
Author Verification: Exploring a Large set of
Parameters using a Genetic Algorithm

Notebook for PAN at CLEF 2014

Erwan Moreau1, Arun Jayapal2, and Carl Vogel3

1 moreaue@cs.tcd.ie
2 jayapala@cs.tcd.ie
3 vogel@cs.tcd.ie

1,2 CNGL and 1,2,3 Computational Linguistics Group
Centre for Computing and Language Studies
School of Computer Science and Statistics

Trinity College Dublin
Dublin 2, Ireland

Abstract In this paper we present the system we submitted to the PAN’14 com-
petition for the author verification task. We consider the task as a supervised
classification problem, where each case in a dataset is an instance. Our system
works by applying the same combination of parameters to every case in a dataset.
Thus, the training stage consists in finding an optimal combination of parameters
which maximizes the performance on the training data using cross-validation.
This is achieved using a simple genetic algorithm, since the space of all possible
combinations is impractical.

1 Introduction

In this author verification task, a training set containing 6 datasets was provided; each
dataset consists of a set of problems (between 96 and 200) which belong to the same
language and genre; each problem consists of a small set (between 1 and 5) of “known”
documents written by a single person and a “questioned” document: the task is to deter-
mine whether the questioned document was written by the same person. More precisely,
the system must provide its prediction as a value in the interval [0, 1], which represents
the probability that the answer is positive (same author). That is, 0 means “different
author” with maximum certainty, 1 means “same author” with maximum certainty, and
any intermediate value describes the likeliness of a positive answer, with 0.5 equivalent
to the system saying “I don’t know”. The predictions are evaluated using the product
of the area under the ROC curve (AUC) and the modified accuracy measure c@1 [6],
which treats 0.5 answers as a particular case.

We consider the task as a supervised learning problem, where, for each dataset,
the goal is to find a function which, when applied to a set of unseen problems in this
dataset, maximizes the performance (product of AUC and C@1). This function must
be generic enough to capture the stylistic characteristics of every author. It is meant to
represent how to capture any author’s style within a particular dataset, that is, in the



context of a particular language and genre. For example, the type of observations (e.g.,
words bigrams) to take into account depends on the language, but whether a particular
observation (e.g., the bigram “it is”) is relevant or not is specific to a given author.

We define the space of all possible functions in the following way: each function is
defined by a set of parameters, each parameter being assigned a particular value among
a predefined set of possible values. The process of selecting features from the texts,
combining them in any predefined way, and learning how to interpret the differences
between the known documents and the questioned document is entirely driven by the
values taken by these parameters. For example, a parameter indicates which distance
metric should be used to compare the unknown document to the set of known docu-
ments. We call a particular combination of parameters a configuration. We define the
two following strategies, which share only a subset of common parameters:

– The fine-grained strategy, described in §3, in which there are many possible param-
eters, is intended to try as many configurations (or functions) as possible, in order
to maximize the performance.

– The robust strategy, described in §4, is a more simple method which uses only a
small subset of parameters. It is intended to be safer (in particular less prone to
overfitting), but probably not to perform as well as the fined-grained strategy.

For the fine-grained strategy, the space of all possible configurations is too big to
be explored exhaustively. This is why we implement a simple genetic algorithm, which
is supposed to converge to a (possibly local) optimal configuration. This algorithm is
described in §3.4.

2 General architecture

For every problem to solve, we extract observations4 from the set of known texts, and
try to measure the four following abstract characteristics:

– their consistency, i.e. how constantly these observations appear among the known
documents written by the author;

– their distinctiveness, i.e. how much the frequency of these observations differs from
a reference corpus (see §3.2);

– the confidence of the system in the reliability of these observations;
– the distance between the known documents and the questioned document with re-

spect to these observations.

We consider multiple ways to compute and use these four characteristics values. In
particular, the configuration file defines:

– the types of observations to take into account;
– the method to compute every characteristic at the observation level;
– the method to extract the most relevant subset of observations;

4 We use the term “observation” here to avoid any confusion with the features used in the ma-
chine learning stage.



– the method to obtain a global value for every of the four characterstics;
– which subset of these values will be used as features in the machine learning stage.

The final step consists in training (or applying) a ML model based on these features.
There can actually be two models: the first and most important one predicts the scores
for each case in the dataset; the second optional one is meant to detect the ambiguous
cases, so that they can be assigned 0.5 instead of their predicted score, in order to
maximize the c@1 score.

In the robust strategy the parameters are restricted to a small set of possible con-
figurations, whereas with the fine-grained strategy on the contrary we try to explore a
vast space of parameters (about 1019 possible combinations in the predefined space that
we use). This is why the learning stage for the latter consists in learning an optimal
configuration using a genetic algorithm.

3 The fine-grained strategy

3.1 Observations and frequency statistics

We consider a large set of observations types, among which the configuration can use
any subset. These are typically various kinds of n-grams, but not only:

– words (actually tokens) unigrams to trigrams;
– Characters trigrams to 5-grams.
– Part-Of-Speech (POS) tags unigrams to 4-grams;
– Combinations of POS tags and tokens, including skip-grams, e.g.:

“<POS tag> <token> <POS tag>” or “<token> _ <POS tag>”;
– “stop words” n-grams, i.e. tokens n-grams considering only a predefined list of the

the most frequent tokens in the language5, from trigrams to 5-grams;
– Token length classes, where the tokens are classified depending on their length into

6 categories: lower than 2, 3 to 4, 5 to 6, 6 to 8, 8 to 10, more than 10.
– Token-Type Ratio (number of distinct tokens divided by total number of words).

The POS tags are computed using TreeTagger6 [8]. The lists of most frequent words
in the language are computed from the complete set of documents in the training data:
we consider the 200 most frequent words, except for Dutch (100 most frequent words).

A few thresholds are applied when extracting these observations, in order to remove
some noise in the data and/or improve efficiency:

– Minimum absolute frequency in a document (possible values: 2, 3, 5);
– Minimum proportion of documents among the reference corpus which contain the

observation (possible values: 10%, 25%, 50%);
– Minmimum proportion of known documents containing the observation (only for

known documents) (possible values: 30%, 51%);

5 Other tokens are replaced with a special symbol, e.g. “the _ _ is _”.
6 http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger. POS tags are not used for the

Greek dataset.



The relative frequency of all the observations which fulfill these conditions is stored
for very observation type specified in the configuration. For every observation, various
statistics are computed based on the set of frequencies extracted from the known doc-
uments: mean, standard deviation, median, etc. Practically, in the training stage, the
observations and the statistics are computed only once and then stored, so that the data
can be used as many times as necessary with different combinations of parameters.

3.2 Features

The consistency, distinctiveness, confidence and distance values are based on the fre-
quency statistics extracted during the first step. At first they are computed for every
distinct observation. Then they can be “synthetized” in different ways according to the
configuration; the final features can be either specific to each observation type or global.

Consistency The consistency value is meant to represent how constant the use of a
particular observation is, so that it can be assessed whether the observation is used in
a similar way in the unknown document. For example, the standard deviation of the
(relative) frequency of the observation among the known documents is a valid indicator
(the lower it is, the higher the consistency is). Other statistics are available, e.g. range
between minimum and maximum, ratio between first and third quartile, etc. However
these statistics are more reliable with a high number of known documents, and require
at the very least two distinct documents.

The goal of the consistency measure is to distinguish as far as possible between the
observations which are specific to the author and those which are only specific to the
document (for example the subject of an essay). This is why the more known documents
there are the most accurate the consistency is. Consequently, cases which contain only
one known document are irrelevant for consistency.7

Distinctiveness The distinctiveness measure is meant to represent to what extent a par-
ticular observation is specific to an author. This value is calculated against a reference
corpus, which should ideally be an independent set of documents in the same language
and genre as the dataset. But since we do not have access to such a corpus for every
dataset, we simply consider the whole set of documents (known and unknown) in the
training set as the reference corpus. Because it is meant only to measure distinctiveness,
the only important assumption that we make is that it contains documents written by
a sufficient number of different authors, and that it is not massively unbalanced (for
instance if most of the documents were by the same author).8

7 It is possible then to use different parts of the document, but this is not reliable in general since
the distinction between document specific and author specific observations cannot be made.

8 Although it is quite unlikely given the size of the training sets, we do not have any guarantee
that the second condition is satisfied in all the datasets provided. Assuming these conditions
are fulfilled, the fact that the reference corpus contains documents by the author of the problem
studied is not an issue, because it is frequent that a particular stylistic feature can be observed
with several authors: the relative ordering of the observations according to their specificity to
an author should not be impacted.



The system can use different methods to measure the distinctiveness of an observa-
tion: several simple statistics like the absolute difference between the frequency means
(or medians), but also more complex measures which try to estimate the difference be-
tween the two distribution (known documents and documents in the reference corpus).
Some of these measures assume a normal distribution of the observation frequency ac-
cross the documents:9 we use several measures based on the Bhattacharrya distance [1].
These measures are also more reliable when the number of distinct documents is high.

Confidence The confidence measure is intended to find the most discrimative obser-
vations, based on their consistency and distinctiveness values. Thus it simply combines
these two values in order to rank the observations by their discriminative power for the
given author: for instance, an observation which is very consistent but not distinctive
(or the opposite) might be less interesting than another one which is less consistent but
has a better distinctiveness value.

We consider various ways to combine the two numerical values: product, mean,
geometric mean, weighted product, etc. There is also an option to ignore the consistency
score (i.e. use the distinctiveness as confidence), and another one for ranking the two
values, so that the rank is used instead of the actual score.

Distance Finally the distance measure is meant to capture how different the unknown
document is from the set of known documents. The distance value is usually not mean-
ingful at the level of the observation, but becomes meaningful only once computed on
a selected set of observations.

Various standard similarity or distance measures can be used, like the cosine or
Jaccard similarity, but also some more specific measures, like the probability that the
observed frequency in the unknown document belongs to the distribution observed in
the known documents (assuming this is a normal distribution). The distance can be
weighted in different ways with a coefficient based on the confidence score.

3.3 Scoring stage

The configuration define what kind and how many features will be used, as well as how
to obtain them. Multiple possibilities have been implemented, including:

– There can be a set of features for each observations type, or all observations types
can be combined in a generic set of features;

– The maximum number of observations to consider for the distance feature(s);
– Whether consistency, distinctiveness and confidence scores should be included in

the features.

A regression model is trained/applied to the features which have been computed for
all the input cases (instances for the model).10 We use the Weka [3] (version 3.6.10)

9 We had observed in [5] that this assumption holds in most cases for frequent n-grams.
10 When training the model, the Y/N answers are converted to 1/0, so that the predictions of the

system are values in [0, 1], which is the expected output format.



implementation of SVM regression [4] (with polynomial or RBF kernel), and decision
trees regression [7], with variants depending on their parameters.

Optionally, a second model can be generated/applied in order to evaluate the confi-
dence in each answer, and possibly replace it with 0.5 (unanswered case). This classi-
fication “confidence model” can use any of the available features, as well as the score
computed with the first regression model.11

3.4 Genetic learning

The complete “author verification model” which is returned at the end of the training
stage consists of the scoring model (that is, the regression model and optionally the con-
fidence model), but also the configuration which was found to be optimal on the training
set by cross-validation. This is achieved using a generic genetic described below:

The individuals in a population are the configurations, in which every parameter is
assigned a particular value among a predefined set (the “genotype”). Starting from a
random population, the algorithm iterates through each generation by selecting a pro-
portion of the population to “breed” the next generation. A configuration which per-
forms better is more likely to get selected.12 Every new individual is generated based
on two “parents” picked randomly among the breeders; every of its parameter is de-
fined as one of its parents value (each having a 0.5 probability to be picked), but can be
“mutated” with a (small) predefined probability. We also use two variants: one consists
in reusing a few of the previous best individuals in each new generation (elitism), and
the other in including a small proportion of totally random individuals.

4 The robust strategy

In the robust strategy, consistency and distinctiveness features were used to verify
whether the document X has been authored by the author of the given documents
Y = {y1, y2, ...yn}, but in a slightly different way as above: the consistency defines
how well the words or n-grams or character-grams were used consistently used across
all the documents Y and X . Whereas, distinctiveness defines how well document X
is distinct from documents Y and viceversa. The intuition behind using this feature is
that these features could provide an insight into how the document X and documents
Y co-vary linguistically.

Distinctiveness Motivated from the Jaccard similarity, we use a slight variant to com-
pute the distinctiveness of documents Y to document X (J1) and of document X to
documents Y (J2):
11 In the learning stage, the model which was trained is applied to the instances. Depending on

the configuration, the instances can be split up so that the second model is based on unseen
instances (but then less instances are used to train each model, of course).

12 All the configurations in the population are ranked by their performance. The probability of
an individual being selected is defined as r × p × 2, where r is the relative rank and p is the
proportion to retain as breeders (since the average relative rank is 0.5, the product p × r is
multiplied by 2; p must not be higher than 0.5).



J1 =
(p+ q)

(p+ q + r)
J2 =

(p+ r)

(p+ q + r)
,

where p is the number of words found in both X and Y documents, q is the number
of words found in Y but not in X and r is the number of words found in X but not in
Y documents. J1 will provide a measure on how distinct Y is from X , whereas J2 will
provide a measure on how distinct X is from Y .

The above provided are the document level metrics, which are used to compute
the word-level distinctiveness for X and Y . One assumption considered here for word-
level metric; to compute distinctiveness of word xi in X to Y , when the word wi is
identified in Y , we assign a boolean value 0 assuming no distinctiveness and when
wi is not identified in Y , we assign 1 to a temporary variable F assuming complete
distinctiveness of word wi. With, F , J1, J2 and relative frequency values (rf1

i and rf2
i )

for each word, we compute the distinctiveness for words in X to Y (di,J1
) and Y to X

(di,J2
) as:

di,J1
= F ∗ J1 ∗ rf1

i di,J2
= F ∗ J2 ∗ rf2

i

Consistency Consistency is defined as the difference between the relative frequencies:

ci,J1
= rf1

i − rf2
i ci,J2

= rf2
i − rf1

i
These measures are based only on the characters four-grams frequencies (the other

observations types are not taken into account). In order to train or apply th model, the
scoring stage defined in the fine-grained strategy is used.

5 Results

Thanks to the Tira system [2], we were able to evaluate both strategies on the “earlybird
corpus”. The results obtained on the training set by cross-validation were always better
with the fine-grained strategy, but in two cases they were better with the robust strategy
on the earlybird test set (see table 1). Interestingly, we noticed that, with the fine-grained
strategy, the decrease in performance between the training set and the earlybird test set
was much higher in the datasets which have a small number of known documents by
case, especially those where most cases contain only one known document.13 This is
why we decided to use the robust strategy on the final test set on these datasets (both
Dutch datasets and the English novels datasets).

Table 1 shows the performance obtained on each dataset by both strategies on the
training set, earlybird test set and final test set, as well as our official ranking. In par-
ticular, it shows that our decision to use the robust approach in three cases was good: it
performed better than any of the two original strategies taken independently. However
our hypothesis that this was linked with the low number of known documents might
not hold, since our results on the English novels are quite low compared to the other
participants, and this would not have happened with the fine-grained strategy. Overall,
our system was among the best in this task, ranking third among 13 in average.

13 The correlation between the decrease in performance and the median number of known docu-
ments in the dataset was 0.7.



Dataset
Training set CV Earlybird test set Final test set

robust fine-grained robust fine-grained mixed robust fine-grained mixed rank
Dutch essays 0.802 0.817 0.777 0.501 0.777 0.755 0.563 0.777 4
Dutch reviews 0.389 0.608 0.338 0.253 0.338 0.375 0.350 0.375 3
English essays 0.292 0.493 0.265 0.446 0.446 0.325 0.372 0.372 3
English novels 0.722 0.860 0.324 0.370 0.324 0.313 0.352 0.313 8
Greek articles 0.359 0.595 0.246 0.541 0.541 0.436 0.565 0.565 3
Spanish articles 0.622 0.863 0.468 0.657 0.657 0.335 0.634 0.634 2
Average 0.531 0.706 0.403 0.461 0.514 0.423 0.473 0.502 3

Table 1. Results on all datasets with both strategies. The “mixed” column for the final test set
corresponds to our official submission. Remark: there were 13 participants in this task.

Acknowledgments

This research is supported by the Science Foundation Ireland (Grant 12/CE/I2267) as
part of the Centre for Next Generation Localisation (www.cngl.ie) funding at Trinity
College, University of Dublin.

References

1. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined
by their probability distributions. Bulletin of Cal. Math. Soc. 35(1), 99–109 (1943)

2. Gollub, T., Potthast, M., Beyer, A., Busse, M., Rangel, F., Rosso, P., Stamatatos, E., Stein,
B.: Recent trends in digital text forensics and its evaluation. In: Forner, P., MÃijller, H.,
Paredes, R., Rosso, P., Stein, B. (eds.) Information Access Evaluation meets Multilinguality,
Multimodality, and Visualization. 4th International Conference of the CLEF Initiative (CLEF
13). Springer (September 2013)

3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

4. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to platt’s
SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637–649 (Mar 2001)

5. Moreau, E., Vogel, C.: Style-based Distance Features for Author Verification - Notebook for
PAN at CLEF 2013. In: CLEF 2013 Evaluation Labs and Workshop - Working Notes Papers.
p. Online proceedings. Valencia, Spain (Sep 2013)

6. Peñas, A., Rodrigo, A.: A simple measure to assess non-response. In: Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies. pp. 1415–1424. Association for Computational Linguistics, Portland, Oregon,
USA (June 2011), http://www.aclweb.org/anthology/P11-1142

7. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1993)

8. Schmid, H.: Improvements in part-of-speech tagging with an application to german. In:
Proceedings of the ACL SIGDAT-Workshop. pp. 47–50 (1995)


