use techniques based on simple IF-THEN rules, or other sensor fusion techniques such

as Bayesian networks. Any of context information produced by the component is published

to the context information channel of the communication driver.

Figure 5.5 provides an overview the main parts of the context acquisition component. The

ContextAcquistionComponent is an abstract class providing the necessary functionality for the

component to be loaded into the framework. It inherits from AbstractContextAcquistion which

provides methods for retrieving the context information from the Model and for inserting the

sensor data into the Model. The ContextAcquistionComponent also has responsibility for

requesting the Model to be used from the ModelManager. The ModelManager administers all
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Figure 5.5: Class Diagram of Sensor Component.

the ModelDrivers for the framework. All ModelDrivers implementations - ModelDriversImpl -

register with the ModelManager when loaded into the framework. The ModelManager queries

each of the registered drivers to determine which provides support for current environmental

con�guration. If more than one is capable of providing support the ModelManager chooses

the �rst one. The selected driver provides a speci�c implementation of a Model that can

be used in the framework to derive context information from sensor data retrieved from the

environmental sensors. The ComponentContextAcquistion provides a concrete implementation

of ContextAcquistionComponent. It monitors the communication driver for sensor data and

updates the model when the data is available. The component also disseminates any context

information produced by the model to the entities in the surrounding environment.

It should be noted that the context acquisition component also uses a similar leasing

mechanism to that of the sensor component. To prevent the use of stale information by

the framework, in this case context information being used by the stigmergy runtime, all

context information produced by the component is marked with a lease that demarks the

period for which the information is valid. The context acquisition component guarantees to
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reissue the information before the lease runs out or to provide new context information if it is

available before that happens. In this way the framework is able to determine when a source

of information is no longer available to it and so remove any of the information it retains from

that source.

What is also important to note at this stage is that an entity only acquires context in-

formation for part of the environment. The wider contextual picture is gained from entities

implicitly sharing their context information with other entities. This they achieve by listening

to the context information channel of the communication driver which provides entities with

all the context information generated in the surrounding environment. Using this approach

simpli�es the process of determining the contextual state of the local environment while still

ensuring that entities remain decoupled.

5.2.3.2 Context Acquisition Models

The context acquisition models are pluggable components that can be inserted into the frame-

work at runtime to interpret sensor data. Depending on the environment and the entity in-

volved di�erent models can be used by the framework to obtain context information for the

local environment. While is it possible for these models to use a variety of techniques, the

framework does not specify which to use, or indeed, provide any concrete implementations of

them. This is left to the application developer to choose the most appropriate technique for

the entity to use. By using this approach it allows the Cocoa framework to tailor the process

of capturing context information for each entity. The modular aspect also ensures entities can

adapt the process of acquiring context information to suit di�erent environmental conditions.

It is also possible for new techniques in capturing context information to be incorporated into

the framework at a later stage.

As can be seen in �gure 5.5 the model implementation - ModelImpl - consumes the data

generated by the sensor components and produces context information that the entity can use

and share with other entities in the surrounding environment. The technique used to derive

the context information is incorporated within ModelImpl. It determines how the sensor data

is used to derive the context information for the entity. However, as Mostéfaoui et al. [106]
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have noted there are sources for context information other than those sensed by a sensor, for

instance, derived context, where context information is computed on the �y. A typical example

is that of time and of date. There is also context information that is explicitly provided either

by the user or administrator. This can be though of as static context information that does

not change signi�cantly over a period of time. A good example are user preferences that have

been explicitly communicated by the user. The Cocoa framework provides support for both

sources for context information.

5.2.3.3 Dynamic Discovery and Use of Sensor Data

To dynamically discover and use the data from sensors in the way sought by the stigmergic

model, presented in chapter 3, requires that a certain level of knowledge on each of the sensors

in the environment can be obtained. The sensor metadata, outlined in the section 5.2.2.3,

provides the means of achieving this. It allows the framework to describe a sensor and the

data produced by it. This information is generated periodically by the sensor component and

published to the sensor channel of the communication driver. The information acts to both

advertise the presence of the sensor to entities and as a heart beat for the sensor.

In the current implementation of the context acquisition component all sensor metadata

received from the communication driver is �ltered and placed into a repository that can be

queried at a later stage. The repository is periodically purged of metadata that is no longer

valid. This is determined by the leasing mechanism outlined in section 5.2.2.1. As the sensor

data is retrieved from the sensor channel, the context acquisition component is able to pre-

process the data before it is passed to the model. It �rst �lters the sensor data that does

not have a corresponding metadata entry. This is determined by the identi�er tagged to all

sensor data and metadata. All remaining data is inserted into the model. At this stage the

model can use the metadata - location, coverage, type, frequency, accuracy, and units - to

select the sensor data to use in determining the context information of the local environment.

For instance, the location and coverage metadata can be used to determine if the sensor is

su�ciently close enough to use. The choice of sensor data to use is left to the application

developer to decide.
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Figure 5.6: Dynamic selection and use of sensors.

The aim, as �gure 5.6 shows, has been to provide a framework with the ability to dy-

namically discover and select what sensors to use as the entity moves through the physical

environment. The use of sensor metadata provides a means by which this can be achieved.

However, the cost of periodically announcing the sensor to the environment and the additional

�ltering of data by the context acquisition component may be too resource intensive in terms

of computation and battery usage for smaller resource constrained devices. Also, the time to

discover new sensors in the environment is inherently in�uenced by the period with which the

metadata is published by the sensor component. Nevertheless, even with these considerations

in mind it is considered that the decoupled nature provided by the approach overcomes the

disadvantages that it may entail.

5.2.3.4 Context Model

For the stigmergic model to work entities must have a common representation of the context

information used to describe the environment. It is possible to use a variety of methods

depending on the modelling techniques used to represent the context, or on how extensible

the approach needs to be.

Current research [151] indicates there are a number methods pervasive computing systems

can use to model context. Key-value models provide one of the simplest and most frequently

used methods. Context values are de�ned as a series of attribute-value tuples that describe

di�erent facets of the environment. The work done by Schilit et al. [138] is a prime example

of such a model in use. Graphical models such as those of Henricksen et al. [66] use UML
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style diagrams to model context in pervasive computing systems. Context models based on

ontologies [152, 163, 32] have also proven to be a powerful and extensible means of modelling

context within pervasive computing.
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Figure 5.7: Model of context information used in Cocoa framework.

However, for the Cocoa framework it was decided to use an approach based on a key-value

model and structure it around the Dey et al. [42] de�nition of context. In this de�nition,

location, identity, time, and activity are the primary pieces of context used to characterise a

situation. These pieces of context form the �rst level of the context model. All of the other

types of context are located on the second level. These can be described as secondary context

and are used to highlight other forms of information such as the light intensity of a room or

the email address of a person. Figure 5.7 provides an overview of the context model used in

the Cocoa framework. Each piece of context in the model is represented as an attribute-value

tuple within the framework. For example, the location of a toaster might be represented

as �location = kitchen�. To describe the environment fully the framework uses collections of

these key-value pairings to characterise the di�erent parts of the environment. An illustrative

example is provided later in this section of how this is achieved.

To provide a more extensible means of expressing the di�erent forms of context in the

framework the context model also captures the di�erent types of location, identity, time, and
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secondary context an illustration of which can be seen in �gure 5.7. In this instance the

identity of the di�erent parts of the environment can be expressed via their type - place,

person, or object - and also through their actual identity. The code extract in listing 5.5

shows how the di�erent types of identity context are declared in the framework.
¨ ¥
1 //Creat ing an o b j e c t i d e n t i t y wi th the id Telephone .
2 I d en t i t y idObj = new Objec t Ident i ty ( "Telephone" ) ;
3

4 //Creat ing an person i d e n t i t y wi th the id Telephone .
5 I d en t i t y idPer = new PersonIdent i ty ( "Peter " ) ;
6

7 //Creat ing an o b j e c t i d e n t i t y wi th the id Telephone .
8 I d en t i t y idPla = new Plac e Id en t i t y ( "O' Re i l l y I n s t i t u t e , F32" ) ;

§ ¦
Listing 5.5: Declaring identity context information using Cocoa.

Time can be de�ned as either a symbolic, relative, or absolute expression of time. It is also

possible to specify time as an interval or period of time. In the framework a symbolic time

represents an abstract notion of time. For example, time can be expressed as �lunch time�,

�bed time�, or �tea time�. A relative value for time de�nes a speci�c point in time in relation

to another distinct point in time. For example, 60 minutes after dinner time or 2 hours before

14:00 on the 16 July 2005. Absolute time is de�ned in terms of Coordinated Universal Time

(UTC). An interval of a time is a length of time marked o� by two distinct points in time

representing the start and end of the interval. Examples of how symbolic, relative, absolute,

or an interval of time are de�ned in the framework can be seen in listing 5.6.

Location information can be de�ned as both a discrete point or as a bounded area. In

the framework a discrete point can be expressed in terms of an absolute, relative, or symbolic

location. While a bound area can be de�ned as a circle, polygon, or symbolic location.

An absolute location is de�ned as a GPS latitude/longitude coordinate in the framework. A

relative location is expressed in relation to some other object, space, or location. For example,

a toaster could be 5 meters east and 10 meters north of the kettle. A circular area is �rst

speci�ed by a discrete point that acts the center of the circle and a radius that de�nes the

extent to which the area extends to. A polygon area consists of a discrete geological point
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¨ ¥
1 //Creat ing an a b s o l u t e time con t ex t .
2 Time timeAbs = new AbsoluteTime ( System . cur rentT imeMi l l i s ( ) ) ;
3

4 //Creat ing a r e l a t i v e time con t ex t a 3600000 msec a f t e r timeAbs .
5 Time timeRel = new RelativeTime ( timeAbs , 3600000 ) ;
6

7 //Creat ing a symbo l ic time con t ex t Tea Time .
8 Time timeSym = new SymbolicTime ( "Tea Time" ) ;
9

10 //Creat ing an i n t e r v a l con t ex t s t a r t i n g at t imeRel and l a s t i n g 20 sec .
11 Time t imeInt = new TimeInterval ( timeRel , 20000) ;
§ ¦

Listing 5.6: Declaring time context information using Cocoa.

that acts as the point of origin for the area and a series x-y values that determine the extent

of the area. A symbolic location represents an abstract view of a location. It can represent

both a discrete geological point or a bounded area. For example, John is located at �Pete's

desk� or the phone is located in the room �O'Reilly Institute, F32�. Listing 5.7 provides an

example of how each of these types of locations are de�ned within the framework.
¨ ¥
1 //Creat ing a b s o l u t e l o c a t i o n con t ex t as a GPS coord ina te .
2 Locat ion locationGPS = new GPSCoordinates ( "53◦ 20 '38\"N,6 ◦ 4 '58\"W" ) ;
3

4 //Creat ing a r e l a t i v e l o c a t i o n con t ex t 5 meters ea s t and
5 //10 meter north o f locationGPS .
6 Locat ion l o ca t i onRe l = new Rela t iveLocat i on ( locationGPS , 5 , 1 0 ) ;
7

8 //Creat ing a symbo l ic l o c a t i o n at O' R e i l l y I n s t i t u t e , F32 .
9 Locat ion locationSym = new Symbol icLocat ion ( "O' Re i l l y I n s t i t u t e , F32" ) ;
10

11 //Creat ing a c i r c u l a r area con t ex t wi th a rad ius o f 10 meters
12 //and cen ter l o c a t i o n at l o ca t i onRe l .
13 Locat ion l o c a t i onC i r = new Circ l eArea ( l o ca t i onRe l , 1 0 ) ;
14

15 //Creat ing a polygon area con t ex t t h a t d e f i n e s a 20 by 30 meter area .
16 double [ ] xpo int s = {−10 ,10 ,10 ,−10};
17 double [ ] ypo int s = {20 ,20 ,−15 ,−15};
18 Locat ion l o ca t i onPo l = new PolygonArea ( locationGPS , xpoints , ypo int s ) ;
§ ¦

Listing 5.7: Declaring location context information using Cocoa.

In the current version of the context model, activity context information is only expressed
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in one form. The code excerpt in listing 5.8 provides an illustration of how the activity context

is de�ned within the framework.
¨ ¥
1 //Creat ing a c t i v i t y con t ex t wi th the va lue s e t to i d l e .
2 Act iv i ty a c t i v i t y = new Act iv i ty ( " I d l e " ) ;

§ ¦
Listing 5.8: Declaring activity information using Cocoa.

Secondary context is also represented in the attribute value manner. Where the pairings

determine the the type of context and its value. In the framework these values can be expressed

as either a string, integer, or �oating point number. Currently, the framework does not restrict

the type of context that can be placed in this structure, or specify - other than it being a

string, integer or �oating point number - the format of the value. Examples of how secondary

context in de�ned in the framework can be seen in listing 5.9.
¨ ¥
1 //Creat ing secondary s t r i n g con t ex t wi th type owner and va lue pe te .
2 SecondaryContextInformation s e cS t r =
3 new Str ingContext In format ion ( "Owner" , "Pete" ) ;
4

5 //Creat ing secondary f l o a t con t ex t wi th type tempature o f va lue 35.
6 SecondaryContextInformation secF lo =
7 new FloatContextInformat ion ( "Tempature" , 3 5 ) ;
8

9 //Creat ing secondary i n t e g e r con t ex t o f type l i g h t i n t e n s i t y wi th
10 //a va lue o f 300 lux .
11 SecondaryContextInformation s e c I n t =
12 new IntContextIn format ion ( "Light I n t e n s i t y " , 3 00 ) ;
§ ¦

Listing 5.9: Declaring secondary context information using Cocoa.

In describing the environment the framework use collections of context information to

characterise the situation for di�erent parts of the environment. This can be seen in the code

excerpt shown in listing 5.10 where the pieces of context information declared in listings 5.5,

5.6, 5.7, 5.8, and 5.9 are used to de�ne the context of a telephone located at 53◦20'38"N,

6◦4'58"W at tea time being idle. It also shows in the secondary context that the Owner is

Pete.
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¨ ¥
1 //Dec lar ing the con t ex t f o r a p a r t i c u l a r par t o f the environment .
2 Co l l e c t i on s cCo l l e c t i o n = new HashSet ( ) ;
3 s cCo l l e c t i o n . add ( s e cS t r ) ;
4

5 Context context = new Context ( idObj , a c t i v i t y ,
6 locationGPS , timeSym ,
7 s cCo l l e c t i o n ) ;

§ ¦
Listing 5.10: Declaring context information in Cocoa.

In taking this approach we have chosen to provide the framework with a context model

that is well-de�ned and simply constructed. The aim has been to provide entities of all

resource capabilities with a context model that they can use to describe the environment

and to reduce the computation requirement for interpreting the context information that is

implicitly shared between entities. However, in achieving this the trade-o� has been to limit

the scope to which entities can reliability use the model to describe the environment. In

this model the primary context information is well understood and de�ned, however, the

secondary context information can be open to interpretation as key-value pairings have no

agreed meaning. To avoid this limitation an alternative approach could be to use a context

model based in ontologies. This would provide an extensible approach that could describe

the environment in greater detail. However, it would typically require more resources than

the context model described above and so it was felt the extensibility and scope of the model

needed to be limited in favour of being able to run on the resource constrained devices normally

found in pervasive computing environments.

5.2.4 YABS

The scripting component, YABS (Yet Another Behavioral Script), provides a prototypical

implementation of the scripting language described in chapter 4. Its function in the frame-

work is to interpret scripts and to generate the intermediate objects used by the stigmergy

runtime environment to control the behavior of individual entities. The rational for providing

a separate component for de�ning entity behavior, is �rstly, to encapsulate the functionality

of interpreting the script within one component, and secondly, to ensure that it is possible to
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load alternative implementations of this component into the framework without the need for

major revisions of the framework. The approach gives the framework �exiblity and the ability

to be extended to include new functionaility. For example, it may be possible at a later stage

to do an implementation based on a graphical interface or using a XML.
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Figure 5.8: Structure of scripting component

5.2.4.1 Scripting Component

A script is initially loaded into the framework when an entity is �rst initialised. Figure 5.8

shows the phases used to interpret the script. The �rst phase loads and parses the script

from a �le and completes a lexical and syntax analysis of the script. It also ensures that any

inherited scripts are also loaded and that an analysis of them is completed for the the next

phase of the interpreter. The parser produces an abstract syntax tree of the script which

is passed to the semantic analyser. The semantic analyser checks the script for semantic

errors and also gathers type information for the last phase of the interpreter. The last phase

generates an intermediate object representation of the script. This consists of a series of

objects that represent the initial proximity to be used by the entity, references to the behaviors

the entity can perform, and the mappings to be used to regulate the entity's behavior. In

other words, they provide the initial object representations of the three primitives - L , B and

M - de�ned in the stigmergic model in chapter 3. Together, these objects act to provide the

stigmergy runtime environment with the parameters it requires to determine the behavior of

the individual entities.

Figure 5.9 shows the main parts of the scripting component. The CompilerComponent

is an abstract class providing the basic functionality required for the component to be inte-

grated in the Cocoa framework. It inherits from AbstactCompiler which provides methods

for accessing the intermediate objects generated by the scripting component. The concrete
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Figure 5.9: Class Diagram of the YABS component.

implementation of CompilerComponent is provided by YABS. YABS uses Parser, BasicSe-

manticAnalyzer, and BasicInterpreter to generate the intermediate objects required by the

stigmergy runtime environment. Each of these provide the functionality required for the

di�erent phases used in the interpreter.

The current implementation replies on JavaCC [103] to generate the parser used to read

the script. JavaCC is a Java compiler compiler. A tool similar to lex or yacc, it reads a

grammar speci�cation to produce a parser capable of recognising matches in the grammar.

The parser shown in �gure 5.9 - Parser - is the result of JavaCC reading a speci�cation

that de�nes the grammar of the scripting language described in chapter 4. The Parser is

responsible for the �rst phase of the interpreter. It loads the script - Script - from �le and

performs a lexical and syntax analysis generating an abstract syntax tree of the script. All

dependences for the script are also parsed in preparation for the next phase.

The BasicSemanticAnalyzer is used to perform the second phase of the interpreter. It

takes the abstract syntax tree produced by the parser and checks it for semantic errors. The

analyser produces warnings if variables are not declared, if declared variables are assigned

the incorrect value, or it an entity behavior does not exist. The BasicSemanticAnalyzer also

extracts the type information for the last phase of the interpreter. This phase is done by
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BasicInterpreter. It generates the intermediate objects Proximity, Mapping, and Behavior

that are used by the stigmergy runtime environment to determine the behavior of individual

entities.

Figure 5.10: Class Diagram of the intermediate objects used for proximity.

5.2.4.2 Intermediate Objects used for Proximity

L, the proximity function, is used by the stigmergic model to determine the local environment

for an entity. Within the scripting language the proximity function can be de�ned as either

a radius, polygon, or symbolic area around an entity. This can be seen in section 4.3.2. The

initial object representation of the proximity function can be observed in the class diagram

shown in �gure 5.10. These are generated by the scripting component, YABS, and are used

by the stigmergy runtime environment to initialise L, the proximity function, for the entity.

Circle is used by the framework to de�ne a circular proximity that extends to a prede�ned

radius around the entity. Any part of the environment contained within that region is classi�ed

as being in the entity's local environment by the framework. The entity is located at the center

of the circle. Polygon de�nes a polygon proximity for an entity. It takes three or more pairs of

coordinates, speci�ed in the script, to de�ne the polygon. The entity's current location acts

as the reference point for the polygon. An example of how the polygon proximity is de�ned

in a script can be seen in listing 4.2. SymbolicProximity is used by the framework to de�ne a

symbolic area around the entity. This type of proximity is used by the entity when there is a

strong de�nable boundary, such as room, or building.
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5.2.4.3 Intermediate Objects used for Behaviors

B, the behavioral set de�nes the set of possible behaviors the entity can perform. These are

declared in a script as a list of references to speci�c implementations of the entity's behaviors.

An example of how the behaviors are declared can be see in listing 4.3. The behaviors are

not directly implemented by the script or the Cocoa framework. The actual implementation

of the behaviors is done by application developers following a particular API de�ned by the

framework. This API can be seen in �gure 5.11. The collection of behaviors produced by the

scripting component are passed to the stigmergy runtime environment which uses them to

initialise B, the behavioral set, for the entity.

Figure 5.11: Class Diagram of the intermediate objects used for behaviors.

Figure 5.11 shows how the behaviors are represented within the framework. Abstract-

Behavior is an abstract class providing methods for connecting into the framework. In this

case for accessing the BehaviorStub. The BehaviorStub is set by the framework and provides

the behaviors with methods for retrieving environmental parameters and for dynamically re-
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de�ning the entity's proximity function. BehaviorImpl is the concrete implementation of a

behavior. It instructs those actuators used in performing the behavior how to manipulate

the local environment for the entity. The implementation of this object is not provided by

the framework but by application developers. BehaviorImpl also uses BehaviorInfoImpl to

describe to the framework how to use the behavior. It contains BehaviorDescriptor which

provides the name of the behavior and a brief textual description of it. It also contains

BehaviorMethodDescriptor which holds a series of BehaviorParameterDescriptors. Together

these two objects are used by the framework to describe the method that is to be called by

the framework and the type of parameters the framework needs to pass to the behavior. In

this case, the method in BehaviorImpl is someBehaviorMethod, which does not require any

parameters for it to be invoked by the framework. It should be noted that BehaviorInfoImpl

must also be implemented by the application developer when developing the behavior.

The information provided by BehaviorInfoImpl is used both by the scripting component

and the stigmergy runtime. The scripting component uses the information to determine if

the right number and type of parameters are being passed to the behavior. The stigmergy

runtime relies on the information to calculate the right parameters to pass to the behavior

when it needs to trigger it for the entity. The types of parameters that can be passed by

the stigmergy runtime are limited to the di�erent types of context information in the context

model described in section 5.2.3.4. How and what parameters are passed by the stigmergy

runtime are discussed later in section 5.2.5.3.

The rational for structuring the behaviors for entities in this way, is �rst, to ensure that

the spec�c behaviors are able to access the framework, and secondly, to provide a �exible

approach that gives developers an expressive means of de�ning the behaviors for entities

while still allowing the framework to trigger them. However, this implies that developers have

to work at the interface level of the actuators, which is at times onerous. This may not be

such an issue as it is believed that the behaviors will be developed by competent developers

and continuously reused by application developers through the scripts.
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5.2.4.4 Intermediate Objects used for Mappings

The M function maps the entity's contextual view onto the behavioral set B. The function is

de�ned in a script as a series of mappings that use predicates of context information that are

true when matched with information in the entity's current contextual view. On obtaining

a full match the mapping is considered to be completed and the mapped behaviors can be

triggered by the framework. The script uses a mapping based on temporal intervals. The

scripting component generates a series of these mappings that are passed to the stigmergy

runtime environment. The stigmergy runtime environment uses them to initialise the M

function for the entity.

Figure 5.12: Class Diagram of the intermediate objects used for mapping.

The initial object representation of the mappings can be observed in the class diagram

shown in �gure 5.12. Each of the mapping statements in a script are represented as an

IntervalMapping. It uses Interval to specify the di�erent intervals within the mapping and

their relationship to one another. An Interval is de�ned by a series of contextual predicates.
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When matched with the entity's current contextual view the interval is considered to be

active. IntervalMapping periodically checks ContextualViewSet to determine if Intervals in

the mapping are active. When the intervals are found to be active in the correct temporal

sequence IntervalMapping can complete the mapping to the BehavioralSet. A more detailed

description of the mechanisms used are presented later in section 5.2.5.

The script also de�nes the parameters to be used to invoke the behavior when the map-

ping has been successfully completed. The parameters for the behavior can either be speci�ed

directly with a piece of context information or de�ned through the use of embedded func-

tions. Section 4.5 describes in more detail how the scripting language tailors the behavior

of entities through the passing of context information and the use of embedded functions.

In the framework the parameters de�ned in the script and the embedded functions to be

used when determining the other parameters for the behavior are contained within a concrete

implementation of BehaviorContainer. In combination with the stigmergy runtime the con-

tainer manages the invocation of the behavior by calling the necessary embedded functions

- CVFunction - and determining the parameters - ContextInformation - to be passed to the

Behavior. The container is initialised by the scripting component and passed, with the map-

pings, to the stigmergy runtime environment. They are returned by IntervalMapping to the

framework when the mapping from the entities contextual view to its behavioral set has been

satis�ed.

5.2.5 Stigmergy Runtime

The stigmergy runtime controls the behavior of an entity. It is responsible for managing the

entity's contextual view and for triggering the stigmergic responses of the entity. It provides

an implementation of the three primitives - L, B and M - as described in section 3.5 and the

runtime environment for managing the behavior of the entity as described in section 3.4.

Each cycle of the runtime environment is composed of three stages as illustrated in �gure

5.13. The �rst stage retrieves the context information from the environment and updates

the entity's contextual view, CVen
(t). Context information, Cen(t), is included within the

contextual view when L, the proximity function, applied to the context information returns
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Figure 5.13: Stages used in runtime environment.

true. This indicates that the context information in question is related to the proximity

speci�ed by the entity.

The second stage implements the M function. It consists of a series of mappings between

the entity's contextual view and the behavioral set, B. The stage operates over a number of

cycles gathering information from the entity's contextual view. At each cycle it propagates

the state of the mappings and determines if one has been triggered.

The �nal stage is responsible for invoking the behaviors associated with any of the triggered

mappings. It takes the implementation of the behavior and passes the parameters indicated

by the script to it. This may include values from the script or context information that needs

to be derived from the entity's current contextual view. Once the parameters have been

determined the behavior can be invoked by the runtime environment.

5.2.5.1 Observing the Local Environment

The �rst step for the runtime environment is to determine the local environment for the

entity and to provide a representation that it can use to adapt the behavior of the entity.

This requires that the runtime be able to retrieve the context information from the local
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environment. It achieves this by using the context channel of the communication driver.

The information from the channel is gained through a process of cooperation with other

entities in the vicinity who openly share the context information that they have derived

from the environment. The approach ensures the framework can build up an entire picture

of the local environment with minimal amount of e�ort. It also maintains the separation

between the entities through the decouple communication model used to propagate the context

information.

Figure 5.14: Class Diagram of the main parts of stigmergic runtime use to observer the local
environment.

Figure 5.14 shows the main parts of the stigmergy runtime environment used to observe

the local environment for the entity. The entity's contextual view, CVen
(t), is implemented by

ContextualView. It provides the stigmergy runtime environment with a representation of the

entity's local environment. Context information retrieved from the context channel is added

to ContextualView when LFunction, an implementation of the L function, returns true. The

framework relies on the intermediate object Proximity to initialise the L function within the

stigmergy runtime environment.
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At each cycle of the runtime environment the context information retrieved from the

communication driver is inserted into the contextual view when within the correct proximity

of the entity. At the same stage any information that is not related to the current vicinity of

the entity is removed. The contextual view is also purged of context information that is no

longer valid. This is determined by the leasing mechanism outlined in section 5.2.3.1.

Figure 5.15: Class Diagram of main parts of stigmergy runtime used in the mapping function.

5.2.5.2 Examining the Local Environment

Figure 5.15 shows the main parts of the stigmergy runtime environment that are used to map

the entity's current view of the environment onto the behaviors it can exhibit. BasicMFunction

provides the concrete implementation of the M function for the runtime. It inherits from

AbstractMFunction which implements the basic parts the MFunction interface. The interface

is called periodically by StigmergyRuntimeComponent to determine if the stimuli present in

the local environment e�ect the behavior of the entity. BasicMFunction consist of a series of
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Mappings. When the MFunction is called the mappings are checked to determine if they have

been triggered. The function returns those behaviors that have been mapped. Currently only

one type of mapping has been implemented by the framework. This is the IntervalMapping

described earlier in section 5.2.4.4.

contextB


contextA


In
te

rv
al

s


time


C
e

(t)
V

n


C
e

(t+z)
V


n

C
e


(t+x)
V

n


Interval Slots


Figure 5.16: Interval slots.

The stigmergy runtime monitors the state of the mappings in the second stage of the

runtime environment. The stage operates over a number of cycles, gathering information on

when each interval starts and �nishes. Over time the relationships between the intervals are

built up and it is at this point that it is possible to determine whether the observations satisfy

the constraints declared in the mappings. In the runtime environment this process starts by

�rst taking the interval relationships de�ned in the mapping and dividing them into slots as

illustrated in the example shown in �gure 5.16.

The process starts at the �rst slot, where the entity's current contextual view is used to

determine if the next slot is valid. A slot is valid if the intervals de�ned in that slot are active

and the remaining intervals are found not to be active. If this is the case then it is possible to

move to that slot. To remain in this slot it must be valid in all subsequent contextual views,

unless the next slot is valid in which case we move to that slot. If the slot is not valid then

the process starts again at the �rst slot. On reaching the last slot the relationships between

the intervals have been satis�ed and the mapping can be triggered for the mapped behaviors,

at which stage the whole process starts again.
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5.2.5.3 Manipulating the Environment

The indirect communication mechanisms use in the stigmergic model are mediated through

modi�cations of the local environment. The model achieves this through entities altering their

behavior to physically change the environment in some way. The behaviors use the di�erent

actuators in the environment to perform the behavior. The actuators allows the entity to

physical change the state of the environment. In the stigmergic model the actuators required

to implement the behavior are all connected to the entity. The approach ensures entities can

respond quickly to a rapidly changing environment, while also, promoting their autonomy as

self-contained units with the ability to modify the local environment.

In the framework the scripting components, YABS, provides the stigmergy runtime envi-

ronment with the behaviors that the entity can use to manipulate the state the environment.

Section 5.2.4.3 has already outlined how the behaviors are implemented in the framework.

The behaviors de�ned in a script are used to initialise stigmergic runtime's behavioral set,

B. When the M function maps the entity's contextual view onto the behavioral set it is the

responsibility of stigmergy runtime environment to invoke the behaviors associated with any

of the triggered mappings. The mapped behaviors are returned by the MFunction to the run-

time enviuronment in BehaviorContainers. The container, as previously described in section

5.2.4.4, contains the behavior and the parameters the behavior requires to be invoked by the

framework. The parameters have either been de�ned in the script or need to be determined

through the use of embedded functions that have been speci�ed in the script. To invoke the

behavior the stigmergy runtime environment uses the BehaviorContainer to determine the

parameters and to pass them to the behavior when it is triggered. The invocation of the

behavior by the framework alters the behavior of the entity which in turn changes the state

of the pervasive computing environment creating a stigmergic response by the entity.

As described in chapter 4 the scripting language de�nes a number of approaches that can be

used to specify the parameters to be passed to a behavior. The initial method passes context

information declared in the script. Listing 4.25 is a prime example of this approach in use.

In essence the de�ned context information is static and can be held in the BehaviorContainer

until it needs to be passed to the behavior. The second, more dynamic approach, uses the
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context predicates de�ned in the script to �lter a subset of the context information held in

the entities current contextual view. An example of this approach in a script can be seen

in listing 4.27. The BehaviorContainer holds the predicate until the behavior needs to be

invoked. At this stage it is used to determine the subset of the context information to use

from the entities current contextual view. The framework then uses the behavior descriptors,

de�ned in section 5.2.4.3, to determine the type of context information to pass to the behavior.

If at that stage more than one piece of context information is left, one is randomly selected

to pass as a parameter to the behavior.

The last approach uses the embedded functions - maximum, minimum, random, minority,

majority, average - to determine the parameters to be passed to the behavior. An example of

the use of these functions can be seen in listing 4.27. In the framework each of these functions

implements the CVFunction interface as described in section 5.2.4.4. The BehaviorContainer

holds references to the functions to be called for each of the parameters for the behavior.

Again, the behavior descriptors are used to determine the type of context information required

by the behavior. The function then iterates over the entity's current contextual view to

determine the maximum, minimum, random, minority, majority, or average value for that

particular type of context information. The function returns the value that can then be

passed to the behavior as a parameter.

5.3 Possible Con�gurations

In providing a prototypical implementation of the stigmergic model and the scripting language

the Cocoa framework has aimed to develop an extensible and �exible approach. To achieve

this the framework uses a modular design where each of the components uses well de�ned

interfaces. This can be seen in the previous section where interfaces are used to de�ne each of

the main components. By taking such an approach it allows alternative implementations of

these components to be developed without the need to redevelop the whole framework. The

framework is also constructed in such a way that it allows di�erent components to be loaded

at runtime depending on the entity and the environmental con�gurations. It also provides a

means of applying di�erent con�gurations with little overhead.
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5.3.1 Cocoa Con�guration File

The di�erent component con�gurations for an entity are speci�ed through a con�guration �le

that is read when the framework is �rst initialised. An example of of such a �le can be seen in

appendix B. It is formated in the same way as a Java property �le, in that, it contains a list

of key/value pairings. These are loaded into an environment con�guration component which

acts as a repository for the con�guration. The component provides the rest of the framework

with access to the con�guration. A reference to the component is retrieved in the same way

as a reference to the other components. Listing 5.11 illustrates how this is achieved. Figure

5.17 shows the class diagram of this component.

Figure 5.17: Class Diagram of the environment con�guration component.

The con�guration �le contains a list of the components the framework is to load and the

con�guration for each of these components. Once the con�guration is loaded into the environ-

ment con�guration component, the framework can start to load the individual components

into the framework and initialise each of them.
¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 // Re t r i e v ing environment con f i g u r a t i on component .
3 Environment environment ;
4 environment=(Environment )Cocoa . components . r e t r i e v e (Cocoa .ENVIRONMENT) ;

§ ¦
Listing 5.11: Retrieving reference to environment con�guration component.
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5.3.2 Loading Components

Each of the main components described in section 5.2 implement the CocoaComponent inter-

face. The interface de�nes four methods - register, initialise, �nalise, and deregister - that

allow components to be integrated into the Cocoa framework. The register method announces

the component to the framework. The initialise method allows the framework to set up the

component within the framework. The �nalise method stops the component. The deregister

method removes the component from the framework. When the framework has retrieved the

list of components to be loaded it creates an instance of each one and calls the register and

initialise methods on each the components. When the entity is shutting down the framework

calls the �nalise and deregister methods on each of the components that are loaded.

5.3.3 Component Con�gurations

By taking this approach it is possible to start the framework with a variety of di�erent

component con�gurations. This gives great �exibility in the choice of the con�gurations that

can be used by the entity allowing it to tailor its con�guration to suit both the resources

available to it and other environmental considerations such as the network. The modular

structure of the framework also ensures that new functionality can easily be included into

the framework. This can be achieved either by adding a new component or by providing an

alternative implementation of an existing component.

It is possible to arrange the components implemented in section 5.2 in seven di�erent ways.

This does not include the various �lters that can be inserted into the sensor and context

information channels of the communication driver. It also does not include the di�erent

implementations of the main components, for example, the various sensor components or

whether the communication driver is based on STEAM or on Siena. Figure 5.18 provides an

overview of the con�gurations that can be achieved. The component con�guration shown in

�gure 5.18(a) is the main con�guration promoted in chapter 3 for entities roaming through

a pervasive computing environment. It is expected that this will form the base con�guration

for entities.

The other con�gurations may be of use when con�guring entities for di�erent environmen-

172



Chapter 5. Cocoa Framework

Communication Drivers


Context

Acquisition


YABS


Sensor
Sensor
Sensor

Stigmergy


Runtime


(a) A typical con�guration for
most entities. It consists of one
or more sensors, a context ac-
quisition component, and a stig-
mergy runtime component in com-
bination with the scripting com-
ponent, YABS. Underlying these
components are the communication
drivers.
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(b) A con�guration consisting of
one or more sensors and a con-
text aquisition component. In
this con�guration the cocoa compo-
nent produces context information
that is disseminated to other en-
tities through the communication
drivers.

Communication Drivers


Context

Acquisition


YABS


Stigmergy

Runtime


(c) The con�guration uses a con-
text acquisition component in com-
bination with a stigmery runtime
component and a scripting compo-
nent. Communication drivers are
used to receive sensor data and con-
text information.
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(d) In this con�guration one or
more sensors are used with a
stigmergy runtime and scripting
component. The communication
drivers disseminate the sensor data
and retrieve context information
for the stigmergy runtime.
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(e) The con�guration consists of
one or more sensor components.
The communcation driver is used
to disseminate the sensor data pro-
duced by the sensors.
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(f) The con�guration contains a
context acquisition component. It
uses the communication drivers to
obtain sensor data and to dissem-
inate context information to other
entities.
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(g) The con�guration consists of a
stigmergy runtime component and
scripting component. The commu-
nication drivers are used to obtain
context information for the stig-
mergy runtime.

Figure 5.18: Possible component con�gurations of Cocoa.
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tal parameters. For instance, the con�guration shown in �gure 5.18(g) could be used by an

entity short of computational resources. It receives context information from other sources

than its own. Whatever the merits of each of the con�gurations the possibility of achieving

them allows us to experiment with them to �nd the optimal con�guration for the framework.

5.4 Entity Development

The previous sections have described in detail how the stigmergic model and the scripting

language have been implemented in the Cocoa framework. This section looks at how the

framework is applied to developing entities. As a of means illustration an example entity is

used to demonstrate the main steps required in creating an entity with the Cocoa framework.

The entity is based on an augmented desklight you might �nd on any smart o�ce desk. The

section starts with an overview of the steps required to develop an entity and then continues

with a detailed description of the process.

5.4.1 Overview of Entity Development

Developing an entity with the Cocoa framework starts by identifying the entity and under-

standing the behaviors they can perform within the environment. In the case of the desklight

the behaviors are based on its ability to turn the light on or o�. The e�ect on the environment

is either to increase or decrease the amount light within the surrounding area. Once the entity

and its behaviors have been identi�ed the next step is to use the framework to integrate the

entity into the pervasive computing environment. A process that is covered by the following

steps:

1. Identify the sensors that the entity will use to sense the physical environment. Using the

sensor abstraction described in section 5.2.2.1 develop the components for integrating

these sensors into the framework.

2. Using the abstraction described in section 5.2.3.1 create a context acquisition model

that the entity can use to derive context information from environmental sensors.
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3. Implement the behaviors of the entity using the abstraction de�ned in section 5.2.4.3.

4. Write a script to de�ne how the entity is to behave within the pervasive computing

environment.

5. Write the con�guration �le, as described in section 5.3.1, for the entity.

For the majority of cases the process of developing an entity can be reduced to the last two

steps or even to just the last step. This depends greatly on how the entity is con�gured and

whether the sensors, context acquisition model, behaviors, or script have already been written

for other entities. Sensor components only need to be written once for each type of sensor.

It can then be reused by other entities using that type of sensor. This also applies to the

context acquisition models which can be reused between di�erent entities. It is also possible

to reuse the implemented behaviors between entities of a similar type, as can the script. The

last step is the only part of the development process that has to be done for each entity.

5.4.2 Creating a Sensor Component

One of the �rst steps in developing an entity is to implement the components for integrating

the sensors into the framework. This is achieved by providing a concrete implementation of the

sensor abstraction described in section 5.2.2.1. A speci�c implementation of this abstraction

needs to developed for each type of sensor if an entity is to be able to use it. Each of the

implementations provides the functionality for connecting to the sensor and for retrieving

readings from the sensor. The component can then produce the sensor data and metadata

that the entity requires to sense their local environment. Once the sensor component has

been implemented for the sensor it can be reused by other entities using the same type of

sensor. For the desklight to be able to detect the state of the local environment it needs to

use sensors to determine such physical attributes as light intensity or location.

5.4.3 Developing the Context Acquisition Model

The next step in developing an entity is to provide a context acquisition model that can

be used to derive context information from the environmental sensors. The development of
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the model relies on a concrete implementation of the Model and the ModelDriver interfaces

that are described in sections 5.2.3.2 and 5.2.3.1. The implementation of ModelDriver is

used to incorporate the model in to the framework, while the implementation of the Model

interface harnesses a particular technique to acquire context information that will suit the

environmental con�guration and entity. In the case the of desklight entity the model is

based on simple IF-THEN rules, though other techniques can be used to acquire the context

information for the entity such as Bayesian networks.
¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 public class DeskLightOnBehavior extends AbstractBehavior {
3 // Informat ion on behav ior .
4 private Behavior In fo i n f o ;
5 public DeskLightOnBehavior ( S t r ing name){
6 super (name ) ;
7 this . i n f o = new DeskLightOf fBehaviorInfo (name ) ;
8 }
9 //Method used to t i g g e r e n t i t y behav ior
10 public boolean on ( ){
11 //Code to turn on l i g h t
12 return true ;
13 }
14 public Behavior In fo g e t I n t e r a c t i o n I n f o ( ){
15 return this . i n f o ;
16 }
17 }
§ ¦

Listing 5.12: Code for on behavior of desklight entity.

5.4.4 Implementing Behaviors for an Entity

Once the sensor components and the context acquisition model have been developed for the

entity it is then necessary to implement each of behaviors for the entity. This is achieved by

following the API described in section 5.2.4.3. For each behavior a concrete implementation

of AbstractBehavior and BehaviorInfo need to be provided. The sample code shown in listing

5.12 is an example of a concrete implementation of AbstractBehavior. In this case, Desk-

LightOnBehavior implements the on behavior of the desklight. The behavior is triggered by

the framework by calling the on method. It should be noted that in this case the framework
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does not have to pass any parameters to trigger this particular behavior. DeskLightOnBehav-

ior also implements the methods for accessing the objects that describe the behavior to the

framework.
¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 public class DeskLightOnBehaviorInfo implements Behavior In fo {
3 private Behav iorDescr iptor behaviorDesc ;
4 private BehaviorMethodDescriptor behaviorMethod ;
5 public DeskLightOnBehaviorInfo ( S t r ing behaviorName ){
6 Class behav iorClas s = Class . forName ( " i e . tcd . DeskLightOnBehavior" ) ;
7 Method method = behav iorClas s . getDeclaredMethod ( "on" , null ) ;
8 behaviorMethod = new BehaviorMethodDescriptor (method , null ) ;
9 behaviorDesc = new Behav iorDescr iptor ( ) ;
10 behaviorDesc . setName ( behaviorName ) ;
11 }
12 //Provides a d e s c r i p t i o n o f the method to be c a l l e d and
13 // the parameters to be passed .
14 public behaviorMethodDescr iptor getBehaviorMethodDescr iptor ( ){
15 return behaviorMethod ;
16 }
17 //Provides a b r i e f d e s c r i p t i o n o f the behav ior .
18 public Behav iorDescr iptor ge tBehav io rDesc r ip to r ( ) {
19 return behaviorDesc ;
20 }
21 }
§ ¦

Listing 5.13: Sample code for behavior information of on behavior desklight entity.

The sample code shown in listing 5.13 provides a concrete implementation of BehaviorInfo

for the on behavior of the desklight entity. It describes to the framework the method that

will trigger the behavior and the parameters that need to be passed to trigger the behavior.

It also provides a brief description of the behavior.

5.4.5 De�ne Entity Behavior

At this stage of developing an entity it is necessary to de�ne how it will behave in a pervasive

computing environment. This is done by writing a script for the entity. For the desklight

entity to turn on the light when a person is nearby and the room is dark and turn it o� when

nobody is close, the script may appear as that shown in listing 5.14. In this instance the L
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¨ ¥
1 de s k l i g h t extends ob j e c t {
2 proximity (5 ) // Set L func t i on to a rad ius o f 5 meters .
3 //Declare on and o f f b ehav io r s o f the e n t i t y .
4 behavior on = " i e . tcd . DeskLightOnBehavior"
5 behavior o f f = " i e . tcd . DeskLightOffBehavior "
6

7 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
8 SomePerson . person = any
9 context SomePlace //Dec lar ing a con t ex t p r ed i c a t e SomePlace .
10 SomePlace . p lace = any
11 SomePlace . l i g h t = dark
12 context LightOn //Dec lar ing a con t ex t p r ed i c a t e LightOn .
13 LightOn . ob j e c t = this
14 LightOn . a c t i v i t y = "on"
15 context LightOf f //Dec lar ing a con t ex t p r ed i c a t e L igh tOf f .
16 LightOf f . ob j e c t = this
17 LightOf f . a c t i v i t y = " o f f "
18

19 //Define mapping to turn d e s k l i g h t on
20 map [ LightOff , SomePlace ] [ LightOff , SomePlace , SomePerson ] onto {
21 on ( )
22 }
23 //Define mapping to turn d e s k l i g h t o f f
24 map [ LightOn , SomePerson ] [ LightOn ] onto {
25 o f f ( )
26 }
27 }
§ ¦

Listing 5.14: De�ning entity behavior for desklight entity.

function is set to a 5 meter radius around the desklight entity. The behavioral set B contains

two behaviors for the entity. The on behavior that is de�ned in the previous section and

the o� behavior which turn the light o�. The M function that maps the entity's contextual

view onto its behavior set is de�ned through the declared context predicates and the mapping

statements.

5.4.6 Instantiating the Entity

The last step in creating an entity with the Cocoa framework is to write the con�guration

�le that tells the framework what components to load and how to initialise them. This is the

only step in the development cycle that needs to be done for each entity. For a particular
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¨ ¥
1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . steam . SteamContextComms : i e . tcd . cs

. dsg . comms . steam . SteamSensorComms : i e . tcd . cs . dsg . cocoa .
c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e . tcd . cs . dsg . yabs .
compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime . ComponentStigmergyRuntime : i e
. tcd . c s . dsg . s en so r s . GPSSensor

3 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
4 cocoa . model . d r i v e r s=i e . tcd . SimpleModelDriver
5 cocoa . model . name=simplemodel
6 cocoa . model . l e a s e =10000
7 // S t a t i c con t ex t
8 cocoa . en t i t y . ob j e c t=pete ' s d e s k l i g h t
9 cocoa . en t i t y . c o l o r=red
10 //Parameters to i n t i a l i s e s c r i p t i n g component .
11 cocoa . yabs . path=/opt/ s c r i p t s
12 cocoa . yabs . s c r i p t=de s k l i g h t
13 //Parameters to i n t i a l i s e STEAM communication d r i v e r .
14 steam .mode=mobile
15 steam . proximity=50
16 //Parameters to i n t i a l i s e GPS senso r component .
17 gpsensor . data . l e a s e =10000
18 gpsensor . metadata . l e a s e =60000
§ ¦

Listing 5.15: Con�guration �le for desklight entity.

instance of the desklight the con�guration �le for the entity may look as that shown in listing

5.15. A full version of this con�guration �le can be seen in appendix B. The con�guration

is the same as that shown in �gure 5.18(a) where the entity uses a GPS sensor, context

acquisition component, a scripting, and stigmergy runtime environment. The entity also uses

the STEAM communication driver to disseminate and receive sensor data and the context

information. The con�guration �le also contains the parameters for initialising the individual

components. It also holds the static context information of the entity which is, in this case,

the name of the entity and color of the desklight.

5.5 Summary

This chapter presents a prototypical implementation of the stigmergic model and of the script-

ing language used to de�ne entity behavior. The current prototype is called Cocoa has been
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implemented on Linux using Java. The chapter began, in section 5.1, with an architectural

overview of the framework describing the main components and their functionality within the

framework. Section 5.2 continued with a more detailed description of the main components

and the algorithms used to control the behavior of the individual entities. The chapter then

progressed to section 5.3 where the possible con�gurations of the framework were described.

This section also discussed how the framework is con�gured for each of the entity in a per-

vasive computing environment. The last section demonstrated how individual entities are

developed with the Cocoa framework using a desk-light as an example. Overall, in building

the framework, the intention has been to provide a �exible platform that would allow exper-

imentation with the stigmergic model. The use of a modular design has helped to facilitate

this goal.
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Experimental Evaluation

The chapter describes the evaluation of the approach proposed by this thesis for supporting the

development of pervasive computing environments. In conducting the evaluation the objective

has been to determine whether the stigmergic model de�ned in chapter 3 and the prototype

implementation described in chapter 5 are adequate to build the type of pervasive computing

environments envisioned in section 3.1.1. In order to ascertain if this is true a selected number

of application scenarios from a range of domains were used to determine whether this approach

can realistically meet the criteria for developing these types of environments. Speci�cally, the

chapter presents a number of evaluation experiments, which have been conducted using these

scenarios, to establish whether the requirements de�ned in chapter 3 have been met.

The evaluation began by investigating the methods used in previous research projects as

described in section 6.1. Using the review that this provides as a guide section 6.2 de�nes

a set of criteria that are used in combination with the requirements de�ned in chapter 3

to determine whether the objectives of the thesis have been met. In assessing these section

6.3 presents a set of application scenarios, describing each application scenario, detailing the

resulting implementation using the Cocoa framework, and evaluating the e�ectiveness of the

framework in meeting the demands of the criteria. The evaluation employs both real world

implementations of application scenarios as well as implementations that were assessed within

a simulated environment. Section 6.4 summaries the overall e�ectiveness of the approach

proposed in the thesis in meeting the criteria.
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6.1 Evaluating Pervasive Computing Systems

Weiser observed in [168] that �applications are of course the whole point of ubiquitous com-

puting�, indicating that to evaluate such systems it is necessary to build and experiment with

them to determine their success in meeting the vision Weiser set for ubiquitous computing.

For the most part the evaluation of ubiquitous computing systems have taken this form, in

that, they are validated through their application. As a result, the evaluation of ubiquitous

computing systems are generally of a qualitative nature rather than a quantitative one.

6.1.1 Approaches used by Previous Projects

Of the projects reviewed in chapter 2 the majority have used the above method of evaluation.

For example, in the Aura project [56] Garlan et al. deployed their system across a university

campus and have developed a set of applications to use it. Using these applications they

demonstrated how Aura manages the tasks of users in a pervasive computing environment.

In Ambiente's cooperative project Streitz et al. developed the concept of Cooperative

Buildings [153]. These were �exible and dynamic environments that provided cooperative

workspaces supporting communication and collaboration between users. To test the feasibility

of their approach they developed the iLand environment [154] which incorporated a number

computer-augmented objects, Roomware [153], that provided information and support for

group and individual interaction within the environment.

The Stanford Interactive Workspace Project [78] have created a meeting room, called

iRoom, and developed a large number of applications to demonstrate how the collaborative

work of users can be supported. They also evaluated their initial goals for the project;

providing a robust platform that is both extensible and portable [77, 126]. To demonstrate

portability they ported the iROS system to multiple platforms - UNIX, Windows, Mac and

WinCE - and languages - Java, C++, and Python. To show application extensibility they

used an application scenario - SmartPresenter - to demonstrate how the di�erent levels of

indirection used into the iROS system facilitates the extensibility of the environment. To

illustrate robustness they performed a series of experiments to demonstrate how the recovery

time of the EventHeap after failure was not noticeable to the participants and therefore
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acceptable. They also demonstrated how the decoupled communication mechanism used in

the EventHeap could temporally mask transient failure of entities.

In the One.World project [60, 61, 62] Grimm et al. used four criteria - completeness,

complexity, performance, and utility - with which to evaluate the One.World architecture.

The completeness criterion addressed whether the One.World architecture was su�ciently

powerful and extensible enough to support the development of useful applications. The com-

plexity criterion was used to determine if it was hard to develop applications with One.World

architecture. The performance criterion evaluated the ability of the One.World architecture

to perform under normal workloads. The utility criterion questioned whether the One.World

architecture would enable others to be successful. To assess the criteria Grimm et al. �rst

developed a number of applications to illustrate the completeness criterion. To evaluate the

complexity criterion they furthered analysed the implementations to determine if their ap-

proach simpli�ed the development of the applications. In evaluating the performance criterion

they measured the the scalability of a number of the key services in the architecture. To de-

termine utility Grimm et al. conducted an experimental comparison of One.World with a

number of other distributed systems technologies using students. The students developed

applications using these technologies and were later interviewed about the di�erent software

engineering issues they faced in developing the applications.

6.1.2 Evaluation Frameworks for Pervasive Computing

As Schmidt points out [141] the evaluation of pervasive computing systems is still not fully

understood, in that there does not exist a common set of criteria against which these systems

can be evaluated. In some part this can be seen in the above projects in the di�erent ap-

proaches they have taken to evaluate their research. As a consequence there are di�culties in

comparing results rigorously and quantitatively. The reasons for this are generally attributed

to the relative novelty of the research �eld. However, there have been some attempts in recent

times to develop a consensus on the criteria to use to evaluate such systems.

Scholtz et al. [144] have developed a set of evaluation areas for user evaluations of pervasive

computing applications. The areas of evaluation proposed by Scholtz et al. include: attention,
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adoption, trust, conceptual models, interaction, invisibility, impact and side e�ects, appeal,

and application robustness. The attention criterion determines how distracting devices are to

users. It uses metrics such as the number of times a user must change focus, or the overhead

of switching among foci. The adoption criterion evaluates the willingness of users to use the

application. This criterion uses metrics such as the rate of use, or the value users place on

the technology. The trust criterion determines the user's belief in a system not misusing their

personal data. This criterion uses metrics to determine the type of information the user is

required to divulge and the amount of control they have over that information. The conceptual

model criterion examines the users understanding of the device or program. It uses metrics

to determine the degree of match between the user model and the behavior of application, or

awareness of application capabilities. The interaction criterion determines how well users and

systems work together. This criterion uses metrics to ascertain the e�ectiveness of completing

a task, or the ability of the system to support collaborative interaction of users. The invisibility

criterion investigates the ability of the system to integrate into the user's environment. Metrics

such as a user's control of the system and the accuracy of the system's contextual model are

used to evaluate the invisibility. The impact and e�ect criterion determines the contribution

the system makes in supporting the user. This criterion uses metrics based on the changes in

user productivity, or the ability of the system to modify user behavior. The appeal criterion

examines how attractive the application is to the user and how it adds to the users enjoyment

and quality of life. Metrics such as enjoyment level, or ratings of application look and feel

are used to evaluate the appeal of the application. The application robustness evaluates the

ability of a pervasive computing system to handle faults. This criterion uses metrics such

as the percentage of transient faults that were invisible to the user, or the time from user

interaction to feedback. As can be observed the evaluation framework proposed by Scholtz et

al. is primarily concerned with user-centered measures rather than evaluating the e�ectiveness

of the framework in developing pervasive computing applications.

An alternative approach is that proposed by Ranganathan et al. [129]. They have devel-

oped a set of metrics that can be divided into three categories - system, programmability, and

usability - for evaluating the e�ectiveness of a pervasive computing system. System support
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examines the areas of context sensitivity, security and discovery. For context sensitivity the

quality of the sensed or derived context information is evaluated along with the e�ectiveness

of its use in a pervasive computing system. For security the expressiveness of de�ning security

polices, the ability of users to control access to their private information, and the unobtrusive-

ness of the security mechanisms used are evaluated. For discovery, the ability of the system to

�nd resources that meet certain requirements is assessed. In the area of programmability they

evaluate a system's ability to support multi-device adaptation and partitioning, to support

application mobility, to aid application and service composition, to support the use of context

information in adapting behavior and to automate the con�guration of the system. They also

propose the use of more traditional metrics such as man-hours and lines of code in evaluating

the programming framework and toolkits used to develop pervasive computing applications.

The area of usability assesses a pervasive computing system under a number of metrics. These

include the number of head turns as an indicator of user distraction, the physical movement

of a user that is not a direct part of the user's task and the need for a user to have a prior

knowledge of the system to be able to use it. While the metrics proposed by Ranganathan et

al. do not provide an exhaustive approach to evaluating pervasive computing systems they

do capture some of the main issues in their evaluation.

6.1.3 Simulating the Physical Environment

The evaluation frameworks described above typically require an implementation that can be

deployed in a real world scenario for it to be evaluated. However, while there can be no real

substitute to actually building a system and allowing users to evaluate its e�ectiveness in

meeting the de�ned criteria, a number of projects [10, 105, 114] have been investigating the

use of simulators to simulate the physical environment. This method allows researchers to

gain an initial evaluation of the usefulness of their approach before having to actually deploy

the system in a real world scenario.

The reasoning used for employing such a method of evaluation is generally attributed to

the considerable e�ort that is required to develop systems that can be used in real world

evaluations. The implementation of the system needs to be of su�cient standard not to
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e�ect the experience of the users during the evaluation. This generally requires extra time in

development and is often made more di�cult with hardware that is not well supported or is

less than reliable. For instance, obtaining consistent readings from sensors or developing with

small embedded devices. Also, the expense incurred in developing complete systems for such

environments is often prohibitive.

The use of a simulator provides a means of overcoming these di�culties. Simulators allow

researchers to control and adjust di�erent environmental parameters that may be di�cult to

achieve in the real world. Simulators also allow researchers to reproduce results which are

often more di�cult to obtain in real world scenarios due to the increased volatility of the

environment. It is also possible for researchers to observe how di�erent types of hardware can

be combined, or to even experiment with new kinds of hardware before having to develop it.

6.2 Proposed Criteria for Evaluation

The thesis has promoted the use of stigmergy as the basis for the development of a framework

that supports a decentralised approach to organising the components of a pervasive computing

environment. Using the work described in section 6.1 as a guide this section proposes a set

of criteria that can be used to evaluate this approach. The overall aim of the evaluation is to

determine whether the use of stigmergy can provide a solution capable of building the type

of pervasive computing environments envisioned in section 3.1.1 and which are equivalent to,

if not better than, those environments using more centralised techniques. As a consequence,

the proposed criteria are primarily focused on evaluating the middleware aspects of building

such environments rather than other concerns. Accordingly, the thesis relies on three criteria

and corresponding questions to evaluate the approach:

C1: Completeness. Is it possible to build pervasive computing environments using the

principle of stigmergy as the basis of the underlying infrastructure? The criterion, based

on Grimm et al's evaluation criteria [60, 61, 62], questions whether a framework based on

the concept of stigmergy is su�ciently powerful to support the development of a range of

useful pervasive computing applications. The importance of completeness is in determining
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whether decentralised approaches, such as the one proposed in this thesis, are capable of

building pervasive computing environments equivalent to or better than those using more

conceptually centralised methods. If completeness can be shown it would illustrate there to

be no disadvantage, in terms of the applications that can be built, in using decentralised

infrastructures to build such environments.

C2: Coordination. Can collections of autonomous entities coordinate their behavior using

the principle of stigmergy to form a coherent pervasive computing environment capable of

supporting the activities of users? In proposing this criterion the thesis investigates whether

the indirect communication mechanisms of stigmergy can support a decentralised approach to

coordinating the behavior of a pervasive computing environment. The choice of coordination

re�ects a central theme of the thesis and an important consideration for pervasive computing

- can meaningful, coherent environments form. It is used primarily to establish if the use

of decentralised techniques, such as stigmergy, can coordinate component behavior to form

equivalent environments to those using more conceptually centralised infrastructures. If the

coordination criterion is shown to hold true, it would indicate there to be no disadvantage in

using such decentralised techniques in building pervasive computing environments.

C3: Complexity, programmability. Does separating the complexities of the underlying

system with the compositional side of de�ning entity behavior simplify the development of

entities? The criterion is somewhat based on Ranganathan et al.'s criterion of programmabil-

ity [129] and Grimm et al.'s criterion of complexity [60, 61, 62] in determining how di�cult it

is to develop entities with the Cocoa framework. It also questions whether the methods used

contributed to the rapid development of pervasive computing environments and investigates

if the decoupling of entities aids the incremental construction and improvement of solutions.

The complexity and programmability criterion was primarily chosen to investigate these as-

pects and determine if the framework outlined in this thesis provides a suitable approach to

building the type of pervasive computing environment envisioned in section 3.1.1.
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6.3 Application Scenarios

In proposing the above criteria the objective has been to determine whether the stigmer-

gic model developed in chapter 3 and resulting implementation described in chapter 5 are

�rstly capable of being used to build useful pervasive computing environments, and secondly,

whether they can be constructed in the manner envisioned in section 3.1.1, and lastly, that

the programming model encapsulated in the scripting language described in chapter 4 can

assist developers in the incremental construction and improvement of these types of pervasive

computing environments.

In determining whether these criteria hold true and if the requirements de�ned in chapter 3

have been met a select number of application scenarios were used to experimentally evaluate

the Cocoa framework. The application scenarios chosen were selected for their ability to

evaluate the proposed criteria. In all, six application scenarios were used to achieve full

coverage of the criteria. The help assistant scenario, in section 6.3.1, in conjunction with

the tour guide and the jukebox scenarios, in sections 6.3.2 and 6.3.3 respectively, and to

a lesser extent the remaining three scenarios provide a means of testing the �rst criterion

C1 - completeness - as they represent di�erent application scenarios that have previously

been used in the �eld of pervasive computing. To address criterion C2 - coordination -

the streetlight scenario, in section 6.3.4, and the voice scenario, in section 6.3.5, were used

to evaluate the ability of the Cocoa framework to coordinate components in a pervasive

computing environment. Both scenarios require the coordination of multiple components to

achieve the desired behavior. The last scenario, presented in section 6.3.6, was used to test the

ability of the Cocoa framework to meet criterion C3 - complexity and programmability. The

scenario is based around a busy street in the heart of Dublin which provides an idea location

for investigating the development and deployment of entities in an urban environment over a

period of time.

The following sections provide a description of those application scenarios, outlining the

application domain, describing the resulting implementation using the Cocoa framework, and

detailing the e�ectiveness of the framework in meeting the criteria. In evaluating the frame-

work the thesis relies on implementations that can be used in the real world as well as in
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simulations. The combination of methods allowed experimentation with a wider range of

application scenarios than would otherwise be possible.

6.3.1 Help Assistant

Projects such as Aura [56] and House_n [75, 76] have created pervasive computing applica-

tions that assist people in using everyday objects within their environment or in using their

environment in a more e�cient manner. The assitance is typically provided in a timely man-

ner that suits the users situation. Such an assistant was developed with Cocoa to illustrate

the range of applications that can be built with the framework.

6.3.1.1 Scenario

The scenario envisage for a help assistant is one where a user picks up a tool that they rely

on to obtain help on how to use a particular object in the environment. Such a scenario may

proceed as follows: John arrives into work one day in �nd a new printer has been installed

in the o�ce. Unsure how to use it he picks up his help assistant and brings it over to the

new printer. The assistant recognising that help is required, provides John with information

on the printer's capabilities. Assistance of this kind could also be provided in other scenarios

where help is required by users on the usage of everyday objects within the environment, for

instance, the cooker in the home, or the jack used change a �at tyre.

6.3.1.2 Implementation

The implementation of the help assistant scenario required the development of three entities;

one to represent the help assistant, another for the printer, and a third for the user requiring

help. The construction of these entities followed the development process outlined in section

5.4. The entities were deployed in a simulated environment to allow an initial evaluation of

the scenario to be performed. The implementation details of the entities are as follows:

Punter entity. This entity represents the user in the environment who is looking for

assistance on how to use the printer or any other everyday object that might be in the
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environment. The entity uses a single sensor to determining its location within the simulated

environment. The implementation of the sensor component can be seen in appendix C.1. The

context acquisition model replies on the data produced by the sensor in combination with the

static context de�ned in the con�guration �le to derive context information for the punter

entity. The context information generated by the model typically comprises of the person's

name, location, and time. The implementation of the model is based on IF-THEN rules. For

this scenario, no behaviors have been developed for the punter entity. However, even though

the framework triggers no behavior for this entity it is still necessary to represent the person

requiring help to allow other entities absorb their context. The script for a punter entity as

well as a sample con�guration �le for an entity are shown in appendix C.4. In the simulated

environment one punter entity was deployed to represent John in the above scenario.

Printer entity. The printer in the above scenario is represented by this entity. The current

implementation is quite basic, only capturing a very limited amount of context information

and having no associated behaviors. The reason for such a minimal implementation is that

additional functionality for the entity is not required for this scenario. However, it is envis-

aged that future development of the entity would include behavior relating to the printing

of documents. The same location sensor as the punter entity is used. The context acquisi-

tion model is based on IF-THEN rules, which typically generates context information that

comprises of the printer's name, location, time, and usage details. The script for the printer

entity is shown in appendix C.4.1 and the con�guration �le can be seen in appendix C.4.2.

In the simulated environment one printer entity was deployed to represent the printer in the

scenario described in section 6.3.1.1.

Help assistant entity. In the scenario John picks up a help assistant tool to �nd out how

to use the new printer in the o�ce. This entity is used to represent the tool that John uses to

gain help. In a real world implementation of this scenario it is envisaged that such an entity

would run on a PDA device which would allow John to pick it up and receive help. However,

in the current implementation a Firefox browser is used to display the information. The same

location sensor is used as in the punter and printer entities. The context acquisition model
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¨ ¥
1 public class DisplayBehavior extends AbstractBehavior {
2 private stat ic f ina l St r ing COMMAND_START =
3 "/opt/ f i r e f o x /moz i l la−xremote−c l i e n t openURL( " ;
4 private stat ic f ina l St r ing COMMAND_END = " ,new−tab ) " ;
5 private Behavior In fo i n f o ;
6 public DisplayBehavior ( S t r ing behaviorName ) {
7 super ( interact ionName ) ;
8 this . i n f o = new Disp layBehav ior In fo ( behaviorName ) ;
9 }
10 public Behavior In fo g e t I n t e r a c t i o n I n f o ( ) {return this . i n f o ; }
11 public boolean d i sp l ay ( SecondaryContextInformation u r l ) {
12 URL urlObj = new URL( ( St r ing ) u r l . getValue ( ) ) ;
13 Runtime runtime = Runtime . getRuntime ( ) ;
14 Process proc = runtime . exec (COMMAND_START + urlObj . t oS t r i ng ( ) +
15 COMMAND_END) ;
16 return true ;
17 }
18 }
§ ¦

Listing 6.1: Code for display behavior of help assistant entity.

generates context information relating to the name of the entity, its location, and current

time. Its implementation is based on IF-THEN rules. One behavior has been implemented

for the help assistant entity, called display, it opens a web page on the Firefox browser. The

Java implementation for this behavior can be seen in listing 6.1.
¨ ¥
1 a s s i s t a n t extends f i r e f o x {
2 proximity (5 ) // Set L func t i on to a rad ius o f 5 meters .
3 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
4 SomePerson . person = any
5 context SomeObject //Dec lar ing a con t ex t p r ed i c a t e SomeObject .
6 SomeObject . ob j e c t = any
7 SomeObject . usage = any
8 map [ SomePerson , SomeObject ] onto { //Define mapping .
9 d i sp l ay ( SomeObject . usage )
10 }
11 }
§ ¦

Listing 6.2: Script for help assistant entity.

The display behavior is triggered when someone is nearby and when information on the

object - printer - is available to display. The script de�ning this behavior for the help assistant
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entity can be seen in listing 6.2. The help assistant script extends the �refox script. The �refox

script, which is shown in listing 6.3, declares the display behavior for the entity and the script

is reused in a number of the scenarios described in this chapter. The con�guration �le for the

entity can be seen in appendix C.5. In the simulated environment one help assistant entity

was deployed to represent the help assistant in the scenario described in section 6.3.1.1.
¨ ¥
1 f i r e f o x extends ob j e c t {
2 // Set L func t i on to a rad ius o f 5 meters .
3 proximity (5 )
4 //Dec lar ing the d i s p l a y behav ior .
5 behavior d i sp l ay = " i e . tcd . DisplayBehavior "
6 }

§ ¦
Listing 6.3: The �refox script.

6.3.1.3 Results and Analysis

From running the above scenario in a simulated environment with the deployed entities -

punter, printer, and help assistant - it was observed that as John, represented by the punter

entity, moved towards the printer with the help assistant that the usage information for the

printer was displayed in the Firefox browser. The application scenario, which has been used

in other research projects [75, 76, 56], demonstrates how the Cocoa framework can be used

to develop similar pervasive computing applications. In doing so, it illustrates the ability of

the framework to meet criterion C1 - completeness.

The help assistant scenario also helps to demonstrate requirement R1 - physical inte-

gration. The high-level abstractions provided in the scripting language allow entities in the

scenario to sense and interact with the physical environment without the di�culties of dealing

with low-level sensors or actuators in the scenario. The framework also provides the low-level

abstractions required to integrate sensors and actuators into the environment. In the above

scenario these abstractions can be seen in terms of the location sensor used by all the entities

and of the display behavior used by the help assistant tool. Such levels of abstraction ease the

development of entities through separating the compositional side of de�ning entity behavior
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with the low level system development of the sensors and actuators. The division provides a

logical separation of the concerns making the environment easier to build and maintain.

The scenario also showed the autonomous behavior of the entities, in that, they controlled

their own behavior within the simulated environment and operated independently of other

entities. Such behavior demonstrates how the Cocoa framework supports requirement R2 -

autonomy of components - in a pervasive computing environment.

6.3.2 Tour Guide

Projects such as GUIDE [33, 39], Cyberguide [91], and Interactive Museums [53] have devel-

oped pervasive computing applications that provide tourists with information on the locations

they visit. A similar type of application was developed to illustrate the range of applications

that can be developed with the Cocoa framework.

6.3.2.1 Scenario

Electronic tour guides can take a number of forms depending on the domain and the objective

of the guide. In this case, the tour guide was developed to support a scenario such as this

one: Jane arrived in Dublin the night before and has awoken in her city center hotel with the

intention of exploring the city that morning. She takes her electronic tour guide and heads

o�. On passing a prominent building she takes out her tour guide to �nd that the building

is the front of Trinity College and the home of the Book of Kells. On getting directions she

walks into the college to visit the famous book. Also, during that day the administrator of

Trinity College added new tourist information relating to the Douglas Hyde Gallery.

6.3.2.2 Implementation

In many ways the implementation of the tour guide scenario is very similar to the help assistant

presented in section 6.3.1, in that, it requires the development of three entities - one for the

electronic tour guide, a second entity for the di�erent tourist attractions, and a third for

the tourist - which use similar if not the same components. The entities were deployed in a
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simulated environment to evaluate the scenario. The implementation details of the entities

are as follows:

Punter entity. In this scenario the punter entity represents the tourist, Jane, who is

sightseeing in the city of Dublin. The current implementation is the same as that used for

the punter entity in the help assistant scenario described in section 6.3.1.2. In the simulated

environment one punter entity was deployed to represent Jane.

Tourist attraction entity. The entity represents the di�erent locations or buildings that

are of interest to those visiting. The current implementation of the tourist attraction entity is

quite simple, only capturing a limited amount of context information and having no associated

behaviors. Potentially these entities could capture a richer set of context information and

implement a larger range of behaviors, however, for the purpose of the scenario it is not

required. The construction of the tourist attraction entity is similar to the printer entity, in

that, it uses the same basic components. For example, the location sensor. The script for a

tourist attraction entity and a sample con�guration �le can be is seen in appendix C.6. In

the simulated environment a number of these entities are deployed to represented di�erent

tourist spots that Jane might visit on her trip to Dublin.

Electronic tour guide entity. This entity is used to represent the electronic tour guide

that Jane uses to gain this information. It is expected in a real world implementation that

the entity would run on a device such as a PDA allowing Jane to carry it around while sight-

seeing. However, in the current implementation a Firefox browser is used again to display

the information on the di�erent tourist attractions that Jane may visit. The actual construc-

tion of the tour guide entity is very similar to the help assistant entity, in that, the basic

components are the same. For instance, the location sensor and the display behavior which

is used to display information on the Firefox browser. The context acquisition model gen-

erates context information relating to the name of the entity, its location, and current time.

Its implementation is based on IF-THEN rules. The script, show in listing 6.4, de�nes the

behavior of the electronic tour guide entity. It triggers the display behavior when a person is
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nearby a tourist attraction where there is information to be displayed. As before, with the

help assistant entity, the script of the tour guide entity extends the �refox script shown in

listing 6.3. The con�guration �le for the entity can be seen in appendix C.7. In the simulated

environment one electronic tour guide entity was deployed for Jane to use when visiting the

di�erent tourist attractions.
¨ ¥
1 tourgu ide extends f i r e f o x {
2 proximity (100) // Set L func t i on to a rad ius o f 100 meters .
3

4 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
5 SomePerson . person = any
6 context SomePlace //Dec lar ing a con t ex t p r ed i c a t e SomePlace .
7 SomePlace . p lace = any
8 SomePlace . about = any
9

10 //Define mapping .
11 map [ SomePerson , SomePlace ] onto {
12 d i sp l ay ( SomePlace . about )
13 }
14 }
§ ¦

Listing 6.4: Script for electronic tour guide entity.

6.3.2.3 Results and Analysis

From running the above scenario in a simulated environment with a punter entity and elec-

tronic tour guide entity to represent Jane and the tour guide she uses, plus �ve tourist at-

traction entities to represent the di�erent tourist locations she might visit. In the simulated

environment it was observed that as Jane moved towards a tourist attraction the electronic

tour guide would display information relevant to the attraction.

The tour guide scenario has been used extensively in di�erent research projects [33, 39,

53, 91] to demonstrate the feasibility of various pervasive computing systems. So in a similar

fashion to the previous scenario the tour guide scenario also illustrates how the Cocoa frame-

work can be used to successfully build such applications. In doing so, it also demonstrates

the ability of the framework to meet criterion C1 - completeness.
From the electronic tour guide it also possible to demonstrate how requirements R1 -
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physical integration - and R2 - autonomy of components - are ful�lled by the Cocoa frame-

work. Like the previous scenario of the help assistant the tour guide uses the same high-level

abstractions provided by the scripting language to abstract the complexities of dealing with

the real world. This can be seen in script used by the electronic tour guide entity shown in

listing 6.4. In running the scenario it was also observed that the autonomous nature of the

entities, in particular in this case the tourist attraction entities, made it possible to add or

remove entities without a�ecting the operation of other entities in the system. This facilitated

the incremental construction of the system, in that, it was always possible to add new tourist

attraction entities into the environment.

The extensive reuse of components from the previous scenario - the punter entity, the

location sensor component, and the display behavior - also demonstrates how it is possible

to achieve the rapid develop of environments through the reuse of entities and components.

Such properties successfully demonstrate the ability of the framework to satisfy criterion C3

- complexity and programmability.

6.3.3 The Jukebox

The jukebox is an application that plays di�erent types of music genre depending on who is

in its vicinity and to what they like to listen. The jukebox was developed to demonstrate how

a pervasive computing application can coordinate its activities with the other entities in the

local environment, but also, to show the range of applications that can be developed with the

Cocoa framework.

6.3.3.1 Scenario

A typical scenario for the jukebox is centered around a group of people within a room having

co�ee or talking about the news of the day and having the jukebox playing in the background.

Such a scenario for the jukebox could possibly proceed as follows: Thomas is meeting a group

of friends for co�ee in John's house. On entering John's house the jukebox on the table starts

to play some 70s music in recognition of Thomas's preference. However, when Jane arrives

the jukebox observes a change in the majority preference to Hip-Hop and starts to play songs
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from that particular genre. As the morning co�ee comes to an end everyone gets up to leave

and as they leave the house the jukebox stops playing.

6.3.3.2 Implementation

The implementation of the jukebox scenario required the development of two entities; one to

represent the jukebox, and a second entity to represent those listening to the music in the

scenario. The entities were deployed in a simulated environment for experimentation and to

gain an initial evaluation of the scenario. The implementation details of the entities are as

follows:

Punter entity. The punter entity represents those listening to the music being played

by the jukebox. The implementation of this entity reuses the same components, script, and

context acquisition model as that used by the punter entity described in section 6.3.1.2.

However, an additional piece of context information is speci�ed in the entity's con�guration

�le to de�ne the music preferences of the person. The con�guration �le for this entity can be

seen in appendix C.4.3. In the simulated environment three punter entities were deployed to

represent Thomas, John, and Jane in the scenario described in section 6.3.3.1.

The Jukebox entity. This entity represents the jukebox in the scenario. The current

implementation of this entity is based on the popular Linux multimedia player, Xmms [158].

To be able to use the player a Java Native Interface was developed to allow the Cocoa

framework control the player. The entity uses two sensors one to determine the location

of the jukebox in the simulated environment, and a second to ascertain if the jukebox is

playing music, is paused, or has stopped playing music. The implementation of the location

sensor is the same as that used in previous scenarios (see appendix C.1). For the second

sensor the implementation of the component can be found in appendix C.2. The context

acquisition model uses the data produced by these sensors to generate the context information

for the jukebox entity. The model is implemented using IF-THEN rules that produce context

information relating to the state of the jukebox. Two behaviors have been developed for the

jukebox entity, called play and stop, that control how the entity behaves in the pervasive

197



Chapter 6. Experimental Evaluation

¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 public class StopBehavior extends AbstractBehavior {
3 private stat ic f ina l int SESSION = 0 ;
4 private Behavior In fo i n f o ;
5

6 public StopBehavior ( S t r ing name) {
7 super (name ) ;
8 i n f o = new StopBehaviorInfo (name ) ;
9 }
10 public boolean Stop ( ) {
11 i f (XmmsControl . remote_is_running (SESSION) ) {
12 i f (XmmsControl . remote_is_paused (SESSION) | |
13 XmmsControl . remote_is_playing (SESSION) ) {
14 XmmsControl . remote_stop (SESSION ) ;
15 }
16 } else {
17 return fa l se ;
18 }
19 return true ;
20 }
21 public Behavior In fo g e t I n t e r a c t i o n I n f o ( ) {
22 return i n f o ;
23 }
24 }
§ ¦

Listing 6.5: Code for stop behavior of jukebox entity.

computing environment. The play behavior takes a single parameter that de�nes the music

genre to be played by the entity. The parameter is used to search the music collection for

suitable matches. A single song is then selected from this matched set to be played. The stop

behavior halts the jukebox. The Java implementation for the stop behavior can be seen in

listing 6.5.

The script, shown in listing 6.6, is used to de�ne the behavior of the jukebox entity.

The play behavior is triggered when a person is near the jukebox. The genre of music played

depends on what the majority of people prefer to listen to. This is determined by observing the

context information from punter entities, in particular the musical preferences of the entities.

While this is the current behavior of the jukebox entity it can be modi�ed to react di�erently

to the environment. For instance, it could play di�erent music depending on location, or it

could always play what the minority of the people like to listen to. The stop behavior is
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¨ ¥
1 jukebox extends ob j e c t {
2 proximity (10) // Set L func t i on to a rad ius o f 10 meters .
3

4 //Declare behav io r s f o r
5 behavior play = " i e . tcd . PlayBehavior "
6 behavior stop =" i e . tcd . StopBehavior "
7 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
8 SomePerson . person = any
9 SomePerson . music = any
10 context JukeBoxPlay //Dec lar ing a con t ex t p r ed i c a t e JukeBoxPlay .
11 JukeBoxPlay . ob j e c t = this . ob j e c t
12 JukeBoxPlay . a c t i v i t y = "play "
13 context JukeBoxStop //Dec lar ing a con t ex t p r ed i c a t e JukeBoxStop .
14 JukeBoxStop . ob j e c t = this . ob j e c t
15 JukeBoxStop . a c t i v i t y = " stop "
16

17 //Def in ing mappings .
18 map [ JukeBoxStop ] [ JukeBoxStop , SomePerson ] onto {
19 play ( major i ty ( SomePerson ) )
20 }
21 map [ JukeBoxPlay , SomePerson ] [ JukeBoxPlay ] onto{
22 stop ( )
23 }
24 }
§ ¦

Listing 6.6: The jukebox script.

triggered when there is no one in the vicinity of the jukebox entity. The con�guration �le for

the entity can seen in appendix C.8.1. In the simulated environment one jukebox entity was

deployed to play music.

6.3.3.3 Results and Analysis

From running the above scenario in a simulated environment with a jukebox entity and three

punter entities representing Thomas, John, and Jane it was observed that the jukebox selected

music based on those in its vicinity and would stop playing when there was no one to listen.

The jukebox, which is also a scenario used in Gaia [133], reinforces how di�erent types of

pervasive computing application can be developed using the Cocoa framework, which again,

contributes to showing of the framework meets criterion C1 - completeness. In addition to

the requirements - R1 and R2 - shown in previous application scenarios the jukebox scenario
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also demonstrates how a pervasive computing application using the Cocoa framework can

adapt its behavior to suit the surrounding environment. This can be observed in the way the

jukebox entity is able to change the type of music played to suit those listening. In displaying

such behavior the scenario illustrates how requirement R9 - adaptability - is satis�ed by the

framework.

Streetlight


Off
 Half On
 On


Extent of Local

Environment


Figure 6.1: An illustration of the streetlight scenario.

6.3.4 Streetlights

The streetlight application scenario was developed to demonstrate how entities of a pervasive

computing environment can coordinate their activities without having to directly communi-

cate with each other. It is also used to show how system behavior can emerge from the local

interactions of entities. The application is based on a normal set of street lights that you might

�nd along the side of a road where a pedestrian walkway might exist. The lights coordinate

their activity, through observing their local environment, to ensure the street is su�ciently

lit for the pedestrians to walk safely along the path. Figure 6.1 provides an illustration of the

scenario.

6.3.4.1 Scenario

The scenario is located on a street lit by a series of streetlights that extend along the length of

the street. By default the lights are o� to save energy but turn on in the presence of users, or
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half on when the street light beside is fully on. The e�ect is to have the light follow the person

along the street and through the city. A scenario involving such active streetlights could be as

follows: Ciara has forgotten to get milk for the morning so puts on her coat and heads down

to the local shop around the corner. As she starts to walk down the street the light beside

her turns on and light further down the street appears to turn half-on but as she approaches

it the light turns fully on and streetlight behind her turns half-on. As she continues to walk

the �rst light is now o� and lights in front her continue to light her way to the shop.

6.3.4.2 Implementation

The implementation of the streetlight scenario required the development of two entities; one

to represent the streetlight, and another to present a person walking along the street. As

before, the construction of these entities followed the development process outlined in section

5.4. To gain an initial evaluation of the scenario the entities were deployed in a simulated

environment. The implementation details of the entities are as follows:

Punter entity. In this scenario the punter entity represents the pedestrian, Ciara, going

for milk in the shop around the corner. The implementation of this entity is the same as the

punter entity described in section 6.3.1.2 for the help assistant scenario and in section 6.3.2.2

for the electronic tour guide scenario. In the simulated environment one entity was deployed

to represent Ciara in the scenario described in section 6.3.4.1.

Streetlight entity. Each of the streetlights in the scenario are represented by this entity.

The entity uses two sensors one to determine the location of the streetlight within the simu-

lated environment, and a second sensor to ascertain if the streetlight is on, halfon, or o�. The

implementation of the location sensor is the same as that used in previous scenarios. For the

second sensor the implementation is the same as that used in the jukebox scenario in section

6.3.3.2. The context acquisition model uses the data produced from by sensors to derive con-

text information for the streetlight entity. The model is implemented using IF-THEN rules

which generate context information relating to the state of the streetlight. Three behaviors

have been developed for the streetlight entity, the �rst one turns the streetlight on, the sec-
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¨ ¥
1 //Error code omit ted to s imp l i f y p r e s en t a t i on .
2 public class StreetLightOnBehavior extends AbstractBehavior {
3 private Behavior In fo i n f o ;
4 public StreetLightOnBehavior ( S t r ing name) {
5 super (name ) ;
6 i n f o = new StreetLightOnBehavior In fo (name ) ;
7 }
8 public boolean on ( ) {
9 return St r e e tL i gh t . g e tS t r e e tL i gh t ( ) . l ightOn ( ) ;
10 }
11 public Behavior In fo g e t I n t e r a c t i o n I n f o ( ) {
12 return i n f o ;
13 }
14 }
§ ¦

Listing 6.7: Code for on behavior of streetlight entity.

ond one turns the streetlight half-on, and the last one turns the streetlight o�. The Java

implementation of the on behavior can be seen in listing 6.7. Both o� and halfon behaviors

of the streetlight entity have a similar Java implementation to that of the on behavior. The

script de�ning the behavior of the streetlight entity is shown in listing 6.8. The on behavior

is triggered when a person enters the local environment of the streetlight entity. The halfon

behavior is triggered when other streetlights in the vicinity of the entity are on. The o�

behavior of the entity is triggered when the person leaves the local environment and when no

other streetlights in the vicinity are on. The con�guration �le for this entity can be seen in

appendix C.9. In the simulated environment ten of these entities were deployed to observe

their behavior.

6.3.4.3 Results and Analysis

The scenario described in section 6.3.4.1 was deployed in a simulated environment with a

single punter entity to represent Ciara and ten streetlight entities placed in a two lines as

illustrated in �gure 6.1. From running the scenario it was observed that as Ciara moved along

the streetlights they �rst turned half-on then fully on as Ciara got closer to the streetlight

and as she moved away they turned from on to half-on and then o�.

While the streetlight scenario is not a typically scenario used by other pervasive computing
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1 s t r e e t l i g h t extends ob j e c t {
2 proximity (200) // Set L func t i on to a rad ius o f 200 meters .
3

4 //Dec lar ing on , ha l fon , and o f f b ehav io r s f o r s t r e e t l i g h t e n t i t y .
5 behavior on = " i e . tcd . StreetLightOnBehavior "
6 behavior ha l f on = " i e . tcd . StreetLightHal fOnBehavior "
7 behavior o f f = " i e . tcd . ob j e c t s . S t r ee tL ightOf fBehav io r "
8

9 //Dec lar ing con t ex t p r e d i c a t e s f o r s t r e e t l i g h t e n t i t y .
10 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
11 SomePerson . person = any
12 context SomeLightOn //Dec lar ing a con t ex t p r ed i c a t e SomeLightOn .
13 SomeLightOn . a c t i v i t y = "On"
14 context LightOn //Dec lar ing a con t ex t p r ed i c a t e LightOn .
15 LightOn . ob j e c t = this . ob j e c t
16 LightOn . a c t i v i t y = "On"
17 context LightOf f //Dec lar ing a con t ex t p r ed i c a t e L igh tOf f .
18 LightOf f . ob j e c t = this . ob j e c t
19 LightOf f . a c t i v i t y = "Off "
20 context LightHalfOn //Dec lar ing a con t ex t p r ed i c a t e LightHalfOn .
21 LightHalfOn . ob j e c t = this . ob j e c t
22 LightHalfOn . a c t i v i t y = "HalfOn"
23

24 //Def in ing mappings f o r s t r e e t l i g h t e n t i t y .
25 map [ L ightOf f ] [ LightOff , SomeLightOn ] onto {
26 ha l f on ( )
27 }
28 map [ L ightOf f ] [ LightOff , SomePerson ] onto {
29 on ( )
30 }
31 map [ LightHalfOn , SomeLightOn ] [ LightHalfOn ] onto {
32 o f f ( )
33 }
34 map [ LightHalfOn ] [ LightHalfOn , SomePerson ] onto {
35 on ( )
36 }
37 map [ LightOn , SomePerson , SomeLightOn ] [ LightOn , SomeLightOn ] onto {
38 ha l f on ( )
39 }
40 map [ LightOn , SomePerson ] [ LightOn ] onto {
41 o f f ( )
42 }
43 }
§ ¦

Listing 6.8: Script for streetlight entity.
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projects it does provide another example of how a pervasive computing application can be

developed using the decentralised approach encapsulated within the Cocoa framework. In

so doing, the scenario also contributes to showing how the framework satis�es the criterion

C1 - completeness. The implementation of the scenario also demonstrates how collections of

autonomous entities, streetlights in this case, can coordinate their behavior using the principle

of stigmergy to form a coherent pervasive computing environment. This can be observed in

the manner the street light entities coordinate their individual behavior to ensure the street

is su�ciently lit for pedestrians. Such behavior answers the question posed by criterion C2 of

whether entities using the principle of stigmergy can coordinate their behavior to the same

extent as those using more centralised infrastructures.

The coordination shown also demonstrates how the decentralised coordination of require-

ment R4 is ful�lled by the framework, while the shared environment used by the entities to

communicate illustrates how it is possible to ful�ll requirement R3 - spontaneous interoper-

ability - for a pervasive computing environment.

6.3.5 The Voice

The voice is designed to provide groups of people with recommendations for particular web

pages or documents. The recommendations are based on what other people are currently

viewing in the local environment. Such an application could be used in meetings, or when

browsing the internet, or as an added feature to the electronic tourist guide where it could

recommend information on di�erent tourist locations. The voice scenario was developed

for similar reasons to the street light scenario, in that, it demonstrates how entities of a

pervasive computing environment can coordinate their behavior through observing their local

environment. In this case, it is used to allow people to coordinate their behavior with others

in the same environment. Figure 6.2 provides an illustration of how this is achieved.

6.3.5.1 Scenario

The scenario chosen is based on a meeting in which a number of people are attending to review

a collection of academic papers for an up coming conference. The scenario begins with Vinny
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Figure 6.2: The voice scenario.

arriving late: Already 10 minutes late Vinny enters the meeting with his laptop and quietly

�nds a seat at the table and sits down. He opens his laptop and from the voice application

he can see that the meeting has moved onto the second paper after accepting the �rst paper

for the conference. It is also possible for the voice application to be used in other scenarios.

For instance, in a tourist scenario a person could determine the best information to look at

based on the behavior of those tourists at the tourist spot.

6.3.5.2 Implementation

The implementation of the voice scenario required the development of two entities; one to

represent the voice, and another for the person viewing the recommended information. The

entities were deployed in an o�ce environment to gain an initial evaluation of the scenario.

The implementation details for the entities are as follows:

Punter entity. In this scenario the punter entity represents the person viewing the recom-

mended information. The implementation of this entity is basically the same as in previous

scenarios with the exception that a location sensor is not used in preference to statically

de�ning the entity's location in the con�guration �le. This was necessary as no indoor loca-

tion service was available at the time of development. The con�guration �le for this entity

can be seen in appendix C.4.4. In the o�ce environment the punter entity runs on a laptop

associated with a person. Three punter entities were deployed in the o�ce environment, of
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which one represented Vinny.

Figure 6.3: User inferface of the voice entity.

The voice entity. In the scenario Vinny uses an application to determine the academic

paper being reviewed. This entity is used to represent the application used by Vinny. The

current implementation runs as a sidebar in a Firefox browser as can be seen in �gure 6.3.

The recommendations from the voice entity are placed in the sidebar for users to view. In

the o�ce environment the voice entity runs on a laptop. The entity uses a single sensor to

determine the page open in the Firefox browser. A location sensor should be used, however,

for the same reasons as the punter entity, one is not. Instead, the location of the voice entity

is assigned in the con�guration �le of an entity. The context acquisition model uses the data

produced by the page sensor along with the information speci�ed in the con�guration �le to

derive context information for the voice entity. The model is implemented using IF-THEN

rules. One behavior of the entity has been implemented for the voice entity, called recommend,

it updates the sidebar on the Firefox browser with recommendations of documents to view.

The script de�ning the behavior of the voice entity is shown in listing 6.9.
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1 thevo i c e extends f i r e f o x {
2 proximity (5 ) // Set L func t i on to a rad ius o f 5 meters .
3

4 //Dec lar ing recommend behav ior f o r the vo i ce e n t i t y .
5 behavior recommend = " i e . tcd . RecommendPageBehavior"
6

7 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
8 SomePerson . person = any
9

10 context Fire foxBrowser
11 Fire foxBrowser . ob j e c t = any
12 Fire foxBrowser . page = any
13 Fire foxBrowser . t i t l e = any
14

15 map [ SomePerson , Fire foxBrowser ] onto {
16 recommend ( major i ty ( Fire foxBrowser ) , random( Fire foxBrowser ) )
17 }
18 }
§ ¦

Listing 6.9: Script for the voice entity.

It should be noted that when the recommend behavior is triggered two parameters are

passed to the behavior. The �rst parameter speci�es what the majority of Firefox browsers

in the vicinity of the entity are viewing. The second parameter is a random document being

viewed by a browser in the local environment of the entity. The parameters are used to

update the sidebar as shown in �gure 6.3. The con�guration �le for this entity can be seen

in appendix C.10. In the o�ce environment, three of these entities were deployed to be used

by punter entities in the environment.

6.3.5.3 Results and Analysis

From running the scenario, described in section 6.3.5.1, with three punter entities and three

voice entities it was observed that the sidebar would change incrementally to make recommen-

dations that re�ected the pages being viewed at the time by those using the Firefox browsers.

It was found as users click on these recommendations that it reinforced the choice of page

being viewed by those in the vicinity causing the page to be indexed higher on the sidebar.

The main objective of the scenario was to evaluate the ability of the framework to coordi-
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nate the behavior of autonomous entities in forming coherent environments capable of assisting

users. In the scenario such behavior can be seen through the actions of the voice entities who

coordinate their individual behavior to provide meaningful recommendations to user. The

ability of the voice entities to exhibit such behavior demonstrates how the framework can

ful�l criterion C2 - coordination. It also illustrates how the requirement R4 - decentralised

coordination - in a pervasive computing environment is supported by the Cocoa framework.

Also, in a similar manner to the jukebox scenario, the voice scenario provides another ex-

ample of how a pervasive computing application can be developed using the Cocoa framework.

This again shows the utility and also the �exibility of the framework in meeting criterion C1

- completeness. It can also be observed that the shared environment, in the form of the con-

text information derived from the physical environment, provides a common interoperation

model that supports the spontaneous interaction of entities in the environment. Such a prop-

erty illustrates how requirement R3 - spontaneous interoperability - is ful�lled by the Cocoa

framework.

In addition the voice scenario also demonstrates how a pervasive computing application can

adapt its behavior to suit the surrounding environment. This can be seen in the manner the

voice entity adapts the content of the sidebar to re�ect the activity in the local environment,

which again, demonstrates how the framework ful�lls requirement R9 - adaptability.

6.3.6 The Westland Row Development

Westland Row is a street located in the heart of Dublin, Ireland. The street is about 250

meters long, and accommodates a number of cafes, newsagents, shops, pubs, and a train

station. It is a busy street, with commuters, shoppers, cars, and buses using it on a daily

basis. A wireless ad-hoc network has been deployed on Westland Row, with a number of

nodes placed along the street. The nodes form a sparse population of wireless network nodes

and can be con�gured to create a variety of network models. The current model uses AODV

[119] as the ad-hoc routing protocol for the network and uses a gateway node to access

the Internet. The network is part of a project [9] investigating the use ad-hoc networks in

urban areas. Westland Row provides both a challenging, and an interesting testing ground
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for evaluating pervasive computing applications and for determining the e�ectiveness of the

Cocoa framework to develop and deploy entities in an urban environment. The purpose of

using such an environment is to investigate how entities can be developed and deployed in an

urban environment over a period of time.

6.3.6.1 Scenario

With the large amount of activity on Westland Row it is possible to run a variety of scenarios

with a range of di�erent entities. The following is one example: Peter and Vinny arrange to

meet in Westcoast for co�ee one morning. Coming from opposite ends of the street they meet

at the entrance of the cafe, where they enter and walk up to the counter to order some co�ee.

The jukebox noticing their entrance starts to play some �trad� music. As they sit down and

start to chat the music shifts to more main stream music in reaction to those who have just

entered. Another scenario might be: Ciara is shopping along Westland Row to �nd that the

book store is closed. She takes out her shopping assistant to �nd that it is actually closed

for renovation and will open again next week. A similar scenario could be: Ciara is shopping

another day on Westland Row and notices some interesting art in the window of a gallery.

Wondering who painted it and how much it is, she takes out her shopping assistant to �nd it

is by a local artist and well over her budget.

6.3.6.2 Implementation

The development of Westland Row began by identifying the key entities in the environment,

then using the development process highlighted in section 5.4 to implement each of them.

The entities identi�ed for the above scenario include an entity to represent a person on the

street, entities to act for the di�erent shops located along the street, an entity to operate as

the shopping assistant, and an entity to control the behavior of the jukebox in the cafe. Of

the entities deployed in Westland Row the majority either ran on laptops, or smaller devices

embedded in the environment. The society of entities created were as follows:
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Punter entity. Punter was one of the �rst type of entity to be developed for Westland

Row. The entity represents a person on the street, whether they are shopping, having co�ee,

or commuting to work along the street. The implementation of the entity is based on the

punter entities used in previous scenarios. However, the location sensor is di�erent, in that, a

GPS device is used to determine the location of the entity. The implementation of the sensor

component used for the GPS device can be seen in appendix C.3. It periodically queries a

GPS device for changes in location that then are then propagated via a sensor data event. As

with the previous implementations of the punter entity no behaviors are implemented for it.

The context information generated by the context acquisition component typically comprised

of the person's name, location, time, musical preferences. The con�guration �le for the entity

can be seen in appendix C.4.5. In the Westland Row environment the punter entity runs on

a mobile device, a laptop, associated with a person. In all three punter entities were deployed

in the environment to represent Vinny, Peter, and Ciara in the scenario described in section

6.3.6.1.

Siopa entity. Siopa is the Irish word for shop and in the Westland Row pervasive computing

environment is the type of entity used to represent the di�erent shops and cafes along the

street. The current implementation of the siopa entity is quite basic, only capturing a very

limited amount of context information about itself and having no behavior associated with it.

It is possible implement a greater range of behavior for the siopa entity and to improve it ability

to capture context information but for the purpose of the scenario such an implementation

is not required. A sample con�guration �le for a siopa entity can be seen in appendix C.11,

as can the script used for the entity. The siopa entities ran on PC-104s embedded along the

street as can be seen in �gure 6.4. In all, �ve siopa entities were deployed to represent the

di�erent shops and cafes located along the street.

Shopping assistant entity. Shopping assistant provides information about the di�erent

shops in the pervasive computing environment. The current implementation is similar to that

of the help assistant and electronic tour guide entities used in previous scenarios. It is based

on the Firefox browser which is used to display the information associated with the shops.
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(a) Emebedded device used by entities. (b) Installed Device.

Figure 6.4: One of the embedded devices used in Westland Row development.

The entity only uses one sensor - GPS device - to determine its location. The same the GPS

sensor component is used as for the punter entity above. The implementation of context

acquisition model is based on IF-THEN rules that generate context information relating to

the name of the entity, its location, and current time. One behavior has been implemented for

the shopping assistant entity, called display, it opens a web page on the Firefox browser. The

implementation for the behavior is the same as that used in the help assistant and electronic

tour guide entities. The behavior is triggered when someone is nearby and when information

is available to display. The script de�ning this behavior is shown in listing 6.10. A sample

con�guration �le for an entity can be seen appendix C.12. In the Westland Row environment

only one shopping assistant was deployed. It ran on a laptop associated with the person

shopping.

Jukebox entity. In the scenario presented in section 6.3.6.1 the jukebox begins to play

�trad� music as Vinny and Peter enter the cafe. This entity is used to represent the jukebox

in the cafe. The current implementation is quite similar to that used for the jukebox in section

6.3.3.2. The only di�erence is that a GPS device is used instead of the simulated location

sensor in the jukebox entity described in section 6.3.3.2. A sample con�guration �le for a

jukebox entity running in the Westland Row environment can be seen in appendix C.8.2.

Only one jukebox entity was deployed in the Westland Row environment, which ran on a
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¨ ¥
1 shopp inga s s i s t an t extends f i r e f o x {
2 proximity (100) // Set L func t i on to a rad ius o f 100 meters .
3

4 context SomePerson //Dec lar ing a con t ex t p r ed i c a t e SomePerson .
5 SomePerson . person = any
6 context SomeShop //Dec lar ing a con t ex t p r ed i c a t e SomeShop .
7 SomePlace . p lace = any
8 SomePlace . d ea l s = any
9

10 //Define mapping .
11 map [ SomePerson , SomeShop ] onto {
12 d i sp l ay (SomeShop . dea l s )
13 }
14 }
§ ¦

Listing 6.10: Script for shop assistant entity.

laptop connected to speakers.

6.3.6.3 Results and Analysis

In all there were three punter entities deployed, �ve siopa's representing some of the shops and

cafes on the street, one shopping assistant entity associated with the person shopping, and a

jukebox entity in one of the cafes halfway down the street. From running a number of scenarios

on Westland Row with the deployed entities the behaviors of the entities were observed. The

siopa entities along Westland Row remained passive to changes in their environment, which

was as expected due to the current implementation of the siopa entity. The shopping assistant,

sometimes carried around by people, would display information about the shops as they walk

by. The jukebox entity, with its collection of music, would tailor the selection played depending

on the users in it's vicinity. In the scenario above as Peter and Vinny entered the cafe shop

the jukebox started to play more folk music to re�ect the preferences of the users in the cafe.

The bene�t of using stigmergy was observed through the indirect communication mecha-

nisms used by the phenomenon. It was possible to add new entities, remove or upgrade old

ones from Westland Row without adversely e�ecting of rest of the street. This allowed for

the environment to be built incrementally and solutions to be improved on over time. Prop-

erties which show how the framework meets criterion C3 - complexity and programmability -
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and demonstrates requirement R7 - incremental construction. The level of indirectness built

into the framework made the overall system less fragile and more stable to disturbances in

the environment. The removal of entities from the environment, whether through failure or

movement of the entity, did not cause additional problems to the remaining entities. Such

behavior illustrates how the Cocoa framework ful�lls requirement R6 - robust behavior - for

pervasive computing environments. The movement of entities through this urban environ-

ment, punter entities in particular, also illustrated how the framework can cope with the

mobility of entities and still be able to coordinate the activities of entities. This demonstrates

the Cocoa frameworks ability to meet requirement R8 - mobility.

In developing the entities described in the previous section it was also noted that the

abstractions provided managed to separate the computational side of acquiring and man-

aging context information with the compositional side of developing pervasive computing

applications. The clear separation allowed developers to concentrate on �rst developing the

system-level components and then on implementing the behavior of individual entities. This

can particular be seen in the manner the GPS sensor component was developed and incor-

porated into the entities deployed in Westland Row. The low level abstractions provided by

the Cocoa framework allowed the system level development to be performed in isolation to

the higher level implementation of entity behavior. The division provides a logical separation

of the concerns that makes it easier to build and maintain entities in a pervasive computing

environment. For instance, to change the behavior of jukebox to play what the minority of

listeners like only requires the alteration of the entity's script and not of any low-level system

components.

It was also found that such levels of abstractions allowed for the rapid development of

entities as sensors, behaviors, and context acquisition models could all be reused and combined

in di�erent ways to develop an entity. For instance, the sensor component for the GPS device

was reused in �ve of the deployed entities, while the display behavior in the shopping assistance

is the same as that used in the help assistant and electronic tour guide application scenarios.

The extensive reuse of components seen in Westland Row aids the rapid development of such

environments and make it signi�cantly easier to develop entities. It was also observed that
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the traditional concept of a pervasive computing application shifts somewhat when using

Cocoa, as the focus for development is centered on the entity and not solely on any particular

application. The applications per say emerge from the pervasive environment as the entities

move and reorganise themselves.

The observations answer the question proposed by criterion C3, that separating the com-

plexities of the underlying system with the compositional side of de�ning entity behavior does

simplify the development of entities, while the component architecture of the framework also

helps in the rapid development of entities due to the ability to reuse components in di�erent

entities.

6.4 Summary

The chapter has evaluated the approach proposed by this thesis for supporting the devel-

opment of pervasive computing environments. The objective of the evaluation has been to

determine whether the stigmergic model de�ned in chapter 3 and the subsequent prototypical

implementation provided in chapter 5 can build the type of pervasive computing environ-

ments envisioned in section 3.1.1. Furthermore, whether the proposed approach is capable of

building environments equivalent to or better than those using more conceptually centralised

infrastructures as those outlined in chapter 2. To ascertain if this is true a selected number

of application scenarios, described in section 6.3, were used to demonstrate whether such an

approach can realistically meet the criteria, de�ned in section 6.2, for developing these types

of environments. Table 6.1 provides a summary of the di�erent application scenarios used

to demonstrate the proposed criteria and to illustrate how requirements described in section

3.1.2 are ful�lled by the framework.

From the table it can be seen that through either a combination of application scenarios

or through speci�c ones that all the criteria outline in section 6.2 have been meet by the

prototypical implementation of the stigmergic model. However, two of the requirements were

not demonstrated, the �rst, requirement R5 - scalability, and the second requirement R10 -

security and privacy. The most entities deployed in an application scenario was 11 entities

in the streetlight scenario. This is not enough to demonstrate the ability of the framework
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Application
Scenarios

Criteria Requirements
C1 C2 C3 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Help Assistant ◦ • •
Tour Guide ◦ ◦ • •
Jukebox ◦ • • •
Streetlights ◦ • • •
The Voice ◦ • • • •
Westland Row • • • •

=not illustated ◦=partially illustrated by •=illustrated by

Table 6.1: The table contains a summary of the scenario described and the criteria demon-
strate and requirements illustrated by them.

to scale. It is, however, believed that as all interactions are mediated through the local

environment that it is possible to scale such a system to a large number of entities over

a wide area. To comprehensively illustrate this property of the framework and to obtain

de�nitive �gures would require the deployment of a large scale system incorporating hundreds

of entities within a real world environment. Present levels of resources have not permitted such

evaluation at this time. Requirement R10 - security and privacy - has not be implemented in

the current prototypical implementation so could be evaluated.
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Conclusions and Future Work

The research presented in this thesis has explored the used of stigmergy in supporting the

development of pervasive computing systems. More speci�cally, it has focused on mimicking

the behavior of social insects to construct a society of autonomous entities capable of sup-

porting spontaneous interaction and providing robust system-wide behavior for a pervasive

computing environment. This chapter summaries the most signi�cant achievements of the

work and outlines its contributions to the state of the art. To conclude, the chapter provides

a discussion of related research issues that remain open for future work.

7.1 Achievements

The motivation for the work presented in this thesis arose from the observation that state-

of-the-art research in pervasive computing environments has principally focused on providing

conceptually centralised infrastructures that coordinate the resources of a speci�c geograph-

ical location. These research e�orts, as discussed in chapter 2, are typically designed from

the ground up to support the anticipated needs of users, and are usually pre-installed and

maintained over the period in which they are in use. However, as pointed out in chapter

3, it is unrealistic to expect all pervasive computing environments to be constructed in this

manner. In the future physical spaces are more likely to evolve accidentally into pervasive

computing environments as technology is incorporated into the space over the medium-to-long

216



Chapter 7. Conclusions and Future Work

term. This suggests that pervasive computing environments need to be assembled in a more

ad-hoc fashion.

To address this issue the thesis presented a highly decentralised method of organising

the components of a pervasive computing environment that supports spontaneous interaction

between entities and provides robust system-wide behavior. The inspiration for this work

stemmed from the observations made by the French biologist Grassé on how social insects

coordinate their actions using indirect communication via the environment, a phenomenon

known as stigmergy. The stigmergic approach provided an appealing construct that satis�ed

the requirements, described in chapter 3, for developing pervasive computing environments.

The approach was encapsulated in the stigmergic model, described in chapter 3, that was

used to underpin the Cocoa framework for pervasive computing.

The Cocoa prototype implementation of the stigmergic model, is described in chapter 5.

Cocoa supports the use of stigmergy to build self-coordinating environments that promote the

autonomy of entities. Designed to both support and complement the use of stigmergy, the

framework employs a distributed architecture organised in a peer-to-peer fashion. To simplify

the implementation and deployment of entities Cocoa supports a programming abstraction

encapsulated in a high-level scripting language. Described in chapter 4, the scripting language

generalises the methodologies used by social insects to construct a society of autonomous

entities capable of responding to the environment in a stigmergic manner.

In summary, the work present in this thesis has focused primarily on investigating tech-

niques based on stigmergy for the design and implementation of pervasive computing envi-

ronments. Consequently, the main contributions made by this thesis can be summarised as

follows:

• An overview of pervasive computing systems with respect to the integration and organ-

isation of devices and applications within these types of the environments.

• A highly decentralized method for organising components of a pervasive computing

environment that supports spontaneous interaction between entities and provides robust

system-wide behavior.
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• A framework, called Cocoa, that supports the use of techniques based on the phenomena

of stigmergy to build self-coordinating environments which promote the autonomy of

entities.

• A programming abstraction encapsulated in a high-level scripting language that gen-

eralises the methodologies used by social insects to construct a society of autonomous

entities capable of responding to the environment in a stigmergic manner.

• A demonstration of the Cocoa framework and the scripting languge using a number of

application scenarios covering a range of domains.

7.2 Open Research Issues

As is so often the case with research there are some issues that remain open for possible

future work. The stigmergic model developed in this thesis is based in the concept of using

qualitative stigmergy to mediate the communication of entities in a pervasive computing

environment. The use of quantitative stigmergy proved di�cult to apply due to the need to

deposit arti�cial pheromones in a virtual environment. However, this type of stigmergy could

be of interest and may provide an improved method of controlling the behavior of pervasive

computing environments if the problem of managing the virtual environment and the resulting

consistency requirements in an ad-hoc environment can be overcome.

In the requirements stated in section 3.1.2, R10 - security and privacy - described the need

to maintain the privacy of users and to control access to devices and services within a pervasive

computing environment. Section 3.3.8 stated that providing security for pervasive computing

environment and ensuring the privacy of users was not addressed directly via the use of

stigmergy, though it does not restrict its inclusion at a later stage. The current prototypical

implementation of the stigmergic model does not include support for this requirement. To

tackle this issue further implementations might consider incorporating a trust-based model,

such as in the SECURE project [24], to determine the trustworthiness of users and of entities

in a pervasive computing environment.

The current prototypical implementation uses a context model that de�nes the context
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information used by entities to describe the environment. The context model currently uses

the concept of primary context information, which is well understood and de�ned, and sec-

ondary context information which consists of key/value pairings. There is an assumption that

entities have a common understanding of what these key/value pairings mean, however, there

is the potential for them to be open to interpretation. While the current implementation of

the context model proved su�cient to prove the viability of the approach presented in this

thesis, further work is necessary to ensure the interpretation of context information is consis-

tent between entities. Such an alternative approach may use an ontology to de�ne the context

information that can be used in Cocoa.

7.3 Concluding Remarks

This chapter summarised the motivations for and the most signi�cant achievements of the

work presented in this thesis. In particular, it outlined how this work contributed to the

state of the art in pervasive computing by providing a highly decentralised method, based

on the natural phenomena of stigmergy, for organising components of a pervasive comput-

ing environment that supports spontaneous interaction between entities and provides robust

system-wide behavior. The chapter concluded with some suggestions for possible future work

arising from the research undertaken as part of this thesis.
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Gammar for Scripting Language

Below is the BNF grammar for the scripting language de�ned in chapter 4. The grammar

was generated using the jjdoc tool of the Javacc [103] utility.

1 Sc r i p t := <IDENTIFIER> ( " extends " I d e n t i f i e r ) ? ScriptBody <EOF>
2 ScriptBody := Block
3 Var iab l eDec l a ra to r := Var iab leDec larator ID ( "=" V a r i a b l e I n i t i a l i z e r ) ?
4 Type := ( " behavior " | " context " | " cv func t i on " )
5 Var iab leDec larator ID := <IDENTIFIER>
6 Va r i a b l e I n i t i a l i z e r := Express ion
7 Express ion := ( Assignment | I n t e rva lExpr e s s i on | ProximityExpress ion

| UnaryExpression | PrimaryExpress ion )
8 UnaryExpression := ( "+" | "−" ) PrimaryExpress ion
9 Assignment := PrimaryExpress ion AssignmentOperator Express ion
10 ProximityExpress ion := "proximity " Arguments
11 I n t e rva lExpr e s s i on := " [ " ( NameList ) ? " ] "
12 PrimaryExpress ion := PrimaryPref ix ( Pr imarySuf f ix ) ∗
13 PrimaryPref ix := ( L i t e r a l | ThisExpress ion | Name )
14 PrimarySuf f ix := ( Arguments | " . " I d e n t i f i e r )
15 ThisExpress ion := " t h i s "
16 Name := I d e n t i f i e r ( " . " I d e n t i f i e r ) ?
17 NameList := Name ( " , " Name ) ∗
18 I d e n t i f i e r := <IDENTIFIER>
19 L i t e r a l := ( <INTEGER_LITERAL> | <FLOATING_POINT_LITERAL> | <

STRING_LITERAL> | AnyLitera l )
20 AnyLitera l := "any"
21 AssignmentOperator := "="
22 Arguments := " ( " ( ArgumentList ) ? " )
23 ArgumentList := Express ion ( " , " Express ion ) ∗
24 Statement := Block | StatementExpress ion | MappingStatement
25 Block := "{" ( BlockStatement ) ∗ "}"
26 BlockStatement := ( Loca lVar i ab l eDec l a ra t i on | Statement )
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27 Loca lVar i ab l eDec l a ra t i on := Type Var i ab l eDec la ra to r ( " , "
Var i ab l eDec l a ra to r ) ∗

28 StatementExpress ion := ( Assignment | ProximityExpress ion |
PrimaryExpress ion )

29 MappingStatement := "map" In t e rva lExpr e s s i on ( In t e rva lExpr e s s i on ) ∗ "
onto" Block
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Cocoa Con�guration File

The appendix contains a sample con�guration �le that is used to intialise the Cocoa framework

for an entity.

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . steam . SteamContextComms : i e . tcd . cs

. dsg . comms . steam . SteamSensorComms : i e . tcd . cs . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . yabs . compi le r . Yabs : i e . tcd . cs . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . s en so r s . GPSSensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . SimpleModelDriver
6 cocoa . model . name=simplemodel cocoa . model . l e a s e =10000
7

8 // S t a t i c con t ex t
9 cocoa . en t i t y . ob j e c t=pete ' s d e s k l i g h t
10 cocoa . en t i t y . c o l o r=red
11

12 //Parameters to i n t i a l i s e s c r i p t i n g component .
13 cocoa . yabs . path=/opt/ s c r i p t s
14 cocoa . yabs . s c r i p t=de s k l i g h t
15

16 //Parameters to i n t i a l i s e STEAM communication d r i v e r .
17 steam .mode=mobile
18 steam . range=50
19 steam . per iod=1
20 steam . proximity=50
21

22 //Parameters to i n t i a l i s e st igmergy runtime
23 cocoa . cv . i gnore t ime=true
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24

25 //Parameters to i n t i a l i s e GPS senso r component .
26 gpsensor . symlocat ion=pete ' s d e s k l i g h t
27 gpsensor . data . l e a s e =10000
28 gpsensor . metadata . l e a s e =60000
29 gpsensor . s e r v e r=bra in gpssensor . port=2947
30

31 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

32 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
33 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
34 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa
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Application Scenarios

This appendix contains code extracts from the application scenarios presented in chapter 6.

C.1 Location Sensor for Simulated Environment

The source code in this section is of the sensor component used to represent the location

sensor in the simulated environment.

1 package i e . tcd . cs . dsg . karma . s en so r s ;
2

3 import i e . tcd . c s . dsg . cocoa . cocoa . CocoaException ;
4 import i e . tcd . c s . dsg . cocoa . contextmodel . Re la t iveLocat i on ;
5 import i e . tcd . c s . dsg . cocoa . contextmodel . Symbol icLocat ion ;
6 import i e . tcd . c s . dsg . cocoa . s enso r . FormatSensorInformation ;
7 import i e . tcd . c s . dsg . cocoa . s enso r . IDSensorInformat ion ;
8 import i e . tcd . c s . dsg . cocoa . s enso r . Locat ionSensor In format ion ;
9 import i e . tcd . c s . dsg . cocoa . s enso r . Metadata ;
10 import i e . tcd . c s . dsg . cocoa . s enso r . SensorComponent ;
11 import i e . tcd . c s . dsg . cocoa . s enso r . Data ;
12 import i e . tcd . c s . dsg . cocoa . s enso r . SensorExcept ion ;
13 import i e . tcd . c s . dsg . cocoa . s enso r . Str ingSensorValue ;
14 import i e . tcd . c s . dsg . cocoa . s enso r . SymbolicCoverage ;
15 import i e . tcd . c s . dsg . cocoa . s enso r . TypeSensorInformation ;
16 import i e . tcd . c s . dsg . cocoa . u t i l . MetadataBroadcastThread ;
17

18 import java . awt .Window ;
19 import java . awt . event . ComponentEvent ;
20 import java . awt . event . ComponentListener ;
21 import java . u t i l . HashMap ;
22 import java . u t i l .Map;
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23

24 public class SimulatedLocat ionSensor extends SensorComponent
implements ComponentListener {

25 private stat ic long LEASE = 10000;
26 private Window window ;
27 private MetadataBroadcastThread thread ;
28 public SimulatedLocat ionSensor (Window window) {
29 super ( ) ; this . window = window ;
30 }
31

32 public void i n i t i a l i s e ( ) throws CocoaException {
33 super . i n i t i a l i s e ( ) ;
34 Metadata metadata = new Metadata ( ) ;
35 metadata . s e tLocat i on (new Locat ionSensor In format ion (new

Symbol icLocat ion (window . getName ( ) ) ) ) ;
36 metadata . setCoverage (new SymbolicCoverage (window . getName ( ) ) ) ;
37 metadata . setID ( IDSensorInformation . generateID ( ) ) ;
38 metadata . setType (new TypeSensorInformation ( " l o c a t i o n " ) ) ;
39 metadata . s e tLease (LEASE) ;
40 St r ing [ ] names = {" value " } ;
41 int [ ] types = {FormatSensorInformation .STRING} ;
42 metadata . setFormat (new FormatSensorInformation (names , types ) ) ;
43 this . setSensorMetadata (metadata ) ;
44 window . addComponentListener ( this ) ;
45 thread = new MetadataBroadcastThread ( this , 5000 ) ;
46 thread . s t a r t ( ) ;
47 }
48

49 public void f i n a l i s e ( ) throws CocoaException {
50 thread . s topProces s ( ) ;
51 super . f i n a l i s e ( ) ;
52 window . removeComponentListener ( this ) ;
53 }
54

55 public void componentResized (ComponentEvent e ) {}
56

57 public void componentMoved (ComponentEvent e ) {
58 i f ( e . getSource ( ) == window) {
59 try {
60 Rela t iveLocat i on l o c = new Rela t iveLocat i on (new

Symbol icLocat ion ( " spacedog " ) ,window . getLocat ion ( ) . x + (window . getWidth
( ) / 2) , window . getLocat ion ( ) . y + (window . getHeight ( ) / 2) ) ;

61 Map va lues = new HashMap( ) ;
62 va lue s . put ( " value " ,new Str ingSensorValue ( l o c . t oS t r i ng ( ) ) ) ;
63 Data data = new Data ( values ,LEASE, this . getSensorMetadata ( ) .

getID ( ) ) ;
64 super . update ( data ) ;
65 } catch ( SensorExcept ion exp ) {
66 exp . pr intStackTrace ( ) ;
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67 }
68 }
69 }
70

71 public void update ( ) throws SensorExcept ion {}
72 public void componentShown (ComponentEvent e ) {}
73 public void componentHidden (ComponentEvent e ) {}
74 }

C.2 Activity Sensor for Simulated Environment

The source code in this section is of the sensor component used to represent the activity sensor

in the simulated environment.

1

2 package i e . tcd . cs . dsg . karma . s en so r s ;
3

4 import i e . tcd . c s . dsg . cocoa . cocoa . CocoaException ;
5 import i e . tcd . c s . dsg . cocoa . contextmodel . Symbol icLocat ion ;
6 import i e . tcd . c s . dsg . cocoa . s enso r . FormatSensorInformation ;
7

8 import i e . tcd . c s . dsg . cocoa . s enso r . IDSensorInformat ion ;
9 import i e . tcd . c s . dsg . cocoa . s enso r . Locat ionSensor In format ion ;
10 import i e . tcd . c s . dsg . cocoa . s enso r . Metadata ;
11 import i e . tcd . c s . dsg . cocoa . s enso r . SensorComponent ;
12 import i e . tcd . c s . dsg . cocoa . s enso r . Data ;
13 import i e . tcd . c s . dsg . cocoa . s enso r . SensorExcept ion ;
14 import i e . tcd . c s . dsg . cocoa . s enso r . Str ingSensorValue ;
15 import i e . tcd . c s . dsg . cocoa . s enso r . SymbolicCoverage ;
16 import i e . tcd . c s . dsg . cocoa . s enso r . TypeSensorInformation ;
17 import i e . tcd . c s . dsg . cocoa . u t i l . MetadataBroadcastThread ;
18

19 import java . awt .Window ;
20 import java . beans . PropertyChangeEvent ;
21 import java . beans . PropertyChangeListener ;
22 import java . u t i l . HashMap ;
23 import java . u t i l .Map;
24 public class WindowActivitySensor extends SensorComponent implements

PropertyChangeListener {
25 private stat ic long LEASE = 10000;
26 private MetadataBroadcastThread thread ;
27 private Window window ;
28 public WindowActivitySensor (Window window) {
29 super ( ) ;
30 this . window = window ;
31 }
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32

33 public void i n i t i a l i s e ( ) throws CocoaException {
34 super . i n i t i a l i s e ( ) ;
35 Metadata metadata = new Metadata ( ) ;
36 metadata . s e tLocat i on (new Locat ionSensor In format ion (new

Symbol icLocat ion (window . getName ( ) ) ) ) ;
37 metadata . setCoverage (new SymbolicCoverage (window . getName ( ) ) ) ;
38 metadata . setID ( IDSensorInformation . generateID ( ) ) ;
39 metadata . setType (new TypeSensorInformation ( " a c t i v e " ) ) ;
40 metadata . s e tLease (LEASE) ;
41 St r ing [ ] names = {" value " } ;
42 int [ ] types = {FormatSensorInformation .STRING} ;
43 metadata . setFormat (new FormatSensorInformation (names , types ) ) ;
44 this . setSensorMetadata (metadata ) ;
45 thread = new MetadataBroadcastThread ( this , 5000 ) ;
46 thread . s t a r t ( ) ;
47 }
48

49 public void f i n a l i s e ( ) throws CocoaException {
50 thread . s topProces s ( ) ;
51 super . f i n a l i s e ( ) ;
52 }
53 public void propertyChange ( PropertyChangeEvent evt ) {
54 try {
55 Map va lues = new HashMap( ) ;
56 va lue s . put ( " value " ,new Str ingSensorValue ( evt . getPropertyName ( ) ) )

;
57 super . update (new Data ( values ,LEASE, this . getSensorMetadata ( ) .

getID ( ) ) ) ;
58 } catch ( SensorExcept ion e ) {
59 e . pr intStackTrace ( ) ;
60 }
61 }
62

63 public void update ( ) throws SensorExcept ion {}
64 }

C.3 GPS Location Sensor

The source code in this section is of the sensor component used to represent the GPS location

sensor.

1 package i e . tcd . cs . dsg . s en s o r s ; import java . i o . BufferedReader ;
2

3 import java . i o . DataOutputStream ;
4 import java . i o . IOException ;
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5 import java . i o . InputStreamReader ;
6 import java . net . InetAddress ;
7 import java . net . Socket ;
8 import java . net . UnknownHostException ;
9

10 import i e . tcd . c s . dsg . cocoa . cocoa . Cocoa ;
11 import i e . tcd . c s . dsg . cocoa . cocoa . CocoaException ;
12 import i e . tcd . c s . dsg . cocoa . cocoa . Environment ;
13 import i e . tcd . c s . dsg . cocoa . contextmodel . Symbol icLocat ion ;
14 import i e . tcd . c s . dsg . cocoa . s enso r . Data ;
15 import i e . tcd . c s . dsg . cocoa . s enso r . DoubleSensorValue ;
16 import i e . tcd . c s . dsg . cocoa . s enso r . FormatSensorInformation ;
17 import i e . tcd . c s . dsg . cocoa . s enso r . IDSensorInformat ion ;
18 import i e . tcd . c s . dsg . cocoa . s enso r . Locat ionSensor In format ion ;
19 import i e . tcd . c s . dsg . cocoa . s enso r . Metadata ;
20 import i e . tcd . c s . dsg . cocoa . s enso r . SensorComponent ;
21 import i e . tcd . c s . dsg . cocoa . s enso r . SensorExcept ion ;
22 import i e . tcd . c s . dsg . cocoa . s enso r . SymbolicCoverage ;
23 import i e . tcd . c s . dsg . cocoa . s enso r . TypeSensorInformation ;
24 import i e . tcd . c s . dsg . cocoa . u t i l . MetadataBroadcastThread ;
25 import i e . tcd . c s . dsg . cocoa . u t i l . SensorUpdateThread ;
26

27 public class GPSPositionSensor extends SensorComponent {
28 private stat ic f ina l St r ing LOGGER = "cocoa . l o gg e r " ;
29 private stat ic f ina l St r ing PORT_NUMBER = " gpssensor . port " ;
30 private stat ic f ina l St r ing SERVER = "gpsensor . s e r v e r " ;
31 private stat ic f ina l St r ing METADATA_LEASE = " gpsensor . metadata .

l e a s e " ;
32 private stat ic f ina l St r ing DATA_LEASE = " gpsensor . data . l e a s e " ;
33 private stat ic f ina l St r ing SYMBOLIC_LOCATION = "gpsensor .

symlocat ion " ;
34 private stat ic f ina l St r ing PROTOCOL_POSITION = "p" ;
35 private stat ic f ina l St r ing PROTOCOL_DATE = "d" ;
36 private stat ic f ina l St r ing PROTOCOL_ALTITUDE = "a" ;
37 private stat ic f ina l St r ing PROTOCOL_SPEED = "v" ;
38 private stat ic f ina l St r ing PROTOCOL_STATUS = " s " ;
39 stat ic f ina l St r ing PROTOCOL_MODE = "m" ;
40 private stat ic f ina l int DEFAULT_PORT_NUMER = 2947 ;
41 private stat ic f ina l St r ing DEFAULT_SERVER = " 127 . 0 . 01 " ;
42 private stat ic f ina l long DEFAULT_METADATA_LEASE= 60000 ;
43 private stat ic f ina l long DEFAULT_DATA_LEASE = 10000 ;
44 private int portNumber ; private InetAddress s e r v e r ;
45 private Socket gpsSocket ;
46 private BufferedReader input ;
47 private DataOutputStream output ;
48 private long metadataLease ;
49 private long dataLease ;
50 private boolean i n i t i a l i s e d = fa l se ;
51 private MetadataBroadcastThread metadataBroadcastThread ;
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52 private SensorUpdateThread updateThread ;
53

54 // t h i s sensor uses the gpsd daemon tha t can be found at h t t p ://www.
pygps . org / gpsd/

55 public GPSPositionSensor ( ) {
56 super ( ) ;
57 }
58

59 public void i n i t i a l i s e ( ) throws CocoaException {
60 super . i n i t i a l i s e ( ) ;
61 Environment environment = ( Environment ) Cocoa . components . r e t r i e v e (

Cocoa .ENVIRONMENT) ;
62 i f ( environment == null ) {
63 throw new CocoaException ( "Environment component has not been

loaded " ) ;
64 }
65 St r ing dataLeaseStr ing = environment . getProperty (DATA_LEASE) ;
66 i f ( dataLeaseStr ing == null ) {
67 this . metadataLease = DEFAULT_METADATA_LEASE;
68 } else {
69 try {
70 this . dataLease = Long . parseLong ( dataLeaseStr ing ) ;
71 }catch (NumberFormatException e ) {
72 throw new CocoaException ( "Data l e a s e number f o r GPSensor has

not been de f ined proper ly " ) ;
73 }
74 }
75 Metadata metadata = new Metadata ( ) ;
76 St r ing symbolLocation = environment . getProperty (SYMBOLIC_LOCATION)

;
77 i f ( symbolLocation == null ) {
78 throw new CocoaException ( "Symbolic l o c a t i o n f o r GPSSensor has

not been de f ined . " ) ;
79 }
80 metadata . s e tLocat i on (new Locat ionSensor In format ion (new

Symbol icLocat ion ( symbolLocation ) ) ) ;
81 metadata . setCoverage (new SymbolicCoverage ( symbolLocation ) ) ;
82 metadata . setID ( IDSensorInformation . generateID ( ) ) ;
83 metadata . setType (new TypeSensorInformation ( " l o c a t i o n " ) ) ;
84 St r ing metadataLeaseStr ing = environment . getProperty (

METADATA_LEASE) ;
85 i f ( metadataLeaseStr ing == null ) {
86 this . metadataLease = DEFAULT_METADATA_LEASE;
87 } else {
88 try {
89 this . metadataLease = Long . parseLong ( metadataLeaseStr ing ) ;
90 }catch (NumberFormatException e ) {
91 throw new CocoaException ( "Metadata l e a s e number f o r GPSensor

has not been de f ined proper ly " ) ;
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92 }
93 }
94 metadata . s e tLease ( this . metadataLease ) ;
95 St r ing [ ] names = {"ns" , "ew" } ;
96 int [ ] types = {FormatSensorInformation .DOUBLE,

FormatSensorInformation .DOUBLE} ;
97 metadata . setFormat (new FormatSensorInformation (names , types ) ) ;
98 this . setSensorMetadata (metadata ) ;
99 St r ing portNumberString = environment . getProperty (PORT_NUMBER) ;
100 i f ( portNumberString != null ) {
101 try {
102 this . portNumber = In t eg e r . pa r s e In t ( portNumberString ) ;
103 }catch (NumberFormatException e ) {
104 throw new CocoaException ( "Port number f o r GPSensor has not

been de f ined proper ly " ) ;
105 }
106 } else {
107 this . portNumber = DEFAULT_PORT_NUMER;
108 }
109 St r ing s e r v e r S t r i n g = environment . getProperty (SERVER) ;
110 try {
111 i f ( portNumberString == null ) {
112 this . s e r v e r = InetAddress . getLoca lHost ( ) ;
113 } else {
114 this . s e r v e r = InetAddress . getByName( s e r v e r S t r i n g ) ;
115 }
116 } catch ( UnknownHostException e ) {
117 throw new CocoaException ( "Error determining s e r v e r : " + e .

t oS t r i ng ( ) ) ;
118 }
119 try {
120 this . gpsSocket = new Socket ( this . s e rver , this . portNumber ) ;
121 this . input = new BufferedReader (new InputStreamReader ( this .

gpsSocket . getInputStream ( ) ) ) ;
122 this . output = new DataOutputStream ( this . gpsSocket .

getOutputStream ( ) ) ;
123 } catch ( IOException e ) {
124 throw new CocoaException ( "Error s e t t i n g up connect ion with

s e r v e r : " + e . t oS t r i ng ( ) ) ;
125 }
126 metadataBroadcastThread = new MetadataBroadcastThread ( this , this .

metadataLease /2) ;
127 metadataBroadcastThread . s t a r t ( ) ;
128 updateThread = new SensorUpdateThread ( this , this . dataLease / 2) ;
129 updateThread . s t a r t ( ) ;
130 i n i t i a l i s e d = true ;
131 }
132

133 public void f i n a l i s e ( ) throws CocoaException {
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134 try {
135 i f ( this . i n i t i a l i s e d ) {
136 super . f i n a l i s e ( ) ;
137 this . metadataBroadcastThread . s topProces s ( ) ;
138 this . updateThread . s topProces s ( ) ;
139 this . output . f l u s h ( ) ;
140 this . output . c l o s e ( ) ;
141 output = null ;
142 this . input . c l o s e ( ) ;
143 input = null ;
144 this . gpsSocket . c l o s e ( ) ;
145 gpsSocket = null ;
146 }
147 } catch ( IOException e ) {
148 throw new CocoaException ( "Error c l o s i n g socket : " + e . t oS t r i ng ( )

) ;
149 } f ina l ly {
150 this . i n i t i a l i s e d = fa l se ;
151 }
152 }
153

154 public void update ( ) throws SensorExcept ion {
155 try {
156 i f ( this . i n i t i a l i s e d ) { // check i f a v a l i d p o i s t i o n can be

ob ta ined
157 // ge t mode
158 this . output . wr i teBytes (PROTOCOL_MODE) ;
159 St r ing modeString = this . input . readLine ( ) . tr im ( ) ;
160 i f ( ! modeString . s tartsWith ( "GPSD,M" ) ) {
161 throw new SensorExcept ion ( "Error r e t r i e v i n g gps data from

se rv e r " ) ;
162 }
163 //Mode : 1=Fix not a v a i l a b l e 2=2D 3=3D
164 int mode = In t eg e r . pa r s e In t ( modeString . sub s t r i ng ( modeString .

indexOf ( "=" ) +1) ) ;
165 i f (mode == 1 | | mode == 0) {
166 return ;
167 }
168 // ge t s t a t u s
169 this . output . wr i teBytes (PROTOCOL_STATUS) ;
170 St r ing s t a t u sS t r i n g = this . input . readLine ( ) . tr im ( ) ;
171 //GPS q u a l i t y i n d i c a t o r (0= i n v a l i d ; 1=GPS f i x ; 2=Di f f . GPS f i x )
172 i f ( ! s t a t u sS t r i n g . s tartsWith ( "GPSD, S" ) ) {
173 throw new SensorExcept ion ( "Error r e t r i e v i n g gps data from

se rv e r " ) ;
174 }
175 int s t a tu s = In t eg e r . pa r s e In t ( modeString . sub s t r i ng ( modeString .

indexOf ( "=" ) +1) ) ;
176 i f ( s t a tu s == 0) {
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177 return ;
178 //once e v e r y t h in g i s ok then ge t gps p o s i t i o n
179 this . output . wr i teBytes (PROTOCOL_POSITION) ;
180 St r ing po s i t i o n = this . input . readLine ( ) . tr im ( ) ;
181 // data in the form GPSD,P=36.000000 123.000000\ r\n
182 i f ( p o s i t i o n . s tartsWith ( "GPSD,P" ) ) {
183 int index = po s i t i o n . indexOf ( "=" ) ;
184 St r ing [ ] par t s = po s i t i o n . sub s t r i ng ( index +1) . s p l i t ( " " ) ;
185 DoubleSensorValue ns = new DoubleSensorValue (Double .

parseDouble ( par t s [ 0 ] ) ) ;
186 DoubleSensorValue ew = new DoubleSensorValue (Double .

parseDouble ( par t s [ 1 ] ) ) ;
187 Data data = new Data ( this . dataLease , this . getSensorMetadata ( )

. getID ( ) ) ;
188 data . addSensorValue ( "ns" , ns ) ;
189 data . addSensorValue ( "ew" ,ew) ;
190 this . data = data ;
191 this . update ( data ) ;
192 }
193 }
194 } catch ( IOException e ) {
195 e . pr intStackTrace ( ) ;
196 throw new SensorExcept ion ( "Error r e t r i e v i n g gps data from se rv e r

" ) ;
197 } catch (NumberFormatException e ) {
198 e . pr intStackTrace ( ) ;
199 throw new SensorExcept ion ( "Error r e t r i e v i n g gps data from se rv e r

" ) ;
200 }
201 }
202 }

C.4 Punter Entity

Contained in this section is the script used for the punter entity presented in chapter 6 and

the di�erent con�guration �les for the entity used in the scenarios.

C.4.1 Script

1 punter extends person {
2 proximity (5 )
3 }

C.4.2 Con�guration File for Simulated Environment
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1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedLocat ionSensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . PunterModelDriver
6 cocoa . model . name=puntermodel
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . person=pete r
11

12 //Parameters to i n t i a l i s e s c r i p t i n g component .
13 cocoa . yabs . path=/opt/ s c r i p t s
14 cocoa . yabs . s c r i p t=punter
15

16 //Parameters to i n t i a l i s e Siena communication d r i v e r .
17 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
18

19 //Parameters to i n t i a l i s e s t i gmergy runtime
20 cocoa . cv . i gnore t ime=true
21

22 /Other parameters f o r keeping track o f symbol ic in fo rmat ion and
logg ing

23 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
24 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
25 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.4.3 Con�guration File for the Jukebox Scenario

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedLocat ionSensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . PunterModelDriver
6 cocoa . model . name=puntermodel cocoa . model . l e a s e =5000
7

8 // S t a t i c con t ex t
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9 cocoa . en t i t y . person=jane
10 cocoa . en t i t y . music=hip−hop
11

12 //Parameters to i n t i a l i s e s c r i p t i n g component .
13 cocoa . yabs . path=/opt/ s c r i p t s
14 cocoa . yabs . s c r i p t=punter
15

16 //Parameters to i n t i a l i s e Siena communication d r i v e r .
17 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
18

19 //Parameters to i n t i a l i s e s t i gmergy runtime
20 cocoa . cv . i gnore t ime=true
21

22 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

23 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
24 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
25 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.4.4 Con�guration File for the Voice Scenario

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . PunterModelDriver
6 cocoa . model . name=puntermodel
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . person=Vinny
11 cocoa . en t i t y . l o c a t i o n=F32 , ORei l ly I n s t i t u a t i o n
12

13 //Parameters to i n t i a l i s e s c r i p t i n g component .
14 cocoa . yabs . path=/opt/ s c r i p t s
15 cocoa . yabs . s c r i p t=punter
16

17 //Parameters to i n t i a l i s e Siena communication d r i v e r .
18 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
19

20 //Parameters to i n t i a l i s e s t i gmergy runtime
21 cocoa . cv . i gnore t ime=true
22
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23 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

24 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
25 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
26 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.4.5 Con�guration File for Westland Row

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . steam . SteamContextComms : i e . tcd . cs

. dsg . comms . steam . SteamSensorComms : i e . tcd . cs . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Jabs : i e . tcd . c s . dsg . cocoa . contextua lv i ew .
ComponentCV : i e . tcd . cs . dsg . s en s o r s . GPSPositionSensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . PunterModelDriver
6 cocoa . model . name=puntermodel cocoa . model . l e a s e =5000
7

8 // S t a t i c con t ex t
9 cocoa . en t i t y . person=Vinny
10

11 //Parameters to i n t i a l i s e s c r i p t i n g component .
12 cocoa . yabs . path=/opt/ s c r i p t s cocoa . yabs . s c r i p t=punter
13

14 //Parameters to i n t i a l i s e Steam communication d r i v e r .
15 steam .mode=mobile
16 steam . range=50
17 steam . per iod=1
18 steam . proximity=50
19

20 //Parameters to i n t i a l i s e s t i gmergy runtime
21 cocoa . cv . i gnore t ime=true
22

23 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

24 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
25 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
26 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa
27 gpsensor . symlocat ion=vinny
28 gpsensor . data . l e a s e =10000
29 gpsensor . metadata . l e a s e =60000
30 gpsensor . s e r v e r=bra in
31 gpssensor . port=2947
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C.5 Help Assistant Entity

Contained in this section is a sample con�guration �le that can be used to for the help assistant

entity presented in chapter 6.

C.5.1 Con�guration File

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedLocat ionSensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . As i ss tantModelDr iver
6 cocoa . model . name=as s i s t antmode l
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . ob j e c t=j ohn sh e l p a s s i s t a n t
11

12 //Parameters to i n t i a l i s e s c r i p t i n g component .
13 cocoa . yabs . path=/opt/ s c r i p t s
14 cocoa . yabs . s c r i p t=a s s i s t a n t
15

16 //Parameters to i n t i a l i s e Siena communication d r i v e r .
17 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
18

19 //Parameters to i n t i a l i s e s t i gmergy runtime
20 cocoa . cv . i gnore t ime=true
21

22 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

23 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
24 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
25 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.6 Tourist Attraction Entity

Contained in this section is the script used for the tourist attraction entity presented in chapter

6 and the sample con�guration �le for the entity.
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C.6.1 Script

1 t o u r i s t s p o t extends p lace {
2 proximity (5 )
3 }

C.6.2 Con�guration File

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedLocat ionSensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . TouristSpotModelDriver
6 cocoa . model . name=tour i s t spo tmode l
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . p lace=t r i n i t y c o l l e g e d u b l i n
11 cocoa . en t i t y . about=http : //www. tcd . i e
12

13 //Parameters to i n t i a l i s e s c r i p t i n g component .
14 cocoa . yabs . path=/opt/ s c r i p t s
15 ocoa . yabs . s c r i p t=t ou r i s t s p o t
16

17 //Parameters to i n t i a l i s e Siena communication d r i v e r .
18 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
19

20 //Parameters to i n t i a l i s e s t i gmergy runtime
21 cocoa . cv . i gnore t ime=true
22

23 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

24 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
25 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
26 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.7 Electronic Tour Guide Entity

Contained in this section is a sample con�guration �le that can be used to for the electronic

tour guide entity presented in chapter 6.
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C.7.1 Con�guration File

1 //Components to load in t o framework cocoa . components=i e . t cd . cs . dsg .
comms . s i ena . SienaContextComms : i e . t cd . cs . dsg . comms . s i ena .
SienaSensorComms : i e . t cd . cs . dsg . cocoa . u t i l . SensorMetadataFi l t er : i e . t cd .
cs . dsg . cocoa . u t i l . Symbo l i cLoca t i onF i l t e r : i e . t cd . cs . dsg . cocoa .
c o n t e x t a c q u i s i t i o n . ComponentContextAcquisi t ion : i e . t cd . cs . dsg . j a b s .
compi ler . Yabs : i e . t cd . cs . dsg . cocoa . runtime . ComponentStigmergyRuntime : i e
. t cd . cs . dsg . karma . sensors . SimulatedLocat ionSensor

2

3 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
4 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . TourGuideModelDriver
5 cocoa . model . name=tourguidemodel
6 cocoa . model . l e a s e =5000
7

8 // S t a t i c con t ex t
9 cocoa . en t i t y . ob j e c t=jane s tou rgu ide
10

11 //Parameters to i n t i a l i s e s c r i p t i n g component .
12 cocoa . yabs . path=/opt/ s c r i p t s
13 cocoa . yabs . s c r i p t=tourgu ide
14

15 //Parameters to i n t i a l i s e Siena communication d r i v e r .
16 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
17

18 //Parameters to i n t i a l i s e s t i gmergy runtime
19 cocoa . cv . i gnore t ime=true
20

21 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

22 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
23 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
24 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.8 The Jukebox Entity

Contained in this section is a sample con�guration �le that can be used to for the jukebox

entity presented in chapter 6.

C.8.1 Con�guration File for Simulated Environment

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
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tcd . cs . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedLocat ionSensor : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedAct iv i tySensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . JukeboxModelDriver
6 cocoa . model . name=jukeboxmodel
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . ob j e c t=thomasjukebox
11

12 //Parameters to i n t i a l i s e s c r i p t i n g component .
13 cocoa . yabs . path=/opt/ s c r i p t s
14 cocoa . yabs . s c r i p t=jukebox
15

16 //Parameters to i n t i a l i s e Siena communication d r i v e r .
17 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
18

19 //Parameters to i n t i a l i s e s t i gmergy runtime
20 cocoa . cv . i gnore t ime=true
21

22 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

23 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
24 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
25 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa
26 jukebox . mp3dir=/opt/music/

C.8.2 Con�guration File for Westland Row

1 //Components to load in t o framework cocoa . components=i e . t cd . cs . dsg .
comms . steam . SteamContextComms : i e . t cd . cs . dsg . comms . steam .
SteamSensorComms : i e . t cd . cs . dsg . cocoa . u t i l . SensorMetadataFi l t er : i e . t cd .
cs . dsg . cocoa . u t i l . Symbo l i cLoca t i onF i l t e r : i e . t cd . cs . dsg . cocoa .
c o n t e x t a c q u i s i t i o n . ComponentContextAcquisi t ion : i e . t cd . cs . dsg . j a b s .
compi ler . Jabs : i e . t cd . cs . dsg . cocoa . con t e x tua l v i ew .ComponentCV : i e . t cd . cs
. dsg . s ensors . GPSPositionSensor

2

3 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
4 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . JukeboxModelDriver
5 cocoa . model . name=jukeboxmodel
6 cocoa . model . l e a s e =5000
7

8 // S t a t i c con t ex t
9 cocoa . en t i t y . ob j e c t=westcoast jukebox
10

11 //Parameters to i n t i a l i s e s c r i p t i n g component .
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12 cocoa . yabs . path=/opt/ s c r i p t s
13 cocoa . yabs . s c r i p t=jukebox
14

15 //Parameters to i n t i a l i s e Steam communication d r i v e r .
16 steam .mode=mobile
17 steam . range=50
18 steam . per iod=1
19 steam . proximity=50
20

21 //Parameters to i n t i a l i s e s t i gmergy runtime
22 cocoa . cv . i gnore t ime=true
23

24 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

25 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
26 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
27 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa
28 gpsensor . symlocat ion=westcoast jukebox
29 gpsensor . data . l e a s e =10000
30 gpsensor . metadata . l e a s e =60000
31 gpsensor . s e r v e r=bra in
32 gpssensor . port=2947
33 jukebox . mp3dir=/opt/music/

C.9 Streetlight Entity

Contained in this section is a sample con�guration �le that can be used to for the streetlight

entity presented in chapter 6.

C.9.1 Con�guration File

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedLocat ionSensor : i e . tcd . cs . dsg . karma . s en so r s .
S imulatedAct iv i tySensor

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . S t r e e t l i gh tMode lDr iv e r
6 cocoa . model . name=s t r e e t l i g h tmode l
7 cocoa . model . l e a s e =5000
8
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9 // S t a t i c con t ex t
10 cocoa . en t i t y . ob j e c t=s t r e e t l i g h t 1
11

12 //Parameters to i n t i a l i s e s c r i p t i n g component .
13 cocoa . yabs . path=/opt/ s c r i p t s
14 cocoa . yabs . s c r i p t=s t r e e t l i g h t
15

16 //Parameters to i n t i a l i s e Siena communication d r i v e r .
17 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
18

19 //Parameters to i n t i a l i s e s t i gmergy runtime
20 cocoa . cv . i gnore t ime=true
21

22 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

23 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
24 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
25 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.10 The Voice Entity

Contained in this section is a sample con�guration �le that can be used to for the voice entity

presented in chapter 6.

C.10.1 Con�guration File

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . s i ena . SienaContextComms : i e . tcd . c s

. dsg . comms . s i ena . SienaSensorComms : i e . tcd . c s . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Yabs : i e . tcd . c s . dsg . cocoa . runtime .
ComponentStigmergyRuntime

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . Fire foxModelDr iver
6 cocoa . model . name=f i r e f oxmode l
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . ob j e c t=v innys thevo i c e
11 cocoa . en t i t y . l o c a t i o n=F32 , ORei l ly I n s t i t u a t i o n
12

13 //Parameters to i n t i a l i s e s c r i p t i n g component .
14 cocoa . yabs . path=/opt/ s c r i p t s
15 cocoa . yabs . s c r i p t=thevo i c e
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16

17 //Parameters to i n t i a l i s e Siena communication d r i v e r .
18 s i ena . master=tcp : spacedog . dsg . cs . tcd . i e :8461
19

20 //Parameters to i n t i a l i s e s t i gmergy runtime
21 cocoa . cv . i gnore t ime=true
22

23 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

24 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
25 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
26 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.11 Siopa Entity

Contained in this section is a sample con�guration �le that can used for the siopa entity,

presented in chapter 6, and the script to de�ne its behavior in the environment.

C.11.1 Script

1 s i opa extends p lace {
2 proximity (50)
3 }

C.11.2 Con�guration File

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . steam . SteamContextComms : i e . tcd . cs

. dsg . comms . steam . SteamSensorComms : i e . tcd . cs . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Jabs : i e . tcd . c s . dsg . cocoa . contextua lv i ew .
ComponentCV

3

4 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
5 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . SiopaModelDriver
6 cocoa . model . name=siopamodel
7 cocoa . model . l e a s e =5000
8

9 // S t a t i c con t ex t
10 cocoa . en t i t y . p lace=spar
11 cocoa . en t i t y . d ea l s=http : // 172 .16 .8 .254/ spar . html
12 cocoa . en t i t y . l o c a t i o n=53◦20 ' 36\"N,6 ◦4 ' 59\"W
13

14 //Parameters to i n t i a l i s e s c r i p t i n g component .
15 cocoa . yabs . path=/opt/ s c r i p t s

242



Appendix C. Application Scenarios

16 cocoa . yabs . s c r i p t=punter
17

18 //Parameters to i n t i a l i s e Steam communication d r i v e r .
19 steam . l o c a t i o n . l a t =−614.9833
20 steam . l o c a t i o n . lon =5320.6
21 steam .mode=f i x ed
22 steam . range=50
23 steam . per iod=1
24 steam . proximity=50
25

26 //Parameters to i n t i a l i s e st igmergy runtime
27 cocoa . cv . i gnore t ime=true
28

29 //Other parameters f o r keeping track o f symbol ic in fo rmat ion and
logg ing

30 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
31 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
32 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa

C.12 Shopping Assitant Entity

Contained in this section is a sample con�guration �le that can used for the shopping assitant

entity presented chapter 6.

C.12.1 Con�guration File

1 //Components to load in t o framework
2 cocoa . components=i e . tcd . c s . dsg . comms . steam . SteamContextComms : i e . tcd . cs

. dsg . comms . steam . SteamSensorComms : i e . tcd . cs . dsg . cocoa . u t i l .
SensorMetadataFi l te r : i e . tcd . c s . dsg . cocoa . u t i l . Symbo l i cLocat i onF i l t e r :
i e . tcd . cs . dsg . cocoa . c on t e x t a c qu i s i t i o n . ComponentContextAcquisition : i e .
tcd . c s . dsg . j abs . compi le r . Jabs : i e . tcd . c s . dsg . cocoa . contextua lv i ew .
ComponentCV : i e . tcd . cs . dsg . s en s o r s . GPSPositionSensor

3 //Parameters to i n t i a l i s e con t ex t a c q u i s i t i o n component
4 cocoa . model . d r i v e r s=i e . tcd . cs . dsg . ShoppingAss istantModelDriver
5 cocoa . model . name=shopp ingas s i s tantmode l
6 cocoa . model . l e a s e =5000
7

8 // S t a t i c con t ex t
9 cocoa . en t i t y . ob j e c t=c i a r a s h opp t i n g a s s i s t a n t
10

11 //Parameters to i n t i a l i s e s c r i p t i n g component .
12 cocoa . yabs . path=/opt/ s c r i p t s
13 cocoa . yabs . s c r i p t=shopp inga s s i s t an t
14

15 //Parameters to i n t i a l i s e Steam communication d r i v e r .
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16 steam .mode=mobile
17 steam . range=50
18 steam . per iod=1
19 steam . proximity=50
20

21 //Parameters to i n t i a l i s e s t i gmergy runtime
22 cocoa . cv . i gnore t ime=true
23

24 //Other parameters f o r keep ing t rack o f symbo l ic in format ion and
l o g g i n g

25 cocoa . s t a t i c s ymbo l i c l o c a t i o n s=/opt/ runtimedata / s t a t i c s ymbo l i c l o c a t i o n s
26 cocoa . s t a t i c s ymbo l i c t ime s=/opt/ runtimedata / s t a t i c s ymbo l i c t ime s
27 cocoa . l o gg e r=i e . tcd . cs . dsg . cocoa
28 gpsensor . symlocat ion=c i a r a shopp i nga s s i s t an t
29 gpsensor . data . l e a s e =10000
30 gpsensor . metadata . l e a s e =60000
31 gpsensor . s e r v e r=bra in
32 gpssensor . port=2947
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