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Here we summarize the points raised in our dialog with Ales and colleagues on the cortical generators of the
early visual evoked potential (VEP), and offer observations on the results of additional simulations that were
run in response to our original comment. For small stimuli placed at locations in the upper and lower visual
field for which the human VEP has been well characterized, simulated scalp projections of each of the visual
areas V1, V2 and V3 invert in polarity. However, the empirically measured, earliest VEP component, “C1,”
matches the simulated V1 generators in terms of polarity and topography, but not the simulated V2 and
V3 generators. We thus conclude that, 1) consistent with the title of Ales et al. (2010a), polarity inversion
on its own is not a sufficient criterion for inferring neuroelectric sources in primary visual cortex; but 2) in-
consistent with additional claims made in Ales et al. (2010a), the simulated topographies provide additional

evidence for - not against - the tenet that the C1 component is generated in V1.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license,

Introduction

In Ales et al. (2010a), scalp topographies resulting from activation of
discrete visual areas V1, V2 and V3 were simulated based on retinotopic
mapping data of 27 subjects. Consistent with the known projections of
the lower visual field to the dorsal, mostly upward-facing division of
V2/V3, and of the upper field to the ventral, mostly downward-facing di-
vision (Wandell et al., 2009), they found that simulated V2/V3 scalp to-
pographies inverted in polarity for upper and lower locations. Upper—
lower field polarity inversion is one of the more popularly known proper-
ties of the earliest component of the human visual evoked potential
(VEP), “C1” (e.g. Di Russo et al.,, 2002; Martinez et al., 1999) and one of
several properties comprising the classic “cruciform model” which pro-
poses a primary visual cortical (V1) source for the C1 (Clark et al., 1995;
Jeffreys and Axford, 1972a, 1972b). Combined with the results of
constrained source modeling from another study indicating simultaneous
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onset of V1 and V2 (Ales et al,, 2010b), Ales et al. (2010a) took this
extrastriate polarity inversion as evidence that the C1 may be generated
in V2 and/or V3 rather than in V1. In our original comment (Kelly et al.,
2013) we contested this claim, specifically criticizing 1) their critically in-
complete definition of the cruciform model, 2) their inappropriate use of
large stimuli that blur V1-consistent topographical shifts, and 3) their ne-
glect of intracranial findings in non-human primates. In their reply, Ales
et al. (2013) contest the first issue on the basis of the neuroanatomical
literature, and remedy the second and third issues by showing the results
of new simulations of smaller appropriately-placed stimuli, and by
reviewing the relevant human and non-human literature. In the follow-
ing, we first examine the new simulation results with reference to empir-
ical data for the same visual field locations (Di Russo et al.,, 2002); we then
discuss the systematic within-quadrant topographical shifts that form a
critical but neglected part of the unabridged cruciform model, and illus-
trate them using population-averaged VEP data and anatomical MRI; fi-
nally, we briefly address some of the conclusions made by Ales et al.
(2013) on the non-human primate literature.

The Di Russo et al. locations: simulated versus measured
The results of the new simulations of Ales et al. (2013 ) replicate their

previous finding that the scalp-projected potentials resulting from acti-
vation of V2 and V3 exhibit clear polarity inversion for stimuli in the
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upper and lower fields. This confirms that polarity inversion cannot be
used as the sole criterion in inferring a V1 source, an error that Ales et
al. claim was made in at least one previous study (Slotnick et al,
1999). Our issue was not with this finding, but rather with the addition-
al finding that V1 projections do not polarity invert, and the consequent
implication that the empirically observed, polarity-inverting C1 compo-
nent might be generated in V2 and/or V3 and not V1. Ales et al. (2010a)
specifically stated that only 3 out of 54 hemispheres showed polarity in-
version for V1, although no quantitative criterion was specified for their
classification. In their reply to our comment, Ales et al. (2013) have
persisted in claiming that V1 responses do not exhibit polarity inver-
sion. Since polarity inversion is the most well-known property of the
C1, this directly implies that V1 is not the dominant generator of the
C1. It is the latter implication that we examine further here.

Ales et al.'s (2013) new simulations on the first 10 subjects' data
employ the exact same visual field locations as the study of Di
Russo et al. (2002), a study in which the waveforms and topographies
of the C1 are shown particularly clearly. A direct comparison can now
be made between the simulated V1, V2 and V3 topographies and
those of normative empirical data, allowing us to address the simple
question: given the simulation results, is the empirically measured
C1 best explained by a V1 source, a V2 source or a V3 source?

As we predicted, Ales et al.'s (2013, Fig. 1)new simulations in V1
show a much clearer polarity inversion for the Di Russo et al. locations,
which are specifically aimed at the ceiling and floor of the calcarine sul-
cus in the average brain. Ales et al. (2013) variously state that these sim-
ulated topographies “do not fully” or more frankly, “do not” polarity
invert, again without specifying any criterion. However, in a large mid-
line scalp region where the C1 is typically measured for these locations,
the simulated V1 responses most certainly do invert in polarity (see
their Fig. 1). As Ales et al. (2013) correctly point out, the complementary
positive and negative foci in the simulated topographies coincide more
precisely for V2/V3 than for V1. We would further point out that the
manner in which the positive and negative V1 foci do not precisely co-
incide closely parallels empirical C1 measurements (Di Russo et al.,
2002; see also Clark et al., 1995 and Kelly et al., 2008 for locations of
nearby polar angle). As detailed in Di Russo et al. (2002; see Table II,
and Figs. 4, 5 and 6), the upper-field stimuli evoke a negative C1 focus
that is slightly ipsilateral to the midline. This ipsilateral effect, men-
tioned in Jeffreys and Axford (1972a, 1972b) and observed on the indi-
vidual subject level (Clark et al, 1995; Kelly et al, 2008), can be
explained in the cruciform model by the fact that the activated section
of cortical surface on the calcarine floor, if not perfectly horizontally-
oriented, would naturally tend to face the medial direction on average
(refer to coronal section in Fig. 2b). Consistent with the same principle,
lower field stimuli in the Di Russo et al. configuration evoke a marked
contralateral, positive scalp focus. In Ales et al.'s (2013) simulated re-
sponses to the Di Russo et al. locations, the V1 topographic foci follow
this very pattern, while the simulated V2/V3 responses show very dis-
tinct distributions, with upper stimuli clearly projecting to contralateral
rather than ipsilateral scalp sites (see summary Table 1).

More fundamental than these topographical lateralization effects is
the fact that the simulated V2/V3 topographies are opposite in polarity
with respect to the V1 topographies. The cruciform model not only pre-
dicts upper-lower polarity inversion, but more specifically maps the

Table 1

upper field to negative polarity and the lower field to positive polarity
for V1 sources, following a surface-negative assumption for initial corti-
cal activation. As we pointed out in our original comment, surface-
negative activation of V2/V3 would result in positive scalp polarity for
upper stimuli and negative scalp polarity for lower stimuli, which is op-
posite to the pattern seen for the empirically measured C1. In their Fig. 1,
Ales et al. (2013) chose to simulate surface-positive cortical activation
rather than surface-negative activation, so that the polarity on the scalp
for V2/V3 activation matches the C1. However, surface-positive activa-
tion is inconsistent with available intracranial data in monkeys (e.g.
Schroeder et al., 1991, 1998) and, as we demonstrate in the next section,
the within-quadrant topographical shifts observed for the empirical C1
are uniquely consistent with surface-negative activation. If we accord-
ingly assume surface-negative activation for Ales et al.'s (2013) Fig. 1,
as was done in their Fig. 3 (note the opposite color of equivalent topog-
raphies in Figs. 1 and 3), the simulated scalp polarities would be as listed
in Table 1. When considered alongside empirically measured C1 charac-
teristics, these simulation outcomes suggest a very clear winner for the
most likely dominant generator of the C1.

In their Fig. 3, Ales et al. (2013) simulate mixtures of V1 and V2 ac-
tivity in order to make the point that the polarity of the C1 does not iso-
late V1 activity because it allows for a 50-50 mixture of V1 and V2.
However, when one considers the full scalp distributions rather than
just midline electrodes, a comparison between Ales et al.'s (2013) Fig.
3 and Di Russo et al.'s (2002) Fig. 5 (identical left visual field locations)
is very revealing: the Di Russo et al. C1 topographies at 70-85 ms close-
ly match the simulated 100%-V1 topographies, whereas the Di Russo et
al. topographies at 95-115 ms bear a remarkable resemblance to the
simulated 50-50 mixture of V1 and V2. Not having the data ourselves,
we can only make these comparisons by eye; nevertheless, we would
strongly encourage the reader to do the same. Though we agree that it
is unlikely that V2 lies inactive for any more than a few milliseconds fol-
lowing the onset of V1 activation, these qualitative comparisons sug-
gest, at least superficially, that V2's expression on the scalp may not
come to be as strong as that of V1 until tens of milliseconds after VEP
onset.

The full cruciform model includes within-quadrant topographical
shifts and a surface-negative assumption

In our original comment, we complained that the definition of the
cruciform model used by Ales et al. (2010a) was a critically truncated
one, because it ignored systematic topographic shifts occurring with-
in visual quadrants (Jeffreys and Axford, 1972a). In this section we il-
lustrate why this is important. The full cruciform model describes a
shift from a roughly vertical dipolar orientation on the floor or ceiling
of the calcarine sulcus to a roughly horizontal orientation on emer-
gence from the sulcus onto the medial-facing wall, which corre-
sponds to visual locations closer to the vertical meridian (see Clark
et al,, 1995). As Ales et al. (2013) point out, the proportion of V1
lying outside the calcarine sulcus may not be 50%, as was falsely sug-
gested by our casual expression, “as much outside the calcarine sulcus
as inside,” but rather somewhere between 33% (Hinds et al., 2008)
and 45% (Aine et al., 1996). These proportions are still far from negli-
gible, and as we demonstrate below, these medial-facing sections

Salient characteristics of empirically measured C1 component topographies (Di Russo et al., 2002) listed alongside corresponding characteristics of the V1, V2 and V3 topographies

simulated by Ales et al. (2013), assuming surface-negative cortical activation.

Polarity on the scalp

Topographic focus

Upper field stimuli

Lower field stimuli

Upper field stimuli Lower field stimuli

Empirical C1 (Di Russo et al., 2002) Negative
Simulated V1 Negative
Simulated V2 Positive
Simulated V3 Positive

Positive
Positive
Negative
Negative

Slightly ipsilateral Contralateral
Slightly ipsilateral Contralateral
Contralateral Slightly contralateral

Contralateral Slightly contralateral
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comprise a very salient part of the full cruciform model that clearly
distinguishes V1 contributions from V2/V3 contributions.

To first illustrate the above-mentioned within-quadrant topograph-
ical shifts, Fig. 1 shows the scalp topographies of integrated amplitude
in an early (75-85 ms) time interval of a pattern-pulse multifocal VEP
(PPMVEP; James, 2003) averaged across 16 subjects. The PPMVEP was
derived for each of 32 equal-sized radial segments of a large annular
checkerboard pattern extending from 3 to 10° of eccentricity (see
Vanegas et al., 2013). The main feature to note here is that in every
quadrant, as one proceeds from the horizontal meridian toward the ver-
tical meridian, the topography undergoes a shift in orientation consis-
tent with the emergence from the calcarine sulcus, transitioning from
afocus close to the midline, consistent with a vertically-oriented dipolar
field, to a lateralized pattern consistent with a horizontally-oriented di-
polar field. Can this be explained instead by a V2 or V3 source?

In Fig. 2 we illustrate how the predicted topographical shifts for polar
angles nearing the vertical meridian differ for V1 and V2. We took an
oblique slice through a population-averaged anatomical image (the
MNI-152 brain at 0.5 mm resolution available with AFNI; Cox, 1996)
which passes through the standard site POz (20% of the distance from
inion to nasion on the scalp according to the 10-20 system), where the
Di Russo et al. (2002) C1 components are maximal, and the point along
the calcarine sulcus closest to fMRI activations reported in two studies
using the same locations (Di Russo et al., 2002, 2007; we converted
from Talairach to MNI coordinates using functions from http://www.
brainmap.org/icbm2tal/). An outline of the outer surface of the cortex
in this slice is rendered in Fig. 2b, resolving the calcarine sulcus but skip-
ping over other sulci on the outer surface for simplicity. It should be ech-
oed here that individual anatomy varies extremely widely about this
average brain; the rounded surface is intended not to be representative
of any individual but of the population-average cortical surface, which
corresponds with the population-averaged VEP data on which our argu-
ments are based. At this posterior location, the dorsal and ventral V1-V2
borders lie at medially facing sections within the interhemispheric fis-
sure, whereas the V2-V3 borders lie on the outer dorsal or ventral sur-
face. Based on the coincident but opposite-polarity topographies for
simulated dorsal and ventral V2 (Ales et al., 2013), we can assume that
the lower and upper Di Russo et al. locations must project to sections

of V2 that are out on the dorsal and ventral surface, respectively, in the
average brain. We illustrate the predicted topographical shifts for V1
and V2 using the upper right visual field quadrant as an example, but
the logic applies equally well to all quadrants.

Ales et al. (2013) pointed out that while the available evidence in
monkeys indicates that the initial cortical activation of both V1 and V2
results in negative potential deflections on the cortical surface, stimulus
and species differences preclude the generalization of this finding to
contrast-change stimuli in humans. Further, a constrained source
modeling study indicated that V2 initially activates with a surface-
positive deflection (Ales et al., 2010b; but see Hagler et al., 2009).
Thus, the negative midline focus for the upper Di Russo et al. location
(location A in Fig. 2¢) could arise either from surface-negative electric
fields in ventral V1 (dipole A in Fig. 2d), or, alternatively, from
surface-positive electric fields in ventral V2 (dipole A in Fig. 2e). As
Figs. 2d and e show, as one proceeds from the horizontal meridian to
the vertical meridian (from location A to location B in Fig. 2¢), a shift
in dipolar orientation from vertical to horizontal would be predicted
for V2 as well as for V1. However, the direction of dipole rotation is op-
posite for the V1 and V2 cases. In the V1 case, the dipole rotates clock-
wise, leading to a rightward shift of the negative scalp focus (Fig. 2f),
which is indeed what is seen in empirical data (see Fig. 1 and Clark et
al., 1995). If, instead, the negative upper-field C1 was generated by
surface-positive activation in ventral V2, the dipole would rotate coun-
terclockwise and thus the negative focus would shift toward the left on
the scalp (Fig. 2g), moving in the direction opposite the empirical C1
data.

Thus, in terms of topographical shifts for locations proceeding to-
ward the vertical meridian, the prediction for V2 generation is direct-
ly opposite to the prediction for V1, and the empirical data follow the
latter. For area V3 and beyond, there are no reported systematic
changes in cortical orientation within quadrant representations that
could explain the empirical data. Again, we cannot claim that V2
and V3 are entirely inactive during the time frame of these topogra-
phies, but it is clear that the V1 contribution must dominate. The po-
tential issue under discussion has been that V2 or V3 activity could
potentially masquerade as V1 activity, and so effects on the C1, such
as those resulting from attention, may not be on V1 at all. But as we

0.2

+40.1

Fig. 1. Topographical distributions of the earliest potential deflection “C1” (75-85 ms) in a pattern-pulse multifocal VEP derived for 32 orthogonally pulsed, radial segments of a

large annular checkerboard. Example locations ‘A’ and ‘B’ of Fig. 2 are labeled.
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C

Fig. 2. a. Sagittal view of the oblique coronal slice in the MNI-152 brain passing through the scalp focus of the average C1 and the average locus of functional activation for the Di
Russo et al. (2002) stimulus locations. b. Outline of cortical surface in this oblique coronal slice, marking the ventral V1/V2 border as mid-way down the ventral medial wall. Border
location is not intended to be precise, but rather serves to illustrate orientation transitions for V1 and V2. c. Example locations A and B lying close to the horizontal and vertical
meridian, respectively, in the upper right field. d. A zoomed portion of the ventral left-hemisphere section of areas V1 and V2, illustrating the dipole orientation that is required
to explain the scalp polarity of the C1 for location A assuming generation in V1, along with the rotated orientation that must follow for location B. e. The same zoomed section,
illustrating the dipole orientation that is required to explain the scalp polarity of the C1 for location A assuming generation in V2, along with the rotated orientation that must follow
for location B. In both d and e, arrows represent electrical dipoles, with the head corresponding to the negative pole. f. Topographical shift of the negative scalp focus predicted by
the hypothetical V1 generators depicted in d. g. Topographical shift of the negative scalp focus predicted by the hypothetical V2 generators depicted in e. The empirically observed

shifts in Fig. 1 match the predictions for V1 in d, f.

have just seen, for a V2 activation to masquerade as a V1 activation, it
would have to be both upside-down and come from a visual cortex
that is turned inside-out.

Another visible feature in the empirical data of Fig. 1 is that the flip in
polarity from negative to positive occurs some distance below the hori-
zontal meridian. The distance in these data appears somewhat less than
the 20° reported by Clark et al. (1995), but the 32 non-overlapping seg-
ments used in this experiment do not offer fine enough resolution to ac-
curately judge. As Ales et al. (2013) point out, more work needs to be
specifically aimed at this question to validate Clark et al.'s (1995) revision
of the cruciform model whereby the horizontal meridian projects to a
point along the ventral calcarine bank rather than precisely at the fundus.
For the time being, we would point out that Ales et al. (2013) did not pro-
vide anatomical evidence that was inconsistent with this feature, they
merely highlighted that there is a lack of evidence that is consistent with
it, because no functional imaging studies have been specifically aimed
at the question. We would further point to a recent study by Benson
et al. (2012) that again does not specifically address this question, but
nonetheless displays clear images that suggest a horizontal meridian pro-
jection to a point ventral to the fundus (see their supplementary Fig. 1).

To clarify our original position, we at no point claimed that V1
could be fully “isolated” by any means, whether by polarity inversion
at certain locations or by timing. Our main point, which we believe is
supported by the above arguments, was that the topographical varia-
tions in C1 as a function of polar angle are more consistent with a V1
source than a V2 or V3 source, and that even though it is unlikely that
V1 is active for long in complete isolation, the evidence suggests that
it is by far the dominant contributor to the C1.

Insights from intracranial neurophysiology

Ales et al. (2013) provide a literature review on the issues related
to intracranial findings, which serves to highlight the uncertainty yet
surrounding the inter-area timing, physiological generating mecha-
nisms and scalp projection of early visual activity, and the impact of
stimulus and inter-species differences. The authors quite correctly
point out that more work needs to be done to resolve these issues.
To clarify our original position, we at no point claimed that monkey
intracranial data have closed the case on the sequence of activation
of visual areas — we merely aired the reasonable complaint that this
literature should not be ignored. Further, we did not assert that
areas beyond V1 sat in complete silence for the duration of the initial
afferent response in V1 — rather, we argued that in light of the cur-
rent evidence on V1 versus V2 latency differences from intracranial
recordings, the finding in human source analysis of simultaneous ac-
tivation of V1 and V2 should be interpreted with caution.

In the accounting of interareal latency findings in monkey intra-
cranial studies, a couple of critical factors must be considered. First,
several studies recorded from anesthetized subjects, a factor which
dramatically changes the entire brain response by generally depress-
ing responses and significantly delaying them. Moreover, these ef-
fects are distinctive for many of the different anesthetics. This
concern applies to numerous empirical as well as review papers; for
example, Lamme and Roelfsema (2000) mixed across anesthetized/
awake data in a meta-analysis. Second, as Ales et al. (2013) point
out, stimulation conditions differ considerably across studies, and
care must be taken in mixing these conditions in any meta-analysis.
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Among the papers that we cited in our original comment, those that
record latencies from the input to the superficial layers of V1 (Chen
et al., 2007; Givre et al., 1995; Maunsell and Gibson, 1992; Schroeder
et al.,, 1991; Schroeder et al., 1998) are consistent in showing a signifi-
cant latency offset. The papers that examine latencies across areas
(e.g., Chen et al,, 2007; Schroeder et al., 1998) are consistent in showing
an offset between areas V1 and V2; very fast responses in V2 due to the
magnocellular pathway from the lateral geniculate nucleus (LGN) to
4cao of V1 to the thick CYTOX stripes of V2 do not seem to cause the
mass of V2 to respond at a very short latency. The fact that a branch of
this pathway does seem to cause a very fast response in the dorsal
stream beginning at MT (Chen et al., 2007), and as well may trigger
small early responses in V4 (Givre et al., 1994), does not seem relevant
to the present dialog, as these areas do not have polarity-opposed
upper-field and lower-field projections and thus could not contribute
to the polarity inversion effect. Overall, the studies that have directly
compared V1 to V2 have all shown a significant latency difference, de-
spite the caveat that some of the studies show an overall latency in-
crease due to anesthesia (spiking: Raiguel et al., 1989; Nowak et al.,
1995; Schmolesky et al, 1998; LFP: Schroeder et al, 1998; Mehta
etal., 2000). Nowak et al. (1999) state that, “Measurements of visual re-
sponse latencies show that, on average, V2 neurons are activated 10 ms
later than neurons in area V1 (Nowak et al., 1995; Raiguel et al., 1989).”
Schmolesky et al. (1998) also showed a delay from V1 to V3, albeit a
small one of 6-9 ms. On the whole, despite the stimulus differences,
it seems reasonable to say that among the three visual areas identified
as having dorsal and ventral sections of opposed orientation, V1, V2
and V3, the available evidence suggests that V1 responds earlier. We
would also reiterate that relative response strength should be taken
into account — to what degree are areas beyond V1 expressing their
activation on the scalp compared to V1? The only studies that directly
compare the postsynaptic electrical activation profiles for multiple vi-
sual areas in the same monkeys are those of Schroeder et al. (1998),
and they show not only earlier, but much stronger (approximately
6x) initial activation in V1 than V2. Undoubtedly, extrastriate areas
do not remain silent throughout the initial afferent V1 activation, but
at the same time, the “substantial extrastriate contributions” found
in human source modeling work (Ales et al, 2010b) may not be
definitive.

A final point of Ales et al. (2013) that we are compelled to address is
their assertion that response onset latencies for a given stimulus type are
equal in humans and non-human primates, and therefore that the 3/5
rule for comparing latencies in monkeys and humans may not be gener-
ally applicable. We could not agree less with this assertion. That there is a
considerable interspecies difference in neural response latency has been
established in a long line of studies from the 60's to the 90's. The mean
initial V1 response latencies to diffuse flash stimuli, quantified in both
spiking and synaptic current flow/local field potentials in unanesthetized
monkeys, are between 25 and 30 ms (Chen et al., 2007; Maunsell and
Gibson, 1992; Schroeder et al, 1998). Ales et al. (2013) state that
such very early (30 ms) onsets in humans have been found both
extracranially (Odom et al, 2009) and intracranially (Ducati et al,
1988). However, neither of the cited studies were specifically aimed at
the issue of response latency and accordingly do not even specify
methods for computing latency. Odom et al. (2009) is a paper about clin-
ical recording standards, which does not specify the stimulation and re-
cording methods used for the example waveforms shown, let alone
address common confounds associated with flash stimulus generation,
such as early auditory responses to sounds emitted by the stimulation
apparatus. Ducati et al. (1988) show response waveforms for both flash
and pattern reversal stimuli but do not attempt to precisely measure or
directly compare latencies across these stimulus conditions, presumably
because non-stimulus evoked activity precludes a clear measurement of
onset. An early component, P40 (onsetting around 30 ms), was indeed
observed in early studies of the flash VEP, but this very small early deflec-
tion was believed to be of subcortical origin on the basis of comparisons

between human and monkey recordings (Kraut et al., 1985; Vaughan,
1966; Vaughan and Hull, 1965). Indeed, Schroeder et al. (1992) showed
that the early surface component, N25, in the monkey (onset 18-22 ms),
could be explained by an intracranial component measured in the lateral
geniculate nucleus (LGN). Thus, early-onset components of the human
flash VEP can be seen to correspond to even earlier subcortical compo-
nents in monkeys following the same 3/5 rule.

Ales et al. (2013) also claim that pattern-reversal response onsets
are equal in human and monkey, on the basis of one human intracranial
study reporting latencies of 45-55 ms in recordings made directly from
the peri-calcarine region (Farrell et al., 2007). Neither Ales et al. (2013)
nor Farrell et al. (2007) themselves specify whether this latency range
refers to component onset or peak, or whether it was evoked by pattern
onset, pattern reversal or flash. Farrell et al. (2007) do point to an N55
component, which they note is on very rare occasions observed as a pos-
itive “P55” on the scalp for pattern reversal stimulation. A similarly rare
intracranial component “N40” has been reported in the V1 recordings
of Schroeder et al. (1991), again consistent with the 3/5 rule. The 3/5
rule fits not only for the aforementioned early visual components but
also the pattern-evoked P1 (peaks in monkey at ~60 ms, and in human
at ~100 ms), as well as for initial auditory and somatosensory compo-
nent comparisons (Peterson et al., 1995; Schroeder et al., 1995, 2004). Fi-
nally, we would reiterate that precise estimates of human V1 onset
latencies based on noninvasive measures (Foxe and Simpson, 2002:
Clark et al, 1995) come in at about 42-45 ms, consistent with a 3/5
simian/human rule. While the 3/5 principle could use further validation,
we introduced it in our discussion in order to emphasize that the latency
offsets between V1 and higher visual areas that have been well esta-
blished in monkeys are likely to be an underestimate of those in
humans, and that the overwhelming evidence for V1-V2 latency offsets
simply cannot be ignored when interpreting human electrophysiologi-
cal responses.

To conclude, we emphasize that we have not claimed to know
how to isolate, or to have a better “diagnostic,” of V1, nor have we
asserted that the cruciform model is infallible. Our main point is
that a demonstration of V2/V3 polarity inversion does not constitute
strong evidence against the full cruciform model for primary visual
cortical generation of the early VEP. The simulations of Ales et al.
(20104, 2013) have clarified a very important aspect of the cruciform
model, which is that it is composed of several instances of polarity in-
version and topographical shifts with polar angle, and no single in-
stance should be used as a sole diagnostic for a V1 source. Our
discussion centered on what this means for the tenet that the earliest
component of the VEP is generated in V1, and we have contended
that there is no more evidence to the contrary than there was before
these simulations were run — in fact, comparisons with empirical
data appear to favor the C1-V1 link.

More generally, our discussion should serve as a strong cautionary
note in relation to the growing toolkit of the human neurophysiologist.
In the present situation, the quantitative sophistication of modern
source analysis algorithms has clearly not outweighed the fundamental
logic underlying a qualitative model based on elementary geometry and
empirical data. Combined EEG and fMRI approaches building on the re-
markable innovations of Ales et al. (2010a, 2010b) and others (e.g.
Hagler and Dale, 2013; Hagler et al., 2009) will undoubtedly be key in
the future use of human visual evoked potentials in understanding visu-
al processing. As we progress, however, it is important not to cast away
existing qualitative models as “old notions,” but rather incorporate
them as logical constraints.
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