Development of a Mobile Robotic Simulator
K. Kelly, P. Wardlaw, C. McGinn

Department of Mechanical and Manufacturing Engineering, Trinity College
Dublin

ABSTRACT

Robotic simulators facilitate design and testing of robotic platforms. For
the purpose of rapid development and education, currently available simulation
packages can be overly complex and time consuming for the purpose of rapid
development and education. The aim of this work reported here was to develop a
robotic simulator that would address these issues.

The programming language python was chosen for its ease of use,
readability, and rapid development pedigree. Third party software libraries were
used develop the simulator; wxPython - a library for building graphical user
interfaces; Pygame - a library used for 2d image rendering and user interaction.

The simulator in its current state provides good functionality for the
testing, development and validation of robotic control systems. Using the
developed robotic simulator it is possible to simulate simple worlds, test the
performance of robotic control algorithms, graphically visualise simulations in
2d, and perform probabilistic mapping.

KEYWORDS: Robotic, Simulation
1. INTRODUCTION

Robotic simulation is the process of simulating robots in a virtual
environment for the purposes of test and design of automated systems. In the case
of mobile robotics a large area of interest is navigation — localisation, perception,
path planning, object detection, and collision prevention. Robotic simulation is a
form of continuous system simulation rather than discreet [1]. Navigation cannot
always be broken down into a straight forward series of unique events as
surroundings tend to change.

The use of robotic simulation during a robot’s development can greatly
increase the quality and cost effectiveness of its design. Simulation can be used
to validate control algorithms and to help engineers better visualise their
algorithm’s behaviours. When compared to physical testing, simulation also
allows for more rapid development and reductions in time and money required

[2]
2. ROBOTIC SIMULATION

Robotic simulators started to appear in the early 90s [1]. The first two
companies to develop software were Deneb Robotics (now part of Dassault
Systems [3]) and Tecnomatix Technologies (now a subsidiary of Siemens [4]).
Originally robotic simulation was only for robotic arms [1], and was focused on
manufacturing and automation system such as welding robots or pallet handling
robots.

* darwin-op_sc.wbt - Webots PRO 6.4.1

Eile View Simulation Build Tools Wirard Help
§ Sceme tree o8 « =.

] x4 CAaAvEs Pr» gcandMs R e &

? @ Viewpoint - e-puck.c « Samplecpp -
» @ Background cdefi RANGE (1024 -
b @ DirectionalLight S e .

b @ Derectionaiiigii =atatic void comp
P @ Soccerfield double 1 = wb i
double r = tial s g
double dl = 1 / ENCODER RESOLUTION |8
double dr = r / ENCODER_RESOLUTION
double da = (dr - dl) / AXLE_LENGTH|
printf|-estimated distance covered
printf{"estimated distance covered
printf(“estimated change of orienta

B @walls
¥ @ DEF YELLOW_GOAL Goal
= @ DEF BLUE_GOAL Goal
[tracniation .30 0
@ rotation 0 1 0 3.14159
@ postRadius 0.05
@ postColor 0152941 0.5054
@netColor 111
@ supportColor 11 1
@ locked TRUE
® @ DEF BALL Ball
¥ @ DARWINDP
b @ EPuck

=int main{int arge, char sargv[]) {

ceTag distance sensor|8];
int 1,3;

double speed[2];

double sensors value[8];

translation Cansale o8
%3 sm |e-puck] estimated change of orientation: -0.0142748 rad. !
[e-puck] accelerometer values = -0.00 0.01 9.81
vlo - |e-puck) estimated distance covered by left wheel: 0.0540%542 m. i
= |e-puck] estimated distance covered by right wheel: 0.053312 m.
zlo Sm |e-puck] estimated change of orientation: -0.0142748 rad.
|e-puck] accelerometer values = -0.00 0.01 9.81

display: pixel(28,1}=# 000000F F 0:00:01:712 0.00022

Figure 1. Webots — a popular robotic simulator. [5]

Mobile robotic simulators started appearing in the mid 90s. In 1996 Webots —
a robotic software suite used to model, program and simulate virtual robots - was
released [5]. Webots was created by Olivier Michel at the Swiss Federal Institute
of Technology. In 1998, Michel created a spinoff company Cyberbotics which
continues to develop Webots. Nowadays there are many other robotic simulation
and development solutions available commercially or for free [6].

There is a good selection of commercial mobile robotic simulation packages
currently available. The general trend is to provide an integrated development
environment where robot designers can develop their virtual robot and
environment, and test their robot control programs. Commercial simulators
provide a comprehensive tool set allowing users to develop their Al code and
robot chassis design. The following features are generally incorporated:

e Modelling facilities for creating virtual robots

e Programming interfaces for many languages (Java, C++, python,

MATLAB, URBI)

o Included APIs providing useful programming functions.

Powerful Graphics and Physics capabilities for providing real time
simulation.

o Integrated environments facilitating whole project control.

Large libraries of prebuilt sensors, environments, robots and other
objects.

As well as commercial solutions there are many open source projects for
mobile robotic simulators. Open source projects tend to primarily run on Linux,
although very often are cross platform and support all major operating systems.
The Player project is an open source project that ““enables research in robot and
sensor systems” [7]. Robotic simulation sees a lot of attention from enthusiast and
experts in the open source community.

3. THEORY
In this section some key concepts covered in this project shall be explained.

3.1 Kinematic and Sensor Modelling

Figure 2: Differentially driven two wheeled robot, Picture source [8]

For the purposes of this project it was required to model simple robotic
chassis types. In the simulator reported upon here, a 2 wheeled, differentially
driven chassis model is implemented. The mathematics used was taken from
source [9].

Other important kinematic models are: the Ackerman steering model
(automobiles), Omni-directional wheels (Swedish/Caster wheels), serpentine and
legged robots . These models were outside the scope of this project, but can be
implemented into the reported simulator at a later stage. For more information on
mentioned models please see reference [9].

Figure 3: SICK LIDAR sensor, [10]

The sensors modelled in the reported robotic simulator were LIDAR,
Ultrasonic and Infrared range finding sensors. These sensors work on the
principles of time of flight (LIDAR and Ultrasonic) and optical triangulation

(Infrared range sensors). User-customisable Gaussian error models were
implemented which allow the calculation of, for each sensor type, the probability
that its readings were correct, given a sensor reading value. We shall see that this
parameter is very important for probabilistic mapping.

3.2 Probabilistic Mapping

Probabilistic mapping is used in mobile robotics to construct a map or
image of an environment using sensor readings in order for robots to perform
localisation, path planning and collision avoidance. Three key components to
probabilistic mapping are occupancy grids, Bayes’ theorem and Gaussian
distributions.

Figure 4: Occupancy grid produced by simultaneous localisation and
mapping [11]

Occupancy grid maps are spatial representations of an environment. They
represent an environment using a grid, each grid element containing information
that reflects the occupancy of that element. Occupancy grids facilitate various key
aspects of mobile robot navigation such as localisation, path planning, and
collision avoidance. Occupancy grids are commonly referred to as belief spaces.

Bayes’ theorem is a theorem of probability originally stated by Reverend
Thomas Bayes. Bayes’ theorem is fundamental to Bayesian statistics, and has
applications in fields including science, engineering, medicine and law. The
Bayesian interpretation expresses how a subjective degree of belief should
rationally change to account for evidence.

In probabilistic mapping we use Bayes’ theorem to assess the likelihood
of an object existing at a specific location, given a sensor reading and some
existing information. Each sensor reading taken has a corresponding degree of
certainty which affects the hypothesis that an obstacle exists at a given location.

4. PROJECT OVERVIEW

Clearly there are many commercial and open source simulation suites
currently available. So why not just buy current available commercial software?
Existing solutions tend to be overly complicated and time consuming for the
purpose of rapid development and education. In creating a robotic simulator one
can:

1. Have full control of what the software can do

2. The potential to address/explore issues that exist with current simulation
packages

3. Asalearning exercise — To gain a higher understanding of mobile robotic
navigation.

The core aims of the simulator are to:

1. Be accessible for users of any skill level. Anyone from a robotic software
engineer to budding robotic enthusiast should be able to use the simulator
effectively.

2. Significantly decrease in the lead time and complexity of trivial tasks
such as setting up a simulation, compared to current commercial and
open source solutions currently available.

3. To be an invaluable aid in the process of designing and assessing
navigation, path planning, perceptive and localisation robotic control
algorithms.

4. To be easily adaptable and expandable for future development.

5. To combine a high level API for controlling robots that is universally
adaptable.

S. CREATING THE SIMULATOR

5.1 Programming

Obviously making a significant piece of software like this requires
significant programming so much thought went into selecting the language, tools
and libraries that were used to build the simulator. The programming language of
choice was python. Python is a high level, interpreted, dynamically typed
programming language. Python allows for rapid development of easily readable,
cross platform code.

Python has many uses and applications in science and engineering. An
example of the use of python in mechanical and manufacturing engineering is
SciPy. SciPy combines several mathematical libraries for numerical modelling,
scientific calculations, plotting, and information analysis [12].

5.2 Design

The overall structure of the simulator is composed of 5 main components:
the Graphical User Interface, the Control Interface, the simulator world, and the
probability spaces — shown in figure 5 below.

The world class contains all of the robots, objects and environments
required for a simulation. The world class provides various functions for the
addition, interaction, and sharing of objects contained within. The world is the
core component of a simulator, and is frequently updated and queried by other

components of the simulator. The world class also facilitates the creation of new
objects.

Map Space
Probabilistic model of the
Belief Space environment generated from i Gridsto |
Probabilistic model existing knowledge J '
of the environment / / s .d.réw.
generated in real -
Allows user to
-~r_ - interact with the
1 Sensor data ! Obstace |
\ probabilities !
2d World Image
rendering

| Objects, robots |
! andsensorsto
draw

Robot
Controllable platform

T

, Objectsto !

Figure 5: Simulator Structure

The Robot class is a flexible platform capable of housing any
arrangement of sensors, and be driven by any form of locomotion system
(differentially driven, robotic legs, Ackerman, etc). The Robot class inherits the
Basic Object class so that its shape, position and orientation may be easily
described and manipulated. The Robot class inherits the python thread object so
that it may run its own system functions asynchronously (in a non blocking
manner) from the rest of the simulator’s processes. In a way the robot class can be
thought of having its own “unique CPU” which it can run functions on without
affecting or being affect by the rest of the simulator.

The GUI contains several major components which provide the user with
visual, text, and numerical feedback, and allow the user to interact with the
simulator. Unlike most of the other classes in this project, the GUI component
relies heavily on external libraries (wxPython and Pygame).

The main GUI class acts to glue several components of the user interface
together, and facilitate passing data between them and other components of the
simulator. Each component is its own contained class aiding modularity, code
reusability, and program stability (if one component fails it may not affect other
components).

In the developed simulator there are two probability spaces: the belief
space and the map space. The purpose of the belief space is to map the robots
surroundings based upon sensor readings. This mapped data can then be used by
path planning and localisation algorithms. The purpose of the map space is to
map all known static features of the world. The map space describes our existing
knowledge of an environment, whereas the belief space can be used to build a
probabilistic image without any prior knowledge.

5.3 Functionality

B e

151 47haadng mcomstar

Figure 6: The developed simulators user interface.

The simulator can be used to effectively simulate a wide range of
scenarios for the purpose of testing mobile robotic navigation and control
algorithms.

Obijects and robotic components that are modelled include: basic static
and moving obstacles, flexible robot platform capable of multiple arrangements,
sensors — LIDAR, Ultrasound, infrared, and chassis kinematic models — such as 2
wheel differentially driven chassis.

Using the simulator one may graphically observe their tests in real time.
The simulator is able to visualise a defined simulation world, as well as
probabilistic grids. Trivial tasks such as drawing an object/setting up a test
scenario can be done quickly and easily using the simulators interface and
dialogues.

(3

Figure 7: Editing object vertices via direct mouse input

Robot control files may be edited using the simulators code panel. Key
words, comments, function names and data types are automatically displayed in a
corresponding font/style. This code layout is similar to other integrated
programming environments such as Microsoft visual studio, MATLAB, or
Eclipse. The user written code interacts with their simulated robotic hardware via
a predefined API.

13 ©def run(robot, keep_going, belief_space, map_space, interact):
14 “A simple control routine

15
16 robot{"Robot 17).start()

17 robot("Robot 17).set_wheel("left",3)
18 robot("Robot 17).set_wheel("right",8)
19
20 test_ended = False

21 belief_space.set_robot{robot("Robot 17))

Figure 8: Simulator Code Interface

Finally as previously mentioned the simulator facilitates probabilistic
mapping and visualisation to aid users in their development and understanding of
their control algorithms. Two probabilistic spaces are included: the belief space
and the map space. The inbuilt belief space can be used by a robotic controller to
produce a probabilistic mapping an unknown area using data gathered from
sensors. This acquired information can be used to aid localisation and path
planning algorithms. The inbuilt map space allows the user to specify gird maps
of an environment for use by localisation and path planning algorithms.

Figure 9: Left: an environment being mapped. Centre: view of the mapped
environment in the belief space. Right: Discretized view of the environment in
map space.

6. FUTURE WORK

There are many additional features that could be added to the simulator to
provide increased functionality. Currently the simulator only accommodates 2
dimensional simulation and visualisation; 3d visualisation of the virtual world

would improve user comprehension, and could be used as a powerful
demonstration tool. The addition of 3d kinematics would allow for other robotic
applications such as the design of flying robots, or multi axis robot arms, to be
performed using the developed simulator.

Further predefined models would allow for testing of more varied
systems. Content that could be added includes: more kinematic models -
Ackerman, legged, omni-directional, and more sensors models -bumpers,
computer vision, gyroscopes, compasses, etc.

Figure 10: Robot swarm, picture source [13]

Swarm robotics is a branch of robotics interested in systems that consist
of large numbers of mostly simple robots. Swarm robotics is akin to the field of
artificial swarm intelligence, as well as the biological studies of insects, ants and
other fields in nature, where swarm behaviour occurs. The developed simulator
could be easily modified to support multiple virtual robotic platforms
simultaneously, allowing for testing of swarm artificial intelligence.

7. CONCLUSION

Robotic simulation clearly has an important role in the development of
robotic platforms and control strategies, but can be over complicated for use in
rapid development and education. It can be said that there is a skill barrier
preventing new users from becoming involved in the field of robotic simulation.

With the desire to address these issues this project set out to create a
robotic simulator. The simulator in its current form provides useful functionality
for the creation, testing and evaluation of robotic controllers. The sensor, objects,
and probabilistic mapping that has been implemented provides a good base of
functionality. There is much scope for further development of the simulator in
multiple possible directions.

8.

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]
[9]
[10]
[11]

[12]
[13]

REFERENCES

KUKA Robotics Corporation, Robotic Simulation revision 1.1, 2006
M. Tim, IBM Developer Works - Open Source Robotics toolkits, IBM,
2006. http://www.ibm.com/developerworks/linux/library/I-robotools/.
Francis Bernard, A Short History of CITIA and Dassault Systems,
Dassault Systems 2003.

Siemens, Press Release, 7" of May 2007,
http://www.plm.automation.siemens.com/en_us/about_us/newsroom/pr
ess/press_release.cfm?Component=34092&ComponentTemplate=822.
CyberBotics, About, 2011. http://www.cyberbotics.com/about.

M. Somby, Updated review of robotics software platforms,
linuxfordevices, 2008. http://www.linuxfordevices.com/c/a/Linux-For-
Devices-Articles/Updated-review-of-robotics-software-platforms/.
Player Project, homepage, 2010. http://playerstage.sourceforge.net/.
Differentially driven robot, image taken from
http://www.acroname.com/example/10013/wc-1a.jpg

R. Siegwart, I.R. Nourbaksh, Introduction toAutonomous Mobile
Robotics, 2004, ISBN 026219502X

SICK LIDAR Sensor, image taken from www.mysick.com

R. Sim, J.J. Little, Autonomous vision-based robotic exploration and
mapping using hybrid maps and particle filters, Image and Vision
Computing 2009, Vol. 27, ISSN 0262-8856.

SciPy, 2011, www.scipy.org

Robotic Swarm, Image taken from
http://1h6.ggpht.com/_S1Gu2hX9S6¢/SIUujply_CI/AAAAAAAALI4/D
MsBQ_tXSI0/whole-swarm-from-above.jpg.

