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This article proposes a new technique for Privacy Preserving Collaborative Filtering (PPCF) 
based on microaggregation, which provides accurate recommendations estimated from 
perturbed data whilst guaranteeing user k-anonymity. The experimental results presented 
in this article show the effectiveness of the proposed technique in protecting users’ privacy 
without compromising the quality of the recommendations. In this sense, the proposed 
approach perturbs data in a much more efficient way than other well-known methods 
such as Gaussian Noise Addition (GNA).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recommender systems [1] have become a fundamental mechanism to provide users with useful selected information, 
which could be effective to optimise a large amount of decisions, such as product purchase, films selection, etc. Especially, 
from the great growth of Internet users, the large amount and variety of available information becomes a problem since 
it is difficult for users to determine the suitable information to optimise their process of decision making. Taking into ac-
count this context, the recommendations based on the Internet are especially relevant for certain types of industry, such as 
e-commerce. Thus, the Internet provides a wealth of information on a huge variety of products and services that may be 
useful to potential buyers. However, this wealth of information may become a problem rather than a solution because it can 
hinder the decision making. Recommender systems are a useful alternative to search algorithms since they help users dis-
cover items they might not have found by themselves. Interestingly enough, recommender systems are often implemented 
using search engines indexing non-traditional data, this being attained through two types of strategies, namely Collaborative 
Filtering and Content-Based Filtering [2].

Collaborative Filtering (CF) [3,4] is a recommender system which was introduced to provide automated recommendations 
in a digital environment. CF is particularly relevant in e-commerce to make suggestions on items (e.g. books, music, or 
restaurants) based on users’ preferences that have already acquired and/or rated these items. The underlying idea of CF is 
that a user will prefer items that like-minded users prefer. Therefore, the recommendations provided by CF methods are 
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based on the assumption that similar users, in the sense of similar interests or behaviours, will be interested in the same 
products. Thus, items purchased by a user Ua can be recommended to another user Ub , if Ua and Ub have similar interests 
or similar behaviours.

Currently, CF systems are involved throughout a wide variety of applications. For instance in e-commerce (e.g. Amazon, 
Barnes & Noble) to recommend similar products or in search engines (e.g. Google) to recommend similar sites to users with 
similar interests. Many multimedia sites (e.g. last.fm, MyStrands, Netflix, or Moviefinder) make use of CF to propose relevant 
content. The adoption of CF provides these applications with two main benefits. Firstly, their users receive good advices, 
improving user experience and the quality of the service. Secondly, CF provides a clear market overview to the companies 
by exploiting the Web 2.0 concept; the new way to use the Internet, by giving high relevance to active user participation in 
the infrastructure (e.g. blogs, social networks, or information & service portals).

In order to make predictions, CF methods use large databases that store information regarding the relationships between 
sets of users and items. These data are modelled as matrices composed of n users and m items, and each cell (i, j) stores 
the evaluation of user i on item j. Therefore, a value is assigned, which can be within a range of values (e.g. between 
0 and 10) or simply with binary votes (positive/negative, or bought/not bought) as in market basket databases. There are 
many examples of CF referenced databases in the literature, such as Eachmovie, MovieLens, Jester, or Netflix prize data. 
These databases are frequently used as benchmarks to evaluate the efficiency, quality and robustness of CF methods [5].

CF methods can be classified into three main categories according to the data they use to make the recommendation [6]: 
memory-based methods, which use the full matrix with all ratings; model-based methods, which use statistical models 
and functions of the data matrix but not the complete data matrix; and hybrid methods, which combine the two previous 
strategies with content-based recommendation methods.

In memory-based CF, recommendations are made in two steps: (i) neighbourhood search and (ii) recommendation pre-
diction. Given a user Ua , correlation and distance functions are used to compute his neighbourhood. The most common 
correlation and distance functions used are the Pearson correlation, the cosine similarity and the Euclidean distance. The 
similarity between users can also be computed in a much more efficient way, according to their behaviour when they vote, 
for example, by using tendencies [7]. Once the neighbourhood of Ua is determined, recommendations can be computed us-
ing, for instance, the methods described in [4,8]. These methods can be utilised to predict a vote or recommend the top-N 
items for Ua .

Model-based CF methods create a model from the full matrix on which to make recommendations. The emergence 
of these methods is justified by the restrictions of memory-based CF in terms of scalability, complexity of calculation 
and sparseness. Some well-known methods to reduce the dimensionality of a matrix are Singular Value Decomposition 
(SVD) and Principal Component Analysis (PCA). However, the use of dimensionality reduction methods could affect the 
quality of the recommendations since they reduce the data range. There exists a huge variety of model-based CF methods: 
dimensionality reduction methods (SVD, RSVD, Improved RSVD, NSVD2 and SVD++), linear regression methods [9], clustering 
methods [10], and Bayesian network models amongst others [6].

Hybrid CF methods combine memory-based and model-based methods, in such a way to preserve the advantages of the 
algorithms involved and neutralise their shortcomings. Examples of these methods are the Personality Diagnosis [11] and 
the Probabilistic memory-based model [12].

Regardless of the CF method, there are several limitations inherent to this kind of recommender systems. Some of the 
most important limitations [6,13,14] are sparseness, scalability, cold start, shilling, synonymy, bribing, copy-profile attacks, and 
the lack of privacy.

1.1. Contribution and plan of the article

Privacy is a fundamental right and privacy protection is a hot topic to which many research efforts have been devoted 
from a variety of fields [15–18]. Thus, amongst all the aforementioned open problems of CF, in this article we concentrate on 
the protection of the privacy of users involved in CF processes. We perform a classification of PPCF state-of-the-art methods 
in centralised and decentralised approaches and we introduce Statistical Disclosure Control and microaggregation concepts 
in order to be used in the CF context. We recall and analyse a novel method for Privacy Preserving Collaborative Filtering 
based on microaggregation that we briefly introduced in [19]. We show that our method guarantees k-anonymity and that 
it is more efficient in terms of privacy protection and information loss than the widely used Gaussian noise addition (GNA) 
PPCF method. We selected GNA because it has proven to better preserve privacy by adding much less quantity of noise 
in large multidimensional datasets than other methods such as uniform noise addition [20]. Moreover, the experiments 
are performed with two well-known datasets which offer different characteristics in both data sparsity and number of 
dimensions. From the perspective of the SDC community, it is important to emphasise that we show that microaggregation 
could be used efficiently in datasets that are very sparse and also in those that are denser. More importantly, in both 
situations, microaggregation performs better than GNA. Finally, our proposal remains simple, facilitating its adoption.

The rest of this article is organised as follows. Section 2 introduces the basic concepts on PPCF and classifies the most 
relevant methods. Also, some background on Statistical Disclosure Control (SDC) and microaggregation is given. Next, in 
Section 3, we describe our PPCF method based on microaggregation. In Section 4, we provide an extensive study of the 
results obtained by our proposal applied to well-known benchmarks. In Section 5 we discuss its benefits in comparison 
with the Gaussian noise addition method. Finally, Section 6 concludes the article and provides directions for future research.
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2. Background

One of the most important limitations of CF methods is the lack of privacy. CF systems provide users with a great 
potential to share all types of information [13] about places to go, things to do, or products to buy, but their privacy risks 
are severe. The challenge is how can users contribute their personal information for CF purposes without compromising 
their privacy. To overcome this limitation, recent work in PPCF enables CF without leaking private information. Thus, in this 
section, we firstly discuss the main concepts and methods in PPCF, and secondly, we briefly introduce the principles of SDC 
and microaggregation, that are used in our PPCF approach.

2.1. Privacy preserving collaborative filtering

The widespread use of CF on the Internet entails great opportunities for both companies and users in multiple con-
texts [13]. However, the lack of privacy for the contributing users is a major drawback. The relevance of privacy in CF 
systems is emphasised by the growing pace at which information on each user is collected and stored. Careless manage-
ment of personal information, apart from being illegal in many countries, has potentially serious consequences for both the 
users and businesses whose information is disclosed. One of the main problems in CF is that, if customers believe their 
preferences/profiles may be exposed, they might decide either not to give their assessment on a particular item or to give 
it incorrectly or inaccurately [21]. Therefore, the feeling of poor privacy protection results in a reduction of the number and 
quality of evaluations.

Another drawback is that companies can acquire data about the preferences of many users in a given market, getting 
a big advantage over new competitors if they decide to expand into other markets. Therefore, user profiling through CF 
promotes in some sense monopolies. Another privacy-related drawback for users stems from the existence of large Inter-
net quasi-monopolies, which massively gather users’ preferences and may transfer them within their web of partnered 
companies in hardly traceable ways, leading to further user profiling.

Whilst privacy preserving CF methods obfuscate and/or hide information on user profiles, sometimes users wish to find 
other users having similar profiles and form a community. Indeed, communities are very usual in the Internet, but they 
can be a double-edged sword. On the one hand, users can conveniently obtain reliable recommendations on items from 
communities in a particular context. On the other hand, communities can generate a homophily problem in the network. 
More precisely, a problem of value homophily [22], so that recommendations outside the context of the community would 
give results with little sense, precisely because of the homogeneity of the group.

Privacy Preserving Collaborative Filtering (PPCF) methods aim at solving the privacy issues raised by the systematic 
collection of private information on preferences. Yet, privacy preservation should not prevent companies from co-operating 
to generate better recommendations for their customers. Due to privacy and business concerns, unprotected user data 
should not be disclosed between companies. In this context, data might be partitioned between various corporate parties in 
different ways:

Vertical partitioning (VP) In which companies own disjoint sets of items but with the same users.
Horizontal partitioning (HP) In which different parties hold disjoint sets of users with opinions of the same items.
Arbitrary partitioning (AP) In which there is no pattern of how data are distributed. If the entire set is defined by an m ×n

user-item matrix, one party A holds a subset of users ma ≤ m whilst another party B holds the rest mb = m − ma; 
the same applies for items.

Depending on how information is stored and how recommendations are computed, PPCF schemes can be classified as 
centralised or decentralised. A PPCF method is called centralised if it relies on a third party to perform intermediate calcu-
lations between users or entities, or if ratings are stored in a single server where recommendations and predictions are 
computed. Situations in which data are partitioned as discussed above are not considered as centralised because the data 
are distributed between different parties. Typically, centralised PPCF methods offer higher efficiency than their decentralised 
counterparts since similarity and prediction computations avoid the communication overhead. However, in centralised meth-
ods, data are managed by only one party which has total control over them, with the ensuing privacy issues, if the data 
are not well protected at the central party. Most centralised PPCF methods add noise in several ways to perturb the data. 
In [23,24] the authors propose to perturb the data by following an item-invariant Gaussian-uniform noise distribution. In 
the item-based PPCF scheme proposed by Zhang et al. in [25], perturbations are added depending on the importance of 
the ratings in the recommendation process. Another way to perturb data is shown in [26], where the authors propose item 
permutations and geometric transformations to obfuscate the data.

Regarding decentralised PPCF methods, they use members of distributed networks, considered in most cases as users, 
to perform intermediate calculations and predictions. Decentralised schemes generally involve less information disclosure 
than their centralised counterparts, but they entail the use of expensive protocols and more complex calculations. Typically, 
in decentralised PPCF methods, users store their own ratings. This results in a series of shortcomings like the need for the 
active participation of users, who are required to share their data and perform intermediate calculations. If users are not 
active, the amount of data over which CF is performed decreases, which in turn drastically reduces the accuracy of the 
recommendations.
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Fig. 1. Centralised PPCF scheme. The user makes a request on an item to the server, which responds with a personalised prediction.

Well-known PPCF with partitioned data schemes, which involve different parties sharing their data to perform CF 
with more referrals, are also regarded as decentralised methods. Several approaches with partitioned market basket 
databases [27] have been proposed in the literature. This kind of database is suitable to make top-N recommendations 
with high accuracy and low computational cost due to its binary ratings contents. In the numerical rating context, we have 
several approaches with partitioned data schemes such as the one proposed in [28]. Finally, schemes in which users store 
their own ratings can be found in [29] and [30]. For more on PPCF, the interested reader may refer to [14].

2.2. Statistical disclosure control and microaggregation

Statistical Disclosure Control (SDC, [31]), also known as statistical disclosure limitation, seeks to transform microdata 
sets (i.e. datasets consisting of records corresponding to individual respondents). Such transformation is performed before 
publication in such a way that it is not possible to re-identify the respondent corresponding to any particular record in the 
anonymised published microdata set—identity disclosure—nor is it possible to discover the value of a confidential attribute 
(e.g. salary) for a specific respondent—attribute disclosure.

Prior to any anonymisation process, direct identifiers (name, passport no., etc.) need of course to be suppressed from 
the dataset. However, some of the attributes that remain in the anonymised dataset may be quasi-identifiers, that is, at-
tributes which may facilitate indirect re-identification of respondents through external data sources (available as intruders’ 
background knowledge) that combine those attributes with direct identifiers.

In fact, in our application to PPCF, attributes will be the preferences of users on different items, and each record will 
collect the preferences of a particular user. We will consider all attributes to be quasi-identifiers, because a large number of 
preferences has been shown to lead to user re-identification (e.g. [32] identified Netflix users based on their preferences).

Microaggregation is a family of SDC algorithms for datasets, used to prevent against re-identification, which works in 
two stages:

1. The set of records in a dataset is clustered in such a way that: i) each cluster contains at least k records; ii) records 
within a cluster are as similar as possible.

2. Records within each cluster are replaced by a representative of the cluster, typically the centroid record (i.e. the average 
of the cluster).

When microaggregation is applied to the projection of records on their quasi-identifier attributes, the resulting dataset is 
k-anonymous, that is, to an intruder each record in the dataset is indistinguishable within a cluster of k records in terms of 
the quasi-identifiers. The k-anonymity property is widely accepted as a useful measure to protect privacy and we will adopt 
it in our proposal. However, there are other properties such as t-closeness, p-sensitivity or l-diversity that could fit in other 
privacy models and might deserve the attention of the PPCF community in the future.

In [33] a simple microaggregation heuristic called Maximum Distance to Average Vector (MDAV) is described, in which 
all clusters have exactly k records, except the last one, which might have between k and 2k − 1 records. The fact that 
k-anonymity only protects against identity disclosure (but not against attribute disclosure) is not a problem in our PPCF 
application, because all attributes are regarded as quasi-identifiers. In other words, all attributes will be modified by mi-
croaggregation to reach k-anonymity; hence, protection against attribute disclosure is also offered (in case preferences on 
some items are considered confidential). We will use MDAV because of its simplicity, although it has the limitation of using 
clusters of fixed size k.

3. Proposed method

In this section, we describe our proposal in detail. Our scheme can be classified as a centralised PPCF method. Its 
architecture is shown in Fig. 1.

Our approach is based on the aforementioned MDAV microaggregation algorithm. However, we slightly modify MDAV in 
the way the leftover records are managed. The original MDAV algorithm specifies that, if at the end of the clustering process 
there are p records between k and 2k − 1 (k ≤ p < 2k) that do not belong to any cluster, they should form a final cluster C f
themselves. In our approach, in order to manage the unassigned records more accurately, we first compute the mean of C f , 
denoted by M f , and we compute the distance between every C f record and M f . Afterwards, we compare the distance 
between each member of C f and all the already formed clusters. If more than half of the records in C f are closer to M f
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Fig. 2. Graphical scheme of the proposed method.

than to any other cluster, we form a final cluster with the C f elements. Otherwise, each record is added to the closest 
cluster amongst those already formed. Since the MDAV algorithm is a data-oriented algorithm, it cannot be proven that our 
approach is always better, however, in our tests, our modification has always performed better, and the improvement is 
specially noticeable with big values of k.

Our scheme, illustrated in Fig. 2, works as follows:

1. Ensure that the dataset contains no missing values for any attribute in any record. This is necessary in order to compute 
the Euclidean distance between records. Imputation methods or non-personalised values can be utilised to fill the empty 
fields of the dataset matrix. For our experiments we have used central value imputation.

2. Once the matrix is completely filled, we compute the z-scores of each column (item) of the dataset in order to stan-
dardise the data (i.e. give the same statistical weight to each dimension), using the following expression

z-score = xi − μ

σ

where xi is the i-th value of item x and μ and σ are the mean and the standard deviation of item x, respectively. In 
this way, the mean and the standard deviation of the transformed item are 0 and 1, respectively.

3. Once the standardised matrix has been obtained, we are able to apply the MDAV clustering. Users will be grouped into 
a number of clusters, with each cluster Ci consisting of the k most similar users, according to the Euclidean distance, 
where k denotes the cluster cardinality. By selecting the most similar users, we maximise the cluster homogeneity and 
we therefore reduce the information loss. Once the cluster relationships are established, the mean values of each Ci , 
denoted as Mi , are computed. Afterwards, each value of Ci is replaced by the corresponding Mi .

4. The MDAV clustering process will result in a new dataset in which members of the same cluster Ci will have the 
same profiles and become indistinguishable within their group. Therefore, after applying MDAV, this dataset will satisfy 
k-anonymity.

5. Finally, in order to make predictions, the results are de-standardised to obtain the final obfuscated dataset.

4. Experimental results

In this section, we report the experimental results of our method and compare them against those obtained with the 
widely used Gaussian noise addition method (GNA), which uses a Gaussian distribution with zero mean and standard 
deviation σ (i.e. N (0, σ)) to perturb the dataset. Firstly, Section 4.1 shows the results related to the privacy and the utility 
provided by the analysed methods. Then, Section 4.2 assesses the quality of the predictions.

Experiments with GNA were repeated 50 times with each evaluated σ . As we already did in our proposal (i.e. Fig. 2), the 
dataset values are standardised before the Gaussian noise is added. In order to test the quality of our method, we used two 
well-known CF datasets: Movielens and Jester.

Movielens was developed by Grouplens [4] and it is one of the most widely used reference sets in CF. Here, we consider 
the dataset Movielens 100k, which contains 100,000 ratings of 943 users on 1682 films. The Movielens 100k range values are 
comprised between 1 and 5. This database is highly sparse, since more than 90% of the fields are empty. Once completely 
filled, the matrix contains a total of 1,586,126 values.



JID:YJCSS AID:2857 /FLA [m3G; v1.143-dev; Prn:23/12/2014; 8:39] P.6 (1-12)

6 F. Casino et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Jester [34] is a joke recommendation system developed in the University of California, Berkeley. The entire database has 
100 jokes and ratings of 73,421 users. As a result, the matrix contains a total of 7,342,100 values. However, this database is 
not as sparse as Movielens 100k since Jester has approximately 44% of empty cells.

4.1. Protection assessment: information loss and privacy

In order to measure the quality of the protection provided by a perturbation method we consider two factors, namely 
the information loss and the disclosure risk. The information loss is generally associated to the sum of squared errors 
(SSE). The SSE is commonly used as a measure of the distortion introduced on the original data. In the special case of 
microaggregation, the SSE is computed in vector notation as follows:

SSE =
g∑

i=1

ni∑

j=1

(xij − x̄i)
′(xij − x̄i) (1)

where g is the number of subsets/clusters generated by the algorithm, ni the number of elements in each cluster, xij the 
vector of the j-th user of the i-th cluster and x̄i is the average vector of the i-th cluster. More generally, given an original 
dataset O represented by a matrix of n × m elements oij and a distorted/protected dataset P represented by a matrix of 
n × m elements pij , the SSE is computed as follows:

SSE =
n∑

i=1

m∑

j=1

(oij − pij)
2 (2)

The disclosure risk (DR) measures the probability of correctly relating a record of the obfuscated/protected data matrix 
with a record of the original matrix. It is also known as the probability of re-identification, or the re-identification risk. For 
an attacker, the re-identification procedure consists in computing the distances (e.g. the Euclidean distance) between a given 
protected record pi (corresponding to user i), and the target records o j , that could be obtained from third party sources 
such as censuses and the like. In our case we assume the best scenario for an attacker (the oracle scenario) in which he has 
the original dataset O and the distorted dataset P and he tries to link each record pi in P with the records o j in O .

For each record pi ∈ P the attacker determines the closest record o j ∈ O . If that closest record o j is actually the original 
record belonging to pi , the attacker succeeds and we say that pi has been re-identified. To compute the disclosure risk, we 
try to re-identify all records and then compute the percentage of correct re-identifications. In terms of privacy and utility 
of the data, both the SSE and the DR should be low.

In the following tables and figures we show both SSE and DR results for the analysed methods: our microaggregation-
based method and the GNA. Table 1 shows the results obtained with our proposed method for different values of k, which 
represent the cardinality of the clusters, whilst Table 2 shows the results obtained using GNA with different values of σ . 
It can be clearly seen that the relation between SSE and DR is much better in the MDAV-based approach for the analysed 
databases. Actually, note that since our method satisfies k-anonymity, by design its DR is upper-bounded by 1/k.

4.1.1. Movielens 100k
Fig. 3a and Fig. 3c respectively show the SSE and DR for the MDAV-based PPCF for different values of k. It can be 

observed that their behaviour is pretty antagonistic. When SSE is increased, DR is reduced accordingly.
Figs. 3b and 3d show SSE and DR for the GNA approach respectively. Similarly to the MDAV-based approach, when SSE 

grows, DR decreases. However, as we discuss in Section 5, the GNA method needs to add much more distortion to the data 
(i.e. SSE is increased) than the MDAV-based approach to reach the same DR.

4.1.2. Jester
The behaviour of the results obtained for the Jester database, illustrated in Fig. 4, is almost identical to the one for the 

Movielens 100k database. Likewise, data remain affected in the same way, but in another scale, due to the range of values 
of this database. Since the σ values proposed for the GNA approach are the same in both matrices, the amount of added 
noise has a lower impact in Jester database because the range of possible values is significantly wider. In the most extreme 
case (i.e. σ = 50), it may be observed that the obtained DR is equal to 0. However, the SSE is so high (8.21 × 108) that data 
are practically useless.

4.2. Prediction accuracy

In the previous section, we have analysed the information loss SSE and the disclosure risk DR provided by the MDAV-
based and the GNA approaches. However, information loss is not entirely captured by SSE. Note that the protected data will 
be used by recommender systems to make predictions about which items a user would be more interested in. Thus, it is 
important to check how accurate are predictions after protecting the data.

In order to measure the aforementioned prediction accuracy, we have defined a training set with 80% of the item values 
and a test set with the remaining 20%, for both databases. We will use the protected records for the users in the training
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scale, respectively.

50 75 100 150 200

134 136 136 138 139
0.63 0.21 0.21 0.10 0.10

73 75 76 77 78
0.513 0.303 0.242 0.147 0.128

ale, respectively.

4 5 10 20 40 50

727 830 1078 1221 1294 1339
7.21 4.24 1.40 0.42 0.31 0.10

495 558 698 774 813 821
1.301 0.463 0.036 0.006 0.001 0
Table 1
Results of MDAV based PPCF. For the sake of clarity, the SSE results of the Movielens 100k and the Jester databases are displayed in a 103 and in a 106

MDAV

k 2 3 4 5 6 7 8 9 10 25

ML 100k SSE 64 87 99 105 110 114 117 119 120 130
DR% 40.82 26.51 19.93 15.90 12.19 12.19 9.65 7.95 7.21 2.33

JESTER SSE 25 37 44 48 52 54 57 58 60 69
DR% 47.455 30.577 22.173 17.121 13.729 11.331 9.450 8.000 6.800 1.570

Table 2
Results of GNA based PPCF. For the sake of clarity, the SSE results of the Movielens 100k and the Jester databases are displayed in a 103 and in a 106 sc

GNA

σ 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.5 3 3.5

ML 100k SSE 246 248 257 275 302 336 376 418 509 592 663
DR% 100 100 98.51 89.28 68.50 50.58 44.53 27.99 18.76 10.49 8.58

JESTER SSE 6 25 55 93 136 181 226 268 342 404 454
DR% 99.873 95.298 78.270 58.528 42.056 30.221 22.030 15.759 8.127 4.193 2.255
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Fig. 3. SSE and DR results of the implemented methods on the Movielens 100k database.

Fig. 4. SSE and DR results of the implemented methods on the Jester database.

set and the original records for the users in the test set. The predictions are computed as follows:

• Find closest neighbour. Given a user Ui in the test set, find its closest user, say U j , in the protected training dataset.
• Assign prediction. The predicted values for user Ui are those that correspond to U j in the test set.

Once the prediction for all users in the test set has been done as above, we compute the error between the original 
values of the test set and the values assigned by the above procedure. To compute this error we apply the widely used 
mean absolute error (MAE), defined as follows:

MAE =
∑n

i=1 |pi − ri | (3)

n
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Fig. 5. Relation between MAE and DR for the analysed methods on the selected databases. (The lower the better.)

Table 3
Example of a comparison of MAE and %MAE results between GNA and MDAV 
for the two analysed datasets. The lower the better.

Database Method MAE %MAE

ML 100k MDAV , k = 10 0.89 22.25
GNA, σ = 4 1.08 27

JESTER MDAV , k = 9 2.91 14.55
GNA, σ = 2.5 6.50 32.5

where n is the number of predicted elements, pi is the predicted value for element i, and ri is the real value of i in the test 
set. The MAE outcomes in respect of the DR are displayed in Fig. 5.

As depicted in Fig. 5a, initially the MAE outcomes of the GNA method grow significantly with low values of added noise 
as a result of the small range of the Movielens 100k’s values. Moreover, such range of values truncate the noise rapidly once 
a considerable amount of noise is reached. Additionally, the sparseness of the matrix negatively affects the resulting MAE. 
Finally, the growth increases as the value of σ does. The growth of the MAE in our method is linear with respect to k and 
achieves significantly lower values, which means recommendations of better quality.

Regarding the Jester database (Fig. 5b), the MAE achieved with our method is better than the one achieved with Movielens
100k because its lower sparseness. However, the range of the Jester dataset is wider and then the noise introduced by GNA 
affects data with a slower pace.

Moreover, to perform a clearer comparison between our proposal and GNA, we have selected obfuscated datasets with 
the same privacy level (i.e. DR). Thereafter, for the sake of simplicity, we have performed a single comparison for both 
databases. Note that any DR value could have been chosen as long as it is the same for both methods. The results of such 
comparison are displayed in Table 3.

5. Comparison and discussion

In the previous section we presented the results obtained by our micro-aggregation-based approach and the classical 
GNA approach. In this section we briefly compare these results and show that the MDAV-approach is superior, both in 
terms of privacy and prediction accuracy.

5.1. Movielens 100k

In Fig. 6a, we can see a comparison between SSE and DR for both methods. In the X-axis we represent DR and in the 
Y -axis we show SSE. This figure can be used to read the amount of noise, in terms of SSE, that is required by each method 
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Fig. 6. Relation between SSE and DR for the analysed methods on the selected databases.

to achieve a given DR. For example, it can be seen that for a fixed value of DR = 30% the MDAV-approach roughly introduces 
an error in the order of 100K whilst the GNA approach requires 400K .

The smallest possible DR value, if the data is obfuscated with the MDAV method, is 1
943 � 0.1% for the Movielens 100k

dataset. In order to obtain such value, the MDAV-approach needs to form clusters of k = 150 elements, which leads to 
an SSE of 138,650. In contrast, the GNA obtains such DR value with an SSE of 1,339,008, which is almost one order of 
magnitude larger.

These results clearly show that the proposed approach perturbs data in a much more efficient way. Moreover, as already 
mentioned, our method provides k-anonymity and therefore upper-bounds the disclosure risk by design.

Regarding the quality of predictions, Fig. 5 shows the relation between MAE and DR for both datasets. It may be observed 
that the growth resembles that of Fig. 6, with slight differences due to the % of the prediction set and the rating’s truncation. 
Moreover, Table 3 shows an example of the predictions accuracy. It may be seen that when the predictions are conducted 
using the data protected with MDAV, MAE is 22.25% with a DR value of 7.21%, which is a considerable privacy level. On 
the contrary, the values predicted by using the data protected with GNA lead to a 27% MAE, which is almost 5 percentage 
points higher. Therefore, we may conclude that both the quality of the predictions and the quality of privacy are better in 
our method based on MDAV.

5.2. Jester

In Fig. 4d and in Table 2 we notice that DR reaches a considerable privacy level with low values of σ in the case of the 
Jester database. Although the growth pace of the SSE is nearly the same for both databases, the quantity of noise added 
in the Movielens 100k is much lower due to its lower value range, compared with the Jester database, especially for high 
values of σ .

The quality of the predictions for the selected obfuscated datasets is shown in Table 3. For almost the same level of 
privacy, the GNA approach reaches a 32.5% MAE, which is more than twice the MAE achieved by the MDAV method 
(i.e. 14.55%). Such accuracy of the MDAV proposal is mainly due to the density of the Jester database, which contains 
more than 55% of original votes.

In Fig. 6b we can observe the efficiency of the applied noise in the Jester database. The behaviour is nearly identical 
to the one shown in Fig. 6a for Movielens 100k, except for the initial growth of SSE with the GNA method. This growth is 
produced because the initial values of σ perturb less the Jester data due to their wider range of values, compared with the 
Movielens 100k’s range.

Both Figs. 6a and 6b confirm that our method is applicable to sparse and dense databases and its quality is far higher 
than the one of GNA, regardless of the data. Obviously, the quality of the predictions is highly related with the density of 
the database.
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6. Conclusions

Collaborative Filtering is a recommender system used to perform automatic recommendations to users in multiple con-
texts. Despite the great advantages of using CF, we have highlighted its downside regarding users’ privacy. Although a large 
amount of CF methods have been proposed, more study is still needed as there are many challenges to overcome. Probably, 
the most significant amongst them is the proper protection of users’ privacy.

Definitely, there is a trade-off between the privacy of users’ preferences and the quality of the recommendations ob-
tained. Therefore, in this article, we have proposed a novel PPCF method based on microaggregation. The results obtained 
over the evaluated databases demonstrate that the proposed method perturbs data in a much more efficient way than 
other well-known methods such as GNA. Moreover, our proposal achieves k-anonymity, which guarantees privacy by design, 
a feature not offered by GNA.

It is important to emphasise that our proposal concentrates on the protection of the data and it might be combined with 
other techniques such as the encryption of identifiers to provide a holistic protection of the users’ privacy. Future work will 
focus on two different directions. The first one is to improve the efficiency of our method in order to enable implementation 
in a decentralised setting. Certainly, a decentralised version of MDAV could be achieved by using homomorphic encryption 
or other well-known privacy preserving data mining techniques. However, boosting its performance to make it a real choice 
in practice is an open issue that we plan to study in the near future. The second direction regards the centralised setting, 
where more computational complexity can be tolerated; hence, in this case, MDAV could be replaced by microaggregation 
heuristics with variable group size [35,36] in order to reduce information loss as much as possible.
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