Autophagy and inflammatory diseases

Sarah A Jones'?, Kingston HG Mills"? and James Harris?

Autophagy is a cellular mechanism for the sequestration and degradation of intracellular pathogens and compromised
organelles, particularly damaged mitochondria. Autophagy also clears other cellular components, such as inflhmmasomes

and cytokines, thus providing an important means of regulating inflammation. Defects in autophagy have been found by
genetic association studies to confer susceptibility to several autoimmune and inflammatory disorders, particularly inflammatory
bowel disease. Thus, the manipulation of autophagy in disease situations is of growing interest for therapeutic targeting;
however, the involvement of autophagy in cellular homoeostasis, in normal immune function and in inflammation is manifold.
An appreciation of the intricacies of the contributions of this process to inflammation, and how these are altered by various
immune and environmental stimuli, is essential for the understanding and interpretation of studies of inflammation and

the design of therapeutics exploiting the manipulation of autophagy. This review focuses on the known roles of autophagy in
the induction and maintenance of inflammation and on its role in the aetiology and regulation of inflammatory and

autoimmune disorders.
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Many damaged cellular constituents are cleared through the process of
macroautophagy, in which a nascent double-membraned autophago-
some forms around protein aggregates and organelles in the first step
of a process that ultimately results in lysosomal degradation and
recycling of components for use by the cell. In a quiescent cell,
macroautophagy occurs at a basal level to remove defective organelles,
such as dysfunctional mitochondria and peroxisomes, as well as
misfolded proteins in response to endoplasmic reticulum (ER) stress
(reviewed elsewhere'). Thus, autophagy is required for normal cell
functioning and survival. Macroautophagy (hereafter referred to as
autophagy) is characterised by the formation of an isolation
membrane, or phagophore, which elongates around its target and
fuses with itself to form a double-membraned autophagosome. This
can then fuse with lysosomes to form an autolysosome, leading to the
degradation of its luminal contents. This process is controlled by the
products of numerous autophagy-specific genes (Atg) and by the
mammalian target of rapamycin (mTOR), a serine/threonine protein
kinase that regulates cell growth, proliferation, motility and survival,
gene transcription and protein synthesis. Inhibition of mTOR is
essential for autophagy to initiate, and allows the translocation of a
complex containing Atgl/unc-51-like kinase (ULK)1/2, Atgl3, FIP200
and Atgl0l from the cytosol to the ER, a process dependent on the
interaction between ULKl and AMP-activated protein kinase
(AMPK).>* This leads to the recruitment of the type III
phosphatidylinositol-3-kinase, VPS34, in a complex with other
proteins, including beclin 1, to the developing autophagosome.

Generation of phosphatidylinositol-3-phosphate by this complex is
crucial for the recruitment of proteins required for initiation of
autophagosome formation® (Figure 1). Inhibitors of phosphatidyli-
nositol-3-kinase, including 3-methyladenine (3-MA), are commonly
used to inhibit autophagy in in vitro studies, although such studies
must be interpreted with caution due to other effects of the
compounds used (Box 1).

Autophagy regulates energy and nutrient homoeostasis and has an
essential role in tissue development.® Autophagic activity is amplified
in times of deprivation of oxygen, growth factors or nutrients, and
this is essential for cell survival.”® Increased autophagy in hypoxic or
starved cells facilitates a shift from aerobic respiration to glycolysis
and provides a means by which cellular components can be
hydrolysed to provide fuel for metabolism. This glycolytic shift also
occurs in proliferating myeloid cells and lymphocytes and increased
levels of autophagy are characteristic of activated immune cells.!® In
addition, autophagy is an important clean-up mechanism following
the respiratory burst in leucocytes, clearing reactive oxygen species
and mitochondrial debris and protecting against damage and
death."™"* Although a moderate level of autophagy is required to
maintain a healthy cytosolic environment, excessive autophagy can
lead to autophagic cell death.'?

Autophagy also shapes immune responses by directly participating
in immune cell function. For example, autophagy-degraded cellular
components can be loaded onto MHC (major histocompatibility
complex) class I and II molecules for presentation to T cells.’>*7
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Figure 1 Pathways involved in autophagy regulation. Autophagy is regulated
oy numerous stimuli, including nutrient starvation, growth factors,
cytokines, reactive oxygen species (ROS), pharmacolegical inhibitors and
danger/pathogen-associated molecular patterns (DAMPs and PAMPs).
Autophagesome formation is largely controlled by mTOR; inhibition of
mTOR leads to the interaction between the serinethreonine protein kinase
ULKL and AMPK, which, in turn, recruits the tyoe Il PI3 kinase VPS34, in
complex with other proteins, including bdeclin 1, to the developing
autophagosome. Nutrient deprivation activates AMPK and may also inhibit
mTOR activation, leading to autophagesome formation. Activation of the
AKT pathway by growth factors and cytokines, including IL-4, IL-13 and IL-
10, leads to activation of mTOR and inhibition of autophagoesome formation.
Other cytokines induce autophagy. IFN-y promotes autophagosome
formation through an IRGM (lrgm1 in mice)-dependent mechanism. This
pathway is not well understood but does involve mitochondrial fission. This
orocess is innidited by IL-4 and IL-13 through a STAT6 (signal transducer
and activator of transcription factor 6)-dependent mechanism. TNF-a, IL-1,
ROS and engagement of Toll-like receptors (TLR) also induce autophagy,
although these pathways are not well characterised. Autophagosomes can
sequester and deliver cytosolic constituents to lysosomes for degradation
and recycling. A full colour version of this figure is available at the
Immunology and Cell Biology journal online.

Intracellular pathogens can be killed by autophagy, including
Mycobacterium  tuberculosis, Candida albicans, adherent-invasive
Escherichia coli and group A  Streptococcus.’® '  Similarly,
autophagy is involved in host-protective immune responses against
infection with viruses, such as Sindbis virus,*® Epstein Barr virus®
and vesicular stomatitis virus® The rate of autophagy can be
modulated in lymphocytes by antigen receptor stimulation and in
macrophages following activation of Toll-like receptors (TLRs) and
pattern-recognition receptors with pathogen- and danger-associated
molecular patterns.?>2%2® Furthermore, T helper type 1 (Thl) and
pro-inflammatory cytokines, including interferon (IFN)-y, tumour
necrosis factor (TNF)-a, interleukin (IL)-1 and IL-23, induce
autophagy,*3? while Th2 and regulatory cytokines, including 1L-4,
IL-13 and IL-10, are inhibitory.**® Importantly, autophagy is now
recognised to be a major mechanism for regulating the secretion of
cytokines and chemokines, particularly in macrophages, facilitating
macrophage-mediated control of cell recruitment and orchestration of
immune responses.®” 1 The influence of the metabolic state of

Box 1 An important cautionary point in the interpretation of
studies using the autophagy inhibitor, 3-methyladenine (3-MA).

3-MA inhibits the class IIl PI3K VPS34 anc thus blocks the early stages of
autophagosome biogenesis. However, 3-MA also inhibits the class | phospha-
tidylinositol-3-kinase (PI3K), which disrupts the AKT pathway and can affect
cell viability. Importantly, 3-MA can hawve cifferent temporal patterns of
inhibition; its effect on VPS34 is relatively short-lived, whereas its effect on
the class | PI3K is more long-term, potentially resulting in an increase in
autophagy over longer time periods.’ 5 Wortmannin, which inhibits both PI3Ks
on a more equal basis, can be used in place of 3-MA in such studies. In
addition, effects on the class | PI3K and the AKT pathway can have autophagy-
independent effects on cytokine secretion. In our own studies, we have found
that 3-MA can inhibit lipopolysaccharide (LPS)-induced tumour necrosis
factor-x, interleukin (IL)-12p40 anc IL-6 secretion by murine macrophages,
but these effects are not seen in cells transfected with siRNA against autophagy
genes. 3254 A recent study has also suggested that, in the murine RAW264.7
macrophage cell line, 3-MA enhances IL-1p transcription and secretion in an
autophagy-independent manner.!*€ In this stucy, 3-MA, used at sub-optimal
dose (1mu), induced autophagy and increased pro-inflammatory resporses
through the inhibition of AKT and glycogen synthase kinase 3f. However, given
that RAW264.7 cells do not express ASC (apoptotic speck protein containing a
caspase recruitment domain),’%7 this may represent a different mechanism of
caspase-1-independent IL-1f processing, unrelated to that seen in previous
studies using 3-MA, wortmannin and genetic deletion of autophagy
genes. 325467 Moreover, in murine bone marrow-derived dendritic cells,
LPS-induced IL-1p secretion is increased by treatment with 3-MA, Ly294002
and wortmannin but not by class | PI3K/8 inhibitors or an AKT inhibitor, 32.64
These studies clearly emphasise the importance of using different, coroborative
methods and diverse cell systems for monitoring the regulation of autophagy.

immune cells on inflammatory responses is an area of growing
interest, and the roles of autophagy in this process are of considerable
potential importance.

STARVATION-INDUCED AUTOPHAGY AND INFLUENCES ON
INFLAMMATION

In conditions of low cellular energy and essential amino-acid
deprivation, the induction of autophagy is driven by AMPK, which
is antagonised by mTOR when nutrients are sufficient."~* Activation
of AMPK occurs through an increase in the ratio of AMP to ATP,
indicative of a state of oxygen deprivation, as well as phosphorylation
by CaMKK when cytosolic Ca®* accumulates, which occurs during
amino-acid deprivation.">* AMPK activation stimulates pathways
that correct imbalances in glucose and lipid concentrations and return
energy levels to normal. When energy levels are low, AMPK halts cell
growth and migration and supports cell survival by driving
autophagic degradation of damaged mitochondria.*> Small molecule
activators of AMPK can induce autophagic clearance of B-amyloid
plaques in models of Alzheimer’s disease,'® and there is emerging
evidence that AMPK is a key modulator of immune responses; it can
reduce the severity of inflammation and tissue damage in colitis'**®
and experimental autoimmune encephalomyelitis®® and airway
inflammation in asthma® In addition, AMPK can drive the
induction of regulatory T cells,” the differentiation and inhibitory
activity of myeloid-derived suppressor cells®? and, in macrophages,
AMPK activation is a critical point at which anti-inflammatory
signals converge to elicit suppressive responses. For example, 1L-10
and transforming growth factor f activate AMPK in macrophages and
inhibition of AMPK in macrophages results in excessive production of
IL-6, TNF-o and cyclooxygenase-2 in response to lipopolysaccharide




(LPS).5? Conversely, AMPK suppresses LPS-induced IL-6 and TNF-a
and inhibits the respiratory burst in neutrophils.'** Thus, activation
of AMPK is predominantly anti-inflammatory and autophagy may
represent one mechanism through which AMPK exerts these effects.

AUTOPHAGY REGULATES CYTOKINE SECRETION

As well as regulating responses to pathogens within cells, autophagy
can influence immune responses in microenvironments through its
role as a regulator of cytokine secretion, particularly within antigen-
presenting cells. In particular, autophagy can modulate the secretion
of members of the IL-1 cytokine family, IL-23 and, as a consequence,
IL-17.

Autophagy and IL-1 family cytokines

The IL-1 cytokine family, including IL-1a, IL-1p, IL-18, IL-33, IL-36,
IL-37 and IL-38, orchestrate a wide range of immune and physiolo-
gical effects. In particular, IL-12 and IL- 1, which signal through the
IL-1 type I receptor (IL-1R1), are pro-inflammatory, acting partly
through the induction of cyclooxygenase-2, type 2 phospholipase A
and inducible nitric oxide synthase> IL-lx and IL-1B also recruit
myeloid cells, including neutrophils, to sites of inflammation.*® Like
IL-la and IL-1B, IL-18 promotes inflammation, stimulating IFN-y
production by natural killer cells and Thl cells and IL-17 production
by ¥8 T cells.” IL-1B and IL-18 are produced as inactive pro-forms
that are cleaved by caspase-1 to form the mature, bioactive cytokines.
Caspase-1 is itself activated by an inflammasome, a large multimeric
structure that includes an intracellular sensor, such as the NOD-like
receptor (NLR) NLRP3 or the DNA sensor, absent in melanoma 2
(AIM2).® Recently, findings have suggested that IL-1B can drive the
secretion of both IL-lx and IL-23,%% further highlighting the
importance of this cytokine in regulating inflammatory responses.

The activity of IL-12 and IL-1p is regulated by a naturally occurring
IL-1 receptor antagonist IL-1Ra and by the decoy receptor IL-1RIL®
whereas IL-18 is regulated by IL-18-binding protein®*®* It has also
been demonstrated that autophagy can regulate IL-1, IL-1a and IL-18
at the levels of transcription, processing and secretion. This occurs
through at least two distinct mechanisms (Figure 2). Firstly, autophagy
suppresses TLR-induced secretion of IL-18, IL-la and IL-18 in
macrophages and dendritic cells (DC).***7 Production of biologically
active IL-1P typically requires two signals. The initial signal is provided
by pathogen-associated molecular patterns, such as LPS, or danger-
associated molecular patterns, such as HMGBI, and results in
transcription of pro-IL-1. This is followed by activation of inflam-
masome assembly by a second stimulus, such as reactive oxygen
species, mitochondrial DNA, ATP, particulates (for example, silica,
alum), protein aggregates and lysosomal rupture. Autophagy suppresses
inflammasome assembly by degrading numerous endogenous stimuli,
including mitochondrial DNA and reactive oxygen species,>®7 that
would otherwise induce inflammasome activation and processing of
pro-IL-1B into the mature cytokine. Thus, inhibition of autophagy
under these conditions leads to an increase in inflammasome activation
and subsequent processing of IL-1 and IL-18.

The second mechanism by which autophagy negatively influences
IL-1 and IL-18 secretion is more direct; autophagosomes can sequester
and degrade inflammasome components and pro-IL-18.5%% In mouse
DC, induction of autophagy can prevent IL-1P secretion in response
to LPS with alum or ATP, while in LPS-stimulated mouse
macrophages, in the absence of an inflaimmasome-inducing signal,
autophagosomes sequester and degrade pro-IL-1B.5! More recently,
Shi ef al.® have der d that acti of the NLRP3 and AIM2
inflammasomes induces autophagy in human macrophages. In
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Figure 2 Regulation of IL-1 secretion by autophagy. Secretion of IL-15 by
macrophages and dendritic cells requires the production of an inactive
orecursor (pro-IL-1B) and the assembly and activation of an inflammasome,
which, in turn, activates caspase-1 to process pro-IL-1p inte the mature,
active cytokine. Stimulation of TLRs by endogenous danger signals (DAMPs)
and pathogen-associated molecules (PAMPS) stimulates the preduction of
oro-ILJ but also induce mitochondrial dysfunction or instability, leading to
the release of reactive oxygen species (ROS) and mitochondrial DNA
(MIDNA). Inflammasome assembly is activated by numerous stimuli,
includingATP and particulates, such as silica and uric acid acrystals. In
normal cells, autophagosomes can sequester and degrade pro-IL-15,
damaged mitochondria and inflammasome components, thus limiting IL-18
secretion. However, in cells defective in autophagy, all of these stimuli can
remain uncontrolled, leading to excessive IL-1p secretion. This, in turn, may
stimulate the autccrine secretion of other pro-inflammatory cytokines,
particularly IL-la and IL-23. MAPK, mitogen-activated oprotein kinase;
TRIF, TIR-domain-containing adapter-inducing interferon-g. A full colour
version of this figure is available at the Immunology and Cell Biology journal
online.

addition, inflaimmasome components have been observed to co-
localise with autophagosome components,*® indicating that, similar
to pro-IL-1B, inflammasomes are degraded within autophagosomes.
These data suggest that autophagy is induced by inflammatory stimuli
and acts a self-regulatory mechanism for the control of inflammatory



cytokine secretion, thereby downregulating potentially deleterious
inflammatory responses.

Autophagic regulation of the IL-23-1L-17 pathway

Through regulating IL-1f secretion, autophagy also moderates the
production of another inflammatory cytokine, IL-23.3260 [L-23 is an
IL-12 family cytokine that, synergistically with IL-12, IL-1B or IL-18,
induces the differentiation and expansion of Th17 cells from naive
CD4 T cells, as well as the secretion of IL-17 by ¥3 T cells and other
innate lymphoid cells.>”¢® # Both IL-23 and IL-17 are closely linked
with a ber of di including psoriasis and
multiple sclerosis, as well as asthma and ankylosing spondylitis
(reviewed elsewhere™). In both mouse and human macrophages
and DC, inhibition of autophagy allows excessive IL-23 secretion,
whereas induction of autophagy has the opposite effect.’? IL-1B can
drive 1L-23 secretion,™ and this appears to be the mechanism through
which autophagy exerts xls effects on IL-23. Supporting this, IL-23
production in ph ired h macrophages is dependent
on NF-kB signalling and is inhibited by IL-1-neutralising antibodies.
As IL-1, IL-18 and IL-23 have a major role in promoting IL-17
production by T cells,”* regulation of these cytokines by autophagy
can affect IL-17 secretion. Indeed, supernatants from mouse DC
primed with LPS and cultured in the presence of the autophagy
inhibitor 3-MA contained high levels of IL-1p and IL-23 and potently
induced IL-17, IL-22 and IFN-y secretion by ¥8 T cells in vitro.*? This
may also operate in vivo, as mice lacking the autophagy protein Atg5
in myeloid cells secrete higher levels of IL- 1o, IL-12p70, CXCLI (C-X-
C motif chemokine ligand 1) and IL-17 in response to infection with
M. tuberculosis”™ These data indicate that autophagy in innate
immune cells has the potential to influence T-cell polarisation,
suggesting an important role in the control of both inflammation
and innate regulation of adaptive immune responses.

AUTOPHAGY IN INFLAMMATORY DISEASES

The regulation of IL-1p and IL-23 secretion by aumphagy may be of
critical importance in the pre of the autc in
which hyperactivation of this pathway is a major driver of pathology.
Polymorphisms in the IL-23R locus confer susceptibility to inflam-
matory bowel disease (IBD), including Crohn's disease (CD)™ and
ulcerative colitis,”® psoriasis,” rheumatoid arthritis” and ankylosing
spondylitis.”””® In addition, sy lupus eryth (SLE)
patients produce excess IL-17 and IL-23 that may exacerbate their
disease.”* In agreement with this, SLE-prone MRLP"'P* mice that
lack the IL-23R or are treated with neutralising anti-IL-23 have
significantly reduced clinical symptoms of disease.** Rapamycin or
other mTOR-inhibiting drugs, which enhance autophagy, have
successfully treated severe refractory CD? lessened tissue damage
in rheumatoid arthritis (RA) patients,** %5 reduced disease activity in
refractory SLE patients®® and d intestinal inflammation
in a mouse model of oolms."7 It should be noted that these drugs
exert other, autop ppressive effects,
particularly the mhlbmon of T-cell proliferation, and thus the
induction of autophagy may not be their only mode of action.
Further studies using specific inhibitors of phagy are thereft
warranted based on successes reported using these autophagy-
inhibiting, but also broad-acting, drugs.

As well as its wider role in limiting the release of pro-inflammatory
cytokines that drive disease progression in a general manner,
autophagy has been implicated in more cell type-specific dysfunctions
in particular autoimmune and inflammatory diseases. For example,
in cystic fibrosis (CF), overexpression of beclin 1, required for

autophagosome formation, rescues defective autophagy in airway
epithelia and restores normal trafficking of CF transmembrane
conductance regulator (CFTRF508del}) to the cell surface. This
prevents the CF phenotype in mouse models and in human CF
biopsies.®® Also, autophagy removes B-amyloid plaques in mouse
models of Alzheimer’s disease’ and inhibits NLRP3 activity in
response  to  cholesterol crystals,®® which otherwise drives
atherosclerosis.® Defective autophagy has also been implicated in
cardiac disease; ineffective autophagy results in inadequate
sequestration and degradation of mitochondrial DNA that
accumulates, activates TLR9 and thus triggers heart inflammation.”*

Crohn’s Disease
It is well established that compromised autophagy is linked with CD,
a chronic inflammatory condition that is a common form of IBD.
Polymorphisms in the genes encoding the autophagy-related proteins
Atg2a, Atgda, Atgdd, death-associated protein, immunity-related
GTPase family M protein (IRGM) and ULK-1 have been associated
with susceptibility to CD.%2%3-%5 The mouse ortholog of IRGM, Irgml
(formerly LRG47), is an IFN-y-inducible GTPase involved in immune
responses to M. tuberculosis®® and has been shown to induce auto-
phagy in macrophages in response to IFN-v.*¥ Human IRGM,
although not IFN-y-inducible, also regulates autophagy in response to
IFN-v.5% In addition to these identified loci, genome-wide
association studies of CD patients have identified a strong
susceptibility locus, the T300A polymorphism in the Atgl6L1 gene,
which produces a hypomorphic allele that severely impairs autophagic
activity.**!%° Macrophages from mice with the Atgl6Ll1 T300A
mutation display uncontrolled production of IL-1B and are more
susceptible to dextran sodium sulphate-induced colitis.®® As well as
impaired macrophage functions, patients with this mutation and mice
engineered to bear the same allele have striking defects in autophagy
in Paneth cells of the intestinal epithelium. Paneth cells are located in
the crypts of Lieberkithn in the small intestine and are specialized
to produce lysozyme and antimicrobial peptides. Besides the
accumulation of ER and mitochondria that would be expected in
Paneth cells bearing the autophagy-comp g T300A i
these cells fail to secrete lysozyme and thus lysozyme is absent in the
ileal mucous layer of these patients, defects that are also seen when
autophagy is impaired by deletion of Atg5 in mice.’”' Thus, a
deficiency in lysozyme-mediated control of intestinal microbiota
may contribute to the development of pathology in patients bearing
variants of Atgl6L1, although this has not been clearly delineated.
Indeed, the effective limitation of symbionts and pathogens in the
gut environment is critical for the prevention of IBD and particularly
CD,'® which is illustrated by the finding that CD patients have
abnormal gut microbiotic profiles.'?"'%> Altered autophagic activity
downstream of microbial sensors in the gut appears to be a key reason
for the failure of IBD patients to control intestinal microbiota and
prevent gut pathology. In particular, defects in autophagy-related
genes permit the establishment of adh ive E. coli, common
in lesions in the intestinal epithelia of patients with CD.'™ In
addition, genetic linkage data have firmly established polymorphi-
sms in the bacterial sensor and inducer of autophagy, NOD2, in
susceptibility to CD. Several NOD2 variants have been identified,
including a frameshift mutation, that confer susceptibility to
CD.!1031%  pollowing bacterial infection of host cells, NOD2
recruits Atgl6L1 to the cell membrane, initiating autophagosome
induction and bacterial clearance, a process that is impaired when
NOD2 contains a CD-associated mutation.’” Similarly, the NOD2
ligand muramyl dipeptide induces autophagy and killing of




pathogenic Salmonella, both dependent on functional NOD2 and
ATGI6L1. '

Although autophagic degradation of invasive bacteria is crucial for
controlling bacterial infection, autophagy appears to have additional
anti-inflammatory effects in the gut microenvironment. Autophagy
stimulated in response to NOD2 activation also controls IL-1p and
IL-6 release, and peripheral blood mononuclear cells from CD
patients bearing the Atgl6L1 susceptibility allele secrete more of these
pro-inflammatory cytokines.'***0 As well as controlling NOD2-
dependent inflaimmatory cytokine release, autophagy also modulates
intestinal inflammation by promoting non-inflammatory DC-T-cell
interactions. In the intestine, DC sample antigens by extending
protrusions through the epithelial cell layer, a process that itself
depends on autophagy.'*! These antigens are then presented on MHC
class IT complexes and if they are derived from commensal bacteria,
elicit non-activating, self-recognition T-cell responses. NOD2-
stimulated autophagy in DC results in tolerogenic presentation of
commensal bacterial components on MHC class I complexes.'!?
Inhibiting autophagy prevents sampling and results in enhanced
HLA-DR and CD86 expression and downregulation of IL-10
production by DC. These changes produce pro-inflammatory DCs
that stimulate T-cell proliferation.’’’ When T cells and DC interact,
an immunological synapse is formed and must be stably maintained
to result in T-cell activation.''? In a recent study, T-cell-DC
interactions result in autophagosome formation in DC, which was
orientated towards the synapse and destabilised the synapse. When
autophagy was blocked, the immunological synapse persisted and
resulted in excess activation of T cells and induction of a Th17
phenotype.’!® DC from CD patients bearing the Atgl6L1 T300A
mutation had similarly persistent synapses.’!t

Thus, there are multiple points at which autophagy can influence
immune responses that lead to the development and pathologies of
CD and IBD. Autophagy can regulate the microbial profile in the gut
and limit invasion of pathogenic bacteria. In addition, autophagy
appears to promote tolerance to commensal bacteria by influencing
the outcome of T-cell interactions with antigen-presenting cells and
by directing the cytokine profile in the gut environment away from an
excessive pro-inflammatory response. These findings may, in part,
explain the initial results demonstrating that mTOR-inhibiting drugs
are protective against intestinal inflammation, both in mouse
models®” and human patients.®?

SLE

SLE is an autoantibody-mediated autoimmune disease that can affect
multiple organs and tissues, including the skin, joints, kidneys and
brain. As the pathological mechanisms driving the initiation and
progression of SLE are diverse and complex, the points at which
autophagy influences these mechanisms are poorly defined. None-
theless, genetic association studies have established autophagy as an
important process in SLE, as several mutations have been identified in
autophagy-related genes that confer susceptibility to this disease,
including IRGM.'™® IRGM is required for the autophagic
destruction of mycobacteria,”” and a Taiwanese study suggests that
tuberculosis and SLE development are correlated.’’” It has been
suggested that this may not only be due to perturbations in the IL-23/
IL-17 axis in patients,''® but could also be due to direct defects in
autophagy pathways. In addition to IRGM, the locus containing Atg5
and the PRDM]1 genes is a susceptibility locus for SLE.!%!20 The
PRDM]1 gene encodes the plasma cell differentiation factor Blimp-1
and although variations in this locus may affect plasma cell
differentiation and behaviour to influence SLE development, a

more specific genetic association study has clarified a protective role
for Atg5 against SLE and also confirmed the autophagy gene Atg7 asa
SLE susceptibility locus.'*

SLE is driven by the formation of immune complexes of
autoantibodies bound to autoantigens; many of these autoantigens
are thought to be exposed to B cells when apoptotic debris fails to be
cleared effectively, a process that requires autophagy in macro-
phages.!?* Immune complexes accumulate in tissues, such as the
fine capillaries of the glomerulus, where they precipitate complement
deposition and damaging inflammatory responses. In addition,
immune complexes stimulate TLR7 and TLR9 on B cells and DC
and, particularly in immature plasmacytoid DC, this stimulates the
production of IFN-a which, in turn, activates and induces maturation
of the B cells and other cells that participate in the disease process.'”

Autophagy is also particularly important in T-cell development,
function and homoeostasis, and defects in autophagy genes may alter
the activity of T cells in the context of SLE. In particular, deficiencies
in the autophagy pathway cause defects in ER and leave T cells more
prone to cell death.!?!2* Interestingly, naive CD4 T cells from
patients with SLE have lower constitutive levels of autophagy than
those from healthy donors, and these cells are also resistant to
induction of autophagy by serum starvation.’” The functional
relevance of these findings is not clear, although this resistence to
autophagy may increase the susceptibility of lymphocytes to
apoptosis, which could contribute to the accumulation of apoptotic
debris that provides a source of autoantigens and drives autoimmune
pathology.’*>!26 Similarly, if autophagy is impaired in macrophages
or DCs, this could affect the regulation of pro-inflammatory cytokine
secretion and further promote pathology.

As well as its putative protective effects, autophagy may have roles
in facilitating the initiation of SLE by stimulating processes that
promote the activation of self-reactive B cells to produce autoanti-
bodies. For example, autophagy is required for human neutrophil
extracellular DNA trap (NET) release in response to PMA stimula-
tion'?” and in gout.!*® NET release allows the exposure of multiple
typical B-cell nuclear autoantigens containing TLR ligands and may
exacerbate disease by precipitating complement deposition and tissue
damage.’*® NETs activate plasmacytoid DC production of IFN-a'*
and, in the presence of type I IFN, autoantibodies further stimulate
NET release, potentially driving ongoing disease. As well as promoting
NET formation and thus autoantigen display, autophagy may aid in
the activation of auto-reactive B cells once they encounter antigen.
B-cell receptor (BCR) stimulation by cognate antigen triggers
autophagosome formation and antigen processing, which promotes
B-cell acquisition of T-cell help.'** In autoreactive B cells, DNA-
containing autoantigens stimulate BCR internalisation and recrui-
tment of TLRS-containing endosomes to autophagosomes, a process
that results in the B-cell hyper-responsiveness that is characteristic
of autoimmune B cells.’® As well as enabling the induction of
autoantibody production, autophagy may promote cytokine release
in response to immune complexes. TLR7 ligation induces
autophagy,®® which is required for IFN-z production by
plasmacytoid DC in response to an ssRNA virus.*! However, the
direct relevance of autophagy in modulating IFN-a secretion by
plasmacytoid DC and other cells has not been assessed in the context
of autoimmunity.

Although the roles of autophagy in SLE disease processes are still
unclear, it appears that autophagy has an overall protective effect in
the disease. Therapeutic interventions that stimulate autophagy,
particularly mTOR inhibitors, are of growing interest for the
treatment of SLE and appear to be well tolerated by patients. In




(NZB/NZW)y;, lupus-prone mice, rapamycin prevented development
of nephritis, inhibiting lymphoproliferation and MCP-1 expression in
kidneys,'* reducing autoantibody production and enhancing
survival.'* Moreover, rapamycin treatment of older (NZB/NZW);,
female mice with established nephritis improved survival;
splenomegaly was reduced and anti-nuclear antibodies were
diminished, while renal function was significantly preserved
compared with control mice.!* Low-dose rapamycin prevented
deterioration of renal function in immunoglobulin A nephropathy
patients'* and is currently being tested in a phase II trial in SLE
(NCT00779194). Thus, autophagy represents a significant therapeutic
target for the treatment of SLE, but further studies on the precise
mechanisms involved are essential to maximise the potential of such
treatments.

Arthritis

Autophagy appears to promote the survival of cells that actively drive
RA, whereas in osteoarthritic (OA) joints, the pro-survival effects of
autophagy can prevent the death of cells that maintain joint structure.
In RA, joint destruction is mediated primarily by TNF-a, which
stimulates synovial fibroblast production of the growth factors,
chemokines, proteinases and adhesion molecules that are character-
istic of the arthritic joint environment. Autophagy in these fibroblasts
is enhanced to counter acute ER stress and maintain cell survival.'*”
As well as stimulating fibroblasts to produce effector molecules, TNF-
o potently activates murine osteoclasts to resorb the bone matrix,'*
and autophagy is a critical point at which osteoclast activity and bone
degradation are regulated. TNF-u stimulates autophagy in osteoclasts,
promoting their differentiation, and inhibition of autophagy in TNF-
o transgenic mice reduced osteoclast differentiation and joint
damage.’®® In addition to TNF-a, other factors that promote
arthritic progression include MCP-1, IL-1B and IL-8, all of which
induce MCP-1-induced protein, MCPIP. MCPIP contributes to the
pathology in RA by promoting angiogenesis'®® and osteoclasto-
genesis,'"" and these may act via induction of autophagy. Conver-
sely, another study found that the mTOR inhibitor everolimus,
which induces autophagy, inhibited osteoclast differentiation and
activity and induced osteoclast apoptosis. However, treatment of RA
patients with everolimus resulted in only a transient and modest
improvement in clinical signs of disease.'”* The data so far would
suggest a negative role for autophagy in RA, although this is
largely based on studies that focused specifically on osteoclasts. The
role, if any, of autophagy in immune cells in the rheumatic joint has
yet to be elucidated.

In contrast to RA, autophagy appears to be protective against joint
destruction in OA,** and rapamycin reduces disease severity.'™!
Autophagic activity is increased in cartilage and in cartilage-
producing chondrocytes, and inhibiting autophagy results in similar
gene expression changes to those seen in OA joints.**> Moreover,
induction of autophagy with rapamycin cleared reactive oxygen
species and prevented IL-1B-dependent transcriptional changes that
drive OA.'* Thus, the role of autophagy in arthritis may be very
much disease- and context-specific and requires further study to
elucidate the mechanisms at play.

Autophagic regulation of autoantigen presentation

In autoantibody-mediated autoimmune diseases such as SLE and RA,
autophagy may facilitate antigen presentation and thus enable the
switching and maturation of B cells to plasma cells that secrete
pathogenic, T-cell-dependent antibody isotypes. Interestingly, block-
ing autophagy may specifically prevent the presentation of modified

peptides that are common autoantigens. Anti-self antibodies against
citrullinated self-antigens are markers of autoantibody-mediated
diseases, particularly RA.M®  Citrullination occurs in  inflamed
tissues'?” and in antigen-presenting cells, where it has recently been
found to occur in autophagosomes. In addition, peptidylarginine
deimi which deimi arginine to form citrulline, is found in
autophagosomes in B cells, macrophages and DC.**® DC and
macrophages can present citrullinated peptides without extra
stimuli, whereas B cells must receive BCR stimulation to present
citrullinated peptides. The autophagy inhibitor 3-MA blocked the
presentation of citrullinated, but not unmodified, peptides.”*® Thus,
excessive autophagy may potentiate autoantigen exposure and thus
autoimmune disease initiation. However, in a more controlled envir-
onment, these effects may be balanced by other autophagy-dependent
effects, such as cell survival, increased clearance of apoptotic bodies
and regulation of pro-inflammatory cytokine secretion.

Sepsis

Considering the systemic inflammation and cell death that charac-
terise sepsis, it is perhaps not surprising that autophagy markers
increase in septic tissues and their expression is correlated with cell
survival, both in animal models and in humans.*#*-*52 Inhibition of
autophagy in septic mice boosts inflaimmatory cytokine levels and
increases mortality, probably due to the failure to clear damaged or
dysfunctional mitochondria, which activate the NLRP3 inflamma-
some.®® Similarly, in mice in which Atg7 is specifically deleted in the
intestinal epithelium, LPS induces high levels of IL-13 mRNA,*>
while LC3B '~ mice produce more IL-1f and IL-18 in response to
LPS- or caecal ligation and puncture-induced sepsis.5> Conversely,
induction of autophagy with rapamycin inhibits the release of IL-1§
and IL-23 into the serum of mice injected intraperitoneally with
LPS$¥241 and protects mice against Staphylococcus enterotoxin-induced
septic shock’>® and against cardiac dysfunction following caecal liga-
tion and puncture.'3? Thus, sepsis may represent a condition where
the control of pro-inflammatory cytokine secretion by autophagy has
a clear protective role to play.

CONCLUSIONS

It is evident that autophagy has diverse functions and may
contribute to altered cell behaviour in disease situations in a variety
of ways. A thorough understanding of the effects of altering
autophagic activity is therefore necessary for the design of therapeu-
tics that aim to target this process to improve disease outcomes in
patients, Altering autophagy systemically will affect all autophagy-
dependent events and thus determining the balance of these effects
will be important in assessing whether therapeutic intervention of
autophagy will produce an overall positive, or negative, outcome for
patients. Evidence from animal models and early clinical trials suggest
that the generalised induction of autophagy may be beneficial in the
treatment of CD, some cases of SLE and in OA. The effects of
modulating autophagy have not yet been adequately tested for
potential therapeutic in other diseases, although considering the
conceivable protective role of autophagy in situations of dysregulated
inflammation, specifically enhancing autophagy may be predicted to
be an effective means of targeting many inflammatory and auto-
immune diseases.
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