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Abstract. An analysis of acoustic features for a ternary cognitive load
classification task and an application of a classification boosting method
to the same task are presented. The analysis is based on a data set that
encompasses a rich array of acoustic features as well as electroglotto-
graphic (EGG) data. Supervised and unsupervised methods for iden-
tifying constitutive features of the data set are investigated with the
ultimate goal of improving prediction. Our experiments show that the
different tasks used to elicit the speech for this challenge affect the acous-
tic features differently in terms of their predictive power and that differ-
ent feature selection methods might be necessary across these sub-tasks.
The sizes of the training sets are also an important factor, as evidenced
by the fact that the use of boosting combined with feature selection was
enough to bring the unweighted recall scores for the Stroop tasks well
above a strong support vector machine baseline.
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1 Introduction

Non-verbal and paralinguistic characteristics of speech have received increasing
attention from researchers. It is now commonly accepted that non-verbal sounds
form an important part of human communication [2], and that non-verbal fea-
tures may help identify important structural aspects of speech interaction [7] in
both natural and laboratory settings [8, 1, 9]. A more recent trend in the use of
paralinguistic features is their analysis for predicting levels of cognitive workload.
Determination of workload levels is relevant in fields such as ergonomics, where it
could help improve human computer interaction [4]. While most research in this
field has been based on neurophysiological measuring, which involves specialised
and intrusive equipment, the use of voice features for assessment of cognitive load
levels is seen as promising enough to motivate a COMputational PARalinguistic
ChallengE, ComParE [10].

This paper comprises a study of supervised and unsupervised machine learn-
ing methods applied to the prediction of cognitive load levels on a dataset dis-
tributed as part of the ComParE’14 dataset. As this dataset contains a large
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number of speech and electroglottographic features, we investigated unsuper-
vised and supervised dimensionality reduction methods in order to eliminate
contingent features of the data. We then trained ensambles of classifiers (using
the boosting technique) in order to distinguish among the different (discretised)
levels of cognitive load.

Experiments showed that the cognitive load prediction task is better handled
with supervised feature selection and different classification schemes. Contrary to
our expectations, principal component analysis (PCA) feature extraction proved
quite ineffective. However, with supervised feature selection a boosting global
model achieved unweighted average recall (UAR) scores 20.5% and 18% higher
than a published baseline based on a tuned support vector machine (SVM)
classifier [10], in a Stroop time pressure and dual task, respectively. Similar per-
task models were not quite as successful, but still yielded an improvement of
12% in the Stroop dual task data.

2 The Dataset

The Cognitive Load with Speech and EGG (CLSE) dataset [13, 10] was designed
to support the investigation of acoustic features and evaluation of algorithms
for the determination of a speaker’s cognitive load and working memory dur-
ing speech. The CLSE database comprises recordings of 20 male and 6 female
native Australian English speakers. These recordings encompass four types of
experimental tasks, namely: reading span Sentence, reading span Letter, Stroop
time pressure and Stroop dual task. These tasks define four partitions of the
CLSE dataset. In each case, the data instances are classified objectively into
three distinct cognitive load levels: low (L1), medium (L2) and high (L3) levels.

The “span” tasks are used to measure the working memory capacity of a
subject [13], in which participants are required to remember concepts or objects
in the presence of distractors [3, 10]. The reading span task is based on the pro-
tocol described by Unsworth et Al. [13, 12]. It required the participants to read a
series of (between two to five) possibly illogical short sentences, indicate whether
the sentence read was true or false, and then remember a single letter presented
briefly between sentences. This setup allowed the gatherer of the dataset to label
memory load levels objectively as: L1, for data from the first sentence, L2, for
data from the second sentence, and L3, for data from the third, fourth, and fifth
sentences (for which no further distinctions were made).

The Stroop tasks (Stroop time pressure and Stroop dual task), named after
JR Stroop’s seminal experiments [11], aim to induce increased cognitive load
through presentation of conflicting stimuli to the participant. In this case, the
stimuli are word and colour. The participant is asked to name the font colour
of words corresponding to different colour names. Data instances produced in
conditions where both the colour and the word that named the colour were the
same were labelled as L1 (low cognitive load). Where the font colours and the
colour names differed, data were labelled L2 or L3 (medium or high level of
cognitive load). The high level was defined in terms of the time pressure on
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the subject (i.e. the colour had to be named in a short period of time, namely
.8s) or in terms of task complexity (i.e. participants were required to perform
a tone-counting task in addition to naming the font colour). These distinctions
characterise the Stroop time pressure and Stroop dual task subsets of the CLSE
dataset. These subsets each contain three utterances for each of three cognitive
load levels per speaker.

Table 1 shows the standard “splits” of the CLSE dataset. The validation
and the test set contain roughly same number of instances, while the training
set contains about 50% more data. Among the four types of tasks employed in
data collection, the two span tasks occupy the majority of the dataset while the
two Stroop tasks comprise only about 10% of each dataset. Considering that the
dataset has 6,374 attributes in total, one can readily see that the Stroop sets are
affected more severely by high dimensionality.

Table 1. Summary of instance quantities in each type of task

Training Validation Test

reading span letter 815 499 576
reading span sentence 825 525 600
stroop time pressure 99 63 72
stroop dual task 99 63 72

Total 1838 1150 1320

A fair portion of features in the training set have very low variance. This
includes, for instance, all quadratic regression coefficients of level 1, and a num-
ber of other prosodic features. Some low level descriptors of spectral features
also suffer from this problem. The root mean square signal frame energy feature
(pcm RMSenergy sma lpgain) is a case in point, with mean 1.98e-05 and vari-
ance 9.55e-10 in the training set. Such features are nearly constant and bring
little discriminatory power to the classification model. We therefore removed all
features with standard deviation less than 0.01. In Total 252 features (3.95% of
all features) were removed from the training set, as a preprocessing step for all
modelling experiments in this paper.

3 Predicting Cognitive Load Labels

A training set containing 1,838 instances described by 6,374 features challenges
most classifiers since the data points are sparse with respect to dimensionality.
The sparsity is more severe for models trained on subsets that contain only
instances of a particular task (per task models). We therefore started by assessing
the potential of two dimensionality reduction methods in rendering the dataset
more tractable by learning algorithms.
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3.1 PCA experiments

PCA seeks to reduce dimensionality while preserving most of data variation.
Applying PCA to a dataset transformed so that all features are scaled and
centered, we found that the first eight principal components explain over 95%
of cumulative variance. We took 20 PCs and reencoded training and validation
set into this new space. The cleaned features are projected onto the 20 PCs,
and used for training (the transformed training set has 1,838 instances with 20
features). When testing with the validation set, features need to be projected to
the 20 PCs before the prediction step.

Here a global model is trained and used to predict on each instance in the
validation set. UAR scores were collected for each task. Contrary to our expecta-
tion, both a naive Bayes classifier and the AdaBoost classifier failed to produce
satisfactory results. We found that the UAR scores were far below baseline with
the SVM global model of [10]. We speculate that the reason of this low perfor-
mance on the PCA-reduced sets is the lack of an effective method for normalising
the data per speaker on the training and test set. In the absence of such nor-
malisation, PCA may be dominated by a few predominant features which can
easily lead this method to overfit.

3.2 Feature Selection and Global Model

Faced with the failure of an unsupervised method of dimensionality reduction,
we attempted a supervised approach. The CfsSubsetEval feature filter provided
by the Weka package [5] was employed. It selects attributes by individual corre-
lation with the class variable and inter-correlation with other attributes. Subsets
of features that are highly correlated with the class while having low intercorre-
lation are preferred [6]. We compare global model prediction UAR scores with
and without CfsSubsetEval pre-filtering in Table 2.

About classifier, we prefer Boosting with decision tree base learner instead
of decision stump. The latter is a single node tree and classifies an instance by
one feature. Although the feature is chosen by entropy, decision stump is too
simple as a base learner in load level corpus. On the other hand, a decision tree
with branching factor M=2 (minimum number of instances per leaf) by default
naturally incorporates more attributes in base learner and helps the ensemble
classifier.

Table 2. The effect of feature selection with AdaBoost classifier on validation set.
UAR scores are from the global model, and AdaBoost is trained 30 iterations with
decision tree base classifier. FS indicates feature selection with the CfsSubsetEval filter

FS = No FS = Yes baseline

reading span sentence 48.50% 55.39% 61.3%
stroop time pressure 57.14% 65.08% 54.0%
stroop dual task 49.21% 52.38% 44.4%
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Table 2 shows the efficacy of feature selection combined with an AdaBoost.M1
with Decision Tree base learner. Without feature selection, AdaBoostM1 beats
the SVM baseline slightly in the Stroop tasks, but is 13% lower than baseline in
the reading task. This observation shows the power of ensemble classification in
this dataset when there is a proper base learner. When feature selection is in use,
the global model achieves higher accuracy for each task. In Stroop time pressure
task, the best UAR is 65.08%, an improvement of 11 points over the baseline.
In the Stroop dual task, the best UAR is 52.38%, an 8-point improvement over
the baseline. However, reading span is still 6% lower than baseline. In the next
section we investigate per task models, where classifiers are trained on relatively
more uniform training sets.

3.3 Per Task Model

In the above section, we predicted objective load level with a global model which
trains a single model on all available instances and predicts on a validation set of
each task. In this section we apply an alternative approach, training one model
with data from one task and predicting on a validation set of the corresponding
task. This is called a per task model [10]. A comprehensive training set contains
objective load level instances from four tasks, part of which could be redundant
for predicting on one task. Since the SVM baseline shows significantly better
UAR scores with Stroop tasks, Per Task models are expected to outperform the
global model in our experiments.

The split training sets are filtered in the same way as for the above described
experiments. Features with standard deviation less than 0.01 are pre-filtered.
The CfsSubsetEval filter selects 93, 74 and 51 features by sequence for each
task. Then AdaBoost.M1 is employed as a classifier for the corresponding per
task models. The number of training iterations is set to 20 for each base learner.
Since the Decision Tree (DT) base learner works well for the Global model, it
is used again. Moreover, we also use a Decision Stump (DS) base learner for
comparison.

Table 3. The effect of feature selection with AdaBoost. UAR scores are from Per Task
model, and AdaBoost is trained 20 iterations with each base learner

Ada+DT Ada+DS baseline

reading span sentence 54.98% 48.86% 61.2%
stroop time pressure 68.25% 73.02% 74.6%
stroop dual task 66.67% 71.43% 63.5%

The results are shown in Table 3. Decision Stump, as the simplest tree struc-
ture, outperforms Decision Tree in AdaBoost for both Stroop tasks. This obser-
vation comes from per task model prediction on the validation set and seems
quite surprising. In order to test its validity, we further analyse the Stroop Dual
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Task model prediction within the training set. Figure 1a shows the performance
of both DS and DT base learners under different numbers of AdaBoost itera-
tions. It is clear that AdaBoost with the DT base learner reaches 100% UAR in
the training set regardless of the number of training steps (10 to 100 iterations).
At the same time, its prediction accuracy on the validation set oscillates between
61.90% and 68.25%. When we run more iterations for DT, there is no clear trend
of increase or decrease in UAR on the validation set. This suggests over-fitting.
In this situation, accuracy on the validation set depends on randomness of the
decision boundary in the hypothesis space, and the boundary margin is already
too narrow.

On the other hand, the simpler DS model improves with more training steps.
Its UAR score improves in both training set and validation set when iteration
increases from 10 to 20. The accuracy on the training set is far below 100%, but
cannot be improved when iteration is over 20. DS reaches its upper bound of
prediction power. We have seen that DS and DT both exhibit their best results
on the Stroop Dual Task model, and there is no need to explore a more complex
model structure. The fact that DS outperforms DT as an AdaBoost base learner
is therefore to be expected. The sub-tasks with the smallest numbers of instances
(Stroop dual, and Stroop time pressure) tend to favour simpler models that are
less prone to overfitting.

(a) (b)

Fig. 1. Per task models of Stroop Dual Task (a) and Reading Span task (b); Ad-
aBoost.M1 with Decision Stump and Decision Tree base learners

However, DT outperforms DS as a base learner for AdaBoost.M1 in the
Reading Span Sentence task (Table 3). DS training UAR remains below 50%
when training iterations increases from 10 to 100 (Figure 1b). This is a sign of
under-fitting, suggesting that DS cannot represent the variances in a Reading
task with 825 instances (Table 1). As in the previous per task Stroop models, the
DT based classifier’s training UAR is 100% when iteration equals 10, indicating
that it does not suffer from the same problem. Unlike the previous case, however,
in the reading task model, the UAR of DT on the validation set has a roughly
increasing trend with more iterations. Prediction power is increasing with a more
complex model, so here there is no indication of over-fitting. More iterations or
more complex DT base learners could induce better UAR on the validation set.
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4 Discussion

In this paper we proposed solutions for classifying three levels of objective load,
with evidence of 6,374 speech features. In contrast to the rich feature set, there
are only 1,838 instances spanning four different tasks. Since a moderately tuned
SVM classifier only achieves a 44.4% baseline on a Stroop task, our results serve
to emphasise the importance of data cleansing and dimensionality reduction in
this modelling challenge.

In data cleansing, we dropped 252 features with standard deviation less than
0.01. These features are nearly constant, offering little value for discriminating
among the three class levels while adding to the computational load. Experiments
show that boosting models work well without these features, and the training
time is reduced significantly. However, the number of features remaining after
this pre-processing step is still very large, and dimension reduction is needed.

We found that dimensionality reduction by feature extraction through PCA
harms performance in boosting as well as other models. This may be due to
the differences of mean values among the features and the lack of an effective
unsupervised way of normalising these values on a per speaker basis. On the
other hand, the supervised CfsSubsetEval filter proved to be an effective fea-
ture selection method. The features with high correlation with class variable
and low inter-correlation with other features were favoured. Multicollinearity is
thus alleviated in this large feature set. The reduced feature set mainly contains
frequency signals (MFCC and F0) and sound quality measures (log HNR), in-
stead of energy related features (RMS). The reduced feature set does improve
accuracy and improves on the SVM baseline for the Stroop data (Table 2).

The outcome of feature selection is encouraging, but we still need to improve
model accuracy by controlling the complexity of a supervised learning model.
The boosting model combines the predictions from multiple classifiers and is
generally more accurate than a single classifier. The training iterations act as a
controller of model complexity. In the first round, a base classifier is built. In
the next round, the weight of the n + 1 base learner is Dn+1, which is higher
on instances that learner n has error on. The final decision is a collective vote
by weighted N base learners. When boosting has no error on the training set,
the generalisation power of base learner is enough for the current input. When
validation accuracy keeps increasing with training accuracy stable at 100%, it
is necessary to try to model with more iterations, thereby increasing the risk of
over-fitting. However, when training accuracy remains stable at low values as
the number of iterations increases, there is little point in proceeding. Such base
learner is not complex enough to represent feature variances adequately.

5 Conclusion

We presented an exploration of feature selection and modelling trade-offs to be
taken into account when approaching the challenge of categorising a speaker’s
cognitive load state based on acoustic features. We found that while Frequency
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signals (MFCC and F0) and sound quality measures (log HNR) are critical in
determining the levels of cognitive load, energy related features (RMS) seem
contingent to this task.

Under appropriate settings of base learner complexity, the boosting classifier
exceeds a strong SVM baseline in most Stroop tests. However, the former proved
less effective in the reading span sentence tasks. This suggests that it may be
necessary to study cognitive load prediction differently for each setting.

This is, however, a complex challenge and as the results reported here demon-
strate, there is ample room for further exploration. In the near future we plan
to investigate unsupervised ways of normalising the features per speaker as well
as explore models that can take advantage of global data in per task modelling.
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