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ABSTRACT 

Transparent boundary conditions for the linearized shallow water equations are 
constructed by incorporating the boundary conditions into equations which describe 
uni-directional waves. The shallow water equations are then discretized using a semi- 
Lagrangian approach and the transparency of the boundaries is demonstrated for three 
scenarios: adjustment waves radiating out of the area, a geostrophically balanced distur- 
bance being advected in through the boundaries, and a geostrophically balanced distur- 
bance being advected out of the area. 

There is a unique question associated with limited area modelling: what is the best 
way to treat the lateral boundaries? The answer can easily be stated: these boundaries 
should be 'transparent'. That is, first, all waves approaching them from the interior of the 
limited area should exit without reflection; and second, in a nested environment, where the 
boundary data are being supplied by a Lhost' model, all meteorologically important waves 
impinging on the boundaries from the exterior of the limited area should enter without 
their amplitude or phase being changed and without exciting spurious high frequency 
waves - noise. 

Full transparency is probably unattainable in most practical integrations, but there 
exist a variety of methods, see Givoli (1992), for making the boundaries 'as transparent 
as possible'. Of these, the method of Engquist and Majda (1977) is particularly appro- 
priate for meteorological modelling; see Durran et al. (1993). The basic idea is that we 
incorporate the boundary conditions into equations which describe uni-directional waves 
travelling out of the area (and into the area when nested). In section 2 we will use of 
this idea to arrive at a new set of one-way wave equations for the boundaries which are 
correct to a well-defined level of approximation . 

Robert and Yakimiw (1986) point out that, since most boundary strategies contain 
difficulbies that cannot be easily identified when they are considered in the framework 
of realistic models, it is a good idea to first test them on simple problems with known 
solutions. (If our boundary treatment will not work for a simplified sub-system it certainly 
will not work for the full non-linear system). That is the philosophy we adopt. Therefore, 
in section 4 we will take the linearized shallow water equations and compare the forecasts 
using our discretization and boundary treatment with the known solution for two cases. 
The first is an adjustment case for which an asymptotic solution is known. The second is 
an advection case whose analytical solution is known at all times. 

2. The shallow water model. 

a. Solution to the linearized shallow water euuations on an f-plane . 



The linearized shallow water equations are as follows. 

(2.3) 

The x and y components of the winds u e  u and v and @ = gr is the geopotential height; 
g = 9.81 m s-'. The Coriolis parameter, f ,  the advecting velocities, uo: and V O ,  and Qo, 
the mean geopotential height, are all constants. 

Substituting ( u , ~ ,  @) = (G,.;, 6 )  exp[i(kx + ly - w t ) ] ,  gives rise to the equations 

i(-w + kuo t h O ) G  - f6 +ik@ = 
f c  t i ( - w  t kuo + lvo)fi +il@ = 

ika0ii  + i l @ ~ f i  +i(-w + kuo + = 

which have solutions provided the following dispersion relation is valid, 

(-w + kuo -t ~ J ) [ ( - w  t ~ U O  t - f 2  - ( k 2  + I ) @a] = 0. 

Thus there are three types of waves; advection waves with frequency 

w, = kuo + lvo, 

and two adjustment waves with frequencies 

w* = kuo + h o  * d K  j I(' = kZ $ 1 2 ,  

and the solutions are 

4 = 6+ + 6- t 6,, 

where 



The following combinations of fields project out the two adjustment waves: 

The group velocity of the advective waves is 

and group velocities of the adjustment waves can be written as follows: 

6. T~unsvarent boundaru conditions . 

In this section we discuss the problem of designing transparent boundary conditions 
for the problem of modelling Eqs. (2.1)-(2.3) over the limited area 0 < x 5 L,; 0 < y 5 I;,. 

We will assume & > m, which means we must impose two fields at inflow and 
one field at outflow; see Oliger and Sundstrom (1978). The arguments, however, can also 
be applied when this condition does not hold. 

Consider the coefficient f / (K&)  . We take f = What would be a typical 
range of its values in the context of limited area meteorological modelling? For the external - 
mode (6 - 300ms-') this coefficient is < 0.05, assuming the longest wavelength to be - lOOOkm . The internal modes can have much smaller values of a, of course. When 
the wavelength is lOOOkm and = 16ms-' then f / ( K & )  - 1. Therefore, if we are 
modelling over a lOOOkm x lOOOkm area f / ( K a )  5 1 for the majority of modes, and 
most importantly, j / ( K m  << l for the fast-moving short wavelength modes which we 
particularly do not want to be reflected from the boundaries. 

We examine first of all the boundaries at x = L,, and x = 0 . Looking at the group 
velocity in Eq. (2.15) we see that the energy of the advection waves propagates in the 
same direction as the advection velocity. From Eq. (2.16) we see that the energy of the 
w* wave always propagates in the (f x) direction as long as 



From our arguments in the previous paragraph this condition will hold for a large fraction 
of the waves in a meteorological environment, provided 12/k2 does not become large. The 
ratio 12/k2 is small for waves almost perpendicular to the these boundaries. 

We will assume uo > 0 in what follows. The arguments are quite general, however. 
We will subsequently state the results for uo < 0 without repeating all the details. 

The x = L, boundary is an outflow boundary when uo > 0. If we choose to 
extrapolate u and v,  how should we impose a third field? At this boundary there will 
be w,-wave packets and w+-wave packets impinging from the interior. We would like our 
boundary treatment to facilitate the transmission of these waves without reflection and, of 
course, without exciting any w--waves. If we drop all the terms of order 12/k2,  f 2 / ( k 2 Q o ) ,  
and f l / (k2&) Eq. (2.14) tells us that 

Thus, if we impose i k 6  - + ilC) - f6 = 0 on this boundary we will be describing 
the out-going w, and w+ waves correctly to this level of approximation. What about the 
in-coming w- waves? From Eq. (2.14) we see that this condition imposes @- = 0, to this 
level of approximation, which is exactly what we want in a meteorological context where 
such a wave is unwanted 'noise'. 

Replacing i k  and i l  with a / d x  and a / d y  respectively this condition becomes a @ / a x -  
f v  - &(8u/dx  t d z / d y )  = 0.  However, from Eqs. (2.1) and (2.3) we can re-write it as 

which is probably easier to implement; certainly it is from a semi-Lagrangian point of 
view. 

Next consider the boundary at x = 0. - Here we must impose two fields and extrap- 
olate the third. We would like to do this in such a way that the host model advective 
waves enter the area accurately without stimulating any w+-waves, while simultaneously 
allowing the w--waves impinging from the interior to exit without reflection. Assume the 
host model fields are in geostrophic balance, that is, i k 6 h  - fCh = O,il&h $ fGh = 0,  and 
ikCh t ilCh = 0.  (We are using the superscript 'h '  to designate the host model fields). 
In these circumstances Eq. (2.12) tells us that the advective wave is dominated by Gh 
when 12/k2 << 1 and f z / ( k 2 @ o )  << 1 . Therefore we take vh as one of the imposed fields. 
Consider the equation 

From Eq. (2.13) we see that the w, and u- waves obey this equation to the order of 
accuracy we are considering. Simultaneously it forces @+ to be zero; exactly what we 
want. Thus we must impose a second field on the boundary such that this equation holds. 



The simplest way to accomplish this is to impose (ah $ &uh) such that ah and uh obey 
a Q h / a x  - f v h  = 0 and auh/8x  + dvh/dy = 0 . The third field, u ,  is extrapolated from 
the interior. 

By the same argument we arrive at the conditions when uo < 0. At x = L, 
extrapolate u from the interior and impose vh  and (ah - &uh), making sure these host 
model fields are geostrophically balanced. At x = 0 extrapolate u and v from the interior 
and impose 8 @ / d x  - f v  t &(du/dx + d v l a y )  = 0. Again, the most attractive way to 
impose this condition is probably to solve the following: 

The same logic leads to the following conditions at the other boundaries. When 
vo > 0 ,  then at y = L, extrapolate u and v from the interior and use 

as the third condition. At y = 0 extrapolate .tev from the interior and impose uh and 
(ah + f i e h ) ,  making sure these host model fields are geostrophically balanced. 

When vo < 0, then at y = L,  extrapolate v from the interior and impose uh and 
(ah  - &vh), making sure these host model fields are geostrophically balanced. At y = 0 
extrapolate u and v from the interior and impose 

In what follows we will write d / d t  + uod/dx  $ vod/dY as d/dt.  

c. Semi-Laqranqian discretization o f  the equations. 

We discretize such that xi = i A x ,  y j  = j a y  and t ,  = n A t ;  XI = L, y~ = L,. A 
Semi-Lagrangian and semi-implicit discretization of Eqs. (2.1)-(2.3) on a C-grid which is 
O ( A t 2 )  accurate is as follows: 



and 

where 

(2.32) 

and 

In these equations, the subscript '2,  j ,  *' means evaluate this field by interpolating to 
the departure point associated with the grid-point '2,  j' . Defining a = uoAt/Ax and 
,B = v&.t/Ay then l';:,, = Y(i  - a: j - p ,  nAt) . We use a Lagrange bicubic interpolation 
to estimate Y at this point. 

Equation (2.25) is valid for the indices i = 0, I - 1; j = 1, J - I .  Equation (2.26) 
is valid for the indices i = 1, I - 1; j = 0, J - 1. Equation (2.31) is valid for the indices 
i = 1, I - 1; j = 1, J - 1. We may need to estimate Y,,?;, or YQ outside these ranges of 
indices. In that case, we will use carefully chosen approximations, as will be discussed in 
section 3. 

In order to make our discussion of the boundary conditions in section 3 transparent 
let us solve Eqs. (2.25), (2.28), and (2.31) iteratively: - 

d .  Solvina the eauations. 



All of the sets of equations we need to solve, Eqs. (2.34)-(2.36), combined with, 
where necessary, Eqs. (A.3),(A.6), (A.10), (A.11), can formally be written as 

Substituting u from Eq. (2.37) and v from Eq. (2.38) in Eq. (2.39) results in 

For the tests described in section 4 we use a SOR solver to solve Eq. (2.40) for @, 
and the recover u and v from Eqs. (2.37) and (2.38), respectively. (The SOR solver is 
used because of its simplicity and flexibility. In an operational model a faster solver will 
obviously be required). 

3. Discretizations at  the boundaries. 

We impose the tangential velocity (vT) at inflow. We assume fi0 > Ivo[. Thus we 
must impose another field at inflow and one at outflow. We will consider three options 
below: (1) imposing P, at all boundary points; (2) imposing the field corresponding to the 
in-going characteristic, @ - & v . ~ ,  as recommended by Elvius and Sundstrom (1973); 
(.ON is the normal velocity); (3) imposing - &uN at inflow, and d(@ - &vN)/dt = 0 
at outflow, as  we discussed in section 2b. The normal velocities at both inflow and outflow 
emerge naturally when we solve the equations because of the C-grid staggering. There 
remain the tangential velocities at outflow. These we mu& extrapolate from the interior. 

We update the tangential velocity at outflow as follows. At x = 0 and x = L, we 
assume Eq. (2.2) is valid and use Eq. (2.35) to compute v there. At y = 0 and y = L, 
we assume Eq. (2.1) is valid and use Eq. (2.34) to compute u there. 

As we discuss below Y, and Y, may be required on the boundary lines. We use dif- 
ferent strategies depending on whether we are imposing @ or P, - & v ~  on the boundary. 

If the Coriolis terms are required on the boundary we use the following extrapola- 
tions. At the y = 0 and y = L, 



and at x = 0 and x = L, 

The departure point can be beyond the boundary. We must devise a method for taking 
this into account. In this paper we will restrict ourselves to modest time steps. In 
that case trajectory truncation suffices. For large time steps it is necessary to use time 
interpolation; see McDonald (2001).  

The trajectories are truncated as follows. At x = 0 we truncate by using (Yu):+;,j,* - - 

YU(i ,  j - Pi+$,j, nAt) when x ,  < Ax12 ; (Y,):j+5,, = Y,(O, j + - /3i,i++; "At) when 
x ,  < 0 ,  and (YQ):~,, = Y@(l, j - P i j ,  nAt) when x ,  < Ax . 

At x = L, we truncate by using (Y,):+;g,+ = YU(I - +, j - Pit;,j, nAt) when x, > 
( I  - ;)Ax ; (x):j++,- = Y,(I, j + - /3i,j+;,nAt). when x ,  > IAx, and (YQ):~,, = 
( I  - 1 j - &,"At) when x ,  > (I - 1)Ax 

.4t y = 0 we truncate by using (Y,):+$,j,* = Y,(i + i - ai++ j, 0, "At) when y,  < 0 

I (K,) t j+;,  = Y,(i - aiaj++, i, nAt) when y ,  < Ay/2 and (YO)yj,, = Ym(i - aig, 1 ,  nnt) 
when y ,  < Ay. 

At y = L, we truncate by using (Y,):! - *  
2 > 3 3  = Y,(i + - ai+:;,j:J,nAt) when y, > 

JAY ; (x)&,* = Y,(i - cuiSj++, J - i, nAt) when y, > ( J  - ;)Ay and (Ya)Xj,* = 
Ya(i - a;,?, J - 1 ,  nAt) when y,  > ( J  - 1)Ay. 

( 1 )  Imposing Q on the boundary fits quite naturally into the system of equations 
(2.34)-(2.35). The only extrapolations required are those of Eqs. (3.1)-(3.4). 

( 2 )  To impose fields corresponding to the in-going characteristics we proceed as 
above, except at the lines half a grid in from the boundary. There we proceed as described 
in the appendix with a+?++,j = Atl(2Ax) and = Atl(2Ay). 

(3) Using d ( @  - &c,v)/dt = 0 at outflow is a minor variation on ( 2 )  in a semi- 
Lagrangian discretization; see the appendix . 

Consider the corner defined by x = 0,  y = 0. To compute (Y,),,+ and (Y,)!,,, we 
2 

need @ ( O ,  0 ) ,  an unknown when we are using options (2) or (3). In the tests described in 
section 4 we use (Yu), I = v, I and (Y,)r = ui+if,  and of course their equivalents in the 

' 2  2 '  

other three corners. S'hilarly, for the balanced quantities whenever Q is required on the 



boundary we use the following for options (2) or (3):  

where '6 + 1' means one grid point removed perpendicular to the boundary toward the 
i 

interior. 

Any other extrapolations from the interior to compute Q, on the boundary gave less 
accurate forecasts when the departure point was outside the area. 

4. Numerical testing. 

First we examine an adjustment case whose asymptotic solution is known, and com- 
pare our longer forecasts with this asymptotic solution. Second we examine an advective 
case which has an analytical solution with which we can compare our forecasts at all 
times. 

For the following demonstrations Ax = Ay = lOOkm L, = L, = lOOOOkm (there 
are 101 grid points in each direction). Below we model features of size L,/10. Thus we we 
will generate waves with a typical wavelength of lOOOkm or less. cPo = 5000g , 0 = 5009 
and f = 0.729 x 10-4s-1 . We use At = 15min. 

a. Testino adiustment . 

We would like to investigate the permeability of the boundaries to adjustment waves. 
Consider an initial state with V@(x, y ,  0) # 0 but with u(x, y, 0) = 0 and v(x, y,O) = 0. 
It will not be in geostrophic balance. Because of this the system will radiate adjustment 
waves as it adjusts to a balanced state, which asymptotically is given by the field *(I, y) 
which satisfies the equation 

See section 7.2.2 of Gill (1982) for details. 

The rms differences between our extended forecasts and Q(x, y)  will be an accurate 
measure of the effectiveness of our boundary treatment. 

We will start from bell shape at the centre of the area: 

@(z, y, 0) = Q , ~  + m ex, - (x - 1 / 2 ) ) 2 ]  [ {'Y - "/2'}2] [ { (L.ll0) 
exp - 

(L,/W 
> 



We also set the advecting velocities to zero. (In fact: both are assigned minuscule positive 
values in order to define inflow and outflow boundaries unambiguously). The adjustment 
process consists of adjustment waves radiating away radially from the centre of the area. 
We would like them to pass through the boundary without reflection. 

The asymptotic balanced state arrived at by solving Eq. (4.1) with @(x, y,  0) given 
by Eq. (4.2) and Q = 50009 on the boundary is not displayed hut it is identical to the 
eye to the 48h forecast shown in figure 2. In our tests below we will compare the 48h 
forecasts with this balanced state to measure how transparent are the boundaries. 

a(1) 4, imposed. 

We impose @(O,  y , t) = iP(L,, y, t )  = @(x; 0, t )  = D ( x ,  L,, t )  = 50009 and v~ = 0 
on the inflow boundaries at all times . The forecasts for the first 12 hours are displayed 
every three hours in figure 1; as is the 48h forecast. On the positive side, the forecast is 
stable ( I have run it out to 10 days). So, our boundary discretization is 'experimentally 
well-posed'. On the negative side, the adjustment waves are being strongly reflected from 
the boundaries. Measured against the asymptotic balanced state the errors for the 48 
hour forecast are huge. See column 2 of table 1. 

T,4BLE 1. Root ,mean square difference between the 48 hour forecast and the asymptotic 
solution given by Eq. (4.1) . 

a(2) @ - &VAI imposed. - 

In sub-section 4a(l) we saw that imposing @ produced stable forecasts: but caused 
the adjustment waves to be reflected at the boundary. In this section we investigate 
to what extent imposing the fields associated with in-going characteristics can reduce 
those reflections. Thus we are implementing the scheme described in the appendix , 
and as previously, imposing UT = 0 at the inflow boundaries. Now, however, instead 
of imposing 4, = 50009 we impose p(Ax/2, y, t) = q(L,  - 0 x 1 2 ,  y,t) = s(x, Ay/2,1) = 
T(X, L, -Ay/2, t) = 50009. The forecasts for the first 12 hours are displayed every 3 hours 
in figure 2, as is the 48h forecast. The latter is identical to the eye to the asymptotic 
balanced stabe described by Eq. (4.1). Now, the boundaries are almost transparent to 
adjustment waves. The system is also 'experimentally well-posed' : the 10 day forecast 
shows no sign of instability. Measured against the asymptotic balanced state the errors 
are now small for the 48 hour forecast. See column 3 of table 1. 



4 3 )  @ - ~ V N  imposed at inflow and d!@ - & v ~ ) / d t  = 0 imposed at outflow. 

From Eqs. (2.8)-(2.9) we see that for adjustment waves this scheme is not more 
accurate than (2). So this is just a test of stability. The forecasts are almost identical to 
those displayed in figure 2; which is confirmed by the rms errors, displayed in column 4 
of table 1. 

b. Xestina advection: bell exiting the area . 

In this section and the next we investigate the permeability of the boundaries to 
advective solutions. Do they enter and exit the area without generating any instabilities 
or unwanted adjustment waves? Do they enter and exit without refraction or reflection? 
Does option (3) reduce reflection at the outflow boundary as our analysis suggests? 

The following is an analytical solution of Eqs. (2.1)-(2.3) which describes the ad- 
vection of a bell shape with a constant velocity (uo,vo) starting from a position (xs, ys). 
Thus we have an exact answer with which we can compare our integrations. Also, the 
system is in geostrophic balance and the analytical divergence is always zero providing us 
with an additional useful test of the efficacy of our discretization. 

@(x,y,t) = @ o + &  exp ) 

With our choices of the various parameters the bell can be thought of as a geostrophi- 
cally balanced sharp pseudo-meteorological feature. (The maximum geostrophic wind is 
57.5m/sec.). 

In this section we address the question: when the bell exits the area how big are 
the reflections from the boundary? In particular, if the imposed boundary conditions 
are wrong how badly behaved is the system? (This models an unavoidable operational 
situation in which the host model fields are inaccurate at outflow). In order to make this 
a truly two-dimensional test let us start with the bell at the centre of the area and advect 
it so that it. exits through a corner; thus (x,, y,) = (L,/2, Ly/2) and (uo, vO) = (50,50) , 
so that it leaves the area through the corner defined by x = L,, y = L,. 

We impose @ ( O ,  y, t )  = @(L,, y, t) = @(x, 0, t) = @(x, Ly, t)  = 50009 . We impose 
UT = 0 on the inflow boundaries at all times. We extrapolate vr at outflow boundaries as 
explained in section 3. The initial state and the 18h, 24h, 30h, 36h, and 48h forecasts are 



displayed figure 3. As can be seen, the bell disappears almost without trace. There is no 
sign of instability nor of two-grid noise. Looking carefully at the 36h and 48h forecasts we 
can just see a feature with a dominant wavelength of about LC/?. This feature is not in 
geostrophic balance as can be seen from 'x's in the the graph of mean absolute divergence 
shown in figure 5. The rms difference between the 48h forecast and the analytical solution 
is shown in column 2 of table 2. 

I b P )  I b(2) I b(3) 
rms for @ 1 6.75 1 1.36 1 0.15 

I , , 
rms for u 1 0.227 1 0.058 1 0.003 
rms for v 1 0.247 1 0.064 1 0.004 

TABLE 2. Root mean square difference between the 48 hour forecast and the analytical 
solution; bell exiting . 

b(2) @ - $ & v ~  imposed. 

We have seen in section 4a that adjustment wave reflections can be reduced by 
imposing fields associated with in-going characteristics. Will they have a similar beneficial 
effect in this advective scenario? In particular, will the geostrophic balance be maintained 
as the bell passes through the boundary? As before, we impose p(Ax/2, y, t )  = q(L, - 
Ax/2, y,t) = s(x,Ay/2, t)  = T ( X ,  L, - Ayj2, t )  = 5000g. We impose v~ = 0 at  the 
inflow boundaries. When there is outflow, v~ is computed by extrapolation as described 
in section 3. 

We repeat experiment b(1) with these new boundary conditions. The forecasts are 
shown in figure 4. Looking at these charts we conclude that there is no instability and 
almost no reflection at  the boundary. In fact, there is a small amount of error. The rms 
difference between the 48 hour forecast and the analytical solution is shown in column 3 
of table 2. The errors have been reduced significantly, but there remains some reflection. 
The mean absolute divergence shown as circles in figure 5, still shows a big increase as the 
bell reaches the boundary but subsequent to that the geostrophic balance is much better 
than for b(1). 

b(3) @ - 6 v i v  irn~osed at inflow and d(@ - &vw)/dt = 0 imposed at  outflow. 

We now impose @ - &vN = 5000g at inflow and d(@ - &vN)/dt = 0 at outflow, 
treating v~ in the same manner as always. Is the boundary is now transparent to the 
advective solution as we argued in section 27 We repeat experiment b(2) with this new 
condition at  outflow. The forecasts (not displayed) show greater transparency, This is 
demonstrated by the reduction in rms error (see column 4 of table 2) and good geostrophic 



balance throughout the forecast; see the dots in the graph of mean absolute divergence, 
figure 5. 

c. Testing advection; bell entering the area . 
I 

In order to make this a truly two-dimensional test let us start with the bell at 
(xs,ys) = (5Lz/4,5L,/4) and choose (uO,vO) = (-50, -50) SO that it enters through the 
corner defined by x = L,, y = L,. 

c(1) @ imposed. 

We impose Q, on all boundaries and VT on the inflow boundaries at  every time step 
so that these fields agree with the analytical description of the bell entering the area as 
we described above. The initial state and the 18h, 24h, 30h, 36h, and 48h forecasts are 
displayed figure 6. As can be seen, the bell enters the area stably but is accompanied 
by 'trailing waves'. The stability of the 10 day forecast is confirmed by the plot of mean 
absolute divergence represented by the 'x's in figure 8, which also shows that geostrophic 
balance has still not been established after lodays, long after the bell has exited the area. 
The rms difference between the 48h forecast and the analytical solution is quite large; see 
column 2 of table 3. 

rms (a) 16.06 0.69 0.69 
rms (u) 3.640 0.136 0.136 
rms f v )  4.014 0.143 0.143 

TABLE 3. Root mean square diffe~ence between the 48 hour forecast and the analytical 
solution; bell entering . 
- 

We know from sub-section b(2) that imposing @ - & v ~  can improve the fore- 
casts even for balanced solutions exiting the area. Will it have a similar beneficial ef- 
fect with a balanced solution entering the area? In particular, will the geostrophic bal- 
ance be maintained as the bell enters the area? Now, we impose p(AxJ2, y,t),q(L, - 
Ax/2, y , t ) ,  s (x ,Ay/2 , t ) ,  and r (x ,  L, - Ay/2,t) and VT at  the inflow boundaries at every 
time step such that these fields agree with the analytical fields for the bell entering as 
described above. We repeat experiment c(1) with these new boundary conditions. The 
forecast is shown in figure 7. There are no 'trailing waves' visible. The rms error for the 



48 hour forecast is significantly reduced in comparison with c(1); see column 3 of table 
3. Also, the geostrophic balance has improved dramatically; the graph of mean absolute 
divergence (not shown to avoid clutter) coincides exactly with the dots in figure 8. The 
divergence is small throughout the 10 days. There is still a small increase in mean absolute 
divergence as the bell enters the area. The integration is still stable after 10 days. 

c(3) @ - &UN imposed at  inflow and d(@ - & u ~ ) / d t  = 0 imposed at outflow. 

We impose @ - &vjv and ZIT at inflow as in sub-section c(2) but now impose 
d(@ - &v,v))dt = 0 at outflow. Again this is mainly a test of stability, since all the 
activity is at inflow. The forecasts are almost identical to those of experiment c(2), as 
can be seen from column 4 of table 3 and figure 6; where it is inseparable from c(2). 

5. Discussion. 

In this section the phrase 'experimentally well-posed' will be used to describe a dis- 
cretization of the linearized shallow water equations which produced forecasts which had 
no visible two-grid noise on the 10-day chart and for which the mean absolute divergence 
was not increasing significantly with time at  day 10. 

The three sets of boundary conditions which we tested were experimentally well- 
posed. They showed varying degrees of transparency in agreement with our analysis of 
section 2. It is perhaps worth emphasising that well-posed boundaries of themselves, al- 
though attractive from a theoretical point of view may not be particularly useful. They 
guarantee stable solut.ions but. as we have seen, they do not guarantee accurate solutions. 
When we imposed @ on all boundaries we saw that adjustment waves were reflected 
at the boundary in our adjustment experiments, and that 'trailing waves' developed in 
our advection experiments. When, instead, we imposed @ - &vN on all boundaries 
we obtained not only stable forecasts, but also their accuracy was improved dramati- - 
cally. The adjustment wave reflection was reduced significantly, and the 'trailing waves' 
phenomenon was eliminated. When we imposed Q, - & u , ~  at  inflow boundaries and 
dl(@ - & u ~ ) / d t  = 0 at outflow we saw that transparency improved significantly for 
the the advection solution at outflow. 

Although the rms errors are very small for the 'bell entering7 experiment there is 
a modest 'ageostrophic shock' seen in figure 8. Perhaps the treatment of the corners is 
lacking in sophistication, or possibly we need to include higher order terms than 0(1/k) 
and O[f/(k&)] . Looking at Eq. (2.12) we see that to all higher orders we would argue 
that the potential vorticity should be imposed at  inflow. It is interesting that Charney 
(1960) proposed such a boundary condition for the barotropic primitive equations. How- 
ever, Oliger and Sundstrom (1978), p 441, have made a statement which gives us a reason 
to pause: '(CharneY3s) approach has the liability that a small error committed initially 



or at any later time to will influence the boundary values at all later times. These errors 
will spread into the region of integration, contaminating the solution'. 

We have demonstrated the technical feasibility of transparent boundary conditions 
for the linearized shallow water equations. An obvious next question to be addressed is: 
will these results hold up when the non-linear terms, with their potential for explosive I 

growth, are included? Assuming they do, can we apply these ideas directly to a multi- 
level model? Oliger and Sundstrom (1978) established necessary conditions for the well- 
posedness of the linearized hydrostatic equations by doing a normal mode decomposition. 
For each vertical mode this projects out a shallow water equation for which the well- 
posed boundaries are well-known. (There is no guarantee that these will be suBcient 
for well-posedness). This gives us an idea of how to proceed for hydrostatic models. 
Each mode has an associated a, which enables us to apply the transparent boundary 
conditions presented in this paper to each of the projected shallow water equations. Once 
the boundaries have been updated we transform back to physical space. (For many 
semi-implicit models this concept is familiar. We solve the Helmholtz equation for the 
transformed fields). 

APPENDIX 

In this section 
corresponding to the 
enough to fit all our 

we describe the procedure for solving the equations when the fields 
in-going characteristics are imposed . To make the derivation general 
various options consider the following generic u-equation: 

We impose p at x = Ax12 : 

which we use to eliminate @$') from Eq. (A.1): 
- 

Similarly, we impose y  at. x = L, - Ax12 : 

1 
n+: , = - n+1 

Y I - , , ~  - 1  + , i n '  - @OU,-;,~, (A.5) 

which when substituted in Eq. (A.l) results in 



We employ the same procedure to impose fields corresponding to the in-going character- 
istics at the other two boundaries. Consider the generic v equation: 

i At y = A y / 2  and y = L, - Ay/2, 

and 
1 

rn+l t i .  1 = ~ ( @ + l  2 + @t,J)n+l - &v$, (A.9) 

respectively. When substituted into of Eq. (A.7) these give 

and 

At all other grid points the u and v equations are derived as in the body of the text and 
we proceed as described in section 2d. 

When we are using option (2) then, for example, then p:+' = (ph)i:.l. When we are 
i.13 

using option (3) then at inflow p:y = 
5>J  

(p";:, and at outflow p:'' = p: 
T $3 iJ>* 

For an alternative approach see section 5.3.2 of Elvius and Sundstrom (1973), who 
impose @ - &vN on the boundary line itself instead of half a grid in. 
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0 hour fo recas t  3 hour f o r e c a s t  b hour fo recas t  

FIGURE 1. The adjustment of a bell shape using option ( I ) :  imposing on the bound- 
aries 
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FIGURE 2. The adjustment of a bell shape using option (2): imposing - on 
the boundaries. 
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FIGURE 3. The advection of a bell shape out of the area using option (1): imposing Q, 
on the boundaries. 
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FIGURE 4. T h e  advection of a bell shape out of the area using option (2): imposing 
- &vN on the boundaries. 
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FIGURE 5. Graph of the mean absolute divergence multiplied by 10'. 'x's : @ zm- 
posed; circles: @ - &UN imposed; and dots: @ - &vN imposed at inJow and d(@ - 
&vN)/dt = 0 imposed at outflow. 
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FIGURE 6. .The advection of a bell shape in to  the area using option (1): imposing 0 on 
the boundaries. 
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FIGURE 7. The advection of a bell shape into the area using option (2): zmposing 
0 - &vN on the boundaries. 
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