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ABSTRACT 

Non-recurrent congestion or incidents are detrimental to the operability and efficiency of busy 

urban transport networks.  There exists multiple Automatic Incident Detection Algorithms 

(AIDA) to remotely detect the occurrence of an incident in highway or freeway scenarios, 

however very little research has been performed to automatically detect incidents in signalised 

urban arterials. This limited research attention has mostly been focussed on developing new 

urban arterial specific algorithms rather than identifying alternative methods to synthesize 

existing freeway based algorithms to urban conditions. The main hindrance to such synthesis is 

that the traffic patterns on the signalised urban arterials are significantly different from the 

same on highways/freeways due to the presence of traffic intersections. This paper introduces 

a new strategy of customising the existing AIDAs (freeway based or otherwise) to significantly 

improve their adaptability to signalised urban arterial transport networks. The new strategy 

focuses on preprocessing the traffic information before being used as input to a 

freeway/highway based AIDA to lessen the effect of traffic signals and to imitate the input 

patterns in highway/freeway based incident conditions. The effectiveness of this new strategy 

has been established with the help of four existing AIDAs. The proposed strategy is a simple 

solution to implement existing algorithms to signalised urban networks without any further 

instrumentation or operational cost.  
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1. Introduction 

Travel-time delays, reduction in arterial capacity and air-pollution are some of the main 

detrimental effects of non-recurrent congestion or incidents on busy urban street networks. 

The implementation of efficient incident management systems in an urban transport network 

ensures early detection of operational problems like non-recurrent congestion and 

minimization of the associated detrimental effects. Practical and reliable Automatic Incident 

Detection Algorithms (AIDA) are essential to reduce and localize the effect of incidents. 

Over the last few decades, multiple AIDAs have been developed and incorporated as part of the 

Incident Management Systems (IMS). Comparative algorithms, statistical algorithms, traffic 

theory based algorithms, time series algorithms, artificial intelligence algorithms, wavelet 

algorithms are the main categories of AIDA (Teng and Qi, 2003). Comparative algorithms 

compare traffic parameters against a certain threshold value or against one another. Popular 

comparative algorithms are California algorithm (Payne and Tignor, 1978), low-pass filtering 

algorithm (Chassiakos and Stephanedes, 1993) etc. Statistical algorithms such as standard 

normal deviate (Dudek et al., 1974) and Bayesian (Levin et al., 1978) algorithm use standard 

statistical techniques to identify abnormal behaviour in tracking variables. McMaster algorithm 

(Persaud et al., 1990) which depends on catastrophe theory is the most popular traffic theory 

based algorithm. Time series algorithms employ time-series analysis to predict the traffic 

parameters. Moving average (MA) algorithm (Whitson et al., 1969), double exponential MA 

algorithm (Cook and Cleveland, 1974) and autoregressive integrated MA algorithm (Ahmed, 

and Cook, 1982) are examples of time-series algorithms. In more recent years Artificial 

Intelligence (AI) based incident detection algorithms have been developed to tackle the 

problem of incident detection. The most well-known AI based algorithms are based on Artificial 

Neural Networks (ANN) (Cheu et al., 1991; Ritchie and Cheu, 1993; Cheu and Ritchie, 1995; 

Stephanedes and Liu, 1995; Dia and Rose, 1997; Abdulhai and Ritchie, 1999a; Abdulhai and 

Ritchie, 1999b; Jin et al., 2002; Srinivasan et al. 2008), fuzzy logic (Chang and Wang, 1994; Lin 

and Chang, 1998) and support vector machine (SVM) algorithms (Yuan and Cheu, 2003).  
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However, the majority of the research attention in incident detection algorithms has been 

generally focussed towards freeway incident management. But the applicability of the freeway 

based AIDA to an urban arterial situation is limited due to several reasons (Luk et al. 2001). 

Unlike freeway traffic, principle of conservation of flows does not always apply on urban 

arterials due to street parking and side streets etc. The traffic signals and intersections on 

arterials can also interrupt steady flows and can create incident like traffic patterns. As traffic 

volume increases on urban transportation networks, detecting incidents on urban arterials 

become more important mostly for traffic management purposes more than safety (Culip & 

Hall, 1997; Mak and Fan, 2006). Bell and Thancanamootoo (1988) were the first to develop an 

algorithm specific for arterial networks. The algorithm along with some other early AIDAs 

(Stephanedes and Vassilakis 1994; Culip & Hall, 1997) used raw traffic data to detect incidents 

on urban arterials. Time-series techniques (Bretherton and Bowen, 1991), image processing 

technologies (Hoose et al. 1992), discriminant techniques (Sethi et al, 1995), discriminant 

techniques combined with Kalman filtering (Chen and Chang, 1993) and Kalman filtering (Lee & 

Taylor, 1999) were developed to tackle the problem of incident detection on arterials. Data 

fusion techniques (Ivan et al. 1998 and Dia and Thomas 2011) used a fusion of data from 

separate sources: inductive loop detectors and travel time data collected by probe vehicles to 

detect incidents on urban arterials. Some more recent artificial intelligence based algorithms 

which were adopted for urban arterials are support vector machine (SVM) algorithms applied 

by (Yuan and Cheu, 2003), Bayesian network based algorithms (Zhang and Taylor, 2004, 2005, 

2006) and a fuzzy-based system applied by Hawas (2007).  

The focus of the research on detecting incidents on urban roads has mostly been on developing 

new urban arterial specific AIDA rather than identifying methods to improve transferability of 

the existing algorithms. This paper introduces a new strategy to implement the existing freeway 

AIDAs (freeway based or otherwise) to signalised urban arterials rather than developing new 

arterial specific algorithms. The research in the field of incident detection on freeways is much 

more improved and extensive compared to the same for urban arterials. The proposed strategy 

in this paper would provide an important tool in applying that knowledge to urban conditions. 

This approach would allow an ordinary AIDA to adapt to an urban arterial situation, and making 
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it an effective urban arterial AIDA which can be easily incorporated into Incident Management 

System (IMS).  Four existing AIDA algorithms were used to demonstrate the effectiveness of this 

new scheme; three algorithms based on Artificial Neural Networks (ANN) and a Support Vector 

Machine (SVM) based algorithm. ANN algorithms have proven to be one of the most effective 

methods of incident detection. Hence, a Multi-Layer Feed-forward (MLF) neural network, a 

Probabilistic Neural Network (PNN) and a Fuzzy-wavelet Radial Basis Function Neural Network 

(FWRBFNN) algorithms were chosen for this paper. SVM algorithms have only been used in 

incident detection in more recent years. However SVM algorithms have shown encouraging 

results in this area. Thus a SVM based AIDA was included in this paper (Yuan and Cheu, 2003).  

Until now, all of these AIDAs have been evaluated utilising traffic information 

recorded/simulated at roadway sections distant from signalised traffic intersections and the 

effect of traffic signals on input patterns were not accounted for in the modelling. Hence, the 

most of these existing AIDAs cannot be implemented in urban transport networks where 

detectors are generally placed near the intersections and almost always a set of traffic signals 

or priority junctions are situated between any upstream-downstream detector pairs. To 

address this issue, this paper introduces a new approach in which the recorded traffic 

information from loop-detectors are preprocessed to reduce the effects of traffic signals before 

being used as input to AIDAs. Also, information from a different set of detector locations than 

the traditional approach is used to maximise the available information to the algorithms. This 

detector arrangement is similar to what exists in most real-world urban traffic management 

systems and includes information from all upstream approaches contributing to the 

downstream flow regarding a signal cycle. The proposed strategy proves effective in detecting 

incidents and can be considered as an excellent and cost-effective approach to implement 

existing AIDAs to signalised urban arterial networks.  

2. Methodology 

In this paper a new customisation scheme is proposed for existing AIDAs to improve their 

implementability to signalised urban transport networks. The effectiveness of the proposed 
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scheme is tested by comparing the performances of four existing AIDAs when used in 

conjunction with the proposed scheme.  

2.1 Customisation of Automatic Incident Detection Algorithms (CAIDA) Scheme 

As discussed previously, the existing AIDAs are mainly used in detecting incidents in 

freeway/motorway/highway scenarios. In these scenarios, typically the detectors are placed 

approximately 30m to 120m from any signalised traffic intersection to ensure that the recorded 

traffic speed, volume or occupancy data are not influenced by the stop-and-go dynamics 

created by the presence of traffic signals at junctions. However, in urban transport networks 

due to shorter link lengths and high concentration of signalised traffic intersections, it is not 

possible to achieve similar detector arrangements. Also, in an urban transport network the 

traffic intersections are the most likely locations where incidents such as vehicle crashes and 

breakdowns can occur due to the presence of higher number of conflict zones and the stopping 

and starting of vehicles. For implementation of existing AIDAs in signalised urban transport 

networks to detect incidents on or near signalised traffic intersections, it is important to 

adapt/adjust/customise the existing highway based detection algorithms to identify and then to 

lessen the effects of traffic signals on measured traffic variables. To that effect, an innovative 

customisation scheme is proposed in the paper to alter the time domain response of upstream 

and downstream traffic variables which are the main elements of input information to an AIDA. 

This scheme thus preprocesses the input vectors to the algorithms, without altering the main 

structure of existing AIDAs.  

Due to the presence of signalised intersections within the detection zone, the upstream and 

downstream traffic data inputted to the existing incident detection algorithms have different 

time-frequency content than the typical freeway/highway based inputs. Moreover, these inputs 

may not always provide an accurate description of the traffic conditions within the detection 

zone with regard to the occurrence of incidents.  The urban traffic patterns are dominated by 

the presence of traffic signals, i.e. high occupancy and low volumes during red time and lower 

occupancy and higher volumes during green times. Similar changes in traffic occupancy and 

volume occurs due to the occurrence of incidents as well. Hence, observations recorded during 
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red time can easily be misclassified as incidents. Also these input patterns, if used as the part of 

training dataset can lead to erroneous calibration of AIDAs which may lead to incidents going 

undetected due to their similarity with the traffic patterns observed during the red time. The 

key to improve the performance of any AIDA in a signalised urban setup is to reduce the effect 

of traffic signals on the input patterns. This can be achieved by altering the time and/or 

frequency content of the recorded upstream and downstream traffic information.  

In this study this alteration has been achieved by scaling the upstream traffic occupancy and 

the traffic volume information using the following equations, 
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where, NOCC is the scaled upstream occupancy, OCC is the measured upstream occupancy, 

NVOL is the scaled upstream volume, VOL  is the measured upstream volume, g is the elapsed 

green time in seconds and t  is the time in seconds from the initiation of a signal cycle at the ith 

time interval. It is assumed that the cycle (of length C) starts with green indication and hence 

i ig t until the end of the green interval. Hence, the multiplicative factor operates in a binary 

regime.  

In equation 1, during green indication the measured occupancy values are multiplied with a 

function similar to the probability of green indication; during red indication the measured 

occupancy values are multiplied with a function similar to the probability of non-occurrence of 

red indication. This preprocessing ensures the occupancy values are not unusually high during 
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the red times as it is important to differentiate between the patterns during red time and 

during the occurrence of an incident. Fundamentally, the operation corresponds to a scaling of 

the traffic occupancy during red indication, which is proportional to a heuristic function of the 

percentage of elapsed red time during a cycle. For an incident, it is assumed that the time 

window of high occupancy would be significantly longer than the red time of the cycle. 

Consequently this scaling would negate the effects of traffic signals by decaying the high 

occupancy values during red time and by increasing the comparatively lower occupancy values 

during green time, allowing for a less variant transition between discontinuous zones of red and 

green indications but preserving the high occupancy due to incidents of time periods longer 

than cycle length.  

In equation 2, during green indication the measured traffic flow values are multiplied with a 

function similar to the probability of green indication (but different from equation 1); during 

red indication the measured flow values are multiplied with a function similar to the probability 

of occurrence of red indication. Here, the multiplicative factor also operates in a binary regime 

and alters the pattern of measured traffic volume. In equation 2, a is an arbitrary constant used 

to remove zero values. This ensures that, during the red time the traffic volumes are artificially 

scaled up to differentiate between the patterns during red time and during the occurrence of 

an incident. Similar to equation 1, this operation corresponds to a scaling of the traffic volume 

during red indication, which is proportional to a heuristic function of the percentage of elapsed 

red time during a cycle. For an incident, it is assumed that the time window of low volume 

would be significantly longer than the red time of the cycle. Consequently this scaling would 

negate the effects of traffic signals by increasing the low flow values during red time and by 

decaying the saturation flow values during green time, allowing for a less variant transition 

between discontinuous zones of red and green indications as before.  

To demonstrate the theoretical effect of this scaling, a brief illustrative example is presented 

here. During red time, the queue formation at an intersection ideally follows a Poisson process. 

It can be assumed that the occupancy during this time changes exponentially and during green 

time the dissipation of queue leading to decrease in occupancy follows a similar exponential 
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pattern. Following this assumption, the occupancy values, OCC during four consecutive cycles 

are plotted in Fig. 1. On performing the scaling operation as described in equations 1 & 2 for 

50:50 signal cycle, the NOCC is plotted as a dashed line in Fig. 1. This shows limited effects of 

traffic light and tends to show a far more uniform occupancy level than measured originally.  

However, this scheme poses some limitations and this scaling does not necessarily mean that 

the assumption of negating the effects of traffic signals holds true for all urban traffic flow 

conditions. In fact, for low flow volumes or for incidents lasting less than or equal to the cycle 

length cannot be detected. This is an inextricable condition and no AIDA will be able to separate 

the effects incident from the masking effects of the traffic signals. Such non-detection may not 

be important from a traffic management point of view but may be crucial for incident 

management purposes (such as notifying emergency services) and should be considered as a 

limitation of all AIDAs. 

Before providing as an input to an AIDA, the measured volume and occupancy from all the 

upstream detectors are pre-processed following the equations 1 and 2. However, the 

downstream traffic volume and occupancy values are used as input without any alteration.  The 

CAIDA scheme restricts the amount of useful traffic information from any approach when it 

receives red indication. Hence, it is advisable to include traffic information from other 

approaches in an intersection which are active (receives green indication) during the red time in 

the approach considered. This concept will be explored with further details in section 3.1.2. 

 

2.2 The Four Chosen Automatic Incident Detection Algorithms 

Three ANN based AIDAs and a SVM based AIDA have been identified as the chosen algorithms 

whose performance have been studied when used in conjunction with CAIDA scheme.  

Artificial Neural Networks are mathematical models that have been developed from research 

into the workings of the human brain. Simple processing units or elements (PE) called 

“neurons” are arranged to form different layers and these layers are then interconnected to 

form the network structure. The network structure usually consists of an input layer, one or 
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more hidden layers and an output layer. These layers are inter-connected, but the PEs are not 

usually interconnected within the same layer. The PEs receive input data at the input layer 

which is then weighted in relation the importance of the input and processed using pre-chosen 

function. The output of the processing is obtained at the output layer. The ANN algorithms are 

trained using a dataset consisting of input data and known output data.  

The three ANN based AIDAs used in this study are described in the subsections 2.2.a to 2.2.c. In 

subsection 2.2.d the SVM based AIDA technique is described. 

a. Multi-Layer Feed-Forward Neural Network 

One of the most common ANN algorithm used for automatic incident detection is the Multi-

Layer Feed-forward (MLF) networks used by Cheu et al. (1991), Ritchie and Cheu (1993) and 

Cheu and Ritchie (1995). An MLF network can consists of multiple layers however a three 

layered structure is usually most common, consisting of an input layer, a single hidden layer and 

an output layer. There is unidirectional connection between the neurons of adjacent layers. The 

input layer contains the same number of neurons (n) as there are inputs from the loop-

detectors. The neurons in the hidden layer (
1, 2,...... mv v v ) receive the input vector from the input 

layer which is then multiplied by the weight vector (
ji ) of the corresponding neuron. A bias 

vector (
j ) is then added to the weighted input and the resulting vector is summated. This sum 

is passed through a sigmoid transfer function giving an output from the neuron in the hidden 

layer. For the jth neuron in the hidden layer, the output will be  
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The outputs of each neuron from the hidden layer are passed to the output layer in the same 

fashion as between the input layer and the hidden layer. The output from the output layer 

neuron is a binary value between 0 and 1 indicating non-occurrence and occurrence of incident 

respectively. The values of the weights and bias within the neural network are estimated by 

training the network using Levenberg-Marquardt method on a dataset containing traffic 

condition from both incident and incident-free scenarios. 
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b. The Probabilistic Neural Network 

The other most well-known ANN algorithm used for detecting traffic incidents is the 

Probabilistic Neural Network (PNN) structures (Abdulhai and Ritchie, 1999a; Abdulhai and 

Ritchie, 1999b; Jin et al., 2002). The PNN structure consists of four layers, the input layer, 

pattern layer, summation layer, and the output layer. The sole purpose of the input layer is to 

pass the inputs from the loop-detectors to the neurons in the pattern layer (
1, 2,...... mv v v ). When 

an input vector  X  is passed through the pattern layer, at each pattern neuron (say, the jth 

neuron), the output is computed as, 

2

;
2

j
jh

j jv e h





 
X ω

                         (5) 

The output is a Gaussian function of the Euclidean distance between the input vector and the 

weight vector associated with each pattern neuron (
jω ) and a bias σ. The bias, σ, is used as a 

smoothing parameter, the larger the value of σ the more the function will behave like a nearest 

neighbour classifier and only input vectors very similar to a particular training vector will give a 

significant output value. The further σ is lowered the more other training vectors will begin to 

influence the networks decision. The value assigned to σ has a huge influence over the 

performance of the network algorithm.  

The size of the pattern layer depends on the size of the training dataset used. There is the same 

number of neurons in the pattern layer as there are training patterns in the dataset. The 

neurons in the pattern layer are divided into two classes, one class representing incident and 

the other non-incident traffic scenarios. The summation layer consists of only two neurons, one 

for each class. At the summation layer, the output from each summation neuron is computed 

as a scaled sum of the outputs from the associated pattern neurons. In the last layer, the single 

output neuron selects the class which has the highest output value from the summation layer 

and generates that class number as the output. In many cases, weights are applied to the 

outputs from the summation layer in an attempt to minimise the Expected Cost of 

Misclassification (ECM). These weights can be assigned in accordance with Bayes’ Decision rule. 
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In freeway based applications, PNN based AIDA has shown a lower detection rate, higher false 

alarm rate than MLF, but has a better adaptation potential (William and Guin, 2007). 

c. Fuzzy-Wavelet Radial Basis Function Neural Network 

The relatively new FWRBFNN based freeway incident detection algorithm was developed by 

Adeli & Karim (2000). The algorithm uses Radial Basis Function Neural Network (RBFNN) 

architecture in conjunction with wavelet-based denoising and fuzzy-logic based classification 

techniques. In the FWRBFNN algorithm, the input consists of the normalized upstream volume 

and occupancy over the last N time intervals, N=16 in this study. The normalized volume and 

occupancy datasets are then decomposed into low and high resolution components using 

Discrete Wavelet Transform (DWT). The high resolution component, represented as the 

wavelet coefficients (d) are then filtered using a soft-thresholding nonlinearity equation, 

( ) sgn( )( )d d d t  
                 (6) 

where t is the threshold, (.)+ is equal to (.) if (.) is positive and equal to zero if negative. Sgn(d) 

will return the sign of the coefficient d. The volume and occupancy signals are then 

reconstructed by using inverse DWT. In the next step, the de-noised signal is clustered into 4 

cluster centres using the fuzzy-C-mean (FCM) algorithm. This preprocessed data is then used as 

input into the RBFNN which classifies the input signal as either incident or non-incident 

condition. 

The RBFNN architecture consists of three layers, input layer, hidden layer and output layer. The 

number of neurons in the input layer is same as the number of inputs (8 in this study) and the 

number of neurons in the hidden layer is equal to the number of clusters (say, m=4 as 

mentioned previously). The connection between the input layer and the hidden layer is very 

similar to the PNN structure as described in the previous section. The output from the hidden 

neurons is a function of the Euclidean distance between the input vector and the cluster 

centres (
j ). The output from the only neuron at the output layer is computed as, 



12 
 

2

2

1

; exp
2

m
j

j j j

j

y v v




 
   
 
 


X μ

               (7) 

If the output value, y , is greater than a pre-selected threshold (0.3 in this study) then the input 

pattern is classified as an incident, while any value less than the threshold is classified as non-

incident. This algorithm was evaluated on real and simulated incident data from freeways and 

showed a high detection rate and low false alarm rate. The FWRBFNN algorithm performed 

superior to the California #8 algorithm (Karim and Adeli, 2002). 

[To maintain comparability with other three algorithms, in this paper, the FWRBFNN algorithm 

uses upstream volume and occupancy as input instead of the upstream occupancy and speed as 

used by Adeli and Karim (2000).] 

d. Support Vector Machine (SVM) 

Support vector machine (SVM) is an efficient supervised learning algorithm which was 

developed by Vapnik (1995) for solving pattern recognition problems and was first applied in 

the field of automatic traffic incident detection by Yuan and Cheu (2003).  

A SVM maps the data into a higher dimensional input space and then classifies the data by 

constructing an optimal separating decision boundary in this space. The construction of this 

decision boundary or optimal separating hyperplane (OSH) is optimised following the principle 

of structural risk minimisation. Given a set of training data     
1

, , , 1 , 1
N n

i i i
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
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where  x  is a input pattern vector and  
iy  is a binary output variable which indicates the class 

to which 
ix belongs. In case of an AIDA, +1 denotes the incident class and -1 denotes the non-

incident class. This classification is achieved using a SVM classifier which takes the following 

general form: 

 
, 0

( ) sgn .
i

i i i

i

f y b


 
 

 
  

 
x x x                 (8) 



13 
 

where,  
i  is a positive real constant and b is a real constant. The input space formed using 

traffic parameter observations is a non-linearly separable space. Hence, a non-linear SVM 

classifier is required to be used to separate the incident and non-incident observations in this 

space.    For non-linearly separable data, an OSH can be constructed using kernel functions 

which help to map the input vectors in a higher dimensional space where the OSH can be used 

for classifying the data. The kernel function used in this paper is radial basis function, 

 
2

2. exp
2

i
i



 
   

 

x x
x x                 (9) 

Further details on the construction of OSH can be found in Vapnik (1995).  To prevent 

overtraining of the SVM a cost parameter  is used. This parameter controls whether the SVM 

will have strict boundaries or to accept some misclassification in the training. This is called a 

soft margin SVM. The higher the cost of a misclassification the more rigid the margin and thus 

less error in the training is accepted.  

The SVM based AIDA is developed for both freeway/expressway and urban arterials (Yuan and 

Cheu 2003).  However, the algorithm is not tested for near intersection detection scenarios. 

This algorithm is included in this study to emphasise the potential of the CAIDA scheme in 

improving the performance of such urban arterial based AIDA algorithms when applied to 

detect incidents near traffic intersections. 

 

2.3 Performance Evaluation Measures 

In this paper, the performance of an AIDA is evaluated using the following five criteria: 

Detection Rate (DR) 

DR is the percentage of successfully detected incidents against the total number of incidents 

that have occurred. DR is an indicator of the accuracy of an AIDA. 

DR = 
Number of Incidents Detected

Total Number of recorded Incidents
X100%                         (10)                                         
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False Alarm Rate (FAR) 

A false detection or a false alarm is defined as the detection of an incident during an incident 

free interval. FAR is the ratio of total number of false detections to the total number of possible 

incident intervals expressed as a percentage.  Usefulness or implementability of an AIDA can be 

governed by the low FAR values. 

FAR = 
Total Number of False Incidents

Total Number of Applications of the Algorithm
X100%                       (11) 

Mean Time to Detect (MTTD) 

MTTD is the average time taken from the initiation of an incident to the detection of the 

incident by the algorithm. 

MTTD = 0

1

1
( )

n

id i

i

t t
n 

                                                                              (12) 

where, n is the total number of incidents detected, 
0it initiation time of incident i and 

idt is the 

time of detection of the incident i. 

Misclassification Rate (MCR) 

MCR is the ratio of the total number of incorrect decisions to the total number of decisions 

made by the algorithm. The incorrect decisions include both non-detections of incidents as well 

as the false alarms. 

MCR=
Total Number of Misclassified Applications of Algorithm

Total Number of Applications of the Algorithm
X100%                                                          (13) 

Receiver Operating Characteristics (ROC) Plots 

A high DR and a minimal FAR are the desired performance values for an AIDA. However there 

is a trade-off relationship between the FAR and DR. It is possible to reduce the FAR by 

decreasing the sensitivity of an algorithm, however that in turn will result in poor DR as many 

incidents will remain undetected due to the low sensitivity of the algorithm. On the other hand, 

the attempts to increase the DR will also increase the FAR decreasing the implementability or 
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specificity of the algorithm. Hence, another criterion called the Receiver Operating 

Characteristic (ROC) space is utilised. The ROC space allows for a convenient means for 

characterising and comparing the performance of algorithms in non-destructive structural 

damage detection, image processing (Pakrashi et al., 2011) etc. and can be used as a useful 

evaluator for comparing the performance of AIDAs. This is typically a plot of DR versus MCR, 

which are alternatively known as Probability of Detection (PoD) and Probability of False Alarm 

(PFA) respectively in the field of probability space and decision theory. Each (MCR,DR) pair form 

a coordinate in the ROC space. In this paper, ROC has been used for graphical comparison. 

However, ROC space can be further utilized for quantitatively comparing the algorithm 

performances using the α-δ method (Schoefs et al., 2012). This method relies on calculating the 

angle, α, and the Euclidean distance, δ, between the best performance point, and the 

considered point to give a measure of the performance of the considered performance point. 

The best performance point is defined as an ideal AIDA with 100% detection and 0% 

misclassification rates and represented in the ROC space with coordinates (0,1). The angle, α, 

denotes the shape of the ROC curve which is important to analyze the reliability of the 

algorithms and is not the focus of this study. Hence, only the delta, δ, parameter is discussed. A 

low value for δ is indicative of strong performance accuracy. 

 

3. Evaluation of Case Study 

In this section, the usefulness of the CAIDA scheme when used in conjunction with existing 

AIDAs has been evaluated through a case study of detecting arterial incidents on signalised 

urban transport network. Due to lack of availability of real incident data on urban arterials, a 

simulated dataset has been used in this paper. The details of the simulation are discussed in the 

next sub-section.  The implementation of the CAIDA scheme is described in the two subsequent 

sub-sections. 
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3.1 Incident Data 

3.1.1 Incident Simulation  

The incident dataset used in this study is simulated using the microsimulation software package 

VISSIM. A section of the urban arterial transport network at the city-centre of Dublin has been 

modelled using VISSIM (Fig. 2 & Fig. 3) and the incidents were simulated in this congested 

network during evening peak hours. The main thoroughfare in the network stretches roughly 

about 700m from Inns Quay to Ormond Quay Lower and contains two signalised intersections. 

It is a three-lane road with one-way traffic flow. Each of the intersecting roads also contains 

three lanes with the exception of Chancery Place which is a two-lane road. All of the minor 

roads are one-way with the traffic moving northbound in Rossa Bridge and Chancery Place and 

the traffic on Capel Street and Grattan Bridge moves southbound. Capel Street and Rossa 

Bridge each have a lane for traffic turning onto Ormond Quay. The traffic signal cycles at each 

of the modelled junctions consist of two phases. At the first junction the first phase is for the 

main traffic flow on Inns Quay moving straight to Ormond Quay Upper. The second phase is to 

accommodate straight and right turning vehicles from Rossa Bridge merging into Ormond Quay 

Upper. The first phase of the second junction is for traffic going from Ormond Quay Upper to 

Ormond Quay Lower and also accommodates for traffic turning right onto Gratten Bridge. The 

second phase is for traffic from Capel Street moving straight onto Gratten Bridge and also left 

turning traffic to Ormond Quay Lower. 

The model uses real-time traffic information as obtained as a part of the SCATS (Sydney 

Coordinated Adaptive Traffic System) system which is the existing Urban Traffic Control System 

(UTCS) in Dublin. As a part of the SCATS system, inductive loop-detectors are placed near the 

stop-line at signalised road intersections and collect traffic volume and occupancy data at 

regular intervals. Real-time traffic volume and occupancy information collected over a period of 

25 days have been used as travel demand input to the VISSIM model. In Fig. 4, a distribution of 

the observed and modelled traffic demand levels are plotted. The modelling and simulation 

have been performed at high and medium levels of traffic demand. This was done to eliminate 
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any possibilities of masking of incident patterns due to the presence of traffic signals at 

intersections (as discussed in detail in section 2.1). 

Incidents were simulated at three different locations as shown in Fig. 2. At each location, 

incidents were simulated at four different times within the evening peak hours. Each of these 

incidents was simulated as blocking two lanes out of three for durations of either five or ten 

minutes. Each of the incident simulations was run on three different traffic signal cycle times of 

60, 90 and 120 seconds to estimate the effect of signal time on arterial incident detection. 1800 

incidents were simulated in total. During each simulation, at four detector locations (As shown 

in Fig. 3) within the modelled urban transport network, traffic occupancy and volume data were 

recorded at 30 second intervals. Out of these four detector positions, detectors at position 1, 2 

and 4 are real inductive loop-detector locations as exists within the chosen network in Dublin. 

The other detector at position 3 was simulated to facilitate the evaluation of the proposed 

CAIDA scheme. Traffic volume and occupancy data are the only traffic variables that are 

recorded using the real loop-detectors in Dublin and hence, these were the only two variables 

that were used for evaluation purposes in this study.  

3.1.2 The Detector Arrangement Schemes  

To illustrate the potential of the proposed CAIDA scheme in improving the performance of 

existing AIDAs while applied to an urban transport network, each of the four chosen algorithms 

was tested under three different detector arrangement scenarios as described below:  

Scenario 1: Freeway like Scenario 

The first scenario is the traditional dual-station setup for detecting incidents; the upstream and 

downstream detector stations are positioned on the same link. Upstream and downstream 

traffic volume, occupancy and speed information are collected by the detectors and algorithms 

are applied to detect the existence of any incidents in between the two detector stations. This 

detector arrangement is most commonly used in freeway scenarios and typically traffic signals 

or traffic junctions do not exist in between the two detector stations. In this paper, this 

detector arrangement is referred to as ‘Freeway-like Scenario’.  
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In the Fig. 3, the detector locations 2 & 3 can be considered as the upstream and the 

downstream stations for a freeway like scenario. The simulated values of upstream and 

downstream traffic volume and occupancy from these detector stations were used as input 

parameters to the four chosen AIDAs. The MLF, PNN and SVM each used the same 16 inputs 

which consist of upstream volume and occupancy for the last five time intervals and 

downstream volume and occupancy for the last three time intervals. The FWRBFNN used only 

upstream volume and occupancy over the last 16 time intervals.  

Scenario 2: Original Urban Network Scenario  

This scenario replicates a traffic situation where traffic signals or traffic intersections are 

present in between the upstream and downstream detector stations. This scenario is 

representative of an urban transport network situation where traffic intersections are 

ubiquitous and cannot be avoided in a dual station setup in an incident management system. In 

this scenario the detectors are assumed to be located just upstream to traffic intersections 

similar to the real-life SCATS traffic control system.  The dual station set-up constitutes of two 

detectors placed in two consecutive links; the upstream detector station located upstream of 

the connecting traffic intersection between the two links and the downstream detector station 

is located upstream to the next downstream intersection at the downstream end of the second 

link. The measured traffic information (such as, volume, occupancy and speed) obtained from 

the detectors are expected to be greatly affected by the presence of traffic signals. 

In the Fig. 2, the detector locations 1 & 2 can be considered as the upstream and the 

downstream stations for an original urban network scenario. The simulated values of upstream 

and downstream traffic volume and occupancy from these detector stations were used as input 

parameters to the four chosen AIDAs. The inputs to MLF, PNN, SVM and FWRBFNN are the 

same as those in freeway like scenario. 

Scenario 3: CAIDA Urban Network Scenario 

The detector arrangement in third scenario is conceptually a departure from the traditional 

single-station or dual-station setup. The detector arrangement in this scenario is very similar to 
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the scenario 2, ‘Original Urban Network Scenario’, with the addition of extra upstream 

detectors on all upstream turning approaches which contribute to the flow recorded on the 

downstream detector. This detector arrangement ensures that traffic information is received 

from all the upstream approaches that contribute to the link.  

In the Fig. 2, the detector locations 1 & 3 can be considered as the upstream stations and the 

detector location 2 can be considered as the downstream stations for the CAIDA urban network 

scenario. This arrangement allows for a more constant flow of relative information to be 

inputted into the incident detection algorithms. The simulated values of upstream and 

downstream traffic volume and occupancy from these detector stations were used as input 

parameters to the four chosen AIDAs. In this scheme, the number of inputs to the detection 

algorithms increases, however the traffic parameters used for the inputs remain the same. The 

MLF, PNN and SVM each had 26 inputs consisting of the upstream volume and occupancy of 

both the upstream detector stations for the last five time intervals and downstream volume 

and occupancy for the last three time intervals. The number of inputs to the FWRBFNN doubled 

due to the inclusion of extra detector station taking the upstream volume and occupancy from 

each of the two upstream detector stations over the last 16 time intervals. 

3.2 Application of CAIDA   

The CAIDA scheme along with the four chosen AIDAs were developed and evaluated in MATLAB 

environment. In the following the subsections the steps of development and application of the 

same are described in detail. 

3.2.1 Preprocessing using CAIDA 

In this paper, the customisation of the existing AIDAs for application to signalized urban 

networks was achieved by preprocessing the inputs from all upstream detector stations as 

described in the aforementioned CAIDA scheme. In Fig. 5 & Fig. 6, the original and 

preprocessed simulated traffic occupancy and volume data from detector location 1 have been 

plotted to show the effectiveness of preprocessing in amplifying the effect of an incident on the 

signal pattern. In Fig. 5, the original occupancy time-series dataset (Fig. 5(A)) and the 
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preprocessed occupancy time-series signal (Fig. 5(B)) are plotted along with the Continuous 

Wavelet Transform (CWT) plots of the two signals (Mallat, 1989). A ‘Coiflet 4’ wavelet has been 

used up to scale 128 to achieve the plots. In the CWT plots the scale is indicative of frequencies 

in the data, where time signifies the temporal nature and comparing Fig. 5(C) and Fig. 5(D) it is 

apparent that there is a shift in the temporal signature between the two datasets. It is 

important to note that the frequency contents of the two datasets are largely similar.  

In Fig. 6, the original traffic volume time-series dataset (Fig. 6(A)) and the preprocessed volume 

time-series signal (Fig. 6(B)) are plotted along with the Autocorrelation Function (ACF) plots of 

the two signals (Mallat, 1989). ACF values up to lag 100 are plotted. The plots show both the 

datasets are non-stationary and by comparing Fig. 6(C) and Fig. 6(D) it is apparent that the 

time-domain responses of the two datasets are significantly different. For illustrative purposes, 

the CWT plots for the occupancy values and ACF plots for volume counts are shown in Fig. 5 

and Fig. 6 respectively. Overall, from the preprocessed traffic time-series plots shown in both 

figures, it is observed that the volume and occupancy counts during the occurrence of an 

incident are significantly different from values under non-incident conditions. However, in the 

original traffic information dataset (Fig. 5(A) and Fig. 6(A)), the incident situations are not so 

distinctively different from red-light situations. It is also important to note that the 

preprocessing is more effective in altering the occupancy time-series compared to traffic 

volume. 

3.2.2 Application of AIDAs 

The preprocessed traffic volume and occupancy datasets were then used as inputs to each of 

the four chosen AIDAs to subsequently detect incidents on the modelled urban arterial section. 

The traffic dataset was divided into a training dataset and an evaluation dataset. Each algorithm 

was trained on a training dataset consisting of preprocessed simulation data of 15 days and 

then its performance was evaluated on the remaining 720 incidents. For the training and 

evaluation purposes, the inputs used to the MLF, PNN, SVM and FWRBFNN were as described in 

section 3.1.2. Each of the chosen AIDAs were trained separately for each different scenario. 
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A ROC based optimization framework was chosen to arrive at the best model for each different 

AIDA for each scenario. In the MLF network, the best network architecture was achieved by 

adjusting the number of hidden neurons to arrive at the minimum δ value. The MLF network 

consisted of 25 hidden neurons and one output neuron for all three scenarios. In PNN and 

FWRBFNN networks, the smoothing parameter was adjusted to arrive at the optimised 

network structure. In PNN networks the value of was taken as 1.2, 1.4 and 0.7 in the order of 

the scenarios. In FWRBFNN networks, the value of was taken as 3 for scenarios 1 & 3 and 2 

for scenario 2. For PNN and FWRBFNN networks the training dataset consisted of 1080 incident 

patterns and 7008 non-incident patterns. In SVM classification the penalty parameter of the 

error term, , and the kernel parameter which defines the decision boundary were optimised 

for the minimum δ value. The RBF kernel parameter was taken as 0.4 and was varied 

between 0.2 to 0.5 for the different scenarios. For all AIDAs the parameter values and network 

structure were specific to the traffic volume and sites chosen and for future implementation in 

other locations with different traffic demands training, calibration and validation of the AIDAs 

are essential.

 

3.3 Comparison of Performances 

The CAIDA scheme was evaluated based on the performance of the four chosen detection 

algorithms when applied under the three aforementioned detector arrangement scenarios. 

The traffic signal cycle length is one of the most important factors that influence the values of 

the traffic parameters (such as, traffic volume or density) near a signalised road intersection in 

an urban transport network and in turn this factor interfere considerably with the useful 

implementation of AIDA in urban networks. The algorithms were evaluated using simulated 

accident information from the modelled network operating under three different traffic cycle 

times, 60, 90 and 120 seconds (Table 1). As observed from the results, all four algorithms 

perform very well with high DR, low FAR and MCR values under scenario 1(freeway like 

scenario) as the existence of the traffic signals do not largely influence the consistency of the 

traffic information available from the detectors in this case. However, the upstream detector 
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used in this scenario is generally not available in real-life networks. The real-life representation 

of possible detector arrangements in urban transport networks are seen in scenario 2 and 3. In 

scenario 2 the algorithms perform the worst and in scenario 3 the performances have been 

observed to improve significantly across the board with the application of CAIDA scheme. A 

particularly important observation is that in majority of the cases in scenario 2, the algorithms 

produce high false alarm rates indicating the fundamental problem behind the implementation 

of existing freeway based algorithms to urban scenarios. The FAR values reduce with the 

application of the proposed CAIDA scheme. Performance indexes improve with the increase in 

cycle length. It is also observed that the MLF and SVM algorithms perform better than the rest.  

The incidents were simulated in three positions on the Ormond Quay Upper. The incident 

positions are shown in Fig. 2. The performances of the algorithms vary with the change of 

incident positions and it has been tabulated in Table 2. The proximity of an incident location to 

an upstream or downstream intersection affects the detectability of the incident. In this study, 

it has been observed that all four algorithms are least effective for incident position 1 which is 

furthest from the upstream intersection. The effect of the existence of an intersection most 

significantly affects the performances of AIDAs in scenario 2. The performance of the 

algorithms in scenario 1 and 3 are largely comparable. There is little difference between the 

performance of the algorithms on positions 2 and 3 when considering the DR and FAR. 

However, the MTTD is smaller for position 3 as the effect of queue built up is realised the 

quickest at the upstream detector for this incident position. Similar to the case of varied cycle 

lengths, the MLF and SVM algorithms perform better than the rest. 

Intuitively, the longer the incident duration, the more is the severity and easier it is to detect 

the incident. This pattern is noticed for all four algorithms under all three detector 

arrangements in this paper (Table 3). Incidents were simulated over two time intervals, 5 min 

and 10 min. The detection rates are much higher for 10min long incidents, however the FAR 

values are quite similar for both cases. The MTTD values are lower for 5min long incidents. The 

performance of MLF and SVM algorithms are much more consistent under variable durations of 

incidents. Overall, the algorithms perform the worst under scenario 2 (Table 4). The FAR, MCR 
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and MTTD all increase significantly for this scenario, proving that the existing algorithms are 

unsuitable when applied in signalised traffic networks. Scenario 3 provides a significant 

improvement from this and even with the presence of intersections the algorithms provide high 

DR, low FAR, MCR and MTTD values. 

The ROC curves for all four algorithms under all three scenarios were plotted and the δ values 

were calculated. As an illustrative example, the ROC plots for PNN algorithm has been shown in 

Fig. 7. This graphically establishes the superiority of algorithm performance under scenario 3 in 

comparison to scenario 2. According to the δ values as shown in Table 4, SVM algorithm 

provides the best performance under scenario 1 and 3. The performances of all four algorithms 

improve under the proposed CAIDA scheme. 

 

4. Discussion  

In this section a brief discussion on the usefulness and applicability of the proposed CAIDA 

strategy is provided. The proposed CAIDA scheme is the first attempt to adapt existing incident 

detection algorithms for implementation in signalised urban transport networks. This CAIDA 

scheme is a simple way of dealing with the presence of signalized intersections within the 

detection zone without developing new algorithms to deal with the issue. The main difficulty 

with implementation of existing incident detection algorithms in signalised urban transport 

networks is that the traffic dynamics during the red time is very similar to the traffic dynamics 

during incident conditions. Consequently the application of existing highway based AIDAs often 

result in high FAR, MCR and MTTD values indicating inferior performance as seen in scenario 2. 

The proposed CAIDA strategy tackles this key problem and improves the performance of the 

algorithms resulting in reasonably good DR, low FAR, MCR and MTTD values as seen in scenario 

3. The main focus of CAIDA scheme is pre-processing the traffic variable observations to imitate 

the traffic pattern in highways as closely as possible before they are used as input to the 

existing highway based detection algorithms. 

Also, CAIDA scheme utilises information from all upstream detectors unlike most existing 

detection algorithms. In well-known and popular UTCS (such as, SCATS in Dublin) majority of 



24 
 

the detectors are located upstream and near to the traffic intersections. The existence of 

detectors both at the upstream and downstream end of a road as seen in scenario 1 is quite 

rare in real-life urban transport networks. Hence, implementation of existing AIDAs utilising the 

detector arrangement as for scenario 1 will involve installation of new detectors at the end of 

roadway sections. However, the performance of the algorithms matches well between scenario 

1 and scenario 3. The CAIDA scheme can be considered as a simple and effective way for 

implementing existing incident detection algorithms to signalised urban transport networks 

without incurring additional infrastructural or operational costs.  

The study in this paper utilises four algorithms to show the effectiveness of the proposed CAIDA 

strategy. Though the research is not meant to compare the performance of the algorithms, it is 

possible to draw conclusions on their applicability in urban scenarios. All of the four chosen 

algorithms, MLF, PNN, FWRBFNN and SVM have been evaluated for their effectiveness under 

freeway conditions. The SVM based AIDA has been previously tested for urban arterials (Yuan 

and Cheu 2003). This is the first instance of testing these algorithms on signalised urban 

transport networks including traffic intersections. The PNN and FWRBFNN based algorithms in 

general provided less consistent and accurate results compared to the other two algorithms. 

This is largely due to the fact that the training of these two algorithms were computationally 

expensive and due to resource constraint the sizes of the training datasets used for these 

algorithms were smaller than the other two algorithms. FWRBFNN was developed for freeways 

and hence the DWT part of the algorithm utilises a denoising technique to remove the high 

frequency parts of the traffic time-series datasets. In an urban signalised network, the 

frequency content of the traffic time-series datasets are considerably different from those of 

the freeways and removing the high frequency parts which are generated due to the presence 

of traffic signals on city streets may negatively impact on the detectibility of an incident. In 

addition, in this paper a different set of input variables were used for FWRBFNN than the 

original ones and that might have also contributed to the poor performance of the algorithm. 

The two remaining MLF and SVM based algorithms perform very well in detecting incidents 

under varied conditions. SVM provides the best performance, however at the training phase 

this algorithm can be much more computationally intensive and expensive than MLF based 
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algorithm. Considering precision, ease of implementation and computational cost, the MLF 

based AIDA in conjunction with CAIDA scheme appears to be the most suitable choice for 

implementation in urban signalised transport networks. 

The AIDAs were trained using incidents simulated from a VISSIM model of the network 

developed using real traffic demand levels. The algorithms were also evaluated using simulated 

incidents. For real life implementation of these algorithms along with CAIDA strategy, similar 

steps can be followed, as it is quite implausible to have a comprehensive set of real incident 

data (Yuan & Cheu, 2003) in a signalised urban transport network. However, in the case of real 

world implementation attention must be paid in calibration and validation of the developed 

microsimulation model. Under these circumstances, all four AIDAs are adaptable and 

transferable to any transport network. The only limitation of these algorithms in conjunction 

with CAIDA scheme lies in the fact that for low flow volumes or for incidents lasting only a 

couple of minutes, the proposed scheme will not be effective due to the masking effects of 

traffic signals on incident patterns. 

 

5. Conclusion 

A new strategy, CAIDA scheme, has been proposed in this paper to improve the adaptability of 

existing AIDAs in signalised urban transport networks.  The proposed CAIDA scheme is an 

excellent solution to implement existing algorithms to signalised urban networks without 

further instrumentation or operational cost. The effectiveness of this new strategy has been 

established with the help of four existing AIDAs. All of these four algorithms have been 

evaluated for their effectiveness under freeway like conditions (i.e. without involving signalised 

traffic intersections) and in actual urban traffic conditions with and without applying the 

proposed CAIDA strategy. The performances of these algorithms are expectedly worst under 

actual urban conditions. However, the performances improve and compare very well with the 

same in freeway like conditions when used in conjunction with CAIDA scheme. This establishes 

that the CAIDA scheme is a simple solution in improving the adaptability and portability of 



26 
 

existing freeway based incident detection algorithms for implementation in signalised urban 

networks. 

The CAIDA scheme is essentially a heuristic scheme for scaling the traffic volume and occupancy 

data to minimise the effect of traffic signals with the aim of improving incident detection on 

signalised urban arterials. Further studies of the fundamental diagram on urban arterials may 

help in developing more appropriate multiplicative functions which may help to completely 

eliminate the effect of traffic signals from traffic variables. 

The CAIDA scheme effectively diminishes the need for implementation of expensive urban 

arterial based AIDAs for detecting incidents in signalised urban transport networks. The 

simplicity of this methodology makes it an extremely attractive solution for urban traffic 

management authorities. With the help of this simple customisation strategy existing incident 

management systems such as MIDAS (Motorway Incident Detection and Automatic Signalling) 

can now be tested for implementation in urban transport networks. 
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Table 1: Performance Matrix under Variable Cycle Lengths 

  DR FAR MCR MTTD DR FAR MCR MTTD DR FAR MCR MTTD 

  (%) (%) (%) (sec) (%) (%) (%) (sec) (%) (%) (%) (sec) 

60 sec Cycle  

  Scenario1 Scenario2 Scenario3 

MLF 83.33 0.45 1.80 98.85 63.72 0.30 2.31 189.88 82.42 0.34 2.02 120.12 

PNN 78.43 1.92 9.81 152.28 58.82 1.71 19.03 218.15 62.74 1.26 15.76 158.73 

SVM 83.33 0.99 2.02 101.91 78.43 1.14 2.84 156.81 82.35 0.84 2.30 128.82 

FWRBFNN 62.78 0.89 4.86 223.44 44.36 5.90 8.31 200.26 52.63 4.76 7.10 185.43 

                          

90 sec Cycle  

  Scenario1 Scenario2 Scenario3 

MLF 91.00 0.34 1.40 77.94 88.66 0.23 1.77 106.03 89.30 0.32 1.71 101.51 

PNN 90.07 1.99 9.18 98.51 87.30 3.67 14.80 124.84 87.30 1.41 6.06 134.15 

SVM 91.25 0.89 1.58 71.04 90.42 1.12 2.24 87.18 90.42 0.96 1.94 83.30 

FWRBFNN 64.03 0.79 5.16 206.13 51.54 6.54 27.87 205.67 68.01 4.82 6.98 162.55 
                          

120 sec Cycle  

  Scenario1 Scenario2 Scenario3 

MLF 89.83 0.48 1.46 63.31 87.99 0.29 1.62 76.27 91.26 0.31 1.55 75.59 

PNN 93.18 1.54 7.72 109.18 92.10 2.57 12.25 107.38 93.18 0.83 3.44 108.65 

SVM 92.29 1.04 1.73 75.37 90.81 0.78 1.86 71.45 92.06 0.47 1.77 76.42 

FWRBFNN 71.46 3.95 16.32 162.71 53.88 5.47 24.22 259.13 84.73 4.30 6.42 134.39 
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Table 2: Performance Matrix under Variable Incident Positions 

  DR FAR MCR MTTD DR FAR MCR MTTD DR FAR MCR MTTD 

  (%) (%) (%) (sec) (%) (%) (%) (sec) (%) (%) (%) (sec) 

Position 1 

  Scenario1 Scenario2 Scenario3 

MLF 62.85 0.61 2.13 61.52 54.45 0.34 2.37 118.60 62.32 0.35 2.20 102.12 

PNN 72.75 2.05 9.41 113.88 62.44 2.70 15.91 157.21 68.27 1.86 7.93 133.01 

SVM 63.23 1.17 2.31 56.68 62.19 1.09 2.87 107.97 64.13 1.04 2.62 102.65 

FWRBFNN 54.03 1.47 3.60 187.07 38.97 4.78 18.97 193.25 54.60 3.93 6.16 181.60 

Position 2 

  Scenario1 Scenario2 Scenario3 

MLF 100.00 0.39 1.40 93.78 92.00 0.27 1.81 128.87 98.92 0.28 1.59 100.55 

PNN 93.68 1.68 8.83 129.56 92.87 3.69 15.03 137.20 94.74 2.20 9.84 138.28 

SVM 100.00 0.79 1.60 86.08 99.00 0.86 1.99 106.59 99.29 0.27 1.39 92.34 

FWRBFNN 71.50 0.69 4.34 170.53 48.81 4.94 18.92 250.82 67.65 3.68 5.91 163.82 

Position 3 

  Scenario1 Scenario2 Scenario3 

MLF 100.00 0.31 1.16 83.71 95.45 0.28 1.69 120.37 99.29 0.27 1.39 92.34 

PNN 94.64 1.74 8.60 124.24 95.60 3.88 15.59 131.53 96.30 1.51 6.40 127.41 

SVM 100.00 0.88 1.41 93.60 96.50 0.88 1.96 100.12 97.05 0.89 1.77 93.53 

FWRBFNN 68.04 2.39 4.33 105.85 43.48 4.55 18.40 239.98 62.50 3.56 5.82 160.74 
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Table 3: Performance Matrix under Variable Incident Duration Lengths 

  DR FAR MCR MTTD DR FAR MCR MTTD DR FAR MCR MTTD 

  (%) (%) (%) (sec) (%) (%) (%) (sec) (%) (%) (%) (sec) 

10 min 

  Scenario1 Scenario2 Scenario3 

MLF 89.30 0.40 1.92 84.83 86.03 0.27 2.45 136.45 89.57 0.28 2.23 98.33 

PNN 94.12 1.79 8.93 137.96 94.12 3.84 15.88 145.14 94.34 2.04 8.99 139.85 

SVM 88.02 0.86 2.03 87.76 86.06 0.53 2.50 123.91 88.16 0.97 2.45 97.99 

FWRBFNN 78.18 2.35 4.84 151.91 57.17 4.71 19.20 292.25 77.82 3.69 6.64 208.66 

                          

5 min 

  Scenario1 Scenario2 Scenario3 

MLF 87.51 0.46 1.16 74.91 76.89 0.33 1.44 108.73 85.04 0.28 1.28 92.66 

PNN 81.54 1.79 8.85 111.69 80.83 3.85 15.18 123.16 84.72 2.01 8.24 124.58 

SVM 87.70 0.80 1.43 87.51 79.24 0.50 1.49 108.84 86.46 0.84 1.67 99.33 

FWRBFNN 53.71 0.75 4.27 151.45 30.68 4.83 18.35 164.96 45.93 3.75 5.28 128.12 
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Table 4: Overall Performance Matrix  

Overall 

 Scenario1 Scenario2 Scenario3 

 DR FAR MCR MTTD  DR FAR MCR MTTD  DR FAR MCR MTTD 

MLF 88.35 0.43 1.54 80.04 0.10 81.46 0.30 1.95 122.59 0.17 87.57 0.30 1.71 98.09 0.09 

PNN 87.55 1.82 8.93 122.99 0.15 87.84 3.85 15.51 136.03 0.24 88.82 2.96 13.16 134.67 0.14 

SVM 88.46 0.94 1.75 79.56 0.08 86.55 0.94 2.26 104.70 0.12 87.31 0.90 2.06 98.61 0.08 

FWRBFNN 63.40 0.84 5.01 214.79 0.35 43.92 4.77 18.77 228.61 0.57 61.88 3.72 5.96 168.39 0.34 
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Figure 1: Measured and Scaled Occupancy using Proposed CAIDA Scheme  
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Figure 2: Chosen Urban Transport Network and Incident Positions 
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Figure 3: The Micro-simulation Network Representation 
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Figure 4: The Observed and Modeled Traffic Volume Distribution 
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Figure 5: Original and Preprocessd Traffic Occupancy 
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Figure 6: Original and Preprocessd Traffic Volume  
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Figure 7: ROC Space for PNN 


