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Abstract – We show that periodically folded graphene sheets with enhanced spin-orbit interaction
due to curvature effects can carry spin-polarized currents and have gaps in the electronic spectrum
in the presence of weak magnetic fields. Our results indicate that such origami-like structures can
be used efficiently in spintronic applications.

Copyright c© EPLA, 2013

Often hailed as a wonder material due to its impressive
physical properties [1], graphene has opened several venues
of basic science exploration and it is a material that has a
tremendous technological potential. Despite its potential
applicability, the lack of a bandgap is a well-known limita-
tion that currently prevents the use of graphene in digital
electronic applications [2]. Different strategies have been
attempted to remedy this shortcoming, namely, by quan-
tum confinement in the form of nanoribbons and quantum
dots [3,4], by stacking graphene sheets in bilayers in the
presence of a perpendicular electric field [5–7], by strain-
engineering its electronic structure [8–11], or by simply
chemically doping the graphene sheets [12,13]. Unfortu-
nately, these attempts have so far failed to produce techno-
logically relevant semiconducting graphene due to several
difficulties that go from the small size of the gaps they
produce to the disorder that they introduce.

On a different front, the field of spintronics appears as
one of the most promising areas for graphene since the ex-
tremely small spin-orbit interaction (SOI) of carbon makes
the spin dissipation that otherwise exists in most materi-
als practically negligible [14,15]. This suggests that in-
formation stored in the electronic spin of graphene can
be retained for times considerably longer than in ordinary
metals. Furthermore, this information can travel longer

(a)E-mail: antc@if.uff.br
(b)E-mail: ferreirm@tcd.ie

distances with very little loss [16–18]. Not surprisingly,
there is a growing interest in graphene-based spintronics
as demonstrated by the volume of recent literature on the
topic [19].

Driven by the necessity of a bandgap and by the grow-
ing interest in graphene-based spintronics, in this letter
we propose a simple mechanism that not only produces
a gapped electronic structure in graphene but that also
spin-polarizes its current. We show that this effect arises
quite simply by the combined presence of two key ingre-
dients: the SOI and an externally applied magnetic field.
While magnetic fields are controllable, the SOI of a mate-
rial is normally constant and small in the case of carbon.
Therefore, it might seem too ambitious to amplify both
ingredients enough for the appearence of a possible gap.
Nevertheless, recent discoveries have demonstrated that
the SOI is enhanced when graphene is mechanically bent
away from its planar geometry [20–23] suggesting that
folding might function as a viable mechanism to induce
a bandgap. In fact, here we show that folded graphene
sheets in the presence of externally applied magnetic fields
may display both a bandgap and spin-polarized currents.
Not possible with bulk 3-dimensional structures, folding
may pave the way to a whole new approach of dealing
with spin electronics in 2-dimensional systems, giving rise
to the so-called origami spintronics.
It is convenient to start by showing that the two afore-

mentioned key ingredients indeed lead to a bandgap in
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Fig. 1: Dispersion relation E(k) obtained from the four
eingevalues of the Hamiltonian H . (a) In general the elec-
tronic structure displays a distinctive bandgap Δ, depicted by
the vertical arrow. The energy gap disappears when (b) γ �= 0;
λ = 0 or (c) γ = 0; λ �= 0.

graphene. Let us consider a graphene sheet with SOI
and in the presence of an externally applied magnetic
field. For energies close to the Dirac point, the band
Hamiltonian H is commonly described by a 2-dimensional
Dirac equation. In this case, the Hamiltonian is given
by [24]: Ĥ = vF 1̂⊗ �σ · �p+2λ(σx ⊗ τy + σy ⊗ τx)+ γ1̂⊗ τz,
where vF is the Fermi velocity, σx,y,z are Pauli matrices
acting on the sublattice space, τx,y,z are Pauli matrices

acting on the spin subspace, �p = −ih̄�∇ is the momentum
operator, λ represents the strength of the SOI and γ is the
Zeeman-field factor. Note that the Hamiltonian recovers
the standard form for pristine graphene when both γ and
λ vanish, so it is convenient to express the Hamiltonian
Ĥ = Ĥ0 + V̂ , where Ĥ0 is the pristine Hamiltonian
and V̂ accounts for the γ- and λ-dependent perturba-
tion. When expressed on the basis formed by the vec-
tor Ψ = (ψ↑

a, ψ
↓
a, ψ

↑
b , ψ

↓
b )

T , where ψσ
ζ is the electron wave

function on sublattice ζ with spin σ, the Hamiltonian is
written in matrix form as

H(kx, ky) =

⎛
⎜⎜⎜⎝

−γ 0 kx + iky −2iλ

0 γ 0 kx + iky

kx − iky 0 −γ 0

2iλ kx − iky 0 γ

⎞
⎟⎟⎟⎠ . (1)

The four corresponding eigenvalues are

E(k) = ±
√
k2 + γ2 + 2λ2 ± 2

√
λ4 + k2(γ2 + λ2), (2)

where k2 = k2x+k
2
y. Figure 1(a) shows the dispersion E(k)

for arbitrary values of λ and γ. Note the distinctive energy
gap Δ = 2λ√

1+(λ/γ)2
around E = 0. The characteristic lin-

ear dispersion relation of pristine graphene reappears from
eq. (2) when γ = λ = 0. It is worth pointing out that

Fig. 2: Schematic diagrams of the corrugated geometry
adopted by our graphene sheets. (a) Characteristic shape of
corrugated sheets of graphene of width L with a periodicity
S. For practical purposes we assume L → ∞. (b) Cross sec-
tion of the corrugated graphene sheet used in our calculations,
whereby sections of curved graphene with curvature radius R
and width πR are spaced by flat regions of width D. For dis-
tinction, these two different regions are separated by the hor-
izontal dashed lines. (c) In the limit R → 0, the corrugated
sheet becomes a series of equally spaced sharp creases sepa-
rated by flat sections of graphene.

either γ or λ alone is not capable to induce the bandgap
opening, as shown in figs. 1(b) and (c). Only when both
quantities are non-zero, will the bandgap appear. This
is explained by the fact that γ and λ define two comple-
mentary energy scales and the magnitude of the bandgap
Δ is determined ultimately by the smallest of these two
quantities.

Let us now consider folding the graphene sheet as a SOI-
enhancing mechanism. In this case, however, the SOI is
not homogeneously distributed but spatially limited to the
region of the graphene sheet surrounding the non-planar
deformations. We consider a corrugated structure where
curved deformations to the graphene sheet are ordered in
a periodic structure. This can be achieved by patterning
a substrate in the form of periodic trenches [25,26] on top
of which a graphene sheet is deposited. In this way, the
graphene sheet alternates between curved and flat regions,
the dimensions of which will depend on the geometry of
the patterned substrate. Figure 2(a) shows an image of a
typical corrugated sheet composed of a sequence of paral-
lel ridges and troughs. While the diagram depicts a sheet
of width L, it is supposed to represent a system where
L � S, meaning that for practical purposes L → ∞.
For simplicity, we consider the corrugated graphene sheet
made of a series of curved regions, all composed of semi-
circular cross sections with curvature radius R, equally
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spaced by a distance D, the cross section of which is
schematically shown in fig. 2(b). This setup is equivalent
to an array of half nanotubes joined seamlessly together
by flat nanoribbons. Since the material has to comply dur-
ing folding, this kind of distortion of the graphene sheet
does not introduce the disorder that is so deleterious to
the transport properties in other gap-opening proposals.

Differently from the previous case where we looked at
how the electronic band structure changes with the in-
clusion of the SOI plus the Zeeman term across the entire
system, in the corrugated case we investigate how the con-
ductance of the material responds to the addition of ex-
actly the same ingredients, now in a periodic arrangement
as shown in fig. 2(b). In this case both these ingredi-
ents are added to the pristine Hamiltonian only where the
graphene sheet has a non-zero curvature. The advantage
of studying the transport response of the system is that
we are able not only to identify the opening of a bandgap,
which appears as a region of zero conductance, but we
can simultaneously investigate the spin dependence of the
transport response when the conductance is finite. In this
way, we can study the appearance of a bandgap and as-
sess its potential impact on spintronics applications at the
same time.

Rather than using the Dirac equation to describe the
electronic structure of the system, we consider the tight-
binding (TB) Hamiltonian whose accuracy is not limited
to a narrow energy range surrounding the Dirac point [27].

The Hamiltonian is written as Ĥ =
∑

(â†j,σ b̂j′,σ+h.c.)+V̂ ,

where the operators â†j,σ (âj,σ) creates (anihilates) an elec-

tron at site j and spin σ on the sublattice A. The b̂†j,σ
and b̂j,σ are the corresponding operators for the B sublat-

tice. The operator V̂ = iλ
∑

ll′
∑

αβ ẑ ·(�σαβ× �dll′)c
†
lαcl′β−

γ
∑

lα αc
†
lαclα represents the effects of a Rashba spin-orbit

coupling [24] plus a Zeeman field. �dll′ is the position of
site l′ relative to site l. �σ is the vector formed by the Pauli
matrices and the index α in the last sum takes the value
+1 for majority spins and −1 for minority spins. The
Rashba term arises whenever inversion symmetry in the
direction perpendicular to the graphene sheet is broken,
a condition realized for samples deposited on a substrate
or in the presence of an electric field perpendicular to the
sheet plane.

The parameters λ and γ are dependent on the curvature
and on the applied magnetic field, respectively. The for-
mer can be estimated from refs. [14,15], which studied the
SOI in carbon nanotubes, and the latter can be extracted
from characteristic values of magnetic fields. For the case
shown in fig. 2(b) the potential V̂ acts only where the
curved regions are located. In other words, we must con-
sider a graphene sheet with an array of M equally spaced
regions of width πR separated by a distance D. Follow-
ing refs. [14,15], λ is inversely proportional to the radius
R, which means that higher curvatures correspond to nar-
rower curved sections with correspondingly stronger values

for λ. In the extreme limit of very high curvatures (R → 0)
the width of the regions with non-zero SOI becomes small,
giving rise to a geometry depicted by fig. 2(c). In all cases,
we assume that the corrugated structure is connected by
leads made of semi-infinite pristine graphene.

The conductance is calculated by the Kubo formula ex-
pressed in terms of the single particle Green function G,
which in turn, is defined as G(E) = (E 1̂ − Ĥ)−1, where
E is the energy and 1̂ is the identity operator. The zero
bias DC conductance Γ is written as

Γ =
4e2

h
ReTr

(
[G̃]00t01[G̃]11t10 − t01[G̃]10t01[G̃]10

)
. (3)

Here, G̃lα,l′β = [Glα,l′β − (Gl′β,lα)
∗]/2i and [G]AB is the

matrix formed by the Green function elements connecting
unit cells A and B. α and β are spin indices. We define
unit cells as lines along the “armchair” direction. The
trace is taken over both site and spin indices. All Green
functions above are evaluated at the Fermi level.

In fig. 3 we show the results for the spin-dependent
conductance as a function of the Fermi level EF for
M = 10, 15, and 50. Note the opening of a gap as M
increases, as shown in the inset of fig. 3(a). The mag-
nitude of the gap increases with M but saturates when
M � 1. In addition, outside the gapped energy region,
the conductance becomes spin dependent, i.e., the trans-
port properties for the ↑ and ↓ spin electrons become
asymetric, which is a basic requirement for exploring the
use of any material in spintronics. Such an asymmetry
in the spin-dependent conductance means that these cor-
rugated systems can function as spin polarizers for the
electronic currents in graphene. The inset of fig. 3(b)
shows the spin-polarization of the current, defined as
Isp = (I↑ − I↓)/(I↑ + I↓), as a function of EF whereas
the inset of fig. 3(c) depicts Isp as a function of λ. Note
the sign change of Isp on either side of the bandgap. This
feature is seen in all our results.

To assess the robustness and generality of these findings
we make use of a simplified approach that is less compu-
tationally involved and yet capable of capturing the con-
tribution from the two key ingredients, namely the SOI
and the Zeeman term. We investigate the limit R → 0,
shown schematically in fig. 2(c). In this limit, the SOI-
enhancing curvature becomes extremely large at the same
time as the extension of the curved region becomes vanish-
ingly small. The smooth ondulations shown in figs. 2(a)
and (b) give way to equally spaced creases on the graphene
sheet, ideally represented by Dirac delta functions that
mark the locations where both the SOI and the Zeeman
term are non-zero. Moreover, a further simplification is
to assume electrons moving along the direction normal
to the creases. The Hamiltonian in this case becomes
Ĥ = Ĥ0+

∑M
j=1 V̂ δ(x− jD), where the operators Ĥ0 and

V̂ have been previously defined, the only difference being
that ky = 0 and k = kx. In other words, the problem in
question is now solved by considering Dirac equation for
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Fig. 3: (Colour on-line) Spin-dependent conductances of a corrugated sheet made of M curved regions of radius R ∼ 6 Å
separated by flat sections of graphene of width D = 20. Except for the insets, black (red) lines represent ↑ (↓) spin-polarized
conductances. (a) M = 10; γ = 5× 10−2; λ = 5× 10−2. The inset shows how the conductance gap scales with M . Note that it
tends to a saturation value when M � 1. (b) M = 15; γ = 5×10−2; λ = 5×10−2. The inset depicts the spin polarization of the
current Isp as a function of EF . Only results outside the bandgap are shown. (c) M = 50; γ = 5× 10−2; λ = 5× 10−2. Shown
in the inset is the dependence of Isp on the SOI parameter λ. (d) Results for creased graphene sheets represented schematically
by fig. 2(c) for M = 2 delta functions for electrons constrained to move perpendicularly to the creases calculated based on the
TB-model (main figure) and on the simplified model (inset).

massless particles under the action of a perturbing poten-
tial made of a series of λ- and γ-dependent delta functions.
It is worth mentioning that the boundary conditions used
to solve the Dirac equation in the presence of delta func-
tion potentials are not the same as those commonly used
to solve the Schroedinger equation. The wave function for
Dirac electrons is not continuous around a delta function
but obeys the following condition [28]: ψ+ = eA ψ−, where
ψ+ and ψ− are the wave function for the Dirac electrons
to the right and left of the delta function, respectively. In
the case considered here, the operator A is given by

A = −

⎛
⎜⎜⎜⎝

0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝

−γ 0 0 −2iλ

0 γ 0 0

0 0 −γ 0

2iλ 0 0 γ

⎞
⎟⎟⎟⎠ . (4)

It is then straightforward to calculate the transmission co-
efficient of electrons across this potential and plot it as a
function of the energy, which is proportional to the wave
vector k. Since the conductance is also proportional to the
transmission coefficient, we can now compare the results

of this simplified approach with the TB-based results. In
fig. 3(d) we show results for M = 2 delta functions calcu-
lated with the simplified approach as well as with the TB
adapted for normal incidence. Quantitative agreement is
not expected because the discrete delta function represen-
tation in the TB-model is fundamentally different from
the continuous one. From a qualitative point of view,
however, both methodologies lead to the appearance of a
low-energy conductance gap followed by a spin-polarized
current for energies outside the bandgap. This commonal-
ity found with two distinct methodologies is indicative of
the robustness of our findings, which is further confirmed
by recent calculations based on Density Functional The-
ory results also displaying bandgap features when the SOI
is enhanced by curvature effects [29].

In addition to folding, adsorbants that deform the pris-
tine planar structure of graphene sheets also function as
SOI-enhancers. Therefore, it is possible to combine them
both such that SOI-enhancing adsorbants might get at-
tached to mechanically curved regions which themselves
possess enhanced spin-orbit coupling. Moreover, if the
adsorbants’ atoms have magnetic moments their exchange
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Fig. 4: (Colour on-line) Experimental method used to grow
fin-like structures made of a single folded graphene sheet.
(a) A graphene sheet draped over a relief patterned PDMS
stamp is used to print free standing graphene fins in a mod-
ified transfer printing technique. (b) A scanning electron mi-
crograph and (c) an AFM image of a small portion of a folded
graphene surface.

splitting may induce a spin splitting within the underly-
ing carbon atoms via hybridisation. The induced split-
ting will be equivalent to a large Zeeman field. While we
are not able to quantify the precise contributions coming
from each one of the different mechanisms, curvature and
dopants acting jointly together will certainly amplify the
overall effect of spin-polarization of the charge currents
as well as the bandgap in the electronic structure of the
system.

Regarding the experimental feasibility of the sys-
tem considered in this theoretical study, the system
schematically depicted by fig. 2(a) is easily realized if
graphene sheets are deposited on periodically trenched
substrates [26]. Despite being experimentally more chal-
lenging, the creased structures shown in fig. 2(c) are also
possible and are currently grown with impressive levels of
control on their dimensions and periodicity as illustrated
in fig. 4. The graphene is transferred via a PMMA sup-
port layer onto a trenched PDMS stamp with a conven-
tional polymer assisted process [30]. The PMMA is then
removed with a solvent bath and with controlled drying
conditions the graphene film sinks into the trenches on the
stamp. Upon further drying of the graphene, it partly ad-
heres to the trench walls with a suspended configuration
over the middle of the trench. Printing the graphene inked
stamps leads to the suspended graphene collapsing onto
the substrate and the adhered side-wall graphene folding
into a bi-layer configuration as shown in fig. 4(a). As a

result, freestanding fin-like structures are formed [31]. A
scanning electron micrograph is shown in fig. 4(b) and an
AFM image of a small portion of such a printed surface
is depicted in fig. 4(c). It is worth emphasizing that this
methodology gives us full control on the dimensions and
periodicity of the folded fins. The remaining challenge
consists of carrying out transport measurements across
such structures but the fact that they are grown with such
an excellent level of control is the first step towards the
experimental confirmation of our theoretical predictions.
In summary, we have shown that by adding the Zee-

man term and the SOI to the Hamiltonian of pristine
graphene, we force the opening of a bandgap in its elec-
tronic structure and induce its charge current to become
spin-polarized. Both additions to the Hamiltonian are
experimentally feasible and are mimicked by an externally
applied magnetic field and by deforming the graphene
sheet out of its planar geometry through folding. It is
worth mentioning that our findings are valid not only
for the type of 1-dimensional folding here suggested but
should arise whenever strain-enhanced spin-orbit interac-
tion coexists with any spin-splitting mechanism. With
the increasing degree of experimental control on both the
chemistry and the geometry of nanoscaled surfaces, it is
possible that by engineering the shape and composition
of graphene sheets we can create spin-polarized currents
in an energy-gapped material. Such an origami-like tech-
nique is likely to bring about a whole new range of spin-
tronic features in 2-dimensional systems not possible in
3-dimensional structures.
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