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Abstract—Residential Demand Response has shown promising
results in smart grid applications. It can be achieved manually
or autonomously. The variety of algorithms applied to achieve
autonomous Demand Response have lacked a common baseline.
The selection of testing environment is typically skewed by the
desire to find one in which a particular algorithm performs well.

This work evaluates several algorithms in a common evaluation
environment. Which has been designed to encompass the range of
conditions in a typical Residential Demand Response application.
The environments described exhibit the following characteristics:
non-stationary, dynamic, multi-actor, multi-objective. These char-
acteristics will then be used to provide heuristics for algorithm
selection.

The algorithms used were selected to cover the spectrum of
possible approaches to Demand Response. Some are centralised,
others distributed. There are collaborative approaches and non-
collaborative ones. Some are learning based, others require
no training. This work provides criteria for which particular
algorithms should be applied to a given application.

I. INTRODUCTION

The smart grid involves applying computational intelligence
to the electrical grid [1]. Intelligent control of residential
devices allows them to be more flexible. This means that
they can change their operational schedules to meet the
grid’s requirements. This is the essence of Demand Response.
Electrical demand is modulated by autonomous control to
match supply (or other concerns) [2]. The amount of flexibility
that a particular device can exhibit depends on its functional
requirements. For example, an Electric Vehicle (EV) can be
significantly rescheduled as long as it is sufficiently charged
to meet user requirements. On the other hand, electric lighting
must operate when requested, there can be no rescheduling.
There are several different constraints which devices can
exhibit that limit their flexibility. Some devices can be stopped
and started frequently (e.g., an EV) –called unconstrained–
, some must run completely once started (e.g., washing ma-
chine) –called continuous–, some device can be set to different
output levels operating at some percentage of maximum power
–called variable–, this makes them much more flexible as they
can fill whatever energy surplus there is (e.g., water heater,
EV). In general, devices that have some sort of energy storage
will be most flexible. This storage can be thermal (e.g., water
heating or fridge), electrical (e.g., EV) or mechanical (e.g.,
potentially flywheels or compressed air). With such devices,

energy can be stored when there is a surplus –perhaps due
to low demand or abundant renewable generation– by turning
them on. Effectively, demand is increased to fill valleys in
the energy usage. During periods of high demand the stored
energy can be used, allowing devices to keep operating without
drawing power from the grid, resulting in reduced peak load.

Demand response can be applied to smooth out the overall
energy drawn during the day (see Figure 2). Rather than
producing a smooth load profile, it can be used to match inter-
mittent renewables. For example, wind generation is typically
high in the evening (see Figure 1), at this time residential
demand is low. If Demand Response was applied, energy could
be stored or used during evening and night wind production
to offset the demand during low wind periods.

In customer behaviour trials [3], [?], users were incentivised
to reduce electricity usage at peak times, with increases in
prices ranging from 150% to 450% compared to off peak
times. Peak reductions ranged from 0% to 22% (3 trials out of
21 recorded no change). Over the remaining trials there was
a noticeable reduction of peak demand of between 7% and
12%, with price increases between 143%-231% during peak
times. A separate groups of users were incentivised to reduce
electricity usage only during critical events, which on average
occurred 12 times a year, with the event dates provided on
short notice (day ahead). These were considered critical peaks,
with cost increases compared to normal prices between 500%
and 4000%. Here peak reductions ranged between 5-38%.
This shows the potential of Demand Response in residential
environments. Another trial [4] that used automated Demand
Response on central air conditioning and electric heating,
showed a 34% reduction in summertime peak load. Aside
from being more effective, automation of Demand Response
also overcomes some potential problems. Users can lose
motivation to participate in such programs over time and they
can misunderstand what they are required to do particularly
when Demand Response is applied because of energy mix or
energy security.

The rest of the paper is organised as follows, Section II
will describe Demand Response in general and algorithms
that have been applied to Demand Response. Section III
will describe the smart grid’s characteristics and challenges
and how they can be encapsulated in scenarios. Section V



Fig. 1: Wind energy generation in Ireland’s grid per day
(average figures for a year).

Fig. 2: The load of a small neighbourhood both with and
without Demand Response.

will provide details of the experimentation and its results.
Section VI will give analysis and design recommendations and
finally conclusions are in Section VII.

II. BACKGROUND

The categories of algorithms that can be applied to Demand
Response are listed in the Table I. They are compared on the
basis of key criteria for Demand Response [5], which are as
follows:

• Type of load - Which types of loads can the algorithms
currently manage.

• Training - What initial data does the algorithm need to
function well.

• Objectives - Can the algorithm accommodate several
objectives at the same, time or just one.

• Communications - What are the communications require-
ments of the algorithms.

A. Probabilistic

The Probabilistic category in the table is comprised of set
point algorithms. The central point broadcasts a set point
and devices react to this probabilistically. Devices can choose
to override this if meeting the user requirements is more
important. In aggregate this can increase or reduce the load
depending on the broadcast. These algorithms have minimal
communications requirements and take very little processing
at the device level.

One such algorithm is Set Point Control [6]. In this a
probability is broadcast, devices then use this probability to
determine if they should turn on. If the aggregated load is too
high the probability is reduced, otherwise it is increased.

Another algorithm in this category is additive increase, mul-
tiplicative decrease (AIMD) [7]. It is classed as probabilistic
as it operates based on a broadcast, with devices responding
according to a set scheme. This scheme aims to have some
fraction of devices charging while others not, so in aggregate
they balance load. The devices additively increase their power
draw until the broadcast warns them to stop, in which case they
drop down. It is the same scheme as TCP uses. The sharp drops
when load is shed will lead to times of underutilised capacity.

B. Reinforcement Learning

The basic pattern underlying Reinforcement Learning
(RL) [8] is to observe the environment, choose and execute
an action to affect the environment and see how good that
action was. An agent (a process that implements RL) can
learn to perform optimally for a given state of the environment
by executing this process multiple times. When multiple
objectives and agents are in a system the optimality guarantee
is lost, but generally good performance is achievable. The
major advantage of RL is that it does not require a model
of the environment, so it can be quickly configured for new
applications.

Distributed W-Learning (DWL) is a multi-actor, multi-
objective algorithm based on Q-Learning and W-Learning. In
this approach devices pass messages about what state of the
environment they are in and how good it is (calculated based
on their goals). The devices learn what is best according to
their own objectives and how their actions affect neighbouring
devices[9]. The degree to which agents care about their
neighbours objectives can be easily changed.

There is an extension to reduce learning time in RL which
involves the application of Transfer Learning. This is called
Parallel Transfer Learning (PTL) [10]. The addition of PTL
increases the amount of knowledge shared and make the
algorithm more collaborative.

A collaborative RL approach using negotiation and planning
is found to achieve 95% of the efficiency of a quadratic
programming approach [11]. The approach requires some



Algorithm Type of Load Training Objectives Communications
Distributed Algorithms

RL Non-collaborative Unconstrained On-line Multiple None
RL Collaborative Unconstrained On-line Multiple Between Neighbours

Centralised Algorithms
Probabilistic Variable/Unconstrained 7 Single Single Broadcast
Scheduling Unconstrained/Continuous Off-line Multiple Initial Schedule

TABLE I: Features of the centralised/decentralised algorithms used for Demand Response.

knowledge of future uncontrollable load so that the RL agents
can negotiate when to operate. This would perform poorly
when the base load is dynamic, but achieves good smoothing
when it is predictable.

Another agent-based method uses Widrow-Hoff learning
and intermittent re-optimisation to reduce peak load by up
to 17% [12]. Intermittent re-optimisation is used to prevent
many agents finding the same optima at the same time. If
many agents use the same load shifting solution it can lead to
new peaks, so there needs to be an element of randomness (or
other collision avoidance method). This method also requires
future knowledge to optimise device scheduling, but it can
use the day ahead electricity price, which is readily available
regardless of dynamism in most markets.

Predicting base load can be challenging particularly when
it is done at small scales. When predicting load across the
whole grid, errors and individual variation tend to average out
so accuracy of sub 2% is regularly achievable [13]. However,
when applying similar methods to small sections of the grid
they can fail to obtain the same level of performance as
there is a sparsity of data and individuals have a greater
influence. For example, an 8MW university campus prediction
had 5.15% error [14] and a village with energy usage of
15kW had errors of 13.8% [15]. By combining prediction
methods performance can be improved. This is because some
methods estimate peaks well and others provide good overall
estimates but tend to underestimate peaks. As peak estimation
is particularly important having a method just for that is
logical. One such system obtains 3.22% accuracy on a 75kW
residential neighbourhood [16].

C. Scheduling

Evolutionary Algorithms (EA) are in the Scheduling cate-
gory. A set of candidate solutions are created, these are then
evaluated. The solutions are changed, then re-evaluated. The
way they are changed depends on the particular implemen-
tation, but it usually involves preferentially selecting good
solutions and changing them slightly. This approach allows
the greediness to be calibrated. A particular part of the search
space can be focused on or a wider array of potential solutions
can be used [17].

Another scheduling approach is Approximate Dynamic Pro-
gramming, which has been applied to several smart grid prob-
lems [18]. It is flexible in the types of applications to which
it can be applied. When used for device control, it requires
foreknowledge to perform well, so much like other planning

based approaches it is not suited to dynamic environments.
Centralised scheduling approaches have significant issues

when applied to Residential Demand Response. They are
unlikely to scale to networks of potentially hundreds of thou-
sands of devices which will eventually constitute a Residential
Demand Response aggregation unit. There is also no guarantee
that a user will follow the schedule. If users ignore the
schedule such approaches will be unable to respond without
recalculating the entire schedule. Moreover, any time a new
request comes from the grid, a new schedule will need to recal-
culated and resent. These approaches have serious implications
for privacy and data ownership, as potentially information on
user behaviour and intentions will be factored into calcula-
tions. Such issues are avoided in decentralised approaches or
centralised approaches that function by apportioning requests
from the grid to devices in the system.

III. SCENARIO DESIGN CRITERIA

To comprehensively test algorithms for Demand Response,
the scenarios will need to exhibit all of the challenges found
in the smart grid. They will need to have multiple objectives,
heterogeneous devices and uncontrollable load. In addition,
the environment will be non-stationary and experience dif-
ferent types of change. Change in the environment can be
cyclical (e.g., day/night or seasons), transient (e.g., weather)
or permanent (e.g., introduction of a new device). Change
can occur gradually or suddenly. The way change happens
is particularly important to the algorithms. For example, a
planning or learning based algorithm will typically react
poorly to unexpected sudden change, while gradual change
can potentially be tracked and predicted. If patterns repeat
then algorithms capable of reusing old knowledge gain an
advantage. This is why scenarios can be carefully chosen to
play to the strengths of a particular approach.

IV. EXPERIMENTAL SET UP

A. Common Set Up

The algorithms’ evaluation is done using a dynamic, multi-
objective scenario. The scenario is designed to be realistic and
challenging. The simulation was run using GridLAB-D [19],
which is an open-source, electrical grid simulator developed
by the US Department of Energy. A scenario with 90 houses
is used. The base load is derived from a smart meter trial in
Ireland [3] (see Figure 3). In addition to this load, each house
has a controllable water heater and electric vehicle charger.
A year will be simulated so the algorithms tested will need



Fig. 3: The total base load for 90 houses excluding EVs and
water heating. Samples from four different times of the year.

to account for seasonal variation in demand due to weather.
Each devices has a typical usage pattern. EVs are away from
home (unavailable to charge) for 9 hours, there is variation in
their arrival and departure times, but all EVs are away at the
same time for at least 7 hours. When they return they require
approximately 11kWh or 30% of their capacity to be fully
charged. They charge at a rate of 1.7kW. The water heaters
are required to provide a large amount of water in the morning
and intermittent small draws throughout the day. They have a
4.5kW heating element. Neither device is capable of drawing
variable power, so only fully on or off are possible.

Each device aims to meet its requirements. For the EVs
that means being sufficiently charged for the daily journey
and for the water heater that is maintaining tank temperature
throughout the day. There is also a shared Demand Response
goal of smoothing transformer load, peak shaving and valley
filling. These goals will be evaluated using the following
metrics:

• Peak-to-average-ratio (PAR) [20] will be used for trans-
former load reduction.

• δ, the average change in load between samples will be
used to assess smoothing performance.

• Average battery state of charge and number of complete
discharges will be used for EV evaluation.

• Average water temperature will be used for water heater
evaluation. It should be at between 40◦C and 60◦C.

B. Algorithm Set Up

1) DWL: When DWL is applied to this scenario, an agent
is attached to each device. Each agent has two policies, one
representing the user’s requirements for a device and the other
representing the transformer requirements. The exploration

phase lasts for 11 months1. Once the learning is complete,
exploitation begins and the agent selects the best action for its
current state.

2) DWL with Prediction: When prediction is coupled with
DWL a third policy is added. This policy represents predicted
future load. For example, if the current load was high but
expected to be low imminently, the policy would suggest that
the device turns off until the low load occurred. Overall this
policy aims to improve the load shifting performance. The
predictions are generated off line and provided for the next
hour.

3) DWL with PTL: When Parallel Transfer Learning is used
each device has a set of ten neighbours. These are the agents
that information can be transferred to and from. Transfer
occurs only during the exploration phase as this is when there
is the greatest benefit. Transfer can be particularly effective
when applied to devices like those used here. This is because
when exploring, action selection is at least partially random,
which means that the physical parameter being affected will
tend to stay around the same value, this leads to the agent only
experiencing a small section of the state space and it taking
a particularly long time to learn. By transferring information
this slow progress though the state space can be turned to
advantage.

4) Probabilistic: This approach broadcasts a probability
with which devices should switch on. The probability is
calculated based on what the grid wants. For these experiments
the aim was to maintain an even load of 350kW. If the load was
above this the probability decreased, if not it increased. There
is a user aware version of this approach which does not switch
on regardless of probability, unless the user requirements are
currently not satisfied by the device. For example, if an EV
was above its minimum required battery charge (known for
this scenario, but would have to be estimated in actuality) and
its charging probability told it to charge, it would not.

V. RESULTS

The results in Table II show average values for the various
metrics. For the algorithms that required training, the results
represent the exploitation phase. A sample of the transformer
load is shown in Figure 4.

Method Water Temperature
Average

State of Charge
Average δ (kW) PAR

Base Line 45.0244◦C 81.5% 1.934 2.13
DWL 52.7411◦C 39.71% 3.9162 2.12

DWL + Prediction 54.0535◦C 10.43% 7.2869 1.63
DWL +PTL 52.32◦C 24.5% 2.5799 1.24

Set Point 60.7399◦C 43.71% 4.8198 1.65
User Aware Set Point 51.7411◦C 44.98% 2.3114 2.07

TABLE II: Averaged results of the different algorithms.

The water temperature is kept in the desired range with all
algorithms. By this metric, all algorithms fall approximately
into the middle of the range as would be expected when

1This length of time is to allow the algorithm to experience the full range of
seasonal variation in the scenario. Without variation approximately 1 month
would be sufficient training see [21].



Fig. 4: Transformer load for the different algorithms.

averaging device meeting the temperature goal. The Set Point
approach, however, sits at the top of the range as at periods of
low load from other devices, it operates if at all possible. This
is apparent on the graph during the inter-peak periods where
it maintains a high average load. The largest water demand
is in the morning, this is what causes the high load between
mid-morning and midday. Due to the tanks’ insulation, little
energy is expended maintaining temperature once the tank is
reheated after being filled.

The EVs? state of charge shows one of the risks with learn-
ing based methods. Both DWL + Prediction and DWL + PTL
maintain a comparatively low average charge, this is because
they have learned that a full journey uses approximately 30%
battery. This affords them the opportunity to only charge EVs
at night when there is little other load. While this means they
have a relativity constant energy draw across the day, it runs
the risk of an EV being completely discharged due to abnormal
use.

The average δ is interesting. For most of the approaches
that achieve demand response, the δ is quite high. This is
because when several devices change action at the same time,
there is a considerable effect on transformer load. This is
particularly true with prediction as devices are over reacting to
predicted low load. When low load is forecast many switch on
creating a spike. The increased collaboration in PTL reduces
the spiking profile as each set of neighbours (devices that share
information) reach slightly different solutions. This means
there is more variation in device behaviour, so some collisions
are avoided.

The PARs are generally low. This indicates that the magni-
tude of the peaks is acceptable and from the graph considerable
peak shaving can be seen. Both of the valleys have been filled
by most approaches.

VI. ALGORITHM ANALYSIS

The selection of algorithm for a particular application will
depend both on the environment and what it is required to
do. If, for example, an algorithm’s main aim is to maintain a
quality of service [22], reactiveness will be prioritised. Alter-
nately, if minimising electricity price is the goal, considerable
time can be put into prediction which enables the lowest price
to be used. The set point algorithms can be suitably reactive
as they take very little computation. Generally learning based
algorithms will not be responsive enough, as they take time to
adapt to change. However, with prediction they can be made
suitable.

The structure of the system and guarantees from the algo-
rithms are also important. If a set of devices implementing
Demand Response are being factored into the dispatch calcu-
lations of an electricity market, they will be required to achieve
what they promise. This means there is much less flexibility
in the algorithm as there are requirements that have to be met.

The algorithms should also fit to the structure of the grid,
as it is inefficient to run a single centralised algorithm for
the whole grid. The delay in gathering data and propagating
control is unacceptable. This is why distributed solutions
will be preferable, they also allow individual devices’ to
manage their own concerns. This will be particularly attractive
to network operators as they are then not responsible for
devices which fail to meet their owners’ objectives. Distributed
approaches like DWL naturally fit into the structure of the grid,
as agents can be attached to any device.

VII. CONCLUSIONS

This work has evaluated several representative Demand
Response algorithms in a challenging scenario. Residential
Demand Response algorithms should fit into the structure of
the grid, so that both data acquisition and dissemination of
control can happen with minimal latency. Given the number
of devices that will necessarily participate in a residential
Demand Response, there will need to be some mechanism to
avoid overreaction to grid requests. This is particularity true
when there is a large percentage of flexible devices (such as
EVs) available, as these will more readily respond to requests.
Collaborative algorithms can achieve this sort of collision
avoidance by having devices stagger their operation. Non-
collaborative algorithms could be made to exhibit these same
behaviours, if devices implementing them were put into small
groups and grid request where distributed in a manner that
resulted in each group getting a slightly different version of
the request, in aggregate then the ramp up of load would be
smoothed.

Future work involves extending these algorithms to even
larger scenarios and investigating the issues this entails. De-
veloping methods to increase diversity and variation in device
behaviour to avoid over reacting to grid requests.
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