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Abstract 

Thermal Marangoni convection about a 1 mm radius hemispherical air bubble attached to a heated wall immersed in a 

silicone oil layer of constant depth of 5 mm was numerically investigated. Tests were performed for a range of Marangoni 

numbers (145≤Ma≤915) with varying levels of gravitational acceleration between zero gravity and earth gravity in order 

to quantify the rates of heat transfer. For the zero gravity condition, a thermocapillary-driven vortex develops around the 

bubble extending the entire height of the channel. This flow structure causes a jet-like flow of heated liquid to emanate 

from the bubble tip which impinged on the cold wall. With the addition of gravity, a counter rotating secondary buoyancy-

driven vortex forms which reduces the size of the thermocapillary vortex and disrupts the jet flow from the bubble tip. 

The wall heat flux profiles indicate that under zero gravity, the peak heat fluxes increase monotonically with Ma with an 

area of influence that increases asymptotically with Ma. Likewise, under gravity conditions the peak heat flux also 

increases with Ma and for low Ma is higher than that of 0-g. However, the area of influence is considerably smaller and 

not sensitive to Ma or the level of gravity. Experimental validation of selected terrestrial gravity numerical results was 

obtained using particle image velocimetry (PIV) for low to moderate Marangoni numbers. For all experiments, steady-

state Marangoni convection was observed. The experimental flow patterns showed good agreement with the numerical 

solutions. 
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1. Introduction 

Thermal Marangoni convection can occur when a gas-

liquid interface has a non-uniform temperature 

distribution. The surface tension variation with 

temperature induces a stress imbalance which is 

equalized by causing local fluid motion and subsequent 

sheer stress. For the situation of a bubble attached to a 

heated wall, thermocapillary convection can cause 

notable enhancement of the wall heat transfer both in 

microgravity [1, 2] and at terrestrial gravity [3-5].  

 

The contribution of thermocapillary convection on the 

local heat transfer about bubbles situated on a heated 

surface is still unclear. Much of the past experimental 

research into bubble-induced thermal Marangoni 

convection has been concerned with analysis of the flow 

field and has not been specifically concerned with the 

heat transfer, such as studies in Ref. [6-10]. A typical 

experiment would be conducted at earth gravity and 

involve a test chamber with a working fluid enclosed 

between a heated upper surface and a cooled lower one 

[4, 6, 11, 12]. A bubble would be injected in such a way 

that it is situated on the heated wall and protrudes into 

the thermal gradient established by the hot and cold 

plates. Since most fluids have a negative coefficient of 

surface tension, this configuration establishes a surface 

tension gradient along the bubble interface which leads 

to a liquid flow in the direction of increasing surface 

tension. The resulting surface tension force is opposed 

by the shear stresses within both the gas and liquid phase 

which establishes mechanical equilibrium around the 

stationary bubble.  

 

 

 

The tank tread-like motion of the interface draws cool 

liquid from the bulk across the hot surface and 

subsequently propels the liquid downward back into the 

bulk from the bubble tip. The fluid motion near the wall 

reduces the thermal boundary layer thickness and results 

in higher heat transfer rates compared with the far field 

[13]. 

 

One of the earliest postulations regarding Marangoni 

convection and its influence on surface heat transfer was 

made by Pike et al. [14]. Studying the influence of 

dissolved gas on surface boiling the results showed that 

dissolved gas caused the onset of surface boiling to 

move to a lower surface temperature than anticipated. 

This suggested that the heat transfer from the surface to 

the bulk liquid was enhanced and was hypothesized as 

being Marangoni convection [15].  

 

Possibly the first study aimed to quantify the rates of 

heat transfer resulting from Marangoni convection 

around a bubble situated on a heated wall was performed 

by Larkin [16]. Larkin numerically simulated the 

coupled flow and heat transfer problem in a semi-

infinite fluid for a hemispherical bubble situated on an 

upward facing heated wall. The local Nusselt number 

distribution along the wall around the bubble was 

estimated and heat transfer enhancement levels of 30% 

over that of the far field were found for very high 

Marangoni numbers (Ma~105). It was concluded that, 

based on the simulation results, Marangoni convection 

is an important heat transfer mechanism only at high Ma. 

 

Soon afterwards, Kenning and Kao [17] reported a 

limited set of heat flux estimations from their numerical 

study of Marangoni flow around downward facing 
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bubbles. With regard to the heat transfer rates they 

concluded that the heat transfer enhancement was 

confined to a small region along the wall and, for their 

zero gravity simulations, was dependant on the 

Marangoni Number. 

 

In his review paper, Straub [3] reported thermocapillary 

augmented heat transfer around bubbles from both 

experimental and numerical studies. With regard to 

bubbles attached to heated surfaces, the results showed 

notable heat transfer enhancement and, for zero gravity, 

oscillatory behaviour at high Marangoni numbers 

(Ma>2.5x105). Following on from earlier work [3, 18, 

19] Betz and Straub [11] numerically investigated the 

flow and heat transfer around bubbles attached to a 

heated wall in a cavity. The influence of the Marangoni, 

Prandtl, Peclet and Bond numbers were investigated. 

They determined that thermocapillary convection was 

strong enough to drive liquid flow against the action of 

buoyancy at earth gravity and thus have a notable 

influence on the heat and mass transfer around the 

bubbles. The influence of the Prandtl number was found 

to be negligible in the range 7≤Pr≤120 and the heat 

transfer was found to improve with reducing magnitude 

of the gravitational field strength. For large downward 

facing bubbles an empirical correlation was proposed 

for the Nusselt number of the form Nu=1+fMa0.333. The 

multiplier f depended on the bubble volume and the 

height of the liquid layer. 

 

Bhunia & Kamotani [REF] numerically investigated 2D 

flow around a bubble under a heated wall in a channel 

filled with a cross-flowing silicone oil (Pr = 70) under 

microgravity conditions. It was determined that for zero 

channel flow velocity, thermocapillary convection 

occurred as symmetric vortices about the vertical bubble 

axis. The introduction of a channel flow velocity caused 

a stagnation point to form on the bubble surface. For 

both zero and finite flow velocity, it was found that 

increasing the temperature difference strengthened the 

thermocapillary flow. 

 

Arlabosse et al. [4] performed experiments using PIV 

for flow visualisation and interferometry for examining 

the temperature field around a downward facing bubble 

on a heated surface in a silicone oil layer. The influence 

of the temperature gradient, oil viscosity and bubble 

shape was analysed. Contrary to the experimental 

observation in [20], thermocapillarity was seen to be 

active along the entire contour of the bubble and was 

dominant over the buoyancy-driven convection in the 

immediate vicinity of the bubble surface. Weak 

secondary counter-rotating vortices beneath the primary 

vortices were observed due to the interaction of surface 

tension and gravity forces. The velocity of the liquid 

along the interface was measured to increase with 

increasing Marangoni number, but the location of the 

maximum velocity was independent of the Marangoni 

number. Heat transfer measurements were recorded 

using heat flux sensors located on the cold wall beneath 

the bubble. For a 3mm layer depth, they developed an 

empirical correlation for the heat transfer which was 

posed as; 

 

𝑞𝑀𝑎
′′

𝑞𝑐𝑜𝑛𝑑
′′ =1+0.00841Ma0.5 (1)  

 

The efficacy of this correlation on the lower cold wall 

heat transfer enhancement was later confirmed by the 

numerical investigation of O’Shaughnessy and 

Robinson [13]. Before this, however, Petrovic et al. [5] 

used the same correlation to predict the heat transfer rate 

from an upward facing surface with several gas bubbles 

attached to it. In these experiments, a Marangoni-

dominated heat transfer regime was discovered to exist 

between natural convection and subcooled nucleate 

boiling. Gas bubbles spontaneously formed on the 

surface due to dissolved air in the working fluid, which 

was water. The appearance of the bubbles resulted in a 

drastic enhancement of the surface averaged heat 

transfer coefficient over both natural convection and 

subcooled boiling. The authors used photographic 

information regarding the size and number of bubbles on 

the surface together with Eq. 1 to estimate the 

contribution of Marangoni convection to the overall 

surface heat flux. Although the model predicted the 

Marangoni heat flux adequately, it required assumptions 

with regard to the heat transfer coefficient and area of 

influence of Marangoni heat transfer for each bubble. 

 

O’Shaughnessy and Robinson [13, 21, 22] were the first 

to numerically simulate thermal Marangoni convection 

with the expressed goal of quantifying the local wall 

heat transfer distribution around the bubbles. In [13] 

they investigated the influence of increasing the 

Marangoni number in 0-g and determined that 

thermocapillary convection enhanced the local heat flux 

to over 65% when compared with pure conduction. 

Enhancment of local wall heat transfer was calculated to 

occur over a distance of approximately seven bubble 

radii. The numerical results indicated that the ratio of 

Marangoni heat transfer to conduction over the area of 

enhancement changes approximately with the square 

root of the Marangoni number according to 

 

𝑞𝑀𝑎
′′

𝑞𝑐𝑜𝑛𝑑
′′ =1+0.005Ma0.5 (2)  

 

In [22], O’Shaughnessy and Robinson investigated the 

influence of the Rayleigh number for a fixed Marangoni 

number and found that the gravity level affected the 

velocity profile by modifying the interfacial temperature 

gradient, but that the location of maximum velocity was 

almost independent of gravity level. It was also shown 

that increased gravity levels cause a reduction in the 

effective radius and area of enhancement around the gas 

bubble. 

 

In this work the overarching objective is to contribute to 

knowledge regarding Marangoni convection and heat 

transfer around isolated bubbles. The specific objectives 

are as follows: 
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1. To provide a limited set of experimental flow 

visualization results for a simple geometric 

configuration for validating numerical simulations. 

 

2. To develop a correct mathematical model for thermal 

Marangoni convection around a bubble and numerically 

simulate the phenomena using a commercial CFD 

software package. 

 

3. To investigate the flow and heat transfer in the 

vicinity of the bubble for varying levels of gravitational 

and thermocapillary influence and attempt to 

disentangle their influence on the flow and heat transfer. 

 

4. To provide some simple-to-use guidelines for 

predicting the average heat transfer coefficient around 

bubbles on downward facing surfaces. 

 

2. Numerical Procedure 

For Marangoni convection around a bubble of radius Rb 

within a channel of height H, the mass and heat transport 

mechanisms are characterised by the Prandtl, Rayleigh, 

Marangoni and Bond numbers, defined respectively as 

[4, 23-25], 

 

𝑃𝑟 =
𝜐

𝛼
 (3)  

 

𝑅𝑎 =
𝑔𝜌𝛽𝛥𝑇𝑅𝑏

4

𝜇𝛼𝐻
 (4)  

 

𝑀𝑎 = − (
𝑑𝜎

𝑑𝑇
) ×

𝛥𝑇

𝜇𝛼
×

𝑅𝑏
2

𝐻
 (5)  

 

𝐵𝑜 = −
𝜌𝑔𝛽𝑅𝑏

2

(𝑑𝜎 𝑑𝑇⁄ )
 (6)  

 

The commercial code Fluent version 6.3.26 was utilized 

to solve the system of governing equations. Simulations 

were performed to investigate the influence of both the 

thermocapillary driving potential (Ma) and the 

buoyancy driving potential (Ra) on the flow and 

temperature fields as well as local heat transfer profiles. 

A numerical model for the domain depicted in Figure 1 

was constructed using Gambit version 2.2.30. The 

numerical mesh consisted of approximately 8x104 cells. 

The calculation of surface tension effects in Fluent is 

more accurate on quadrilateral cells and grid clustering 

was used in the vicinity of the interface. Grid 

independence was achieved by increasing the number of 

mesh cells and observing the convergence of certain 

local parameters of interest such as free surface velocity 

and temperature, wall heat flux, and also by tracking 

global parameters such as total rate of heat transfer and 

conservation of mass through the system.  

 

 

Figure 1: Numerical domain 

 

The numerical model assumes steady state for an 

incompressible fluid with constant fluid properties and 

an adiabatic, non-deformable hemispherical bubble 

interface.  

 

The assumption that no heat transfer occurs across the 

bubble interface means that the work presented in this 

study is not directly applicable to nucleate pool boiling, 

during which evaporation at the interface acts to 

suppress the thermocapillary flow. The assumption is 

consistent with the Marangoni heat transfer regime 

discovered by Petrovic et al. [5] where air bubbles 

caused a noteworthy enhancement in the wall heat 

transfer even when the heated wall temperature was 

below the saturation temperature. The work is also 

qualitatively comparable to the situation of gas-

saturated liquids, for example, the experimental results 

of Henry et al. [26]. 

 

 

To non-dimensionalize the governing equations it was 

necessary to select several reference scales. Consistent 

with the work of Arlabosse et al. [4], the following 

reference parameters were chosen: 

 

Table 1: Reference parameters 

length 𝐿𝑟𝑒𝑓  𝑅𝑏 

temperature 𝑇𝑟𝑒𝑓  (𝑇ℎ − 𝑇𝑐) (
𝑅𝑏

𝐻
) 

velocity 𝑣𝑟𝑒𝑓  
(𝑑𝜎 𝑑𝑇⁄ )(𝑇ℎ − 𝑇𝑐)𝑅𝑏

𝜇𝐻
 

pressure 𝑝𝑟𝑒𝑓  𝜌𝑣𝑟𝑒𝑓
2  

time 𝑡𝑟𝑒𝑓 
𝐿𝑟𝑒𝑓

𝑣𝑟𝑒𝑓

 

 

The governing equations of continuity, momentum and 

energy can then be expressed in dimensionless form (the 

prime symbol denotes a dimensionless quantity): 

 

𝛻′ ∙ 𝒗′ = 0 (7)  

 

(𝒗′ ∙ 𝛻′)𝒗′ = −𝛻′𝑝′ +
𝑃𝑟

𝑀𝑎
𝛻′2𝑣′ + ∑ 𝐹′ (8)  

 

𝛻′ ∙ (𝒗′𝜃′) =  
1

𝑀𝑎
𝛻′2𝜃′ (9)  

 

In the above equations, ΣF’ represents the sum of all 

dimensionless body forces acting on the fluid. This term 

includes the buoyancy forces due to the presence of a 
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gravitational field, which is modelled using the 

Boussinesq approximation. Consistent with the 

continuum surface force (CSF) model employed by 

Fluent, the effects of surface tension are also included as 

a source term in the momentum equation. Details of the 

CSF model can be found in Brackbill et al. [27]. For this 

study,  

∑ 𝐹′ = −
𝐵𝑜𝑃𝑟

𝑀𝑎
𝜃′ +

𝑃𝑟

𝑀𝑎
(

𝑑𝜎

𝑑𝑇
)

′ 𝑑𝜃′

𝑑𝑠′
𝜅′ (10)  

The numerical domain places a bubble of dimensionless 

radius of unity at the centre of an axisymmetric domain 

of five bubble radii height and outer radius of twenty 

bubble radii (Fig. 1). This length was chosen so that the 

influence of the side walls would be negligible. The 

vertical axis denoted ‘sym’ signifies the axis of 

symmetry. The upper wall, to which the bubble is 

attached is no-slip, constant temperature, and is 

maintained at the dimensionless temperature H/Rb for all 

simulations. This wall is termed the ‘hot’ wall hereafter. 

The lower horizontal wall is also no-slip, constant 

temperature and the temperature of this wall is 

maintained at the dimensionless temperature of zero for 

all simulations, and is termed the ‘cold’ wall 

henceforward. The vertical wall placed twenty bubble 

radii from the centre of the bubble has no-slip, adiabatic 

boundary conditions. The bubble interface is adiabatic 

and non-deformable. The velocity boundary condition 

along the bubble interface is derived from the CSF 

model.  

 

𝒗 = 0|𝑥′=5 𝜃′ = 0|𝑥′=5 (11)  

 

𝒗 = 0|𝑥′=0 𝜃′ = (𝐻 𝑅𝑏⁄ )|𝑥′=0 (12)  

 

𝒗 = 0|𝑟′=20 𝒏 ∙ (𝛻′𝜃′) = 0|𝑟′=20 (13)  

 

Simulations were performed for Marangoni numbers in 

the range 145≤Ma≤915 and dimensionless gravity levels 

of g' = 0, 0.01, 0.1, 0.25, 0.5, 0.75 and 1, where the term 

g' corresponds to the dimensionless gravity level g/gearth.  

 

3. Experimental Setup 

Experiments were performed to analyse Marangoni flow 

about a 1mm radius bubble on a heated wall in a Pr = 

220 liquid silicone oil layer of depth H = 5mm under 

terrestrial conditions. The fluid properties of the silicone 

oil used in the experiments (and in the evaluation of the 

dimensionless numbers) as obtained from the 

manufacturer are provided in Table 2. PIV data was 

obtained for horizontal wall temperature differences (Th 

– Tc)  of 20°C, 30°C, 40°C and 50°C, which correspond 

to Marangoni numbers of Ma = 145, 218, 290 and 363 

respectively. 

 

Table 2: Properties of Dow Corning® silicone oil 

20cSt at 25°C, 1atm 

ρ 950 [kg/m3] 

υ 20e-6 [m2/s] 

k 0.14 [W/mK] 

Cp 1630 [J/kgK] 

β 1.07e-3 [1/K] 

dσ/dT -6.23e-5 [N/mK] 

 

The test section consists of two copper surfaces, one 

heated to a constant temperature which is varied 

between experiments, and one cooled to a constant and 

lower temperature. Both interior copper surfaces are 

coated with a thin layer of matt black paint to minimise 

reflections from laser light. The copper surfaces are 

housed in a Perspex container which dictates the test cell 

height to 5mm. A sketch of the test section and flow loop 

is provided in Figure 2. 

 

The upper wall is maintained at the elevated temperature 

by a sealed 30mm x 30mm Peltier element (Melcor, 

CP1.0-127-05L-RTV), capable of delivering a 

maximum power of around 40W. The temperature of the 

wall is measured using a calibrated K-Type 

thermocouple placed close to the bubble injection site. 

Once steady state is achieved, the temperature of this 

wall can be maintained to within +/- 0.2°C of the desired 

temperature setpoint.  

 

 
Figure 2: Experimental flow loop 

 

The cold wall temperature is maintained by a water flow 

loop. An ice bath ensured a constant water temperature. 

An off-the-shelf liquid cooled graphics card heat sink 

(Alphacool Videocard NexXxos GP1X-N Geforce VGA 

Waterblock) is utilised as the cold side of the test 

chamber. The exposed copper surface of the heat sink is 

smooth and polished. The heat sink base is mounted on 

the Plexiglas housing with an O-ring to prevent leakage. 

Both the copper and Plexiglas are connected via four 

screws. A stainless steel mounting plate of 1mm 

thickness is located around the perimeter of the 

underside of the copper section. The Plexiglas housing 

is connected to 12.7mm internal diameter tubing via two 

compression fittings. The tubing runs to and from a 

water reservoir filled with crushed ice. The cooled water 
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is pumped through the tubing to the copper waterblock, 

lowering the wall temperature close to 0°C. Since phase 

change is an isothermal process, the iced-water reservoir 

delivers a reliable, constant temperature cold source. A 

calibrated K-Type thermocouple is placed in the lower 

wall very close to the surface to monitor the cold wall 

temperature. Typically, the cold wall temperature can be 

maintained at 0.2°C +/- 0.2°C. 

 

Bubble injection onto the hot wall is achieved via an 

infusion pump fitted with a syringe, which is connected 

to a 0.8mm internal diameter flexible piece of Tygon® 

tubing. The tubing is placed within the upper wall and 

connects with an orifice located on the underside of the 

heated wall. The volume of the bubble is controlled with 

adequate accuracy by the infusion pump. A single 

bubble of approximate radius Rb=1mm is injected for 

each experiment in this study. Two holes are drilled in 

the upper copper section far from the bubble orifice to 

allow for expansion of the liquid due to heating and 

bubble injection. The test cell is overfilled gradually 

with the seeded silicone oil through the expansion holes 

using the syringe and infusion pump. This ensures that 

the trapped air in the test cell is removed. 

 

Flow visualization was achieved using a Quantronix 

Darwin Duo high repetition Nd:YLF laser (neodymium: 

yttrium lithium fluoride, λ = 527 nm, 0.1-0.3 J/s at 1000 

Hz) in combination with a high speed CMOS Photron 

camera. PIV recordings in this investigation were 

obtained using the software package DaVis version 7.2. 

A sketch of the PIV setup is provided in Figure 3. The 

silicone oil is seeded with hollow glass spheres of mean 

diameter in the range of 9-13μm, and a density of 1100 

+/- 50 kg/m3. These seeding particles are recommended 

for oil and water flows [28], and have been used in 

similar studies [20]. Depending on the flow velocity and 

the factor of magnification of the camera lens, the delay 

of the laser pulses is chosen such that adequate 

displacement of the particle images on the CCD camera 

is obtained. An acceptable particle image shift is 

approximately 5 pixels. Since thermocapillary flows are 

generally quite slow, the camera was set to record in 

single-frame mode.  Each image in the PIV recording is 

subdivided into interrogation windows. Each 

interrogation window produces a single vector after 

statistical correlation methods have been employed. 

 

 

Figure 3: Particle image velocimetry 

 

Once the vector fields are computed, the average vector 

field and the RMS deviation from the average are 

determined according to Eq. 15 and Eq. 16 respectively. 

𝒗𝒂𝒗𝒈 = (∑ 𝒗𝒊

𝒏

𝒊=𝟏

) 𝒏⁄  (14)  

 

𝒗𝑟𝑚𝑠 = √(∑(𝒗𝑖 − 𝒗𝑎𝑣𝑔)
2

𝑛

𝑖=1

) (𝑛 − 1)⁄  (15)  

 

For fluid flows, the particle size is generally not as 

critical as in gas flows [28, 29]. One source of error is 

the influence of gravitational forces brought about by 

the difference in density between the test fluid and the 

tracer particles. The gravitationally induced velocity of 

a particle undergoing Stokes flow, ug, is given by Raffel 

[28]: 

 

𝒖𝑔 = 𝑑𝑝
2

(𝜌𝑝 − 𝜌𝑓)

18𝜇
𝒈 (16)  

 

For this study, ug, ≈ 7x10-4mm/s which was small 

relative to the maximum velocities expected in the 

thermocapillary induced flow. Furthermore, the particle 

Reynolds number is given by 

𝑅𝑒𝑝 =
𝜌𝑓(𝒖𝒇 − 𝒖𝒑)𝑑𝑝

𝜇𝑓

 (17)  

 

The tracking capability of a tracer particle is also 

described by Melling [29] and Tchen [30]. Calculations 

of the Reynolds number produce a maximum Re ≈ 

2.5x10-3, so approximations of Stokes flow are justified. 

Integration of the force balance equation described by 

these authors using a nominal vertical velocity of 1mm/s 

and Stokes flow approximation for the drag force 

resulted in an average fluid velocity of 0.3173mm/s and 

an average particle velocity of 0.3160mm/s. Thus, while 

also considering the negligible effect of gravitational 

induced velocity, it may be assumed that the particles 

represent the flow quite accurately. 

4. Validation of Numerical & Experimental 

Approach 

To verify the correctness of both experimental 

procedure and the numerical approximation of axial 

symmetry, simulations were performed to replicate as 

closely as possible the experimental conditions. Figure 

4 shows the numerical (coloured by stream function) 

and experimental streamlines for each of the Marangoni 

numbers tested. The simulated streamlines appear on the 

left of each figure. For clarity, a red line has been 

included in the experimental data on the right hand side 

of the figures to indicate the position of the gas bubble 

interface. The temperature differential and Marangoni 

number increase with successive images and the density 

of streamlines is kept constant for all images. By 

comparing the position, size and shape of the main and 
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secondary vortices with the numerical solutions, good 

qualitative agreement is observed. 

 

The temperature gradient existing along the bubble 

causes a surface tension gradient along the gas-liquid 

interface, inducing Marangoni convection. Fluid is 

entrained near the base of the bubble, dragged along the 

interface toward the bubble tip and leaves as a jet-like 

flow. This type of flow has been observed in several 

studies [4, 8, 10, 23-25, 31].  

 

The streamline plots detail the presence of a toroidal 

main vortex adjacent to and wrapping around the 

bubble. This vortex is caused by the thermocapillary 

effect and acts to re-circulate cold fluid from the lower 

regions of the test cell toward the heated wall. These 

vortices have been observed experimentally by several 

authors [4, 7, 9, 20].  

 

A secondary toroidal vortex can be seen beneath the 

primary vortex. The formation of the  secondary vortex 

is discussed by Kassemi and Rashidnia [12]. The 

buoyancy force acts in opposition to the downwardly 

directed thermocapillary flow and the stabilizing density 

gradients exert a restoring upward force on the 

downward flowing hot liquid. This restricts the flow, 

compressing the primary vortex to the region of the hot 

wall and bubble. These opposing influences induce the 

counter-rotating shear-driven secondary vortex.  

 

For the experiments conducted in this study, the 

secondary vortex moves more slowly than the primary 

vortices and attempts to re-establish the thermal 

stratification of the fluid by moving warmer fluid toward 

the heated wall. There is a stagnation point at the 

boundary between the primary and secondary vortices. 

Since the temperature gradient increases with successive 

images, it is evident that both the primary 

thermocapillary-driven and the secondary buoyancy-

driven vortices increase in strength with increasing Ma.  

 

 
 

 
 

 
 

 
 

Figure 4: Numerical (left) and experimental (right) 

streamlines for Pr = 220 and 145≤Ma≤363 

 

In Figure 4-a, the primary thermocapillary vortex 

appears to be marginally larger than the secondary 

buoyancy induced vortex. The intensity of both vortices 

increases with increasing temperature gradient. Indeed, 

the fluid velocity increases with increasing Ma. 

However, with increasing Ma the primary vortex is 

squeezed and pushed closer towards the bubble cap, a 

phenomenon also observed by Raake et al. [20]. 

Interestingly, the stagnation points also move toward the 

bubble with increasing Ma, and an elongation of both 

vortices is observed. This may indicate that the 

buoyancy-driven vortex is gaining in intensity at a rate 

greater than that of the thermocapillary-driven vortex. 

Hence, further increases in the temperature gradient may 

result in the Marangoni flow being confined to a region 

in the immediate vicinity of the bubble until the flow 

structure becomes unstable, and an oscillatory mode 

occurs.  

 

The comparison of the predicted fluid axial velocity 

with the experimentally measured data is shown in 

Figure 5. Data is measured from the bubble tip to the 

cold wall. Overall, agreement of the numerically 

predicted and experimentally measured peak velocities 

ranges between approximately 10% ~ 20% for the Ma 

range tested which is deemed acceptable. 

 

For the experimental data the bubble tip is not as well 

defined since the reflection of laser light in the bubble 

can cause both high intensity light spots and local 

shading. For each temperature differential tested, the 

numerical and experimental curves follow the same 

trend. The axial velocity is zero at the bubble tip and 

then increases rapidly until a peak at approximately x/Rb 

~ 1.3. This increase is caused by the jet-like flow of 

liquid away from the bubble tip. From this point there is 

a similarly sharp decrease in axial velocity as the 

Marangoni influence diminishes with increasing 

distance from the bubble and the fluid is pulled into the 

rotating primary vortex. The axial velocity is then 
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observed to drop below zero. This sign change is 

significant as it highlights the crossover from the 

primary vortex to the secondary counter-rotating vortex, 

and hence the crossover from thermocapillary 

dominated flow to one driven by buoyancy. As the cold 

wall is approached, both the simulated and measured 

axial velocities tend towards zero. Clearly, for each 

Marangoni number tested, the measured axial velocity 

peak is greater for the thermocapillary vortex than that 

of the buoyancy vortex. With increasing Ma the 

crossover point occurs closer to the bubble as the 

secondary vortex squeezes the primary one.  

 

 

 

 
 

Figure 5: Numerical and experimental axial velocity 

plots for Pr = 220 and 145≤Ma≤363 
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5. Results & discussion of numerical simulations 

Further simulations were conducted to investigate the 

combined influence of the Ma, Ra and Pr.  

 

5.1 Influence of Ma 

Initial simulations were performed under zero gravity 

conditions in order to form a baseline understanding of 

the thermocapillary flow phenomenon for the 

configuration under test.  Using a Pr = 220 fluid with 

fluid properties given by Table 2 previously, simulations 

were performed for Marangoni numbers in the range 

145≤Ma≤363. Figure 6 illustrates the temperature 

contours and streamlines for a range of Marangoni 

numbers under zero gravity conditions. The temperature 

and stream function scales are the same for all images. 

The effect of increasing Marangoni number under 0-g 

conditions has been investigated by O’Shaughnessy and 

Robinson [13]. Consistent with the findings in [13], 

thermocapillary convection causes the formation of a 

flow of liquid away from the bubble tip, which can be 

visualised by the way in which the temperature contours 

deflect away from the hot wall. This liquid then flows 

away from the centreline and forms a primary toroidal 

vortex around the bubble. The jet-like flow and primary 

vortex increase in velocity and intensity with increasing 

Marangoni number, but the size of the primary vortex 

does not change significantly. Indeed, to a large extent 

the channel height dictates the vortex size under zero 

gravity conditions [32-34]. Heat transfer is enhanced as 

the vortex recirculates colder fluid from the lower 

regions of the channel toward the hot wall. 
 

 
 

Figure 6: Temperature contours (left) and streamlines 

(right) for 145 ≤ Ma ≤ 363 under zero gravity 

 

When compared to pure conduction in the absence of the 

bubble, Marangoni convection augments the wall heat 

transfer over an area surrounding the bubble. The 

recirculating vortex draws cooled liquid from the cold 

wall towards the hot wall. Here the flow is redirected 

inward towards the bubble along the hot wall. The liquid 

convection reduces the thermal boundary layer 

thickness in this region which causes the local wall heat 

flux to increase over that of the far field.  

 

The radial heat flux enhancement profiles are provided 

in Figure 7 for a range of Marangoni numbers. Clearly 

the region near the bubble experiences the largest 

improvement in wall heat flux, with higher Marangoni 

numbers producing greater enhancement since the 

intensity of the vortex increases. For these zero gravity 

simulations, all curves converge to the zero-

enhancement line at approximately the same radial 

location, as observed in [13]. This location (r/Rb ~ 8) 

marks the point at which thermocapillary convection 

ceases to significantly affect the wall heat transfer. All 

curves converge at the same location because under zero 

gravity the thermocapillary driven vortex does not 

significantly change in size with changing Ma, as was 

shown in Figure 6. 

 

Under zero gravity conditions, the cold wall opposite to 

the bubble also experiences large increases in the heat 

flux. The liquid which was heated at the opposite wall is 

propelled away from the bubble by the thermocapillary 

effect at the bubble interface. As the cold wall is 

approached the primarily axially directed jet flow is 

redirected laterally from the stagnation point forming a 

wall jet. The impinging jet results in a reduction in the 

thermal boundary layer thickness from the stagnation 

point outward, which is clearly evident in Figure 6. Here 

the liquid is cooled and drawn away from the cold wall 

towards the hot one in order to conserve mass since the 

domain is closed around the outer edge. This 

recirculation of the fluid forms the vortical structure and 

partially explains why its overall size is primarily 

determined by the chamber height. As with the hot wall, 

the level of enhancement on the cold wall increases with 

Ma although the area of influence does not. The radius 

of influence on the cold wall is much smaller (~4Rb) and 

now has a bell shaped profile typical of an impinging jet. 

Since the area of influence is much smaller, the increase 

in the peak heat fluxes are much larger compared with 

the hot wall, reaching nearly twofold at Ma = 363. 

 

 
 

Figure 7: Heat flux enhancement under zero gravity 
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5.2 Influence of Ra 

The influence of the magnitude of gravitational 

acceleration on Marangoni convection about an isolated 

bubble on a heated wall has been numerically 

investigated in [22]. To study the response to changing 

gravitational field strength, simulations were initially 

performed for a range of gravity levels at a fixed 

Marangoni of Ma =363, which corresponded to the 

largest temperature gradient imposed on the channel 

experimentally (~50°C). The flow and temperature 

fields are detailed in Figure 8. Again, the same colour 

scale is applied to each plot. 

 

Figure 8 highlights the formation of the secondary 

vortex, which is quite obviously due to the buoyancy 

effect since it does not occur under zero gravity 

condition. Simulations show that the secondary counter-

rotating vortices develop within the flow structure from 

gravity levels as low as g' = 0.1. The addition of gravity 

induces the force of buoyancy which acts in opposition 

to the downwardly directed thermocapillary flow. The 

stabilizing density gradients exert a restoring upward 

force on the downward flowing hot fluid. This acts to 

restrict the flow causing the primary vortex to compress 

against the region of the heated top wall and bubble. The 

opposing influences provoke a counter-rotating shear-

driven secondary vortex as depicted in Figure 8. This 

behaviour has been observed in  [20, 22, 32]. 

 

 

 
 

Figure 8: Temperature contours (left) and streamlines 

(right) at Ma = 363 for g' = 0, 0.25, 0.5, 0.75, and 1 

 

From the figure it is evident that with increasing 

gravitational acceleration, and therefore increasing 

buoyancy effect, the thermocapillary effect becomes 

progressively more confined to a region close to the 

bubble. Once the secondary vortex appears the 

temperature contours which protrude from the hot wall 

and bubble apex at 0-g' are now restricted to a region 

closer to the interface. At 0-g' the thermal energy was 

transported to a localized region of the cold wall directly 

opposite to the bubble by the jet emanating from the 

bubble tip. For the higher gravity levels the heated liquid 

is initially propelled downward by the primary vortex 

and subsequently entrained into the secondary vortex 

which convects the heat laterally over a substantial 

portion of the lower section of the domain.  

 

It is also noted that the primary thermocapillary-driven 

vortex shrinks with increasing gravity level. This 

behaviour is a result of natural convection attempting to 

restore the thermal stratification that would exist in the 

absence of the bubble. In particular, the jet-like flow 

stemming from the bubble apex becomes restricted by 

the buoyant forces opposing it.  

 

The radial heat flux enhancement profiles are provided 

for Ma = 363 and a range of gravity levels in Figure 9a 

and Figure 9b for the hot and cold walls respectively. It 

is clear that gravity has a strong influence on the heat 

flux distribution profiles. Under zero gravity, the area 

influenced by Marangoni convection spread to a 

distance of up to 8 bubble radii on the ‘hot’ wall, but this 

value is more than halved at earth gravity. Interestingly, 

once the secondary vortex has formed, increasing 

gravity has a minor influence on the heat transfer at the 

hot wall. In accordance, the peak heat flux enhancement 

appears to be dictated by the secondary vortices,  with 

only small increases with increasing gravity level. The 

secondary vortices also prevent much of the warm fluid 

from reaching the cold wall, and thus the cold wall 

experiences little local heat flux increases under gravity, 

as evident from Figure 9b. 

 

To investigate if this behaviour was consistent for all 

Marangoni numbers simulated, the radial heat flux 

profiles for the Ma = 145 case are presented in Figure 

10. It is first noted that the heat flux at the cold wall is 

close to zero for all cases once the buoyancy driven 

vortex is established. Similarly, and regardless of Ma, 

once a buoyancy driven vortex is established the wall 

heat flux profiles are not hugely sensitive to the gravity 

level. Clearly, the area influenced by thermocapillarity 

decreases with increasing gravity level. Expectedly, the 

peak heat fluxes for the Ma = 145 case are lower than 

for the Ma = 363 case. However, these heat flux profiles 

show a somewhat different response to increasing 

gravity levels: the relative magnitude of the heat flux is 

shown to depend strongly on Ma.  

 

For the Ma = 363 case the peak heat flux is much lower 

for the 0-g case while the radius of influence trends are 

similar to the lower Ma case. For Ma = 145 the peak heat 

flux for the 0-g case is closer to the value obtained for 

the 1-g case. Indeed, it would appear that once gravity is 

present and significant and the secondary vortex is 

formed, the hot wall heat transfer increases to a higher 

peak value and then drops off more rapidly compared 

with 0-g. In this way there are offsetting effects whereby 

the reduced area of influence caused by the smaller 

vortex is partially offset by a higher peak heat flux. 
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Figure 9: Wall heat flux profiles for varying gravity 

simulations at Ma = 363 

 

 

 
 

Figure 10: Wall heat flux profiles for varying gravity 

simulations at Ma = 145 

 

 

5.3 Combined Influence of Pr, Ra & Ma 

In [23] it was concluded that the Rayleigh number 

modifies the flow pattern but has little influence on the 

strength of the primary vortex induced by the bubble. 

Contrastingly, it was found that the Marangoni and 

Prandtl numbers induced little change in the flow pattern 

but they respectively enhanced and reduced the strength 

of the primary thermocapillary vortex.  

 

In [13, 22], simulations were performed using a Pr = 83 

fluid and Marangoni numbers in the range 

183≤Ma≤915. Using the same computational grid, the 

simulations performed in this study concern a Pr = 220 

fluid in the range 145≤Ma≤363. Figure 11 plots both sets 

of non-dimensional results for the peak hot wall heat 

flux enhancement. Clearly, for all gravity levels 

simulated, the trends are similar irresprective of the 

Prandtl number. 

 

 
 

Figure 11: Influence of Prandtl number and gravity 

level on the peak hot wall heat flux enhancement 

 

For gravity levels above 0.1-g the influence of gravity is 

small and there are two toroidal vortices. There is a 

transition, however, as gravity is reduced whereby the 

buoyancy influence disappears and the flow system 

becomes a single thermocapillary vortex that occupies 

the entire channel height. For these low gravity 

scenarios (<0.1-g) the heat flux profile is quite different 

to that of the higher gravity cases. Compared with the 

almost linear increase in the peak hot wall heat flux ratio 

for higher gravity, this ratio for the zero gravity case is 

parabolic to the extent that the peak heat flux is lower at 

low Ma though increases at a higher rate and is larger 

above Ma = 800. 

 

In an effort to further elucidate the role of gravity in 

particular, the relative influences of thermocapillary and 

gravitational forces are to be analysed more closely.  As 

the gravity level is increased beyond the magnitude 

required for the occurrence of secondary vortices the 

region where the vortices interact, i.e. the saddle point, 

is not affected greatly. The flow pattern has already been 

established, and buoyancy squeezes the primary vortex. 

Gravity, in the range tested, acts as a physical barrier for 

the thermocapillary flow, ostensibly confining it to the 

vicinity of the bubble as opposed to the channel. Gravity 

separates the flow, even at gravity levels as low as 0.1-

g, as the flow structure is already established at this 

point. Once the buoyancy and thermocapillary zones are 

established, it is not expected that increasing the 
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magnitude of gravitational acceleration will affect the 

flow structure in the thermocapillary-dominated zone 

significantly. This can be examined by considering a 

scaling argument applicable to the region near the 

bubble. In this region, thermocapillary induced inertia 

effects compete against gravity induced buoyancy 

effects. Scaling the inertial stresses with the buoyancy 

stresses in the momentum equation gives 

 

𝜌(v ∙ 𝛻)v ≈ 𝜌𝑔𝛽𝛥𝑇  (18)  

 

This, upon non-dimensionalizing with the appropriately 

chosen scales gives 

 

𝜌𝑣𝑟𝑒𝑓
2

𝐿𝑟𝑒𝑓

≈ 𝜌𝑔𝛽𝛥𝑇 
 

(19)  

 

which can be shown to be equivalent to 

 

𝑀𝑎2

𝑅𝑎𝑃𝑟
≈ 1 

 
(20)  

 

This dimensionless ratio represents the relative 

magnitude of thermocapillary driven inertial forces to 

that of buoyancy and is equivalent to the inverse of the 

Richardson number in mixed forced and natural 

convective flows. This scaling argument would indicate 

that for gravity to have major influence in the region 

near the bubble, Ma2/RaPr must be in the order of unity. 

For the scenarios simulated in Figure 9 and Figure 10 

the values of Ma2/RaPr corresponding with 0.25-g are 

16.4 and 41 for the Ma = 145 & 363 cases respectively. 

These decrease to 4.1 and 10.2 for the 1-g cases. Since 

Ma2/RaPr >1 for these cases it is not surprising that 

gravity has little influence on flow structure and the 

measured wall heat transfer in the vicinity of the bubble.  

 

Hence, to explain why the peak heat flux is lower for the 

0-g case for low Ma and higher for high Ma, one must 

scrutinise the flow and temperature fields more closely. 

For each Marangoni number simulated, the interfacial 

fluid velocities are similar across the range of gravity 

levels, but the peak heat flux profiles can be very 

different. It appears as though this behaviour is due to 

the secondary vortex. Figure 12 plots the fluid pathlines 

coloured by velocity magnitude. A log scale is used so 

small changes in colour may represent a 

disproportionate change in velocity magnitude. The 

number of fluid pathlines displayed has also been 

reduced for clarity. It is noted that the range of 

Marangoni number investigated in this section is 

expanded up to Ma = 915 to highlight the influence of 

the secondary vortices. 

 

If gravity is present and significant (≥0.1-g) and the 

Marangoni number is increased, both the 

thermocapillary and buoyancy forces increase in 

strength. The interfacial fluid velocity increases, but the 

secondary vortex prevents the thermocapillary vortex 

from spreading to the lower part of the domain. Indeed 

the secondary vortex may strip some of the kinetic 

energy from the thermocapillary roll. As the Marangoni 

number is increased, more energy appears to be 

transferred between the two vortices. The region where 

the two vortices come into contact is of special interest. 

As the Marangoni number is increased from left to right 

in the grid, one can see that the secondary vortex is 

growing in intensity at a rate higher than that of the 

primary vortex. The interfacial temperature gradients 

remain almost the same for all gravity levels, so the 

thermocapillary roll must be losing some of its 

mechanical energy to the secondary vortex.  

 

For the Ma = 183 case in Figure 12, the introduction of 

gravity forms the secondary vortex which essentially 

deflects the primary vortex and confines it to the region 

near the bubble. The secondary vortex, which is driven 

by the primary one, is weak at low Ma so that in the 

context of the partitioning of kinetic energy from the 

source (i.e. the bubble interface), a large enough portion 

is still retained in the thermocapillary vortex causing its 

intensity to increase since it is now smaller. This causes 

the heat transfer to improve when the gravity influence 

takes hold. For the Ma = 915 case the same is true with 

regard to the secondary vortex deflecting the primary 

one and confining it to near the bubble. However, the 

secondary vortex is no longer weak and in fact has 

required a larger proportion of the kinetic energy from 

the source. As a result, and in contrast to the lower Ma 

case, the secondary vortex weakens the primary one in 

such a way that gravity has an adverse effect on the heat 

transfer. 
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Figure 12: Temperature contours and pathlines coloured by velocity for Pr = 83 
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5.4 Enhancement of heat transfer 

The concept of an area of enhanced heat transfer 

surrounding the bubble has been introduced previously 

in [13, 22], and can be visualised in Figure 13. 

Previously it has been shown that under zero gravity 

conditions the area of improved heat transfer remains 

relatively constant, but this area notably changes in 

response to changing gravity levels. 

 

 
 

Figure 13: Area of enhanced heat transfer near bubble 

 

Since the flow field is axisymmetric, the enhancement 

region is measured as a distance radially outward from 

the centre of the bubble. The criterion for defining 

enhancement is chosen to be  a minimum 5% increase in 

local wall heat transfer compared to the conduction only 

case. The dimensionless enhancement radius is then 

calculated as  

 

𝑅𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 =
𝑟

𝑅𝑏

|
@1.05 𝑞𝑐𝑜𝑛𝑑

′′
 

 
(21)  

 

Figure 14 plots the enhancement radius versus 

dimensionless gravity level for a range of gravity levels. 

Interestingly, above a dimensionless gravity level of g' 

= 0.2, all curves converge. From this point the 

enhancement radius decreases slightly with increasing 

gravity level. This behaviour supports the theory that the 

flow structure is established at low gravity levels, and 

that increasing the gravity level further has minimal 

impact on heat transfer since the thermocapillary effect 

dominates in the region nearest the bubble where the 

majority of heat is transferred. 

 

 
 

Figure 14: Enhancement radius vs. gravity level for 

183 ≤ Ma ≤ 915 

 

Using the enhancement radius, an enhancement area can 

be defined which allows calculation of a hot wall 

Nusselt number. The enhancement radius will differ 

depending on the combination of Ma, Ra and Pr. To 

make a comparison between cases, the Nusselt number 

must be defined over the same area for all. Since the zero 

gravity case forms the baseline to which other cases are 

compared, an effective radius Reff =  6Rb is chosen (at 

terrestrial gravity an appropriate effective radius is 3Rb). 

The hot wall effective area, Aeff hw, and Nusselt number 

for the hot wall, Nuhw, are given by 

 

𝐴𝑒𝑓𝑓,ℎ𝑤 = 𝜋(𝑅𝑒𝑓𝑓,ℎ𝑤
2 − 𝑅𝑏

2)  (22)  

 

𝑁𝑢ℎ𝑤 =
∫ 𝑞𝑀𝑎

′′ 2𝜋𝑟𝑑𝑟
𝑅𝑒𝑓𝑓,ℎ𝑤

𝑅𝑏

∫ 𝑞𝑐𝑜𝑛𝑑
′′ 2𝜋𝑟𝑑𝑟

𝑅𝑒𝑓𝑓,ℎ𝑤

𝑅𝑏   

 

 

(23)  

 

Figure 15 plots the hot wall Nusselt number versus Ma 

using an effective radius of 6Rb. The data from the Pr = 

220, 145≤Ma≤363 is graphed as solid dots in the figure. 

The trendlines are extended according to the results from 

the Pr = 83, 145≤Ma≤915 numerical data. The figures 

show that more heat is transferred from the hot wall at 

zero gravity in almost all cases, and increasing the 

gravity level decreases the enhancement. These figures 

also imply that once gravitational forces are significant, 

increasing the Marangoni number will produce 

successively less profound increases in heat transfer, 

which is in agreement with the opinion that the 

buoyancy-driven vortex strips some of the mechanical 

energy from the thermocapillary roll.  

 

To highlight the sensitivity of the Nusselt number to the 

choice of effective radius/area, Figure 16b plots the 

Nusselt number versus Marangoni number based on the 

effective radius at terrestrial gravity (Reff  = 3Rb). Using 

this effective area, the plot shows that in the region 

immediately surrounding the bubble, the interaction of 

the opposing thermocapillary and buoyancy forces 

actually results in increased heat transfer compared to 

zero gravity for low Marangoni numbers. The total 

amount of heat transferred is greater at 0-g however, 

since the absence of gravity allows the primary vortex to 

spread further into the channel and distribute the heat 

over a much larger area. 
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Figure 15: Nusselt number vs. Marangoni number 

using an effective radius of (a) 6Rb and (b) 3Rb 

 

Conclusions 

Thermal Marangoni convection about a 1mm radius air 

bubble situated under a heated wall of constant 

temperature immersed in a silicone oil layer (Pr = 220) 

of constant depth 5mm was numerically investigated. 

Simulations were performed under steady state 

conditions for cases in which Marangoni and buoyancy 

forces opposed one another. The combined response to 

increasing Marangoni number and/or the magnitude of 

gravitational acceleration was investigated. For each 

Marangoni number simulated, primary thermocapillary-

driven vortices were observed to develop on both sides 

of the bubble, along with a jet-like flow of liquid from 

the bubble tip that protruded into the bulk liquid below 

it. Beneath these primary flow structures, secondary 

buoyancy-driven vortices were observed to form from 

gravity levels as low as 0.1-g, and these slower-moving 

vortices rotated in opposite direction to the primaries. 

The wall heat flux profiles indicated that the interaction 

between the primary and secondary vortices resulted in 

greater peak heat fluxes, but overall the heat transferred 

was greater under zero gravity.  Experimental validation 

of selected terrestrial gravity numerical results was 

obtained using PIV. For all experiments, steady-state 

Marangoni convection was observed. The experimental 

flow patterns showed good agreement with the 

numerical solutions.  
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Nomenclature 

 

Symbol Description Units 

Cp Sp. heat at constant pressure J/kgK 

g gravitational acceleration m/s2 

g* gravity level - 

H cell height m 

k thermal conductivity W/mK 

Ma Marangoni number - 

p pressure Pa 

pref reference pressure Pa 

Pr Prandtl number - 

q” heat flux W/m2 

Q heat transferred W 

Rb bubble radius m 

Re Reynolds number - 

Tc cold wall temperature K 

Th hot wall temperature K 

Tref reference temperature K 

v velocity m/s 

vref reference velocity m/s 

   

α thermal diffusivity m2/s 

β thermal expansion coefficient 1/K 

μ dynamic viscosity Pa.s 

ν kinematic viscosity m2/s 

θ dimensionless temperature - 

ρ density kg/m3 

σ surface tension N/m 
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