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Abstract—Under the opportunistic spectrum access paradigm,
the shared pool of spectrum bands that the multiple autonomous
cognitive radios (CRs) need to compete for is not necessarily
homogeneous. The non-homogeneity in channels may lead to
payoff distribution conflict among autonomous CRs, as each
CR would prefer the outcome in which it selects the more
desirable channels. To address this challenge, we have designed
an adaptive strategy that (without explicit coordination) enables
the CRs to autonomously reach an outcome that maximizes
the total CR network throughput and minimizes the payoff
distribution conflict among the CRs. We utilize the framework of
repeated games with private monitoring to: 1) study the dynamic
channel selection problem; 2) analyze the stability of the proposed
strategy; and 3) investigate the impact of deviations by a selfish
CR on the performance of the proposed strategy. In our model,
multiple autonomous CRs are not able to observe the channel
selections of other competing CRs. Rather, they get a signal from
which the selections must be inferred.

Index Terms—Autonomous cognitive radios, game theory, non-
homogenous channels, adaptation.

I. INTRODUCTION

To help address the critical stress on scarce spectrum re-
sources spurred by ever more powerful and more capable smart
devices, a recent presidential advisory committee report and
the FCC recommend the use of spectrum sharing technologies
[1], [2]. One technology recommended in these reports is
cognitive radio (CR), in which a network entity is able to adapt
intelligently to the environment through observation, explo-
ration and learning. A CR utilizes spectrum opportunistically
by monitoring the licensed frequency spectrum to reliably
detect primary user (PU) signals and operating whenever the
PU is absent.

Multiple autonomous CRs often have to search a shared
pool of potentially available spectrum bands for transmission
opportunities, and they face competition from one another to
access these bands. For instance, if a particular channel is
simultaneously sensed free by two or more autonomous CRs
and more than one of them decide to transmit on the channel,
then a collision occurs. In this context their probability of
successful access will be affected by their channel sensing
order P, i.e., the order in which radios competing for the
channels visit those channels.

In this research, we consider a heterogeneous environment
in which some spectrum bands may be more desirable be-
cause primary users are less likely to be active there. When
multiple autonomous CRs compete for a shared pool of
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non-homogeneous spectrum resources, the problem of fair
allocation of these resources is a major challenge. The question
we seek to answer is how CRs can autonomously arrive at
an outcome that maximizes the average CR network reward
(the total average number of successful transmissions) in the
distributed CR network in a way that also minimizes the payoff
distribution conflict among autonomous CRs.

The main contributions of this paper are: 1) We propose
and evaluate an adaptive Win-Shift, Lose-Randomize (WSLR)
strategy that enables the CRs to maximize the total average
number of successful transmissions in the network and also
leads the autonomous CRs to engage in intertemporal sharing
of the rewards from cooperation. The concept of fairness we
focus on is envy-freeness [3], as explained in Section IV-B; 2)
We formulate a repeated dynamic channel access game with
private monitoring to analyze the problem of dynamic channel
selection among autonomous CRs. We prove that the proposed
adaptive WSLR strategy leads to a Nash Equilibrium. Much of
the recent research assumes that a node operating in a network
is able to perfectly perceive the actions of all other nodes
[4], [5]. To overcome these limitations, our model considers
the case where CRs are not able to observe the actions of
other CRs; and 3) Using analytical and simulation results we
compare the performance of our proposed strategy against
other existing strategies.

The rest of this paper is organized as follows. Related work
to our research is summarized in Section II. In Section III the
system setup is presented, while the dynamic channel selection
game with private monitoring is introduced in Section IV.
In Section V we present, analyze and compare our proposed
strategy to related strategies proposed in other works. Finally,
Section VI summarizes our main conclusions.

II. RELATED WORK

The works in [6]-[8] proposed distributed learning and
allocation strategies for CRs employing a single channel
sensing policy. Under a single sensing policy, CRs can explore
a single channel in a given time. Our work in [9] proposed
adaptive allocation strategies for both single and sequential
sensing policies. Under a sequential channel sensing policy,
CRs can explore more than one channel sequentially in a given
time slot. However, all these works considered the problem of
maximizing the total CR system throughput and ignored the
payoff distribution conflict that may arise among multiple CRs
due to the non-homogeneity in potentially available spectrum
resources. Moreover, the works in [6]-[9] also assumed that
each CR cooperatively follows the same strategy (protocol).
Unfortunately, in the presence of non-homogeneous spectrum



resources this assumption is not valid, as non-homogeneity of
spectrum resources may induce some CRs to deviate from the
protocol to maximize their own usage at the expense of the
aggregate CR system throughput. It is useful to model these
scenarios as a repeated game in which competition and conflict
among multiple autonomous CRs searching multiple channels
for spectrum opportunities is analyzed [10], [11].

Much of the recent research has utilized the framework of
repeated games with perfect monitoring to study the problem
of dynamic spectrum access [4], [S]. In this class of repeated
games, it is assumed that players can observe the other players’
actions directly. However, the assumption that a CR has
perfect observation of the actions of their opponents lacks
consideration of practical constraints imposed by autonomous
CRs operating in a wireless network. To address this challenge,
we utilize the framework of the repeated games with private
monitoring. In this class of repeated games, players do not
have perfect observation of other players’ actions. In our
model, each autonomous CR is required to infer the actions
of other CRs based on feedback (signals) from its receiver (as
explained in Sections III and IV).

III. SYSTEM MODEL

We examine a multichannel CR network in which a set
of AL =1{1,2,...,N} autonomous CRs have a set of M =
{1,2,...,M} potentially available channels. Each CR can sense
only one channel at a time and, due to hardware constraints,
at any given time each CR can either sense or transmit, but
not both. Our work in [9] investigates the impact of different
PU channel occupancy models on various adaptive sensing
order selection strategies adopted by CRs and finds that these
strategies are not strongly affected by the stochastic model of
the PU behavior. In this work, for simplicity, we assume that
for each channel, the PU activity in a time slot is independent
of the PU activity in other time slots and is also independent
of the PU activity in other channels; this (i.i.d.) model of PU
channel occupancy is also adopted by [12]. The probability
of the PU being present in the ith channel is 6; € (0,1),
and each 0; is known to the autonomous CRs. In practice,
the autonomous CRs may obtain the primary user duty cycle
statistics through the use of geolocation databases [13].

Without loss of generality, we assume that the channels are
ordered by increasing probability of the PU being present,
ie., 01 <0y <--- <0y. The primary users and CRs are both
assumed to use a time-slotted system, and each primary user
is either present in a channel for the entire time slot, or absent
for the entire time slot [6], [12], [14].

The selection of the channel for opportunistic transmission
is determined as follows: The CRs use the beginning of each
slot to sense the channels in some order P (based on their
sensing order selection strategies, as explained in Sections IV
and V) to find a channel that is free of PU (or other CR)
activity. We refer to this as the sensing stage (see Fig. 1).
The CR then accesses the first vacant channel it finds, if one
exists. We refer to this as the data transmission stage. Let §
denote the set of possible sensing orders. Note that the sensing
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Fig. 1: Time slot structure with sensing, data transmission and acknowledge-
ment stages.

order that a CR employs can either come from the space of all
permutations of M channels, or from some subset thereof. Our
work in [9] shows that CRs can increase their average number
of successful transmissions by adaptively selecting sensing
orders from a predefined Latin Square of M channel indices
(as compared to when they select sensing orders from the
space of all permutations of M channels). Hence, we consider
the case of CRs selecting sensing orders from a common pre-
defined Latin Square. A Latin Square is an M by M matrix
whose entries consist of M symbols such that each symbol
appears exactly once in each row and each column. Note that
when CRs select sensing orders from a Latin Square, |S| =M,
and two or more CRs can collide only if they select the same
sensing order.

The sensing stage in each slot is divided into a number of
sensing steps. Each sensing step is used by a CR to sense a
different channel. In practice, improving the sensing accuracy
implies increasing the sensing duration, whereby CRs may not
be able to sense all the channels within the duration of a slot.
We evaluate our proposed strategy for the scenario where the
number of sensing steps k that a CR can utilize in a given
time slot varies from 1 to M. If a CR finds a channel free in
its ith sensing step, it transmits in that channel. However, if in
all sensing steps channels are found to be busy, then the CR
stays silent for the remaining duration of that time slot (see
Fig. 1). When a free channel is found in the ith sensing step,
the durations of the sensing stage and data transmission plus
acknowledgement stage are i7gp50 and T — iTepse, respectively,
where Tgense 1 the time required to sense each channel, T
is the total duration of each slot and 7 >> Ty - When
multiple autonomous CRs search multiple potentially available
channels for spectrum opportunities, then from an individual
CR perspective one of the following three events will happen
in each sensing step: 1) The CR visits a given channel and is
the only one to find it free and transmit; the CR then has the
channel for itself for the remainder of the time slot; 2) The
CR visits a given channel, finds it occupied by the PU or by
another CR, then it continues looking in the next sensing step;
3) The CR visits a given channel, finds it free and transmits,
but so does at least one other CR; a collision occurs. A CR
infers that a collision has occurred whenever it fails to receive
an acknowledgement (ACK) for a transmitted data frame.

IV. A REPEATED CHANNEL ACCESS GAME WITH PRIVATE
MONITORING

We now formally define a dynamic channel selection game
with private monitoring. CR i, where i € A/, repeatedly plays




TABLE I: The reward table for the two-CR, two-channel stage game with
private monitoring. s; = (1,2) and s, = (2, 1) represent the two sensing orders.

Payoff Matrix
CR 2
S1 52
S1 0 (1-672)
0 (1-61)
N 1-06 0
6 ’ (1 —éz) ) 0

the channel selection game over an infinite time horizon,
t=0,1,---. Autonomous CRs operating in a CR network are
unsure about when precisely their interactions will end; the
model of repeated games with an infinite time horizon can be
used to represent such situations. In each stage (corresponding
to a time slot), CR i chooses a sensing order s; € § to
sense the channels sequentially for spectrum opportunities,
where S is the set of sensing orders. In a given time
slot, CRs searching for spectrum opportunities face one of
the following outcomes: successful transmission, unsuccessful
transmission, or no transmission (when all channels sensed
by that CR were found busy). We denote the set of possi-
ble outcomes as E, i.e., & = {Unsuccessful transmission (U),
Successful transmission (7), Channels found busy (B)}. At
the end of each stage, a CR observes an outcome &; € E.
The action s; and outcome &; are CR i’s private information.
The private outcome observed by a CR in each stage depends
on the current action profile s (the vector of current sensing
order selections of N CRs). For instance, if CR 1 selects sy,
CR 2 selects s, and so on, then the current action profile is
s = (51,82, ,SN)-
CR i’s expected reward in the stage game is given by

Z ui(si,6)p(&i | (si,5-1)) M

150)

where s; is the action of CR i, s_; is the action profile of
all other CRs, and u;(s;,&;) is the realized reward of CR i.
u;(s;,&;) equals 1 if using sensing order s; CR i transmits
successfully, i.e., & =T, otherwise it is 0, and p(&; | (s;,5—;)) is
the conditional probability of private outcome &;. In a repeated
game with private monitoring, the average reward of CR i is

8i (Su

1 X
GilSa:Sg) = lim = ¥ ui(si(1). &i(1)). @)
—ed =0

where s;(¢) is the action profile of CR i at time f, &(r) is
T

T =0’
Se = (il(t)) ,_o are the sequences of action profiles and private
outcomes respectively.

the private outcome at time ¢, S, = ((si(r),s-i(1))),_,, and

A. Case Study: N=M=2

Consider a multichannel cognitive radio network in which
N = 2 autonomous CRs have M = 2 potentially available
channels.

This case reduces to the well-known battle of the sexes
game [11], and it is simple to prove that the game admits
two pure strategy and one mixed strategy Nash equilibria.

The pure strategy vectors (si,s2) and (s2,s1) are both pure
strategy equilibria but, for 6; < 0,, CR 1 prefers the first
and CR 2 prefers the second (see Table I). The mixed
strategy equilibrium is given by the equalizing strategies
_ (_(1-6y) (1-67) _ (_(1-6y) (1-6y)
P1 = ((2—9,—92)7 (2—61—62)) and p = ((2—91—92)7 (2—91—92))’
where p; and pp are probability mass functions assigned by
CRs 1 and 2 over their action spaces .S. The equalizing strategy
is a strategy that produces the same average reward no matter
what the opponent does.

In the stage game, an asymmetric action profile corresponds
to orthogonal sensing orders, i.e., each CR picks a different
action. When N < M there are MY total possible outcomes
and (out of these total outcomes) there are ﬁ asymmetric
outcomes.

B. Envy-ratio in the Proposed Game

We study the problem of efficient and fair utilization of
potentially available channels that may offer different rewards
due to their non-homogeneity. The concept of fairness we
focus on is envy-freeness [3]. An outcome is envy-free if no
CR prefers the expected reward of another CR to its own, i.e.,
an envy-free outcome equalizes everyone’s rewards.

We next define the envy-ratio of CR i for CR j as follows.

Definition 1: In an action profile s, the envy ratio of CR i
for CR j is the ratio of the reward obtained by j to the reward
obtained by i. It is given as

8j (s], 71)

8i (Sza l))
In the repeated game, the average envy ratio of CR i for CR
J is given by

‘(Savsé)

Gi(S4,Se)’

The highest average envy ratio between any pair of CRs is
given as

Y(Sa,S};) = max{Y,'j(Sa,S;j), i,j S 9\[, 1'7'é ]} (8)

Note that Y in some sense indicates the worst-case fairness
for S, and S¢. Note also that an outcome is envy-free if
Y(S4,Se) = 1.

The envy ratio between a pair of autonomous CRs does
not depend only on the selection of sensing orders by the
given pair, but also on the selection of sensing orders by other
autonomous CRs in the network. To illustrate this situation, we
can construct an example, for N =3 CRs and M =5 potentially
available channels.

Example 4.1: Let ® = (0.2,0.3,0.5,0.5,0.5) represent the
primary user duty cycle statistics vector for channels
1 to 5 respectively, and S = {s1,52,53,54,55}
{(1,2,3,4,5),(2,3,4,5,1),(3,4,5,1,2),(4,5,1,2,3),
(5,1,2,3,4)} represent the set of available sensing orders.
Autonomous CRs are able to sense two channels, i.e., k =2,
in a given time slot and CRs independently select sensing
orders. The expected reward values of the stage game for
CRs 1 and 2 when CR 1 selects 51, CR 2 selects s3, and CR

gij(s) = for gl((s,7 l)) >0 (6)

t/(Saasé) (7)
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and random (with an equal probability) selection.

order given in the selected sensing order.

3) One of three possibilities occurs:

to 2.

CR returns to 1.

1) Initialize, p = [1\% s %, -,Fl,], an N-element probability vector p (all components are nonnegative and add to 1), i.e., the CR utilizes independent
2) Toss a weighted coin to select a sensing order, with p; the probability of selecting sensing order i. Sense the channels sequentially in the
a) Successful transmission: On a successful transmission using the current sensing order 7, the CR updates p as p; =1,

where i = (imod N) +1 and p; =0, Vi # j, i.e., it shifts to the next sensing order to visit the channels in the next slot. The CR then returns
b) CR finds all channels busy: On finding all channels busy using the current sensing order i, the CR updates p as p; = 1, where i =

(imod N)+1 and p; =0, Vi# j, i.e., it shifts to the next sensing order to visit the channels in the next slot. The CR then returns to 2.

¢) CR transmits but no ACK is received: When the CR transmits but it receives no ACK in the current slot using sensing order i then the

Fig. 2: The Win-shift, lose-randomize (WSLR) strategy.

3 selects ss, i.e., s = (s1,53,55), are given as

g1<(51,S,1)> =(1-061)+06;(1—-06,)=0.94,
22((s3,5-3)) = (1—83) +63(1 —04) = 0.75.

Using (6) and (9), €,(s) = 0.94/0.75. However, if CR 3
selects sy, i.e., s” = (s1,53,52), then &;(s”) = 0.8/0.75, i.e.,
the envy ratio of CR 2 for CR 1 decreases for s”. This is
due to the reason that when CR 3 selects s, the probability of
success of CR 1 is decreased as CR 3 can now find channel
2 free before CR 1, if it is free. On the other hand, if CR 3
selects s4, i.e., 8" = (s1,s3,54), then &;(s”) =0.94/0.5, i.e.,
the envy ratio of CR 2 for CR 1 increases for s”. This is
due to the reason that when CR 3 selects s4 the probability of
success of CR 2 is decreased as CR 3 can now find channel
4 free before CR 2, if it is free. Hence the envy ratio of CR
2 for CR 1 does not depend only on the selection of sensing
orders by 2 and 1, but on the selection of sensing order by
the other autonomous CR 3.

We can then state the following result.

Proposition 4.1: In the proposed sensing order selection
game, the highest envy ratio is ( f:g];) for the scenarios where
N=M.

Proof: When N = M then in any asymmetric action profile
CRs can only find a free channel in the first sensing step. The
envy ratio is highest between the pair of CRs, one of which
selects the sensing order with the best channel in its first step
and the other CR selects the worst channel in its first step,

. (1-6))
e, (2o, [ ]

V. AN ADAPTIVE WSLR STRATEGY

C))

In this section, we propose an adaptive Win-shift, lose-
randomize (WSLR) strategy for the autonomous channel se-
lection, where adaptations are in the autonomous choice, by
CRs, of the channel sensing order. In the WSLR strategy,
each CR employs a common pre-defined sequence matrix
(a Latin Square) ® to select a sensing order in which k
potential channels are to be visited in a given time slot,
where k takes integer values between 1 to M. For a given

number of channels M there can be many Latin Squares [15].
To select a sensing order from a common predefined Latin
Square, CRs can employ any of the many Latin Squares.
However, to make the analysis tractable, we assume that each
CR employs a circulant matrix (which is an example of a Latin
Square). A circulant matrix associated to M is the M x M
matrix whose rows are given by the iterations of the shift
operator acting on M. Such a matrix will be denoted by
® =circ{1,2,--- ,M}, where 1,2,...,M are the channel indices
which are ordered by increasing probability of the PU being
present, i.e., 0] <0, < ... <0y. For example, with M =4, the
matrix & is given as:

S1 1

_ 5 2
@ 73‘3 3
54 4

For efficient channel utilization, we consider the scenarios
where the N CRs utilize the N top rows of @ for the selection
of sensing orders. This is reasonable as the channel indices
1,2,...,M are ordered by increasing probability of the PU
being present, hence the top N rows of ® dominate in terms of
having channels (in their initial columns) where PU’s are less
likely to be present. Note that for N = M, the entire matrix
@ of sensing orders is utilized by a CR for the selection of
sensing orders. Let Sy represent the matrix of the top N rows
of .

The WSLR strategy is described in Fig. 2. The WSLR
strategy is meant to address three aims:

1) Convergence: Utilizing randomization based on observed
private outcomes, the WSLR strategy leads the autonomous
CRs to eventually converge to sensing orders that minimize
the likelihood of collisions among CRs. When N CRs in-
dependently and randomly (with equal probability) select a
sensing order (among N sensing orders) in each time slot,
then the probability of arriving at orthogonal sensing orders in
atime slot is (1/N)N(N!), and consequently the expected time
required to arrive at orthogonal sensing orders is NV (1 /N !).
Clearly, this random strategy is inefficient as even when a CR

— R W N
0= AW
W =



The transition probability matrix for the scenario when the two CRs (with private monitoring) utilize the WSLR strategy:

(s.w.v)) (¢.8.B) (".(U.U) (s".(B.B) (s".(B.B) (" .(B.T)) (s".(r.B)) (s".(1.7)) (s".B,B) (".(B.T)) (s""(T.B)) (s"".(T.T))

1/40a 1/4616, 1/49y, 1/4616)  1/4816,  1/4(1-65)8; 1/4(1—61)6, 1/40¢ 174010y 1/4(1-61)8y 1/4(1—6,)8, 1/40c

0 0 Oa 9] 92 0 0 0 0 0 0 0 0
1/40a 1/4616, 1/49y, 1/4616,  1/4816,  1/4(1-65)8) 1/4(1—-61)6, 1/40¢ 1/4016y  1/4(1-61)8y 1/4(1—6,)8, 1/40c
da 0,6, 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 616, (1-61)07 (1-69)8, oc

0 0 0 0 0 0 0 0 0,6, (1-61)0; (1-6,)8, oc a0
0 0 0 0 0 0 0 0 616, (1-61)0; (1-6)8 oc

0 0 0 0 0 0 0 0 6,6, (1-67)0; (1-69)8; oc

0 0 0 0 016, (1-67)8; (1-61)6y oc 0 0 0 0

0 0 0 0 6,6, (1-6,)6, (1-61)0; oc 0 0 0 0

0 0 0 0 0,6, (1-65)8) (1-61)0, oc 0 0 0 0

0 0 0 0 616, (1-6,)8; (1-61)6; oc 0 0 0 0

where s’ = (Sl,sl), s = (52752), s = (S17S2), s = (Sz,sl), (])a = (1791)+91(1792), q)b = (1762)+62(1 791) and ¢(- = (1 791)(1792).

Reward vectors g; and g, (associated with the states of the Markov chain) for CRs 1 and 2 respectively are given as

(#W.0) ($.B.8) (".W.U) (".(BB) ((51.52).BB) ((s1:52).B.1) ((57.:52)(T.B)  ((51:52)(T.7))  ((s2:51)-(B-B))  ((s2:501).(BT))  ((52:51):(T:B))  ((s2.51):(T.T))
Gg=( o0 0 0 0 0 0 1 1 0 0 1 1 ) an
(. (u.v) (.B.B) (.(UU) (".BB) ((51.5):(B.B)) ((s7,5),(B.T)) ((51.52).(T.B)) ((s7.52),(T.T)) ((52,51),(B.B)) ((s2.51).(B.T)) ((52.51),(T.B)) ((s2.5),(T.T))
H=( 0 0 0 0 0 1 0 1 0 1 0 1 ) (12)
attains a singleton status, i.e., the sensing order it has selected ; ‘ ‘
was not selected by another CR, it randomizes and with high —8— WSLR
probability it may lose the singleton status in the next time slot. 09 D 1
In contrast to that, the WSLR strategy requires that singleton 0a) = * = Weighted ]
CRs should shift and non-singleton CRs should randomize. ~07 EWeighted
This reduces the number of CRs that randomly select a sensing o7y )
order in the next time slot and hence increases the probability o o6l |
of arriving at orthogonal sensing orders.
2) Intertemporal sharing of rewards: Since different sensing 05r |
orders may result in different rewards, intertemporal sharing Y o il
of the sensing orders among autonomous CRs is achievedby | o __lIIZ®:zz=====-9
allowing a CR to shift to the next sensing order if it has not 0TS o R e 3
observed an unsuccessful transmission, i.e., private outcome 0_;: T : : .

(U), in the previous time slot.

3) Discourage deviations: To discourage deviations, i.e.,
the CRs that select the sensing orders with higher rewards
may prefer to again select those sensing orders in the next
rounds, some punishment mechanism must be devised. This
is achieved by triggering a switch to the randomization phase
when an unsuccessful transmission is observed. Section V-A
will further describe how the proposed mechanism discourages
deviations by any of the autonomous CRs.

A. Analysis of the Adaptive WSLR Strategy

The state of the dynamic game at each time slot is char-
acterized by the tuple o(r) = (s(¢),&(r)), where s(¢) is the
action profile at time ¢ and &(¢) is the associated vector of
private outcomes at time ¢. Let the state space of the game be
represented by Q = {® = (s,§) | s € $,,§ € ¥}, where S, is
the set of possible action profiles and W is the set of possible
vectors of private outcomes.

Two-CR Two-channel Scenario: The proposed WSLR strat-
egy for the two-CR, two-channel scenario naturally lends
itself to analysis using Markov chains with rewards [16]. We
represent the mechanism of transitions between states ® by a
Markov chain, with transition probabilities denoted by Py .

We show, in Eq. 10, that the Markov chain above is ergodic
unichain. The steady state reward per step for a CR i is, then,

Fig. 3: Expected reward per time slot of the CR i as a function of N =
M CRs for different scenarios. ® = (0.1,0.1,0.2,0.2,0.3,0.3,0.5,0.5,0.5,0.5)
represents the primary user duty cycle statistics vector for channels 1 to M
respectively.

independent of the starting state and is given by

GEWNJ) — Z 5;3?/.5
jeQ

13)

where V; is the strategy of CR i and v_; is the strategy of the
other CR, §; is the steady state probability of the jth state and
8j.i is the reward associated with the jth state for an individual
CR i. When the two CRs utilize the adaptive WSLR strategy
there are | Q |= 12 states of the game.

Proposition 5.1: The WSLR strategy for the two-CR two-
channel scenario (when adopted by both CRs) is a Nash
Equilibrium (please see a remark below).

Proof: By constructing the transition probability matrix
of the Markov chain (see Eq. 10) one can see that the first four
states form a transient class and the remaining eight states form
a recurrent class. In a given time slot if two CRs select the
same sensing order the network is in one of the transient states
and the reward associated with these states is zero. This is due
to the reason that, when two CRs select the same sensing order
then in their first or second sensing step either both CRs will



TABLE II: Total average reward per time slot in the CR network and highest average envy ratio between a pair of CRs in the network as a function of N =M
for different strategies. ® = (0.1,0.1,0.2,0.2,0.3,0.3,0.5,0.5,0.5,0.5) represents the primary user duty cycle statistics vector for channels 1 to M respectively.

N=M=6

N=M=38

N=M=10
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rand —C
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Rand
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9
479 gy =13
4.77 89—
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2384 U435 _q 63

0.26

find the same channel free of PU activity, will start transmitting
in that channel and collide, or they will find both channels
busy. In the case of collision, each CR will again select sensing
orders randomly (with uniform probability). However, if they
find both channels busy they will shift to the next sensing order
with probability 1, as an autonomous CR cannot determine on
its own that the sensing order it has selected was not also
selected by any other CR. In a given time slot if the two
CRs select orthogonal sensing orders the network will enter
one of the states in the recurrent class and will remain in the
recurrent class with probability 1 (since both CRs will keep
switching between the two sensing orders). The expected one
time slot reward associated with the states in the recurrent class
is (2—6; —0,)/2. Given that the game starts in the state where
both CRs randomly select the sensing orders, the expected time
for the two-CRs to reach orthogonal sensing orders, which we
call the time-to-orthogonalize (TTO), is simply

(6:62)
(9192 — 1)

Using the WSLR strategy, on average each CR will obtain
zero reward for E[TTO] — 1 time slots and an expected reward
(per time slot) of (2—6; —0,)/2 thereafter (when the CRs
arrive at orthogonal sensing orders). Hence using Egs. (10),
(11), (12) and (13) the steady state reward (per time slot) for
an individual CR is GWSIRWSLR) — (2 _ g, —@,)/2.

E[TTO] =2— (14)

Now assume that CR 1 maintains the WSLR strategy and
CR 2 considers deviating. Clearly it is inefficient if the CR 2
deviates by selecting s> (non-preferred sensing order) for r > 0
time slots. Essentially, the deviations that we need to consider
are those where CR 2 will attempt to use sensing order s;
with higher probability than sensing order s;. The possibilities
for deviations by CR 2 include a) Always select s (fixed
deviation, FD strategy), and b) Select s; (initially or when an
unsuccessful transmission is observed) with p; > 1/2, s, with
p2 < 1/2; otherwise, move to switching phase if transmission
is successful (Non-fixed deviation, NFD strategy). In case
a), CR 1 alternates between randomization and switching
phases and the steady state reward (per time slot) for CR
2 is G(ZFD"WSLR) < (1 —01)/2, which is clearly less than the
expected reward obtained using the WSLR strategy. In case
b), when CR 1 selects sensing orders randomly (with uniform
probability) then (E[TTO]— 1) is independent of the selection
probabilities of CR 2. Hence, on average each CR will obtain
zero reward for (E[TTO] — 1) time slots and an expected
reward (per time slot) of (2—0; —0,)/2 (when the CRs arrive
at orthogonal sensing orders), which is the same as if CR 2

0.9t f

o —8— WSLR
0.7r — © — Fixed i
— % — Weighted
—-0— Rand

0.5F q

04r _ =

0o~ P R 3
L )

k steps

Fig. 4: Expected reward per time slot of the CR i as a function of
the number of sensing steps k, with N =5 CRs, M = 8 channels. ® =
(0.1,0.1,0.2,0.3,0.5,0.5,0.5,0.5) represents the primary user duty cycle
statistics vector for channels 1 to M respectively.
would have used the WSLR strategy.

This checks all the possible deviations, so the WSLR
strategy is a Nash equilibrium. |

Remark Please note that we model repeated interactions of
CRs with bounded rationality where strategies are represented
by finite automata. Moreover, the CRs are restricted to utilizing
automata with no more than two states. With such restriction
the number of outcomes in equilibrium is small (see Theorem
4.3, [17]). The proposed WSLR strategy can be represented
by a two-state automata in which one state is randomization
and the other is shifting. Once both players have selected
automata then the pair of automata forms a system which can
be represented and analyzed by a finite Markov chain (as in

(17D).

Deriving the proof for N <M, where N > 2, is challenging
due to the combinatorial explosion in the number of ways that
N CRs can find channels free or busy from PUs and other
CRs, and also the number of ways the CRs can collide with
one another. In the next section through extensive simulations
we analyze the performance of the WSLR strategy for N <M
CRs with private monitoring.

B. Simulation Results

Using simulation our aim is to compare the performance
(e.g., in terms of total average reward per time slot in the CR
network YN, G;, expected reward of a CR per time slot G,
and the maximum envy ratio between a pair of CRs Y) of
the WSLR strategy against: 1) When all CRs utilize random
selection of sensing orders, Rand strategy; 2) the randomize



after every collision (rand-C) strategy. In the rand-C strategy
[6], [9], initially each CR independently and randomly (with
equal probability) selects a sensing order. In the next time
slots, a CR randomly (with equal probability) selects a new
sensing order only if it has experienced a collision in the pre-
vious slot; otherwise, it retains the previously selected sensing
order; and 3) An autonomous CR i considers deviating from
the WSLR strategy while all other CRs follow the strategy.
The studied deviations by the CR i are: a) Always select
the preferred sensing order s; = (1,2,...,M), fixed deviation
(FD); b) Always select s; with probability ¢ = 0.75 and s;
with probability (1 —¢g), weighted deviation (WD); and c)
Always select s w1th g)robablhty q =0.75 and s7,s3, ..

with probabilities [ 1) (N=1) (Nfl)}, extended welghted
deviation (EWD). Moreover we also evaluate the effect of
varying the number of sensing steps on the performance of the
proposed scheme. Note that calculations for G; are performed
using 15,000 Monte Carlo runs for dynamic channel selection
game using different scenarios.

Fig. 3 evaluates the expected reward per time slot achieved
by a CR i using the different strategies under different sce-
narios. From the figure we can see that the WSLR strategy
achieves the highest expected reward per time slot for the CR
i as compared to other strategies. Note that in Fig. 3 the loss in
the expected reward is due to the non-homogeneity in channel
availability statistics. The availability probabilities of the first
5 channels are at least 70%, and the availability probabilities
of the last five channels are around 54%. Hence, as N =M
increases, the expected reward of the CR i decreases, as
with the increasing number of CRs the number of potentially
available channels also increases but with high probability of a
PU being present. In Table II, we evaluate different strategies
in terms of the total average reward per time slot in the CR
network and the highest envy ratio between a pair of CRs.
Table II shows that the WSLR strategy performs equally well
as the rand-C strategy in terms of maximizing the total average
reward per time slot and performs significantly better in terms
of ensuring envy-freeness among the competing CRs. Fig. 4
evaluates the effect of varying the number of sensing steps on
the performance of the different strategies in terms of expected
reward of the CR i per time slot. It can be seen in Fig. 4 that
with the increasing number of sensing steps when all the CRs
utilize the WSLR strategy then the expected reward per time
slot of a CR increases more as compared to the other strategies.

VI. CONCLUSIONS

We have studied the problem of coexistence among multi-
ple autonomous CRs sharing a common pool of potentially
available channels which may offer different rewards due
to their non-homogeneity. In our model, autonomous CRs
sense the channels sequentially (in some sensing order) for
spectrum opportunities, where they are unable to observe the
actions of other CRs. For efficient co-existence, we design
an adaptive WSLR strategy that does not require coordination
from a centralized entity and utilizes feedback (signals) to
infer the actions of other CRs. We utilize the framework

of the repeated games with private monitoring for the study
of dynamic channel selection among autonomous CRs. We
have shown that for the two-CR two-channel scenarios, the
proposed strategy is a Nash equilibrium. For N < M, we have
shown that the proposed strategy maximizes the total average
number of successful transmissions in the network. It also
ensures fairness by allowing the autonomous CRs to engage
in intertemporal sharing of the non-homogenous rewards from
cooperation as compared to other strategies.
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