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Z-cone model for the energy of an ordered foam

Stefan Hutzler,* Robert P. Murtagh, David Whyte, Steven T. Tobint and Denis Weaire

We develop the Z-Cone Model, in terms of which the energy of a foam may be estimated. It is

directly applicable to an ordered structure in which every bubble has Z identical neighbours. The energy

(i.e. surface area) may be analytically related to liquid fraction. It has the correct asymptotic form in
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the limits of dry and wet foam, with prefactors dependent on Z. In particular, the variation of energy with

deformation in the wet limit is consistent with the anomalous behaviour found by Morse and
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www.rsc.org/softmatter prefactor Z/2.

1 Introduction

Many of the physical properties of foams may be understood in
terms of the minimisation of surface area, under appropriate
constraints. This is the condition for static equilibrium, since
total energy is proportional to surface area if gas and liquid are
treated as incompressible.

Brakke's Surface Evolver' provides a practical method to
compute such equilibrium structures, represented by finely
tessellated surfaces. It is natural to seek simpler representations
and models to provide estimates of energies and forces, even at
the expense of drastic approximations, such as pairwise inter-
action potentials between bubbles.>?

This has raised a number of questions, addressed by Morse
and Witten* and Lacasse et al.® How valid is the assumption of
pairwise additive potentials? What is the true form of interaction
(i.e. the change in surface area) between two bubbles
which barely touch each other? We offer a new approximate
formulation, the Z-Cone Model, that advances our understanding
of such questions, in terms of analytic solutions of the model.

As in the work of Lacasse et al., we consider a foam in which
each bubble has Z equivalent neighbours, for example the face-
centred cubic structure (Z = 12). We seek to evaluate the energy
(or surface area) as a function of Z and the degree to which the
bubbles are compressed together (that is, the liquid fraction).
Both gas and liquid are treated as incompressible.

Our essential geometrical approximation is inspired by
Ziman's early description of the Fermi surface of copper.® The
bubble volume can be divided into Z equivalent objects
which meet at a central point. We take one such object and
approximate it by a cylindrically symmetric cone of the same
solid angle and volume, as shown in Fig. 1. Note that these new
cones, if assembled, would ‘overlap’ since cones cannot tile 3D
space.
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Witten [Europhysics Letters, 1993, 22, 549] and Lacasse et al. [Physical Review E, 54, 5436], with a

The equivalence of the Z sections corresponds to a regular
polyhedron in the dry limit; such regular polyhedra have been
the starting point for theories of dry foams.”

(a)

(c)

Fig. 1 The shape of a bubble in a crystalline foam with Z equivalent
neighbours, shown in (a) for Z = 12, may be approximated by an
assembly of Z cones of the type shown in (b). Its flattened surface
corresponds to a bubble—bubble contact. (c) 2D cross-section of a
cone with relevant notation. During bubble deformation, total
bubble volume V and total solid angle must be conserved, according

2
toV=2V.and 4n = ZQ, where V. = 3 TRy> (1 — cos 6) is the volume

of a cone with opening angle § = arccos(l — 2/2), Rq is the radius of the
spherical sector (corresponding to an undeformed cone) and Q is the
solid angle of the cone.

Soft Matter, 2014, 10, 7103-7108 | 7103


http://crossmark.crossref.org/dialog/?doi=10.1039/c4sm00774c&domain=pdf&date_stamp=2014-08-16
http://dx.doi.org/10.1039/c4sm00774c
http://pubs.rsc.org/en/journals/journal/SM
http://pubs.rsc.org/en/journals/journal/SM?issueid=SM010036

Published on 03 July 2014. Downloaded by Trinity College Dublin on 19/02/2015 08:18:27.

Soft Matter

A cone's surface consists of a flat disk of area 76 (the area of
contact with a neighbouring bubble) and an outer part which
has constant mean curvature, terminating at a right angle to the
cone surface. Flat disk and outer part join smoothly: there is no
curvature discontinuity at the boundary.

As the liquid volume fraction ¢ is reduced, the contact area
grows, and the separation of bubble centres 2(A + k) is reduced
according to:

2(h + he) = 2Ry(1 — &)

where /1 and A, are defined as in Fig. 1(c), R, is the radius of a
spherical sector of volume V. (the volume of a cone) and the
deformation, &, is a dimensionless parameter.

For given £ and solid angle, we can calculate the bubble
surface area A and its total volume ZV,. analytically. For the case
of Z = 2, the cone model is exact and the resulting elliptic
integrals have been performed before by Lacasse et al.;*> here we
generalise their application to other values of Z.

Our aim is to compute the dimensionless excess energy e,
defined as:

@)

“© =z

-1,

where A(§) is the surface area of a bubble as a function of
deformation and 4, = 27R}(1 — cos 6) is the curved surface area
of the undeformed (spherical) cap, i.e. for £ = 0.

We find that the results of Surface Evolver simulations are
well described by the analytic predictions for ¢(¢) obtained from
the cone model. For low deformation, we find a logarithmic
dependence on deformation, similar to Lacasse et al® and
Morse and Witten.*

Furthermore, we show equivalent calculations for the varia-
tion of energy and osmotic pressure with liquid fraction, and
discuss some possible extensions of the model.

2 Mathematical framework

Our derivation follows that of Lacasse et al® (the Euler-
Lagrange formalism under the constraint of constant bubble
volume) but requires a different boundary condition where the

curved part of the surface meets the cone, i.e. d—;
z=0

where r(z) is the radius of the surface of revolution at z:
see Fig. 1(c). The second boundary condition is given by
dr
CTZ z=h
is terminated by a flat disk, corresponding to a contact with a
neighbouring bubble.

A somewhat lengthy derivation results in the following
exact expression for the excess energy ¢(ps, Z) as a function of
ps = 0/r(0):

= cot 0,

= oo, This represents a zero contact angle where the cone

w—(l R
2/3 :
( 6000 2))

8(:053 Z) -
Z-1/3
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The deformation £(p;, Z) is expressed as

1/3

4/Z Z-2
£ —1-
O (5525410 2)).
/—Z — 1 Ps>
(1)

The functions I(p;s, 0), J(ps, 6) and K(ps, 6) are definite elliptic
integrals given by:

1
I(p5, 2) = J,, (0" — p2) (P sy Z)d,

)

1
p67 :J p p — Ps f(p7 Pss Z)dpa (2)
Ps

1

K(ps, Z J p’f (p, psy Z)dp,
Ps

with

~1/2

ZZ
(Pz - Psz)z

flo, psr Z) = {pzm(l —02) -

3 Results

3.1 Dependence of energy on deformation and liquid
fraction

In the following, we focus on the comparison of the cone model
with Surface Evolver simulations of the face-centred cubic (fcc)
structure, which is observed experimentally in wet foams. Our
model is directly applicable in this case since each bubble has
Z = 12 equivalent neighbours. In the dry limit, a bubble
approaches a rhombic dodecahedron. Later, we also show the
results of Surface Evolver simulations for a pentagonal dodeca-
hedron, for which the cone model gives even better agreement.

Fig. 2(a) shows that for Z = 12, over a limited range of £, the
dependence of ¢ on ¢ is roughly quadratic, as Lacasse et al.
obtained from Surface Evolver calculations. For other values of
Z, the cone model predicts similar behaviour—again, in line
with Surface Evolver calculations.

Looking more closely (see Fig. 2(b)), we see deviations from
the quadratic form both at small and large &, corresponding to
the limits of a wet and dry foam. We will therefore examine the
asymptotic limits, turning our attention for the moment to the
variation of excess energy with liquid fraction: see Fig. 3.

The liquid fraction ¢ lies between 0, the dry limit, and a value
¢. at which the deformation vanishes (the wet limit). It may be
expressed in terms of £ by

_ 1_¢c 3
§_1*<1—¢>

We can obtain a simple expression for ¢. for the circular
cones of the cone model:

3-4/Z

be=——1
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Fig. 2 (a) Variation of excess energy ¢, and (b) variation in e/£2, with
deformation £. The dotted line corresponds to Surface Evolver
calculations for the fcc structure shown in Fig. 1(a). (Numerical
noise does not allow us to produce reliable Surface Evolver data for
¢ < ~0.005.) The dependence of ¢ on & may be approximated by a
quadratic only over a very limited range of £.
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Fig. 3 Variation of energy with liquid fraction: cone model prediction
(Z = 12) and Surface Evolver calculation for fcc.

Since the cones are only a representation of the actual bubble
(see section 1), our relationship between £ and ¢ is hence an
approximation.
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In the dry limit, ¢ — 0, our cone model data is well described
by &(¢) = ey —e1$". This relation may be derived from the
decoration of film intersections with Plateau borders of finite
cross-section.? The values for the constants e, and e, are close to
the true coefficients for the given crystal structure; they vary as
1/3

Z(Z—-1
g —1ande; x 1/Z.

(z—2)
In the wet limit, ¢ — ¢, the energy varies with liquid frac-
tion as

€9

. Z (6. — 9)°
18(1 — ¢.)* In(p. — ¢)’

see the discussion in section 3.2.

Fig. 4(a) shows that in the case of a regular pentagonal
dodecahedron, the cone model gives an even better prediction
for ¢(£) than for the fcc arrangement. To further demonstrate
the applicability of the cone model, in Fig. 4(b) we show the case
Z = 6: a bubble confined in a cube.

e(¢) =

(3)

3.2 Asymptotic form of energy-deformation relation

Now turning to the variation of energy with deformation, we
note that the wet limit is more subtle. Previous authors*® have
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Fig. 4 Comparison of cone model predictions for ¢(§) with Surface
Evolver simulations for Platonic solids. (a) Z = 12: a pentagonal
dodecahedron, and (b) Z = 6: a cube. We see good agreement, due to
the underlying symmetry of these shapes. Note that for Z = 2 (not
shown) the cone model is exact.
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derived an asymptotic form for the dependence of energy ¢ on
force f at small deformation, obtaining e « £ In(1/f). This was
derived for the special cases of a droplet pressed against a flat
surface* and a droplet compressed by two parallel plates (cor-
responding to Z = 2 in our Z-cone model).” For present
purposes, it is more convenient to consider the energy-defor-
mation relation, which takes the corresponding asymptotic
form:

gZ

e = o In(1/N)=e =

(4)

where c is a constant. This result has not been previously stated:
its validity may be checked by differentiating eqn (4), writing
d .
d—; = f, and keeping lowest order terms. The curves calculated
for ¢(£) using analytic functions, such as that of Fig. 2(a), all
show variations close to £ = 0 that are consistent with the above
form; see also Fig. 5.

Expansion of the integrals involved (eqn (2)) in the limit £ — 0,

ps— 0 reveals a logarithmic singularity of the form

Zg?
" 2Iné’

& =

(5)

Note that this asymptotic form contains the factor Z, rather
than 22, as in the approximate fit by Lacasse et al.® for higher
values of deformation. Expressing £ in terms of ¢ and Taylor
expanding to lowest order leads to the energy variation ¢(¢) as
stated above, eqn (3).

An asymptotic expression that covers a larger range of
deformations may be obtained by expressing energy ¢ in terms
of p;, resulting in

e(ps, Z) = c1ps’(c2 — In py), (6)

with:

0(z) = 21 -1/2),
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0.4+ Parametric asymptotic —
Simple asymptotic

0.2
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Fig. 5 Asymptotic behaviour of energy ¢/£2 in the limit of small
deformation, ¢ <« 1, for Z = 12. The analytic result for the cone model
(solid line) is well represented by a parametric plot of the expansion of
eqn (6), together with eqgn (1). The dotted line shows the simple
expression of eqn (5) which has merit for further investigations of the
wet limit, e.g. in the context of osmotic pressure variation.
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and

o(Z) = % (ﬁ— 3) —In(1-1/2).

Combination with eqn (1) leads to the parametric plot shown
in Fig. 5 which describes the analytical result very well for values
up to § = 0.005.

The anomalous asymptotic form for the interaction of
bubbles as they come into contact appears to be quite general.
Only for larger values of £, and over a limited range, which is a
decreasing function of Z, may the excess energy be reasonably
well approximated as quadratic. The corresponding spring
constants increase roughly linearly with Z. For values of Z
exceeding around 7 this is no longer a good approximation: see
Fig. 2(b) for Z = 12.

3.3 Osmotic pressure

This anomalous behaviour also poses a challenge for experi-
ment: can the small forces involved (of the order of 1 uN for a
single pair of bubbles of radius 1 cm and £ = 0.005), or the
corresponding variation of osmotic pressure, i.e. the variation of
surface energy E with total foam volume V for constant gas
OE

volume Vg, II(¢) = f(ﬁ

) , be readily measured? Here we
Ve

consider the reduced osmotic pressure, I = I1/(v/R), where v is
the surface tension of the liquid and R the mean bubble radius.
This is a dimensionless quantity which is independent of
material properties.

Fig. 6 shows II(¢), as computed numerically for the cone
~ a
model, using II(¢) = —3(1 — ¢)* £ Using eqn (5), this

results in

II=-

Z(1-¢) ($.—9)
3 (1 — ¢C)2 1n(¢c - ¢)
in the wet limit, again also in good agreement with Surface
Evolver data with the appropriate choice for ¢.. We further note
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Fig. 6 The variation of the reduced osmotic pressure IT = IT/(y/R) as a
function of liquid fraction, together with an empirical relationship
proposed by Hoéhler et al. to describe experimental data® for ordered
foams (Z = 12).
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that the cone model gives a good approximation of experi-
mental data for osmotic pressure measurements on fcc-ordered
foams,® which were summarised in the empirical relationship
2
T (¢ - ¢L)

n(¢) = 73

The variation of II(¢) may also be used to derive a liquid
fraction profile under gravity.*®

4 Cone model applied to a Kelvin
foam

A foam consisting of equivalent cells with Z neighbours cannot
be realised except in very few special cases (already stated), not
including, for example, bec (the Kelvin foam). Take the case of
Z = 6 (as used in Fig. 4), for which a simple cubic cell is
appropriate, except that it is unstable according to the rules of
Plateau: in the dry limit it has 90° angles at each edge, instead of
the required 120°. Nevertheless the estimates which arise from
the Z-cone model has proven useful in a broader context. Note
that the flat-sided cube which is represented in the dry limit is
not the same thing as the “isotropic Plateau polyhedron” used
by Hilgenfeldt et al.” and Evans et al.*® The latter represents a
single cell in an extended foam, so that it may be given the
appropriate Plateau geometry for stability.

Since the Kelvin foam plays a central role in many analyses it
is worthy of some comment here. The dry foam has 14 contacts
for each bubble but these consist of eight [111] contacts and six
[100] contacts. As liquid fraction is increased, the [100] contacts
are lost, provoking instability."* For purposes of calculation with
the Surface Evolver, the instability may be suppressed.

If we consider the two cases Z = 8 and Z = 14 for the Z-cone
model, the two curves for ¢(¢) are found to bound the Surface
Evolver result above and below; see Fig. 7. If Z is regarded as a
fitting parameter, there is a good correspondence for Z = 10.5.
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Fig. 7 The variation of excess energy with liquid fraction for a Kelvin
cell, as computed with Surface Evolver (solid line). At low ¢, this lies
close to the cone model curve for Z =14, and for higher ¢ it lies closer
to the Z = 8 curve. The inset shows reasonable agreement with the
cone model data for an effective value of Z = 10.5.
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5 Outlook

The asymptotic variation of energy and forces in the wet limit is
of some topical importance, because a wet foam is regarded as
an ideal experimental system with which to investigate
jamming properties," since it has well-characterised constitu-
ents without static friction.” Theories of jamming often invoke
the kind of quadratic or Hertzian forces'*** that we now know to
be inappropriate for foams, in the wet limit.>*

In this way, the cone model ties together a number of
previous results with a single coherent picture, with the correct
asymptotic forms, based entirely on analytic expressions.

The model is strictly only applicable to a limited number of
cases, in which neighbours are equivalent. However, it should
be possible to pursue its generalisation, so that ¢(¢) can be
predicted for cases such as that of a typical random foam, in
which Z varies with ¢, similarly to how the model of strictly
regular isotropic Plateau polyhedra can give insight into the
properties of disordered dry foams.' It will, for example, be
necessary to take into account the role of near neighbours in
determining the Voronoi cell size and hence ¢. As a first step, we
are in the process of extending the cone model to ordered
bidisperse foams with curved bubble-bubble contact areas.

The division of the bubble into cones is reminiscent of the
granocentric model used to study random packings,'® where
spherical particles are placed in cones around a central particle.

So far as we are aware, no experimental test of the loga-
rithmic singularity has been forthcoming. One way of doing so
would be to bring two bubbles into contact by increasing their
internal pressure, as in the technique employed by Langevin
and others" to examine the various stages of film thinning. One
might use such apparatus to measure film area as function of
thickness, from which the force may be determined.
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