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' Stuttering-Poisson' Distributions

By C. D. KEMP

(Read before the Society in Belfast on May 1st, 1967)

' Stuttering-Poisson' (Galliher et al.10) aptly describes a very general
class of discrete distributions which appears under a variety of names in
the literature and which has many practical applications in operational
research, e.g. in queueing and inventory problems. In Gurland's11 ter-
minology these are generalised Poisson distributions. After reviewing
definitions and derivations, some general properties are noted. A very
simple method is used to derive recurrence relationships between the
probabilities; derivatives of the probabilities w.r.t. the parameters are also
obtained. Some individual members of the class are considered, par-
ticularly one examined by Galliher et al.—this is identified as a Polya-
Aeppli distribution and has an especially simple recurrence relationship.
Finally, methods of approximating to these distributions are briefly
mentioned.

INTRODUCTION

The probability generating function (PGF) is defined as

g(s) = E(s*)= X i V x , (1)
x = o

where Px is the probability that the (discrete) random variable takes the
value x.

The class of distributions we consider here has PGF

G(s) = exp [Li(ji - 1)], ai > 0. (2)

Galliher et al.10 used the name * stuttering-Poisson' to describe distri-
butions arising from the following model: suppose that 'bursts ' of
demand are distributed as a Poisson, whilst numbers of demands per burst
are independently distributed as some other distribution, then total
demands per unit time are distributed as the * stuttering-Poisson'. Cox5

called this type of process a ' cumulative process associated with a Poisson
process '. Galliher et al. were particularly concerned with the case where
number of demands per burst follows a geometric distribution, and
Adelson1 has pointed out that the PGF of the resultant distribution can be
expressed in the form (2). He showed this by considering the distribution
as arising from an intermingling of Poisson streams. Another way of
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showing the result in the general case is to utilise the following well-known
result2'3'9: if Sn = Xx + X2 + . . . + Xn, where the X{ are independently
identically distributed with PGF0O), and if n itself is distributed with
PGF g(s), then Sn is distributed with PGF

G(s)=g[0(s)], (3)

In particular, if n is distributed as a Poisson with parameter A, then
g(s) = exp [A(s — 1)] and

G(j) = exp{A[0(j)-l]}, (4)

and, since 0(s) is itself a PGF, GO) can be written in the form (2). Hence
the general' stuttering-Poisson ' distribution has PGF of form (2).

There is considerable confusion in the literature concerning the use of
the terms ' compound ' and ' generalised '. Some authors1'2'3'9 call (4)
a compound Poisson distribution whilst others8'11'21 call it a generalised
Poisson distribution. We adopt Gurland's11 terminology and notation.
According to this, a compound Poisson results when we allow the Poisson
parameter to be distributed, whilst a generalised Poisson results when we
replace the generating variable s in the PGF of the Poisson by a function
0(s), which is the PGF of the generalising distribution, as in (4). Thase two
processes are quite distinct. Many individual distributions are both
compound and generalised Poissons and thus can result from two or more
entirely different and often contradictory physical models. A good
example is the negative binomial, which is both a Poisson compounded
by a gamma (Poisson / s gamma in Gurland's notation) and a Poisson
generalised through a logarithmic (Poisson ^ logarithmic). To avoid some
of this confusion, it might perhaps be advantageous to use the name
' stuttering-Poisson ', rather than either compound or generalised Poisson,
when the distribution is generated by the process leading to (4), which is,
of course, ' generalisation ' in Gurland's terminology.

However, in addition to the use of' compound Poisson ' and ' general-
ised Poisson' to describe (4) and hence (2), the latter appears in the
literature under a variety of names, e.g. the (Pollaczek-Geiringer) distribu-
tion of the multiple occurrences of rare events13'20'24, the Poisson power
series distribution,19 the Poisson distribution with events in clusters,4'26

the multiple Poisson distribution.9 (In some definitions we are restricted
to PGF's with a finite number of non-zero a[.) It should be noted that the
list of references at the end of this paper makes no attempt to be exhaustive,
but we hope that it gives some indication of the wide variety of published
work on these distributions.

Several well-known distributions are particular members of this class,
e.g. negative binomial (Pascal), Neyman types A, B and C and Beall and
Rescia's generalisation of these, Poisson Pascal, Poisson binomial. If in
(3) both n and X{ are independently Poisson distributed, then S& has
Neyman's type A distribution. This distribution and its convolution with
another independent Poisson distribution (which results in a new
stuttering-Poisson—the ' Short' distribution) have, for example, been
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applied to road accident data.6'17 Again, if n is Poisson and Xi is positive
binomial (with index 2) then Sn. has the Hermite distribution18 which, as
we note later, is a useful approximating distribution. Galliher et ah
consider the case when n is Poisson and X\ is geometric—in Gurland's
notation this is Poisson ^ geometric. In these various examples, of course,
the a\ are all functions of the (usually 2 or 3) parameters of the Poisson
and the generalising distribution.

SOME PROPERTIES OF THE DISTRIBUTIONS

Several authors1'12'19 have derived a general recurrence relationship for
the probabilities by repeatedly differentiating the PGF w.r.t. s and then
placing s = 0. This method, with minor modifications, has also been used
on individual stuttering-Poisson distributions by various authors.

However, by making use of the obvious property of (2) that

= Q(s)G(s), (5)

we can derive the recurrence relationship by only differentiating once thus:

X ^ i - 1 = — = GCOSwis1-1 = Xias'1'1 S/yrJ. (6)

Equating coefficients of sx in (6) we have

(x + l )P x+i = S(i" + l)*i+i Px-i, (7)
i3o

which is the desired recurrence relationship. Po = G(0) = exp(— S#i) and
all succeeding probabilities can be computed recursively.

Now suppose that we differentiate G(s) w.r.t. a^:

4^=I f f = ( j k

Again equating coefficients of sx we have

Equation (9) may be used to set up maximum-likelihood equations for
estimating the a{ when we are interested in estimating only the first two or
three a{ (and assume the rest negligible).

These equations are obtained immediately by substituting for
in

8L _ I dPx

where L = S/Xlog Px is the log likelihood and / x is the observed frequency
of x. Except where we are only flitting ax (the Poisson), equations (10)
have to be solved iteratively (for details of methods and examples see, e.g.
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Rao23 or Kemp17). A computer programme for fitting a1 up to and
including a3 has been written in Algol by the author and run on the S.R.C.
atlas computer; results will be published elsewhere.

Interesting relationships hold between the parameters of the Poisson
and the generalising distribution and those of the resultant stuttering-
Poisson. In particular, if we denote the mean and variance of the general-
ising distribution by IJL and a2 respectively, then the mean and variance of
the stuttering-Poisson (4) are A|i and A(a2 + |i2) respectively9 (A is the
Poisson parameter), whilst in terms of (2) the mean and variance are
S/fli and SfW'20. One way of obtaining these results is by differentiating
the PGF repeatedly w.r.t. s and evaluating at s = 1 in order to obtain the
factorial moments.

All distributions of class (4) have the property of being infinitely
divisible.9 This means that, in terms of the demand model which led to
the stuttering-Poisson, if we consider the number of bursts in time t to be
Poisson with parameter tt so that

- l ] } , (11)
then

G(s; t± + t2) = G(s; tJG(s; t2) (12)

for two non-overlapping time periods t± and t2, i.e. the number of demands
in any time period is independent of that in any other time period. This
simple property has led to the widespread use of stuttering-Poisson
distributions (and in particular the Poisson itself) in queueing and inventory
theory for, amongst integer-valued random variables, only the stuttering-
Poisson has this property.

THE POLYA-AEPPLI (POISSON ^ GEOMETRIC) DISTRIBUTION

The stuttering-Poisson distribution which Galliher et ah dealt with in
detail has number of demands distributed geometrically [Px=(l—^vpx—1

x >0] and hence is Poisson ^ geometric. Their Poisson and geometric
distributions had means (1 — v)/)p and 1/(1 — v|>) respectively, thus giving
mean p and variance p(l + y)/(l — y) for the Poisson >^ geometric.

It is well known that the geometric distribution is a particular case of
the negative binomial distribution. However, a variety of parameterisa-
tions of these distributions may be found in the literature and care needs
to be taken in identifying the parameters. There are two main dichotomies
—between the points at which the distribution effectively starts, i.e. x = 0
or x = r (where r = 1 for the geometric) and between parameter bounds.
These lead to four main types of PGF for each of the negative binomial
and geometric distributions as follows:

Negative Binomial Geometric
(i) PHi - <7*)-k Ki - qsY^ f

(ii) />kjk(l - qs)~k ps(l - qs)-1 \0 < p
(iii) (Q - A)-k (Q - Ps)-1 [Q = l+P,P>0

H k 1 j
[

(iv) sHQ - P*)-k KQ - ^ ) - 1 j . e Q J, PJt



155

Galliher's geometric is of type (ii) with p = (1 — y), leading to a
Poisson v^ geometric with PGF

G(s) = exp[(l - v|/)p{(l - y>(l - v^)-1 - 1}] (14)

= expf(l ->r(i -
L i

Hence PQ = exp[—p(l — vj/)] and the general recurrence relationship (7)
becomes

(x + 1)PX+1 = (1 - y)2p £ (i + l)v|APx_i. (15)
i=o

Bearing in mind the variations (13), we can immediately identify (14)
as the PGF of the Polya-Aeppli distribution22'25, which has been applied
to a variety of biological data. Various authors have described its proper-
ties : in particular, Evans7 points out that a recurrence relationship exists
between the probabilities as follows (in our notation)

(x + 1)PX+1 = Px[(l - y)2p + 2yx] - y*(x - l)Px-v (16)

Evans also notes that individual probabilities can be expressed in terms of
confluent hypergeometric functions. Galliher et al. gave the probabilities
in terms of Laguerre polynomials (which are, of course, particular con-
fluent hypergeometrics). The recurrence relationship (16) can be derived
as a consequence of the standard recurrence relationship between confluent
hypergeometric functions. It is, however, interesting to note that our
differentiation method yields both recurrence relationships as follows:

dG ( 1 - y ) 2

XiPiS*-i= -d- =(l__ys)2 ?G(s) = (1 - y)2p(l + 2yj + 3V2*2 + . . .)SPiji

(17)

leads directly to (15), whilst rearranging this as

dG
(1 - vpj^SiPiji-1 - (1 - ysf ^ = (1 - y)2pEPi^ (18)

leads to (16).
Differentiating the PGF also gives us the derivatives of the probabilities

w.r.t. p and y:

^ ~ V(* - l)^x«i}, (19)

^ f = ( T ^ ) {[PC1 " V) - 2^]PX + (1 + ^) (x - 1 ) P M } . (20)

Maximum-likelihood equations may thus be set up (as in the previous
section, equation (10)) and solved iteratively to obtain estimates of p and y.

If demands per burst are distributed as a negative binomial instead of a
geometric distribution, the resultant stuttering-Poisson is known both as
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the generalised Polya-Aeppli25 and as the Poisson Pascal15 distribution
(note that Katti and Gurland's15 treatment is based on parameterisation

Jewell14 and Kaufman and Cruon16 have studied various properties of
the stuttering-Poisson process based on Galliher's distribution.

LIMITING FORMS OF THE DISTRIBUTION

If we consider the Poisson NX- geometric in terms of the en of (1), it is
clear that provided y is reasonably small, the magnitude of a\ drops off
rapidly with increasing z, since ax — (1 — y)2p andfli = yl~~1a1, (i> 1).
This situation often occurs with stuttering-Poisson distributions. Kemp
and Kemp18 have shown that in such cases even if the ordinary Poisson
distribution is a poor approximation, the Hermite distribution, whose
PGF is

GO) = exp [ai(s - 1) + a£s* - 1)], (21)

is often an acceptable approximation. Since it is of general applicability
to distributions of class (4), the Hermite is particularly useful for empirical
description of stuttering-Poisson data when there is uncertainty as to the
exact form of 0(s). Properties of the Hermite are discussed in Kemp and
Kemp18 and the computer programme mentioned earlier fits by maximum
likelihood a Poisson, a Hermite and a distribution (tentatively called the
tri-Poisson), with PGF

G(s) = exp [ai(s - 1) + a2(s* - 1) + az(s* - 1)], (22)

to any set of data believed to come from a stuttering-Poisson distribution.
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