Quantitative Planning and Decision-Making Technıques (With Particular Reference to Agricultural Applicatıons)

By H HARRISON

(Read before the Society in Belfast on 11 November 1968)
Since the birth of civilisation mankınd has been experımenting with numbers The study of primes, radicals, and other number forms fascinated the early mathematicians and from their researches there emerged a body of knowledge which is known today as the Theory of Numbers

In similar fashion the representation of physical units (length, mass etc) by the symbols (x, y, z, etc) led the early mathematicians to theortes describing the relationships which can exist between these abstractions Their study of equations, complex numbers, series, and other like topics has resulted in the algebras with which we are familiar today
The representation of time as an abstract quantity contributed to the development of the calculus which heralded the development of what has been called "the modern mathematics"

However, up to the end of the nineteenth century mathematics was usually studied for its own sake, or in conjunction with the attempt to understand the physical sciences It seldom occurred to the people of that era to try to apply their mathematics to therr economic, agricultural or industrıal systems
The Taylor brothers and the Gllbreaths in America, and Bedaux in France, started a revolution in the traditional concepts of the relationships between men, money and materials At the lowest level in the industrial hierarchy, the shop-floor, the man and his job were examined in the cold light of scientific measurement A startling discovery was made a man was quantifiable Once the full mplications of this discovery had been grasped a transformation occurred in industrial planning ideas The catalyst for this revolution was a method of examination and analysis which is now known as Work Study
Work Study can rıghtly be described as a forerunner of modern plannıng techniques Work Study , in spite of its undoubted usefulness, however, had serious limitations in its range of application
During the period 1920-1950, mathematical ideas were beng examined and developed, notably in the field of linear and matrix algebra Von Neumann proved the celebrated mini-max theorem and in conjunction with Morgenstern published their important work The Theory of Games and Economic Behaviour Wassily Leontief was researching in interindustry problems which culminated in the publication of The Structure of the American Economy, 1919-1929 G B Dantzing, the Rand mathematician, published his general method for finding the optımum of a linear function subject to linear constrants - the Simplex Method Erlang, the Swedish engineer, first formulated the mathematical theories of congestion which today have wide application in industry and commerce

These developments, and many others, have ushered in the modern quantitative era which is exemplified by the widespread application of mathematics to planning problems of all descriptions

The majority of mankind's economic and industrial plannıng ideas are quantifiable and therefore are susceptıble to mathematical analysis The rapid development of the electronic computer with its prodigious capacity for calculation has also stimulated the application of mathematics to these problem areas It is undoubtedly true that this trend will continue, and probably accelerate, with the result that techniques which were formerly thought of as pure mathematical abstractions will become the most modern of planning methods This point is perhaps well illustrated by the present application of Markov Chain theory to problems in agriculture and industry

It is intended in this paper to describe the application of
(1) Mathematical Programming, and
(11) Markov Chan Theory
to some of the problems in agriculture, industry and economics with which the Operational Research scientist is faced today

MATHEMATICAL PROGRAMMING AND PROBLEMS OF ALLOCATION

Allocation problems involve the allocation of resources to sectors of the economy, to geographical areas, to industries or to individual jobs This class of problem occurs when the avalable resources are in scarce supply Therefore, it is desirable to allot the resources to the activities in such a way as to minumise the total cost, maximuse the total return, or attain another such "rational" objective

Many allocation problems can be represented by a matrix as follows

Resources	Activities to be Accomplished				Amount of Resources Avanlable
	A_{1}	A_{2}	A_{J}	A_{n}	
\mathbf{R}_{1} $\mathbf{R}_{\mathbf{2}}$	c_{11} c_{21}	$\begin{aligned} & \mathrm{c}_{12} \\ & \mathrm{c}_{22} \end{aligned}$	$\begin{aligned} & \mathrm{c}_{13} \\ & \mathrm{c}_{2 j} \end{aligned}$	$\begin{aligned} & c_{1 n} \\ & c_{2_{n}} \end{aligned}$	$\begin{aligned} & \mathrm{b}_{1} \\ & \mathrm{~b}_{2} \end{aligned}$
\mathbf{R}_{p}	$\mathrm{c}_{\mathrm{p} 1}$	$\mathrm{c}_{\mathrm{p} 2}$	$c_{p J}$	cp_{n}	b_{p}
\mathbf{R}_{m}	$\mathrm{c}_{\mathrm{m} 1}$	$\mathrm{c}_{\mathrm{m} 2}$	c_{mJ}	c_{mn}	b_{m}
Amount of Resources required	a_{1}	a_{2}	a_{3}	a_{n}	

The entries in the cells, $\mathrm{c}_{\mathrm{i} J}$, represent the cost (or return) that results from allocating one unit of resource R_{1} to activity A_{j}, and if the cost (or return)
from allocating an amount $x_{1_{1}}$ of resource i_{1} to activity j is equal to $x_{1 j} c_{1 j}$, we have a Linear allocation problem

Allocation problems with linear return or cost functions have been studied the most intensively because of the avalability of the powerful technıques of Linear Programming and also because of relatıvely small data requirements

The application of these techniques to the problems of industry and commerce involve the assumption that the amounts of resources available $\left(b_{1}\right)$, the amounts required $\left(a_{j}\right)$ and the cost $\left(c_{1 j}\right)$ are known exactly This is not always the case and it is sometimes desirable to test the sensitivity of the solution to possible errors in these coefficients The technique known as Parametric Linear programming allows one to carry out such sensitivity analyses

LINEAR PROGRAMMING MODELS

A linear programming formulation can be written as etther
(1) a primal model, or
(i1) a dual model
depending on whether the objective is minımisation (primal) or maximisation (dual) Both types of model are connected by the duallity theorems of linear programming whereby the solution of one model contains the solution of the other

The general statement of prımal and dual can be expressed in matrix algebra as follows

Min	$c X$	Max	$b^{1} Z$
subject to restrictions	$\mathrm{AX} \geqslant b$	subject to	$\mathrm{A}^{1} \mathrm{Z} \leqslant \mathrm{c}^{1}$
	$\mathrm{X} \geqslant 0$		$\mathrm{Z} \geqslant 0$

where
$\mathbf{c}=1 \times \mathrm{n}$ row vector
$\mathrm{X}=\mathrm{n} \times 1$ column vector
$\mathrm{A}=\mathrm{m} \times \mathrm{n}$ matrix
$\mathrm{b}=\mathrm{m} \times 1$ column vector
$\mathrm{Z}=\mathrm{m} \times 1$ column vector
Note (1) The objective function and the constraints must obey the linearity rules
(ii) A general method of solution known as the Simplex Method was developed in the 1940s by G B Dantzing, late of the Rand Organisation, and now a Professor in the Computer Science Department of Stanford University
(iil) Refinements to the general technique exist whereby it is possible to obtann(a) solutions to problems having integer and certain other non-linear constraints or costs, and
(b) parametric solutions

GEOMETRICAL STRUCTURE

All linear programming problems have basically the same geometrical structure A system of linear constraints forms a solution space (a convex set) withın which an objective function must be maximised or minımised

The geometry of linear programming can best be illustrated by means of the following simple two-variable model

$$
\left.\begin{array}{lcc}
\max & 3 x_{1}+4 x_{2} & \\
\text { subject to } & \text { Objective Function } \\
& x_{1}+2 x_{2} \leqslant 14 & \\
& 4 x_{1}+x_{2} \leqslant 20 & \\
& x_{1} \geqslant 0 & \\
& x_{2} \geqslant 0 & \ldots
\end{array}\right)
$$

The actual extreme point at which the objective function is maximised depends on the "slope" of the function The extension into " n " variables is obvious and an analytical optımization method is necessary since we are in En space

range of application of The linear model

At first sight it may seem an over-simplification to try and represent real-world situations by linear models In actuality the linear model is a
sufficiently accurate mathematical representation of many physical, economic and financial situations for to to be acknowledged as a major planning and research tool It has been found particularly suitable for application as a planning and research tool in the following fields

(1) Agriculture

E O Heady, W Chandler and others have pioneered, in the United States, the application of linear programming methods to agricultural planning both at the regional and state level They have used this technique to indicate the optimum distribution of commodities subject to such limitations as land, labour, capital etc In addition they have also used the linear programming approach to investigate the effect of variable price, yield and capital quantities on the optimum solution

In general the plannıng models usually take the form

$$
\begin{array}{lll}
\text { Max } Z=c_{1} x_{1}+c_{2} x_{2}+ & +c_{n} x_{n} \quad \text { Maximization of } \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+ & +a_{1 n} x_{n} \leqslant b_{1} \\
& { }^{2}+ & \text { "Profit } \\
& a_{21} x_{1}+a_{22} x_{2}+ & +a_{2 n} x_{n} \leqslant b_{2}
\end{array}
$$

Constrants due to land, labour, etc

$$
\underset{\substack{\cdot \\ a_{m_{1}} x_{1} \\ x_{j} \geqslant 0, j=1,2, a_{m_{2}} x_{2} \\+a_{m n} x_{n} \leqslant b m}}{n}
$$

The central problem in the application of linear models to agricultural planning lies in the accurate estimation of the coefficients The coefficients $\mathrm{c}_{1}, \mathrm{c}_{2}, \quad \mathrm{c}_{\mathrm{n}}$ are the unit returns forthcoming from each production process $\mathrm{x}_{1}, \mathrm{x}_{2}, \quad \mathrm{x}_{\mathrm{n}}$ The two main methods used to obtain efficient estimates of these coefficients are
(1) production function analysis, and
(i1) gross margin analysis
The use of etther method of analysis depends on the planning questions to be answered and the avallability of data

The coefficients $b_{1}, b_{2} \quad b_{m}$ are production restraints These restraints usually refer to
(1) land
(i1) capital
(ii1) labour
(iv) equipment etc

Land, and equipment constraints are usually relatively easy to ascertan However, the problem of labour profiles is not so easy to overcome and requires careful examination of any records or other sources of information that are available A typical labour profile is shown in Fig 1

Fig 1

Month	Total labour supply (hrs)	Total service lab reqrs	Total Labour Avalable for Specific Enterprises	
			Per month	Per monthly group
December	250	30	220	
January	240	20	220	620
February	200	20	180	
March	230	20	210	405
April	255	60	195	
May	310	10	300	
June	320	20	310	600
July	320	10	310	580
August	300	30	270	
September	240	90	150	
October	260	60	200	560
November	260	50	210	

Hours of labour available in monthly groups usually comprise the labour restrictions used in programming agricultural plans

The estimation of the coefficients $\mathrm{a}_{11}, \mathrm{a}_{12}, \mathrm{a}_{\mathrm{mn}}$, which are usually termed "production" coefficients, is probably the most difficult task in the formulation of the relevant mathematical model Additional effort in this respect is generally more important than in additional refinements in the mathematical approach This additional effort is necessary since if the input coefficients are too low, the subsequent plan will be non-feasible because it will require more resources than are available If, however, the input coefficients are too high, the farm-firm will find that surplus resources exist, and a better plan can be found

To obtain the production coefficients it is necessary to determine the amount of a particular input required to produce an acre of corn, oats and so on A typical matrix of these coefficients including the expected output per acre (in £'s) and the requirements is shown in Table 1

Statistical and Social Inquiry-_Quantitative Planning and Decision-Making Techniques (with particular reference to Agricultural Applications)

Table 1

	Constraints					
Varlables (Crops)	Output/ Acre	$\begin{aligned} & \text { Land } \\ & \text { (Acres) } \end{aligned}$	Capital/ Acre (£'s)	Labour A (M Days)	Labour B (M Days)	Labour C (M Days)
Oats (X^{1})	3154	1	98	06	03	06
Wheat (X^{2})	3027	1	1206	08	04	08
Barley (X^{3})	3545	1	102	06	03	06
Corn (X^{4})	3755	1	88	08	04	08
Apples (X^{5})	106	1	104	03	10	27
Seed						
Potatoes (X^{6})	2085	1	6157	40	11	109
Maln						
Potatoes (X^{7})	14039	1	9070	40	11	109
Designations		\leqslant	\leqslant	\leqslant	\leqslant	\leqslant
Requlrements		66,280	1,316,329	92,338	32,856	199,214

Table 1 represents in a simplified manner, the basic information necessary in order to construct a linear model of land utilisation for Co Antrım This model, which in the interests of simplicity ignores livestock, is as follows

$$
\begin{array}{ll}
\text { Max } & =3154 x_{1}+3027 x_{2}+3545 x_{3}+3755 x_{4}+105 x_{5}+ \\
& 2085 x_{6}+10439 x_{7} \\
\text { subject to } & +x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \leqslant 66,280 \\
& 98 x_{1}+1206 x_{2}+102 x_{3}+88 x_{4}+104 x_{5}+6157 x_{6}+ \\
& 907 x_{7} \leqslant 1,316,329 \\
& 06 x_{1}+08 x_{2}+06 x_{3}+08 x_{4}+03 x_{5}+40 x_{6}+40 x_{7} \\
& \leqslant 92,338 \\
& 03_{1}+04 x_{2}+03 x_{3}+04 x_{4}+x_{5}+11 x_{6}+11 x_{7} \leqslant 32,856 \\
& 06 x_{1}+08 x_{2}+06 x_{3}+08 x_{4}+27 x_{5}+109 x_{6}+109 x_{7} \\
& \leqslant 199,214 \\
& x_{1} \geqslant 0 \quad \mathrm{~J}=1,7
\end{array}
$$

The solution to this model yields the following information
Grow (1) 11,277 acres of Barley
(11) 33,003 acres of Corn
(ii1) 14,792 acres of Seed Potatoes
Some of the consequences of this policy are
(i) 7,208 acres of land will be left idle
(11) The cash output, which is the highest obtannable, will be $£ 4,723,240$

It is of course unnecessary to add that this model is both too simple and somewhat naive The next level of sophistication would be to restrict both
the acreages of corn, main and seed potatoes in accordance with demand and practicability Analysis of past records indicates that these acreages could be restricted to

$$
\begin{aligned}
& \mathrm{x}_{4} \leqslant 1,021 \\
& \mathrm{x}_{6} \leqslant 3,722 \\
& \mathrm{x}_{7} \leqslant 14,253
\end{aligned}
$$

The resulting solution to this augmented model yields a solution which is more realistic in that the acreages for corn, seed and main potatoes have been constricted to within acceptable limits of growth

Further levels of sophistication include the addition of constraints for
(i) A minimum level of acceptable income
(i1) The allocation of avarlable "tractor hours" to the various enterprises
(i11) The inclusion of various types of livestock such as cattle, sheep etc (this, of course, requires the addition of new variables) etc

The ultımate aim is to produce a realistic agricultural planning model for the region in order to examine in detall the effect of variations in prices and quantities

2 Industrial Apphcatıons

The models which have been described in an agricultural context can also be applied to many problems in modern industry The mathematical programming approach has been applied to many diverse problem areas which include
(i) Production scheduling
(ii) Mixing problems in the chemical and feed-stock industries
(ii1) Problems of allocation
(1v) Transportation and routing problems
In each case the basic approach is to represent the situation in terms of a mathematical model having an objective function which must be maximised or minımised and subject to various constraints

The following simple illustration typifies the method of approach
Table 2

Process	Production time per product			Darly available Production time
	X_{1}	X_{2}	X_{3}	
Turnıng	6 mms	2 mms	4 mms	200 mins
Boring	2 mins	2 mms	12 mins	160 mıns
Profit per unit	$£ 12$	£8	£24	

The manufacturer's problem is to plan his daily production schedule so that he will maximise his profit

Expressed as a linear programming problem the mathematical representation is

Max $\quad \mathrm{P}=12 \mathrm{x}_{1}+8 \mathrm{x}_{2}+24 \mathrm{x}_{3}$
subject to $\quad 6 x_{1}+2 x_{2} \times 4 x_{3} \leqslant 200$
$2 x_{1}+2 x_{2} \times 12 x_{3} \leqslant 160$
$\mathrm{x}_{1} \quad \geqslant 0$

$$
\mathrm{x}_{2} \geqslant 0
$$

$$
\mathrm{x}_{3} \geqslant 0
$$

where x_{1}, x_{2} and x_{3} refer to the quantities of X_{1}, X_{2} and X_{3} to be produced ${ }^{\cdot}$
The Simplex technique can be applied to yield the following optımum solution
Manufacture
(a) 10 units of X_{1}
(b) 70 units of X_{2}
Profit
(c) $£ 680$ day

3 Parametric Linear Programming

Once the solution to a particular linear model has been obtained it is then natural to enquire as to the reliability of this solution in the event of a variation in the parameters This enquiry leads us into the domain of Parametric Linear Programming where the objective is to establish the nature of the effect on the optimal solution of variations in either
(1) the coefficients of the objective function
(i1) the coefficients of the variables in the restriction equations
(iii) the requirements

If we express a linear model in the terms of matrix algebra
Max cX
subject to $A X \leqslant b$

$$
X \geqslant 0
$$

then the variations referred to above
(1) Variations in the c matrix
(i) Variations in the A matrix
(iii) Varrations in the b matrix

Technıques exist whereby one is able to analyse the effect of these variations and also to establish the limits within which an optimal solution remanns stable

This technıque has obvious applications in practice

REFERENCES

1 Haley, K B Mathematical Programming in Business and Industry, Macmıllan 1968
2 *Heady, E O and Chandler, W, Linear Programming Methods, lowa State U Press 1966
3 Heady, E O and Egert, A C, Mathematical Linear Programming of Regional patterns (Location and Quantities), Iowa State U Press

4 Equilibrium Analysis of Income-Improving Adjustments on Farms in the Lake States Dairy Region, 1965, University of Minnesota Agricultural Experiment Station
*Many descriptions of the application of L P to Agriculture

MARKOV PROCESSES - THEORY AND APPLICATIONS

Theory

A sequence of experıments that can be subjected to a probalistic analysis is called a stochastic process If the set of possible outcomes is finite then it is said that the process is finite

Stochastic processes can be classified by indicatıng special propertıes by the outcome functions of the process

In a Markov Chain process there is a given set of states

$$
S_{1}, S_{2},-S_{r}
$$

and it is only possible for the process to be in one of these states at a given time The process moves successively from one state to another and each move is called a step The probability that the process moves from S_{1} to S_{J} depends only on the state S_{1} that it occupied before the step The transituon probability P_{I}, describing the probability of moving from S_{1} to S_{J}, is given for every ordered pair of states In addition an initial starting state is specified at which the process is assumed to begın

These characteristics can be readily expressed in a transition matrix P

	$\mathrm{S}_{1} \mathrm{~S}_{2}$	$\mathrm{~S}_{\mathrm{k}}$
S_{1}	$\mathrm{P}_{11} \mathrm{P}_{12}$	$\mathrm{P}_{1 \mathrm{k}}$
S_{2}	$\mathbf{P}_{21} \mathrm{P}_{22}$	$\mathrm{P}_{2 \mathrm{k}}$
S_{k}	$\mathbf{P}_{\mathrm{k} 1} \mathrm{P}_{\mathrm{k} 2}$	\mathbf{P}_{kk}

An important characteristic of this type of matrix is that the sum of the components in any given row is 1 A further important characteristic of this type of matrix is that it converges to a limiting state provided the markov chain is regular

This can be illustrated as follows

$$
\text { If } \mathbf{P}=\left[\begin{array}{cccc}
05 & 025 & 025 \\
05 & 0 & 05 \\
025 & 025 & 05
\end{array}\right]
$$

Then it can be shown that

$$
\mathbf{P}^{8}=\left|\begin{array}{lll}
04 & 02 & 04 \\
04 & 02 & 04 \\
04 & 02 & 04
\end{array}\right|
$$

Three important types of Markov chan are
(1) Regular - some power of the transition matrix has only positive elements
(11) Ergodic - it is possible to go from every state to every other state
(i11) Absorbing - impossible to leave some state of the Markov chain
The theories developed from each type of chan have important implications for applied economics and I would now like to describe their application in the field of agricultural planning

AGRICULTURAL APPLICATIONS

My research interest in this field is to develop a Markovian model that will describe the movements in farm size in Co Antrim as a complement to the work described in the section on linear models Unfortunately the necessary data is not yet to hand so no analysis has yet been carried out However, I would like to describe some other work that has been done using these models to analyse dairy herd size in Co Fermanagh
In the execution of this work I am greatly indebted to Mr D J Alexander of the Ministry of Agriculture (N Ireland) for help and encouragement freely given at all times

DAIRY HERD SIZE - FERMANAGH

An analysis of the size of daıry herds in Fermanagh for the period 1961/67 yields the following information

Table 1

	No of Farms	
Herd size	$1961 / 62$	$1967 / 68$
$1-9$	3,003	1,126
$10-19$	635	705
$20-29$	84	69
30	23	23
Total	3,745	1,923

A more detarled analysis reveals, in the same period, the movements between the various categories

Table 2

Herd	No of farms Size	$1961 / 62$	0	$1-9$	$10-19$
0	$(2,872)$	2,772	100	0	$20-29$
$1-9$	3,003	1,700	980	323	0
$10-19$	635	138	46	382	0
$20-29$	84	61	0	0	0
$30+$	23	23	0	0	0
Total	3,745	4,694	1,126	705	0

Note: $(2,872)$ is the estimated number of potential farms that could enter into the daırymg field

From Table 2 it is possible to construct the following transition matrix
Table 3

$\mathbf{P}=$| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 065 | 0035 | 0 | 0 |
| 0566 | 0326 | 0108 | 0 | 0 |
| 0217 | 0072 | 0602 | 0109 | 0 |
| 0726 | 0 | 0 | 0 | 0274 |
| 1000 | 0 | 0 | 0 | 0 |

From the theory of Ergodic Marov Chains it is not difficult to demonstrate that $\mathbf{P}_{\mathbf{n}}$ tends towards

Table 4

0936	0050	0013	0001	0
0936	0050	0013	0001	0
0936	0050	0013	0001	0
0936	0050	0013	0001	0
0936	0050	0013	0001	0

if one is content to calculate to three places of decimals

USING THE EQUILIBRIUM VALUES OF THE TRANSITION MATRIX

It is clear that the number of potential entrants assumed affects the rate at which changes in size take place and the rate of exit projected for the industry

The effect of different numbers of potential entrants can be examıned through using the transition matrix and a device known as the T-vector

The T-vector indicates the proportion of the original farms plus the number of potential entrants falling into each of the size classes, including O, when sufficient time-periods have passed in order that the exit,'entry, growth and decline are in equilibrium

Starting from the recognition that the T -vector for equilibrium is obtained by solving

where n is the number of classes and N is the number of potential entrants assumed
C and C_{3} are some constants which are independent of N and are computed from the original probabilities
(I) $\mathrm{N}=2,875$

Now	$t=\left[\begin{array}{ll} 09360 \end{array}\right.$	$\begin{aligned} & 500013000 \\ & 2,872 \end{aligned}$	
thus	$\mathrm{t}_{0}=0936=$		
		872+C	
whence	$\mathrm{C}=19638$		
	$\mathrm{t}_{1}=005=$	C_{1}	C_{1}
whence	$\mathrm{C}_{1}=15342$	$2772+1923$	306838
	$\mathrm{t}_{2}=0013$	C_{2}	
		3,068 34	
whence	$\mathrm{C}_{2}=3988$		
and	$\mathrm{C}_{3}=307$		

If M is the number of active farms in the initial time period, the number of farms F_{j} in each category in equilibrium will be

$$
\text { (iil) } \mathrm{F}_{\mathrm{J}}=\frac{\mathrm{C}_{\mathrm{J}}}{\mathrm{~N}+\mathrm{C}}(\mathrm{M}+\mathrm{N})_{\mathrm{J}} \mathrm{~J}=1,2 \longrightarrow \mathrm{n}
$$

In addition if E represents the net change in the number of active farms in the dairying industry, then the net number of entrants or exits from this

1ndustry is

$$
\begin{aligned}
& E=F_{0}-N=\frac{N(M+N)}{N+C}-N \\
\text { whence } \quad & E=\frac{N(M-C)}{N+C}-\text { (iv) }
\end{aligned}
$$

Thus using formula (iil) we can compute the number of farms in each size class

$$
\begin{aligned}
\mathrm{F}_{1} & =\frac{15342[6,617]}{3,06838}=\frac{\mathrm{C}_{1}[\mathrm{M}+\mathrm{N}]}{\mathrm{N}+\mathrm{C}} \\
& =33085 \text { say } 3310
\end{aligned}
$$

Similar calculations give

$$
\begin{array}{lr}
\mathrm{F}_{2}=8600 \\
\mathrm{~F}_{3}=662 & \text { say } 70 \\
\mathrm{~F}_{4}=\quad 0 & 19
\end{array}
$$

Using the formula (iv) we can compute the number of farms that have left the industry viz

$$
\mathrm{E}=\frac{\mathrm{N}(\mathrm{M}-\mathrm{C})}{\mathrm{N}+\mathrm{C}}=\frac{2,872 \times 3,54862}{3,06838}
$$

Thus assuming a potential entry of 2,872 and also a contınuation of the trends indicated in the period 1961/62-1967/68, the following conclusions can be reached at equilibrium

Table 5

	$\|c\|$ Herd Size		Number of farms	
$1961 / 62$	Equilibrrum	Reductions		
$1-9$	3,003	331	2,672	8897
$10-19$	635	86	549	8645
$20-29$	84	7	77	9166
$30+$	23	0	23	10000
Exits	0	3,321	-	-
Total	3,745	3,745	3,321	-

The following table indicates the position at equilibrium when the number of potential entrants is varied

Table 6

Herd Size	$N=$ Number of potential entrants assumed		
	2,000	2,872	4,000
1-9	402	331	283
10-19	104	86	74
20-29	8	7	6
$30+$	0	0	0
Exits	3,231	3,321	3,382
Total	3,745	3,745	3,745

CONCLUSION

The example chosen to represent the application of Markov Chain theory was directly due to the author's interest in the application of mathematical models to the agricultural industry In this respect it is recognised that the model is inherently too simple However, the analyst working in this and other fields must use all the means at his disposal in order to describe the economic forces at work Markov Chain Theory represents a promising line of enquiry - not the least in that it provides a means of directly estimating equilibrium conditions

It should be noted that the number of potential entrants has a definte effect on projections and care should be taken in estimating this statistic

It is of course possible to apply this theory to areas other than that which has been described The pioneering application is generally recognised to be due to I G Adelman who in December, 1958 contributed a paper entitled "A Stochastic Analysis of the Size Distribution of Firms" to the Journal of the American Statistical Association Since then the theory has been applied to many other problem areas and is an expression of man's desire to explore and understand more fully those forces which control his destıny

REFERENCES

1 Judge, G G and Swanson, E R , Markov Chains - Basic Concepts tand Suggested Uses in Agricultural Economics, Department of Agr Econ AERR-49, Unıversity of Illinois

2 Howard, R A, Dynamic Programming and Markov Processes, M I T
3 Padberg, D I, The use of Markov Processes in Measuring Changes m Market Structure, J Farm Econ 44 189-199, Feb 1962

4 Kemeny, J G and Snell, J L, Finte Markov Chains, Van Nostrand, Prınceton N Jersey, 1959

