
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.226.56.7

This content was downloaded on 10/04/2015 at 12:21

Please note that terms and conditions apply.

Experiences with Software Quality Metrics in the EMI middleware

View the table of contents for this issue, or go to the journal homepage for more

2012 J. Phys.: Conf. Ser. 396 052003

(http://iopscience.iop.org/1742-6596/396/5/052003)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/396/5
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Experiences with Software Quality Metrics in the EMI

middleware

M Alandes
1
 E M Kenny

2
, D Meneses

1
 and G Pucciani

1

1
 European Organization for Nuclear Research, CERN CH-1211, Genève 23,

Switzerland

2
 Trinity College Dublin, College Green, Dublin 2, Ireland

E-mail: maria.alandes.pradillo@cern.ch

Abstract. The EMI Quality Model has been created to define, and later review, the EMI

(European Middleware Initiative) software product and process quality. A quality model is

based on a set of software quality metrics and helps to set clear and measurable quality goals

for software products and processes. The EMI Quality Model follows the ISO/IEC 9126

Software Engineering – Product Quality to identify a set of characteristics that need to be

present in the EMI software. For each software characteristic, such as portability,

maintainability, compliance, etc, a set of associated metrics and KPIs (Key Performance

Indicators) are identified. This article presents how the EMI Quality Model and the EMI

Metrics have been defined in the context of the software quality assurance activities carried out

in EMI. It also describes the measurement plan and presents some of the metrics reports that

have been produced for the EMI releases and updates. It also covers which tools and

techniques can be used by any software project to extract “code metrics” on the status of the

software products and “process metrics” related to the quality of the development and support

process such as reaction time to critical bugs, requirements tracking and delays in product

releases.

1. Introduction

According to the standard ISO 9001, the quality of something can be determined by comparing a set of

inherent characteristics with a set of requirements. If those inherent characteristics meet all

requirements, high or excellent quality is achieved. If those characteristics do not meet all

requirements, a low or poor level of quality is achieved.

Quality is, therefore, a question of degree. As a result, the central quality question is: How well

does this set of inherent characteristics comply with this set of requirements? In short, the quality of

something depends on a set of inherent characteristics and a set of requirements and how well the

former complies with the latter.

Software Quality Engineering (SQE) is the process that evaluates, assesses, and improves the

quality of software. Software quality is often defined as the degree to which software meets

requirements for reliability, maintainability, transportability, etc, as contrasted with functional,

performance, and interface requirements that are satisfied as a result of software engineering.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

Published under licence by IOP Publishing Ltd 1

A quality model helps evaluating the software product and process quality. It helps to set quality

goals for software products and processes.

The European Middleware Initiative project (EMI) [1] is comprised of 28 software development

teams, called product teams (PTs), who develop the 56 EMI software products. EMI PTs are coming

from major middleware providers like ARC, dCache, gLite and UNICORE who have been developing

software in the grid domain for the past several years. The EMI Quality Model [3] helps to evaluate

the quality of the EMI software products taking into account the existing working methods and tools

of the PTs.

2. EMI Quality Model

The EMI Quality Model uses the ISO/IEC 9126 Software Engineering – Product Quality standard to

identify a set of characteristics that need to be present in EMI software products and processes to be

able to meet EMI quality requirements. EMI quality requirements are based on Distributed Computer

Infrastructure’s (DCI) quality requirements, like the UMD (Unified Middleware Distribution) Quality

Criteria [8] from the EGI (European Grid Infrastructure) project [2], and internal project objectives

that influence qualitative aspects of the EMI software, as specified in the EMI Description of Work

[9].

2.1. Quality Requirements

EMI quality requirements are defined by taking into account internal EMI quality criteria and quality

criteria coming from EMI users, like EGI as defined in the UMD Quality Criteria.

UMD Quality Criteria is summarized below:

1. Functional Description: all products must provide a document with a brief functional

description of the product.

2. Release Notes: all products must provide a document with the release notes.

3. User Documentation: all products must provide a document describing how to use it.

4. Online help (man pages): all products with end user command line tools must include man

pages or online help.

5. API Documentation: public API of products must be documented.

6. Administrator Documentation: products must provide an administrator guide describing

installation, configuration and operation of the system.

7. Service Reference Card: for each of the services that a product runs, document its

characteristics with a reference card.

8. Software License: products must have a compatible license for using them in the EGI

infrastructure.

9. Release changes testing: changes in a release of a product must be tested.

10. Source Code Availability: products should provide their source code.

11. Source Distribution: technology providers should provide buildable source distributions of

products.

12. Binary Distribution: products must be available in the native packaging format of the

supported platform.

13. Backwards compatibility: minor/revision releases of a product must be backwards

compatible.

14. Service control and status: services run by the product must provide a mechanism for

starting, stopping and querying the status of services.

15. Log files: all services should create log files where the service administrator can trace most

relevant actions taken.

16. Service Reliability: services must maintain a good performance and reliability over long

periods of time with normal operations.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

2

17. Service Robustness: services should not produce unexpected results or become

uncontrollable when taxed beyond normal capacity.

18. Automatic configuration: products that provide tools for configuration that cover typical

deployments must assure tools work as documented.

19. World writeable files: products must not create world-writeable files or directories.

20. Directory traversal attacks testing: products should assure that directory traversal exploits are

not possible using their interfaces.

21. Incident Tracking: EMI must enroll as 3rd level support in the EGI Helpdesk.

EMI internal quality criteria are defined as complementary criteria to that of the EMI users and it is

based from the EMI project objectives as described in the EMI Description of Work.

• EMI Objective 1: Simplify and organize the different middleware services implementations

by delivering a streamlined, coherent, tested and standard compliant distribution able to meet

and exceed the requirements of EGI, PRACE and other distributed computing infrastructures

and their user communities.

• EMI Objective 2: Increase the interoperability, manageability, usability and efficiency of the

services by developing or integrating new functionality as needed following existing and

new requirement of EGI, PRACE and other infrastructures and their user communities.

• EMI Objective 3: Support efficient, reliable operations of EGI, PRACE and other DCIs by

reactively and proactively supporting and maintaining the middleware distribution and

providing users with increasingly user-friendly, maintainable, reliable, stable, and scalable

software.

• EMI Objective 4: Strengthen the participation and support for user communities in the

definition and evolution of middleware services by promoting the EMI achievements,

objectives and plans, and move the EMI middleware towards a more sustainable model by

expanding the collaboration with national and international research agencies, scientific

research programs and with industrial providers.

2.2. Quality Characteristics

Once EMI software product quality requirements are defined, the software product quality

characteristics which define the quality requirements can be determined. In order to do this, quality

characteristics from ISO/IEC 9126 are analysed within the context and objectives of the EMI project.

Two more characteristics have been taken into account as well: EPEL and Debian repositories

compliance. One of the main goals of the EMI project is to provide a sustainable model at the end of

the project. Being able to deliver middleware packages into EPEL and Debian repositories is

fundamental to move towards an open source like model where middleware developers can distribute

their packages through EPEL and Debian to their user community.

For each of the defined characteristics, the following areas have been analysed:

 Importance for EMI: the aim is to determine how much attention should be paid to the

characteristic to meet EMI quality requirements. Possible values are High, Medium and Low.

 Risks: the aim is to determine the possible effects of the problems caused when the

characteristic is not present in the EMI software.

 Indicators: the aim is to determine which indicators can be used to make the presence of the

characteristic visible.

 Measures: the aim is to determine which measures are necessary to control the characteristic.

Table 1 shows a summary of the thorough analysis of each characteristic:

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

3

Characteristic Subcharacteristic Quality Requirement Importance

Functionality Suitability EMI Objective 2

UMD 14,15,18,19,20,21

High

Accuracy EMI Objective 3 Low

Interoperability EMI Objective 2 High

Security EMI Objective 1

UMD 19,20

High

Functionality compliance EMI Objective 1 High

Reliability Maturity EMI Objective 3

UMD 16,17

High

Recoverability EMI Objective 3

UMD 16,17

Medium

Usability Understandability EMI Objective 1

UMD 1,2,3,4,5,6,7,10

High

Operability EMI Objective 3

UMD 14,18

High

Efficiency Resource utilisation EMI Objective 3

UMD 17

Low

Maintainability Changeability EMI Objective 2 High

Stability EMI Objective 3

UMD 13,16,17

High

Testability EMI Objective 1

UMD 9

High

Maintainability Compliance EMI Objective 3 High

Portability Adaptability EMI Objective 1 and 4 High

Installability EMI Objective 1

UMD 8,11,12

High

Replaceability Objective 2 Medium

Co-existence Objective 1 High

EPEL and Debian Compliance
EMI sustainability plan

objective.

High

Table 1 - Quality Characteristics vs. Quality Requirements

Identifying the characteristics that need to be present in the software to meet the existing quality

requirements, and understanding what we needs to done to measure whether they are present or not, is

the basis of the quality model. In the next section, we define which metrics are needed to be able to

measure the presence of the software characteristics.

3. Metrics and KPIs

EMI metrics are calculated to measure the presence of those quality characteristics evaluated as highly

important for the EMI middleware. KPIs are also calculated. They are defined in the EMI Description

of Work and they are normally calculated every quarter. KPIs also relate to the analysed software

characteristics.

Table 2 presents a summary of the metrics that are needed to evaluate each quality characteristic.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

4

Metrics Quality characteristic

Number of technical objectives

Suitability Number of user requirements

Number of development tasks.

Number of GGUS tickets related to lack of accuracy. Accuracy

KPI KJRA1.2 Number of Interoperable Interface Usage. Interoperability

Number of EMI security assessments.

Security Number of fixed security vulnerabilities.

Number of EGI SVG tickets still opened after the defined deadline.

KPI KJRA1.1 Number of Adopted Open Standard Interfaces Functionality

compliance

KPI KSA1.4 Number of urgent changes. Maturity

Number of services providing high-availability setups. Recoverability

Number of missing mandatory documents.
Understandability

Number of EMT tasks tracking documentation issues.

Number of services providing service control and status mechanisms.
Operability

Number of services providing configuration tools.

Number of GGUS tickets related to resource utilisation issues. Resource utilisation

KPI KSA1.2 Incident Resolution Time.
Changeability

KPI KSA1.5 Change Application Time

KPI KSA1.1 Number of incidents
Stability

KPI KSA1.3 Number of problems.

Number of Test Plans.

Testability

Number of Test Reports per released EMI software product.

Number of mandatory tests per EMI software product.

Number of RfCs tracking a defect with an associated regression test.

Number of RfCs tracking a new feature with an associated

functionality test.

Number of development tasks tracking a new feature with an

associated functionality test.

Number of passed certification checks.

KPI KJRA1.3 Number of Reduced lines of code. Maintainability

compliance KPI KJRA1.4 Number of reduced released products.

Number of supported platforms. Adaptability

Number of standard installation tools per supported platform.

Installability Number of standard package formats per supported platforms per

released product.

KPI KNA2.4 Number of EMI products included in standard

repositories, Linux distributions, etc
Co-existence

RPMlint and Lintian EPEL and Debian

compliance
Table 2 - EMI Metrics

Metrics in the EMI project are described in detail in the EMI Metrics Specification and are divided

into:

 Process related metrics: they are related to software changes and user support. They use

information stored in the tracking tools and user support tools, as explained in the upcoming

sections.

 Product related metrics: they are related to the software itself, like RPMlint or SLOC.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

5

3. Tools

To cope with the task of producing reports in a regular fashion including all the many metrics that

need to be calculated, a high level of automation is needed. Moreover, the sources of information

within the EMI project are very heterogeneous: different tracking tools and programming languages

are used by the product teams. A common layer on top of the existing tools is also necessary to be able

to automate the calculation of metrics in an easy way.

The following subsections describe the tools and dashboards that have been developed by the QA

team in order to automate the generation of metrics reports.

3.1. ETICS plugins

ETICS [10] is the tool that provides a build and packaging infrastructure for the EMI project. The

ETICS plugin framework provides the ability of collecting metrics during build and test execution.

RPMlint (RPM common problems) and SLOC (number of lines of Code) are some examples of the

used ETICS plugins. Figure 1 and figure 2 show a graphical representation of RPMlint and SLOC

measurements taken for EMI software products.

The metrics plugins are executed during some of the build steps in ETICS. The data generated by

the plugins is stored in the ETICS repository. Once the data is stored, it can be queried at any time. In

order to generate charts or statistics, the ETICS repository is queried using a web service and

converting the data into a specific XML format. A chart generation framework is used later on in the

process. The chart generation framework processes the XML data in several ways as defined by its

extensions, producing the datasets for the different charts. Its extensibility makes it easy to produce

any new charts from the data collected during the builds.

Figure 1 – RPMlint errors and warnings per EMI software product

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

6

Figure 2 – SLOC trend for the EMI Software products released in EMI 1 Update 10

3.2. RfC Dashboard

The RfC (Request for Change) Dashboard [5] is a tool that offers a unique entry point to track

software changes, like defects and new features, for all EMI products. EMI product teams use different

tracking tools of their choice. The EMI QA policies [11] define a common release process that is

followed by all product teams, including which is the minimum set of states that need to be present in

the tracking tools. Figure 3 shows how the different tracking tools of the middleware providers

involved in EMI map to the states defined by the policies.

Figure 3 - Mapping of product team tracker states

The different tracking tools export their data in an XML file that is used by the RfC Dashboard. In

this way the software changes of all products can be tracked in a single place and metrics can be

calculated for all of them. The RfC Dashboard uses PHP and HTML forms to provide input to a

python based query engine. The query engine produces tabulated results based on the XML files.

Figure 4 is a snapshot of the RfC Dashboard that shows a query retrieving results from different

product teams.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

7

Figure 4 - EMI RfC Dashboard

Figure 5 is a graphic showing the number of reported problems per EMI product classified per

priority. Metrics like this one can be easily generated after the data collected in the RfC Dashboard.

Figure 5 - Number of Problems per EMI product classified per priority

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

8

3.3. Verification Dashboard

The EMI Verification Dashboard [6] automates the verification of EMI releases in terms of quality.

EMI releases are verified against the Production Release Criteria [7], which is the set of mandatory

criteria defined in the EMI QA policies [11]. Most of the checks are done automatically, but some

others, like the documentation review, are done manually. The EMI verification dashboard displays all

this information for each EMI release assisting the quality control team to carry out this task. Figure 6

presents a snapshot of the dashboard.

The EMI verification dashboard retrieves information from the Savannah tool (where EMI releases

are tracked) and presents different views to users and other applications, like the RfC Dashboard. It is

written in Python, using the web framework Django to present the information through a web interface

using standard HTML+ CSS. As a storage backend, it uses the MySQL database, but due to Django's

abstraction other databases could be used. For the information retrieval and parsing from Savannah,

the BeautifulSoup library is used, solving the problems of inconsistencies in the source HTML code.

The EMI Verification Dashboard is not only a very useful tool to automate quality control checks

but also a way to easily calculate process and product metrics in various aspects of the software.

Figure 7 show graphics on metrics calculated thanks to the data stored in the Verification Dashboard.

Thanks to the Dashboard it is possible to calculate statistics and trend diagrams on testing, packaging,

documentation and certification.

Figure 6 - EMI Verification Dashboard

4. Measurement plan

EMI major releases have five major phases from the quality measurement perspective:

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

9

 EMI major release planning: it’s when the different work area plans containing the technical

objectives to be achieved are written and user requirements are gathered.

 EMI major release software coding and testing: it is the preparation of the release. The result

is a set of packages per software product with the corresponding test and certification reports.

 EMI major release availability: it is the moment when software documentation and software

repositories are ready and all the new required functionality is available for the users.

 EMI major release maintenance: Once the release has made available, software changes to fix

defects or introduce new features are released as long as the EMI major release is supported.

 EMI major release user support: Once the release has made available, user support is provided

as long as the EMI major release is supported.

Figure 7 – Metrics calculated with the EMI Verification Dashboard information

Metrics are associated to the different phases as presented in table 3. Metrics should be calculated

periodically as presented in the Frequency column.

Phase Deliverable Metrics Frequency Metrics Report

Name

EMI major

release

planning

Work Area

Plans, user

requirements

and

development

tasks.

 Number of technical

objectives

 Number of user

requirements

 Number of total

development tasks.

Every

major

release

EMI_X_planning_Met

ricsReport, where X is

the EMI major release

1, 2 or 3.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

10

EMI major

release

software

coding and

testing

Software

packages,

Certification

reports, Test

reports.

 KJRA1.3

 Number of Test Plans per

software product.

 Number of Test Reports per

released product.

 Number of mandatory tests

per released product.

 Number of RfCs with

regression test.

 Number of

RfCs/Development tasks

with functionality tests.

 Number of passed

certification checks.

Every

major

release and

update.

EMI_X_[Update_Y]_

CodeTest_MetricsRep

ort, where X is the

EMI major release 1, 2

or 3, and Y is the

number of update.

EMI major

release

availability

Software

Documentatio

n, Software

Repositories.

 KJRA1.2

 KJRA1.1

 KJRA1.4

 KNA2.4

 Number of implemented

development tasks.

 Number of EMI Security

Assessments.

 Number of fixed EMI

security vulnerabilities.

 Number of fixed EGI SVG

tickets.

 Number of services

providing high-availability

setups.

 Number of missing

mandatory documents.

 Number of services

providing service control

and status mechanisms.

 Number of services

providing configuration

tools.

 Number of Test Plans

 Number of supported

platforms.

 Number of standard

installation tools per

supported platform.

Every

major

release.

EMI_X_general_Metri

csReport, where X is

the EMI major release

1, 2 or 3.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

11

 Number of standard

package formats per

supported platforms per

released product.

 Number of non compatible

software licenses.

 Number of closed

development tasks.

EMI major

release

maintenance

RfCs  KSA1.3

 KSA1.4

 KSA1.5

 RPMlint

 Lintian

 Number of fixed EMI

security vulnerabilities.

 Number of fixed EGI SVG.

 Number of EMT Tasks

tracking Documentation

issues

Every week

in the EMT

meetings.

EMT_MetricsReport

EMI major

release user

support

GGUS tickets  KSA1.1

 KSA1.2

 Number of GGUS tickets

related to lack of accuracy

and resource utilisation

issues.

Every week

in the EMT

meetings.

EMT_MetricsReport

Table 3 – EMI Metrics reports

Metrics reports basically contain the following information:

 A table summarising the assessment result per metric for each characteristic that is relevant in

the metrics report.

 Plots showing the results of the assessment and historic data of the metrics.

 A list of corrective actions when the assessed value of the metric is under the required level.

5. Cost and impact of quality

The EMI project has a dedicated activity for Quality Assurance. This activity is responsible for

defining and establishing a common software quality assurance process and metrics for all software

engineering activities. It is also responsible for consistently pass the customer acceptance criteria and

continually improve the software quality and the process itself by monitoring the metrics value trends

and reviewing quality control activities. This activity has an effort of 324 person-months out of the

total EMI project effort which is 2436 person-months. The EMI project has a total duration of three

years.

The impact of the quality assurance activities can be seen in the software provided to the EGI project.

In Figure 8 it can be seen the evolution of the EMI software quality per project quarters (PQ) as

evaluated by the EGI project. The first column gives information about the number of released

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

12

products, the second column gives information about the number of products that have passed the EGI

quality control checks for the UMD Quality Criteria [8]. The third column indicates the number of

products that successfully passed the Staged Rollout phase. The EGI Staged Rollout is a procedure by

which certified updates of the middleware are first released to and tested by Early Adopter sites before

being made available to all sites through the production repositories. Finally, the last column

summarises how many products have been rejected as they don’t meet the UMD Quality Criteria.

Figure 8 summarises the impact of the quality assurance activity demonstrating that EMI releases have

improved over time meeting the required quality criteria and successfully passing the Staged Rollout

phase.

Figure 8 - EMI software quality evolution

6. Lessons learned

6.1. Useful even if it arrives a bit late…

The definition of a quality model helps to set up quality goals for the software and metrics to measure

whether those goals have been achieved or not in the developed software. It is a very good starting

point to organise the work of the quality control activity. The definition of a measurement plan with

metrics report templates and clear dates on when the reports have to be generated, also helps to

organise a working plan on how the quality control activities are going to be carried out and what the

outcome is going to be. However, defining a quality model takes time and it is not always easy to do

since the beginning of the project, when software processes may not be clearly defined yet. Even if the

quality model arrives in a later stage, it helps to consolidate the quality control activity.

In EMI, the quality model was defined after the first year of the project when EMI QA policies [11]

were stable and it was clear how EMI releases were going to be managed. Quality Control activities

took place during the first year as well, but tools like the RfC Dashboard or the Verification

Dashboard were not ready until the end of the first year. Experience was gathered during the first year

and this helped to create the quality model, to develop tools and to tune existing metrics, fitting better

the needs of the project.

6.2. A model that improves

The quality model is something alive that evolves throughout the lifetime of the project. In the case of

EMI, the metrics specification has changed many times. In the first year of the EMI project, focus was

put to calculate static code analysis metrics like PyUnit or FindBugs. In the second year of the project,

these metrics were no longer calculated and effort was put in RPMlint. Thanks to the implementation

of tools like the RfC Dashboard and the Verification Dashboard, the calculation of certain metrics was

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

13

made possible and they could be automatically calculated with little effort. All these examples show

that the quality model evolves with time and that this helps to make it really useful for the project.

6.3. Metrics on demand

The quality model basically identifies metrics that measure the presence of certain (high level)

characteristics in the software. It does not take into account requirements from project members who

need metrics to better do their work. Metrics should also be defined and calculated in these cases. For

instance, in EMI metrics are calculated every week for the release manager who is interested in

successful builds and in tracking software changes. Metrics are also calculated every quarter for

technical managers who want to see how well product teams have performed in terms of user support

tickets and software changes implementation. It is difficult that the quality model covers all possible

metrics needed in the project. This is why it is important to have a good communication with project

members who can benefit from the existing tools and knowledge to calculate metrics.

7. Acknowledgements

This work was partially funded by the EMI project under European Commission Grant Agreement

INFSO-RI-261611.

8. References

[1] European Middleware Initiative project (EMI) http://www.eu-emi.eu/

[2] European Grid Initiative project (EGI) http://www.egi.eu/

[3] EMI Quality Model https://twiki.cern.ch/twiki/bin/view/EMI/QualityModel

[4] EMI Software Quality Assurance Plan https://twiki.cern.ch/twiki/bin/view/EMI/SQAP

[5] EMI RfC Tracker Dashboard http://emi-rfc.cern.ch/

[6] EMI Verification Dashboard http://emi-dashboard.cern.ch/

[7] EMI Production Release Criteria

https://twiki.cern.ch/twiki/bin/view/EMI/ProductionReleaseCriteria

[8] Unified Middleware Distribution (UMD) Quality Criteria

https://documents.egi.eu/public/RetrieveFile?docid=364&version=5&filename=EGI-

GENERIC-QC-V2.pdf

[9] EMI Description of Work https://twiki.cern.ch/twiki/pub/EMI/EmiDocuments/EMI-

Part_B_20100624-PUBLIC.pdf

[10] eInfrastructure for Testing, Integration and Configuration of Software (ETICS)

http://etics.web.cern.ch/etics

[11] EMI Quality Assurance Policies https://twiki.cern.ch/twiki/bin/view/EMI/SA2

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052003 doi:10.1088/1742-6596/396/5/052003

14

