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Abstract 

It is well-known that wavelet analysis is, in the space domain, an efficient way to determinate the damage location 
(Pakrashi et al., 2007; Loutridis et al., 2004), while, in the time domain, it is an efficient tool to identify the system 
stiffness variation (Hou et al., 2000; Basu et al., 2008). Based on the idea of combining the information of the 
structural response in both space and time domains, a new time-space wavelet-based technique aimed at identifying 
the nonlinear behaviour of damage for SHM is presented. A FE model of a fiber-reinforced cantilever beam with a 
bridged crack is used to simulate the nonlinear static structural response. On the basis of particular conditions related 
to the Continuous Wavelet Transform (CWT) of the beam deflection and of the features of the 4th order Coiflets 
wavelet, a linear relation between the values of the relative rotation due to the crack and the normalized wavelet 
coefficients at the crack position is ruled out. By analysing through CWT the time sequence of the beam response in 
the space domain through the aforementioned linear relation, the nonlinear structural behaviour due to damage is 
identified. The effectiveness of the method in calibrating a small crack, is discussed with respect to the wavelet scale 
and the noise level. 
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1. Damaged Beam Modelling 

A FE model is used to simulate the static deflection, due to a concentrated end force P(t), of a fiber-reinforced 
cantilever beam with a rectangular cross-section and a bridged edge crack (Fig. 1a). The composite matrix presents a 
linear-elastic behaviour, while a fracture mechanics-based theoretical model (Carpinteri An. et al., 2004; Spagnoli et 
al., 2014) is used to describe the elastic-plastic response of the cracked beam section due to the applied bending 
moment and crack bridging reactions due to fibers.  

Two-node Timoshenko beam finite elements with coupled transversal displacements and rotations (Friedman & 
Kosmatka, 1993) are employed in the FE model. The uncracked elements have linear-elastic bending and shear 
behaviour; while the cracked element (Viola et al., 2002), represented by a rotational spring of stiffness kc(t) at its 
mid-length, behaves in a nonlinear manner.  
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) Sketch of the FE model of a generic fiber-reinforced cantilever beam with a bridged crack; (b) schematic of the bridged crack model. 

 
In fibrous composite materials with a brittle matrix, fibers produce a bridging action on crack faces which affects 

the global structural response in the cracking phase. To take into account this behaviour, the sectional bridged crack 
model proposed by Carpinteri et al. (2004) is used. Let us consider a through-thickness edge crack in a fiber-
reinforced composite cantilever beam with a rectangular cross-section. The crack is at a distance xc from the 
clamped end and is located in the tensile part of the beam. The crack is subjected to Mode I loading due to the cross-
section bending moment Mc(t), in equilibrium with the applied force P(t), and to the fiber bridging forces (Fig. 1b).  

Unidirectional fibers are discretely distributed across the crack and oriented parallel to the longitudinal axis of the 
beam. The position of the i-th fiber ( ni ,...,1 ) is described by the distance ci with respect to the bottom of the beam 
cross-section. Further, the relative crack depth ξ = a / h and the normalized coordinate ζi = ci / h are defined. The 
matrix of the beam is assumed to present a linear elastic behaviour, whereas the fibers act as rigid-perfectly plastic 
bridging elements which connect together the two surfaces of the crack. Hence, the plastic bridging law for the 
generic i-th fiber is characterized by an ultimate force iPF ,  (and iPF ,  in compression).  

Since the problem is statically indeterminate, the unknown fiber reactions, iF , (positive if the fiber is under 
tensile loading) on the matrix can be deduced from n kinematic conditions related to the crack opening 
displacements iw  at the different fiber locations (Spagnoli et al., 2014). If iF  is equal to iPF , , the force in the i-th 

fiber is known, and the crack opening displacements are hereafter shown to depend on such a value.  Since the 
matrix is assumed to behave in a linear elastic manner, the crack opening displacement, iw , at the i-th fiber level is 
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computed through the superposition principle: 
Fλλu M cM  (1) 

where T
nuu ,...,1u  is the vector of the crack opening displacements at the different fiber levels, and 

T
nFF ,...,1F  is the vector of the crack bridging forces. Further, T

nMM ,...,1Mλ  is the vector of the 
compliances related to the bending moment Mc, whereas λ  is a symmetric square matrix of order n, whose generic 
element ij represents the compliance ij  related to the i-th crack opening displacement and the j-th fiber force (see 
Carpinteri A. et al., 2004). All the compliance coefficients turn out to be inversely proportional to the Young 
modulus of the matrix Em. 

The incremental form of Eq. 1 is (summation rule for repeated indices holds) (Spagnoli et al., 2014): 

jijciMi FMu      with  ni ,...,1  (2) 

where the dot symbol indicates a time derivative, with dtFF ii  and dtuu ii . If the general i-th fiber is in the 

elastic domain, the corresponding increment of crack opening displacement iu  is null, namely if 
0, iiPi uFF . On the other hand, if the general i-th fiber is yielded ( iPi FF , ), the following two alternatives 

are possible: 00 iii uFF  or 00 iii uFF  (plastic-to-elastic return). In other words, 

0ii uF   if iPi FF ,  and 0iF ;         0iu  otherwise (3) 

Once the incremental crack bridging forces are known, the incremental relative rotation c  of the cracked 
section is given by: 

iiMcMMc FM  (4) 

where MM  is the rotational compliance due to the bending moment. As dtcc  is the relative rotation of the 

crack section at time t, the lumped crack rotational stiffness kc(t) is evaluated through the relation:  
)(/)()( ttMtk ccc  (5) 

In order to accommodate the bridged crack model within the framework of the FE method, a two-node 
Timoshenko cracked beam element with 4 degrees of freedom is used (Viola et al., 2002). The element is 
constituted by two solid portions connected at mid-length by a rotational spring of stiffness kc. The stiffness matrix 
Kc of the cracked beam element is as follows 
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where E is the equivalent Young modulus of the composite material, I is the moment of inertia of the cross-section, 
lc is the length of the cracked finite element and Γ=12EI /GAlc is the shear deformation parameter of the beam, with 

 being the shear coefficient (equal to 1.2 for a rectangular cross-section), G the shear elastic modulus of the matrix 
and A the cross-sectional area. 

2. Time-space wavelet-based nonlinear damage identification 

2.1. Wavelet analysis 

A wavelet function ψ(x) is a zero mean local wave-like function which decays rapidly and must satisfy some 
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particular conditions (Mallat, 2001). These functions, thanks their multi-resolution features, are suitable to analyse 
the details of non-stationary signals. The Continuous Wavelet Transform (CWT) is here employed as a tool to 
characterize the damage behavior in beam deflections. The CWT is defined by the convolution of the beam 
deflection (x) with a wavelet function generated from the mother wavelet ψ(x) by scaling and translating it (Mallat, 
2001): 

dx
s

tx
s

xvstW *1)(),(  (7) 

where t and s are respectively the translation and scale parameters, and ψ* is the complex conjugate of ψ. 
Throughout the paper the 4th order of Coiflets wavelet (‘Coif4’) is adopted.  

2.2. Normalized CWT coefficients and crack relative rotation 

It can be demonstrated (Montanari, 2014) that when the coefficients of the wavelet transform attain negligible 
values in the undamaged parts of the beam in comparison with those close to the crack location (this happens when 
the crack discontinuity due to relative rotation alters significantly the beam curvature), the value of the normalized 
CWT coefficient ( 2/),(),( dxstWstW , where dx is the sampling interval of the beam deflection) at the crack 
location depends, with good approximation, on the value of the crack relative rotation and on the analyzing wavelet 
scale. 

The bilogarithmic graph of Fig. 2a shows that there is a linear dependence between the relative rotation due to the 
crack, Δϑc, and the normalized CWT coefficients at the crack location xc, ),( sxW c  (when 

),(),( sxWsxxW cc ), function of the scale s. Representing the curves of Fig. 2a, related to a certain crack 
rotation range, in a bilinear graph (e.g. see Fig. 2b), we obtain approximately straight lines, passing through the 
origin and characterized by different values of the angular coefficient, Θ(s), dependent on the wavelet function and 
the scale s, that is: 

cc ssxW )(),(  (8) 
In Fig. 2c the trend of Θ(s) against the wavelet scale is illustrated. 
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Fig. 2. Relation between the normalized CWT coefficients at the crack location xc and the relative rotation due to the crack. Different scales s 
are considered. (a): bilogarithmic graph; (b) bilinear graph in the range Δϑc = [0 – 0.001] rad; (c) Trend of the function Θ(s). 
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2.3 Identification method of the nonlinear crack behaviour 

The time-space wavelet-based damage identification method presented in Montanari (2014) allows the 
description of the nonlinear crack behaviour in terms of relative rotation of the crack itself. The technique requires 
the availability of the beam response both in time and in space at rather dense intervals. Furthermore, the crack 
discontinuity has to be such that the wavelet transform can locate it by means of a peak of its coefficients markedly 
higher than the coefficient values along the undamaged parts of the beam. The method operates as following, at each 
time step: 

(i) the beam deflection, opportunely padded to avoid edge effects, is analysed through CWT; 
(ii) the wavelet coefficient value at the crack location (which has to be known a priori) is normalized with respect 

to the square of the spatial interval dx; 
(iii) the crack relative rotation Δϑc is determined through Eq. 8, knowing the value of Θ(s). 

Once the time history of the crack relative rotation is extracted, the evolution of damage can be determined 
through an appropriate mechanical model. 

3. Illustrative example 

The damage calibration method is applied to numerical data which simulate the static responses of a cracked 
fiber-reinforced composite beam subjected to a point load P(t) at the free end (see Fig. 1a). A cracked beam 
reinforced with long unidirectional fibers equally distributed in the matrix with a volume fraction νf of 10% is 
considered. The beam has length L = 2 m, height h = 0.2 m and width b = 0.15 m. The matrix has Young’s modulus 
Em and Poisson coefficient νm, respectively, equal to 30 GPa and 0.15. The fibers are characterized by diameter of 30 
μm, Young‘s modulus Ef  of 80 GPa and yield stress of 2000 MPa. The Young’s modulus of the composite is equal 
to Eeq = (1 – νf )Em + νf Ef = 35 GPa. The crack has a relative depth δ = a/h = 10% and is located at xc/L = 0.1. 

The beam deflection shapes are sampled at the sampling intervals dx = 0.001 m and, to simulate real 
measurement data, synthetic Gaussian white noise is added (different SNR values are imposed). The deflections of 
the static analysis are sampled at each variation ΔP = ± 2000 N of the acting load P(t). 

The load history of Fig. 4a is considered and SNR = 120dB is assumed. Firstly, the wavelet scale providing the 
best estimation of the crack relative rotation is determined. Different scale values are investigated, i.e. s = 10, 30, 60, 
90 and 120. Figure 4b displays the rotational stiffness of the crack section. 
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Fig. 3. (a) Load history; (b) history of the rotational stiffness of the crack section. 

 
In Fig. 4a the history of the crack relative rotation Δϑc estimated by the wavelet-based calibration method at 

different scales is illustrated. Figure 5b reports the normalized CWT coefficients at a position far from the crack 
location (say, x/L = 0.7) divided by Θ(s) for different wavelet scales. By juxtaposing the results of Fig. 4a with those 
of Fig. 4b, one can verify that the proposed calibration method is applicable. In fact, the value of the CWT 
coefficients at beam points far away from the crack location and the beam ends are at least one order of magnitude 
smaller than those at the crack section for the considered scales. 

It can be demonstrated (Montanari, 2014) that scale 120 identifies higher values of Δϑc, due to the influence of 
the edge effects. Among the scales 10, 30, 60 and 90, scale 60 is chosen to estimate Δϑc as it averages the 
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estimations of the other scales. Figure 5a highlights that the wavelet-based calibration method using s = 60 describes 
accurately the history of the crack relative rotation simulated by the FE model.  

Let us now consider the same problem but with an increasing noise level (SNR equal to 100 and 80 dB is 
imposed). Figure 5b shows that the calibration method at SNR = 100 dB provides still a good description of the 
history of the crack relative rotation. At SNR = 80 dB, the history of Δϑc is sensibly influenced by the presence of 
noise, but an approximate quantification of the values of Δϑc can still be carried out (a smoothing post-processing of 
the data could be helpful). 
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Fig. 4. (a) Histories of the crack relative rotation Δϑc estimated by the wavelet-based calibration method; (b) normalized CWT coefficients at 
x/L = 0.7 divided by Θ(s). Different wavelet scale are used and SNR = 120 dB. 
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Fig. 5. Comparison of the estimate of the wavelet-based calibration method at s = 60 (SNR = 120 dB) and the simulation of the FE model: (a) 

SNR = 120 dB; (b) SNR = 80 and 100 dB. 
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