
Vision, Modeling, and Visualization (2015), pp. 1–8
D. Bommes, T. Ritschel, and T. Schultz (Eds.)

Temporal Coherence Predictor for Time Varying Volume
Data Based on Perceptual Functions

Tom Noonan, Lazaro Campoalegre and John Dingliana

GV2, School of Computer Sciences and Statistics, Trinity College of Dublin, Ireland.

Abstract

This paper introduces an empirical, perceptually-based method which exploits the temporal coherence in consec-
utive frames to reduce the CPU-GPU traffic size during real-time visualization of time-varying volume data. In
this new scheme, a multi-threaded CPU mechanism simulates GPU pre-rendering functions to characterize the
local behaviour of the volume. These functions exploit the temporal coherence in the data to reduce the sending
of complete per frame datasets to the GPU. These predictive computations are designed to be simple enough to
be run in parallel on the CPU while improving the general performance of GPU rendering. Tests performed pro-
vide evidence that we are able to reduce considerably the texture size transferred at each frame without losing
visual quality while maintaining performance compared to the sending of entire frames to the GPU. The proposed
framework is designed to be scalable to Client/Server network based implementations to deal with multi-user
systems.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Time-varying data—
Parallel Processing Volume Rendering

1. Introduction

Efficient rendering and storage have been the main issues in
most areas of time-varying visualization research. In many
scientific simulations, exploiting spatial and temporal co-
herence is a means of avoiding increasing computation cost
and reducing display time. Decreasing the time required to
transfer a sequence of volumes to the rendering engine is
still a considerable challenge. All these improvements must
be driven without removing fine features from the handled
dataset.

In this paper we design a block-wise approach for vi-
sualizing animated volumes. We introduce an empirical,
perceptually-based method for exploiting the temporal co-
herence in consecutive frames to improve performance dur-
ing the real-time visualization of time-varying volume data.

We propose a technique, where a multi-threaded CPU
simulates GPU pre-rendering functions characterizing the
local behaviour of the volume datasets, avoiding the send-
ing of complete per frame datasets to the GPU in a real-time
volume rendering scheme. Our main contributions are:

• A CPU-GPU Framework for time-varying volume data vi-

sualization well suited for volume data from physics sim-
ulation based volumes.

• A parallel, predictive and perceptually-based CPU mech-
anism to improve performance in the visualization of ani-
mated volume data with minimal loss of visual quality.

• A scheme that allows a significant reduction of the volume
data size uploaded to the GPU, without any assumptions
of pre-processing.

2. Previous Work

Many compression techniques are frequently used in time-
varying volume data visualization to reduce the loading
time and memory consumption on both CPU and GPU.
Bernardon et al. [BCCS06] proposed a CPU-GPU com-
pression solution for encoding unstructured grids that al-
lows adaptive time-varying volume visualization. A real-
time de-compression and visualization scheme is proposed
in [GS01], which uses Wavelets and exploits temporal coher-
ence to achieve interactive frame rates. Lum et al. [LMC02]
designed a lossy compression mechanism that uses the tex-
ture capability of graphics cards by implementing a palette-
based decoding algorithm. Liao et al. [KLW∗08] developed

submitted to Vision, Modeling, and Visualization (2015)

John
Text Box
This version of this article has been submitted for publication in the proceedings of VMV 2015



2 T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data

a hierarchical multi-resolution framework using an octree.
They use a predictor based on motion-compensation-based
during the octree compression to reduce data size. Wester-
man [Wes95] designed a technique that discriminates singu-
lar points of spatially localized time evolutions to improve
the rendering.

Spatial data structures have also been a field of re-
search for scientists in this area. Shen et al. [SCM99] pro-
posed a new data structure called Time Space Partitioning
Tree (TSPT) to coordinate both the spatial and the tempo-
ral coherence. Wang et al. [WGLS05] proposed a parallel
multiresolution rendering framework for large-scale time-
varying data visualization using the Wavelet-based time-
space partitioning tree, see also [DCS09]. The problem us-
ing four-dimensional octrees is that sometimes it is difficult
to locate regions with only temporal but not spatial coher-
ence [Ma03].

Temporal coherence based approaches are becoming use-
ful tools for the visualization of animated volumes. Younesy
et al. [YMC05], exploit the temporal coherence concept by
introducing a novel data structure called Differential Time-
Histogram table (DTHT) that stores voxels that are chang-
ing between time-steps or during transfer function updates.
Fang et al. [FMHC07] developed a time activity curve (TAC)
to identify temporal patterns while in [JWSK07], the detec-
tion of important regions is achieved by studying the local
statistical complexity. Wang et al. [WYM08], compute an
importance curve for each data block after applying condi-
tional entropy. Curves are then used to evaluate the temporal
behaviour of blocks.

A more recent approach, [JEG12], uses functional rep-
resentation of time-varying datasets to develop an efficient
encoding technique taking into account the temporal simi-
larity between time steps. Akiba et al. [AFM06] proposed a
technique that uses time histograms for simultaneous classi-
fication of time-varying data by partitioning time histograms
into temporally coherent equivalence classes.

Due to the considerable pre-processing stages involved in
their pipelines, none of the aforementioned techniques can
be classified as real-time solutions.

3. Overview

Our scheme is a synchronized mechanism that involves both
CPU and GPU, see Figure 1. It starts by reading from disk
an entire time-varying volume dataset, composed of k time
steps , k ∈ [1,n], where n is the amount of time steps in the
dataset. We subdivide each time step volume into blocks in
the CPU. This subdivision allows the design of a block-wise
technique where each block can be processed independently
thus making the scheme suitable for parallel environments.
After the subdivision, we proceed by sending the first two
volumes corresponding to the two first time steps V0 and V1
to the GPU. For subsequent time steps, we avoid transferring

complete volumes by employing a predictive extrapolation
of blocks on the GPU. The premise is that, due to tempo-
ral coherence, an extrapolation function based on previous
frames will sufficiently approximate the behaviour of a sig-
nificant percentage of blocks and will be more efficient than
transferring the actual contents of the block.

On the CPU, we employ a multi-threaded scheme that
starts by finding, in parallel, extrapolated blocks Bi

New for
each time step k | i ∈ [1, Xres

sBlock ·
Y res

sBlock ·
Zres

sBlock ], where Xres,
Y res and Zres are the spatial resolution of each time step vol-
ume in each dimension and sBlock3 the size of each indepen-
dent block. The extrapolated blocks Bi

New are computed by
applying a linear extrapolation function E(Bk−1,Bk), where
Bk−1 and Bk are the corresponding co-spatial blocks (blocks
with the same spatial location) of two consecutive time step
volumes k−1 and k respectively.

The CPU extrapolation is a simulation of the GPU extrap-
olation. The results of CPU extrapolation are used as param-
eters of a similarity function that evaluates whether a block
can or can not be suitably extrapolated in the GPU. A key in-
gredient of our approach is the method to decide whether to
extrapolate or copy a certain block from the original dataset.
We use the results of the perceptually-based similarity func-
tion S(Bk,BNew) as explained in Section 5.

The GPU follows the same scheme: if a block Bk is re-
ceived, the algorithm directly performs an update of the time
step volumes on the GPU memory. In the case where the
GPU receives the instruction to extrapolate, an extrapolated
block Bi

New is computed otherwise the block is transferred
from dataset before the time step volume is updated and ren-
dered

4. Extrapolation Based Predictor Function

The main objective is to make the CPU responsible for an-
nouncing to the GPU whether to render the extrapolated vol-
ume blocks Bi

new or wait for the new ones from the CPU
memory at each frame. By analysing the continuity and the
predictable behaviour of physically based scientific simula-
tions, we try to approximate this behaviour as linear within
short periods of time. After the subdivision of each per
frame volume in blocks B of (8× 8× 8 or 16× 16× 16),
we apply a linear extrapolation to each voxel inside each
block, by forcing the second derivatives (Laplacian) to be 0.
Hence, we use the well known Linear Extrapolation Equa-
tion: dk+1 = 2 ·dk−dk−1 as the above mentioned predictive
function. Note that dk−1, dk and dk+1 are consecutive val-
ues of the volume voxel d corresponding to the time step
volumes k−1, k and k+1 respectively.

Algorithm 1, shows the pseudo code of the CPU stage im-
plementation of this temporal coherence predictor scheme.
We start by sending a copy of the two first frames of the vol-
ume dataset to the GPU memory to perform an initial render-
ing as explained in Section 6. We also use these two consecu-

submitted to Vision, Modeling, and Visualization (2015)



T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data 3

Figure 1: Overview of the proposed Approach

tive volume frames for starting the pre-rendering simulation
in the CPU multi-threaded scheme.

The predictive mechanism starts at frame k = 2, where
blocks Bi

new are calculated in parallel by extrapolating from
the two consecutive co-spatial blocks Bi

current and Bi
be f ore.

After this, the same multi-threaded implementation com-
putes a similarity function (see Section 5) that evaluates
whether the extrapolation function correctly simulated the
temporal coherence between consecutive frames or not. If
similarity exits (S = true) between the extrapolated block
Bi

new and the block corresponding to the current frame k, Bi
k,

then the algorithm sends a signal with the block identifier (i)
to the GPU. Otherwise, if the result of the similarity function
is false (S = f alse), the corresponding CPU thread sends
the block Bi

k to the GPU side. According to the similarity
function results, the algorithm updates the two consecutive
volume frames in the CPU memory. This is done by assign-
ing Bi

be f ore←Bi
current and, Bi

current ← Bi
new or Bi

current ← Bi
k

whether the similarity function is true or false respectively.

5. Perceptual Similarity

As mentioned in Section 4, the similarity function S, rep-
resented in equation 1, evaluates the CPU extrapolation EC
and drives the GPU extrapolation EG of each block Bi

new.
The function computes the Root Averaged Square Weighted
value between two consecutive co-spatial voxels and com-
pares this to an empirical similarity threshold value ε. The
weight (or importance) is calculated using the H(xk) func-
tion corresponding to the frequency each voxel vk ∈ Bi

current
of a particular density xk appears in the volume.

A study of the visual quality during the rendering of the
animated volume allowed the selection of the correct ε val-
ues used to discriminate whether the similarity function is
true or false in the tested datasets.

We compared three similarity functions based on dif-
ferent error metrics, computed using the density values of
two consecutive voxels with the same spatial location. The
first one computes the Maximum Difference(Max Diff), the
second one performs the Root Mean Square(RMS) and fi-

submitted to Vision, Modeling, and Visualization (2015)



4 T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data

Algorithm 1: CPU Multi-thread Extrapolation
Vbe f ore←V0;
Send(V0);
Vcurrent ←V1;
Send(V1);

for k← 2 to k← n do
for Bk← Bi

0 to Bk← Bi
n do

Bnew = Extrapolation(Bi
current ,B

i
be f ore);

if Similar(Bi
new,B

i
k) then

Send(O.K, i);
Bi

be f ore ←Bi
current ;

Bi
current ← Bnew ;

else Send(Bi
k);

Bi
be f ore ←Bi

current ;
Bi

current ← Bi
k ;

end
end

nally, we calculate the Root Averaged Square (see equa-
tion 1), weighted by the H(xk) function as is explained be-
fore (RASH).

S =

√
H(xk) ·

(xk− yk)2

n
(1)

Our next step, during the previous study was computing
the HDR-VDP−2 (High Dynamic Range-Visual Difference-
Predictor-2), see [MKRH11] between each pairs of frames
kBF and kPP corresponding to the same time step, where kBF
is a rendered frame using the Brute Force technique and kPP
represents the frame rendered after applying our Temporal
Coherence Predictive scheme. We denominate Brute Force
to the standard rendering process which follows the loading
of entire non-compressed frames to the GPU.

We selected the HDR-VDP−2 because it is a recent per-
ceptual metric for measuring the quality degradation be-
tween processed and reference images. It is based on a new
visual model for all luminance conditions, computed from
contrast sensitivity measurements.

6. GPU Extrapolation and Rendering

Accessing and transferring data from the main memory
across the graphics bus is relatively slow compared to the
direct access of graphics memory. This fact limits the size
of the volume that can be interactively rendered. Hence,
the loading of the volume data into the graphics card video
memory has a special importance for hardware acceler-
ated volume rendering techniques. Our GPU algorithm over-
comes this issue by extrapolating new blocks from the two
frame volumes present on the GPU memory.

Algorithm 2 shows the pseudo code of our CUDA imple-
mentation for the GPU stage. The CPU sends, in parallel,
block identifiers or data blocks according to the similarity
function results. If a new block Bi

k is received, the two frame
volumes present in the GPU memory are updated. When any
one of the CPU threads send a block identifier i, it means
that the extrapolation predictor announces to the GPU to ex-
trapolate the corresponding block. Then, the GPU extrapo-
lated block Bi

new is updated into the texture volume Vcurrent
to be rendered. This updating process also involves: Bi

be f ore

←Bi
current , where Bi

be f ore ∈Vbe f ore and Bi
current ∈Vcurrent as

is explained in Algorithm 2.

Algorithm 2: GPU CUDA implementation
Vbe f ore←V0;
receive(V0);
Vcurrent ←V1;
receive(V1);

if (Bi
k received) then

Bi
be f ore←Bi

current ;
Bi

current ← Bi
k ;

else
Bi

new = Extrapolation(Bi
current ,B

i
be f ore);

Bi
be f ore←Bi

current ;
Bi

current ← BBi
new

;

7. CPU performance improvements

Although the proposed scheme is a multi-threaded imple-
mentation for dealing with a block based volume represen-
tation, computation times were higher than the Brute Force
implementation for the tested time variant volume models.
We found the extra computational cost of having to extrapo-
late and compare every voxel to outweigh the gains from the
reduction in bandwidth as far as performance is concerned.

The general performance could further be improved by re-
ducing the amount of voxels which must be extrapolated and
compared by the CPU. This can be achieved through the use
of a mask that selects a subset of voxels to sample in each
8x8x8 block. However the ideal distribution and frequency
of samples in this mask needs to be balanced against the re-
duction in visual quality. The optimal selection of this mask
is left for future study.

Frame rates were in the same order of the Brute Force im-
plementation. This scheme exploits parallelism in both the
CPU and GPU, and due to the use of CUDA in our imple-
mentation we were able to update the upcoming blocks into
the current texture directly, without further waste of compos-
ing time.

submitted to Vision, Modeling, and Visualization (2015)



T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data 5

Figure 2: Behaviour of the HDR-VDP−2 Quality value using different ε values (a). Behaviour of the Extrapolation Ratio using
different ε values (b) Both cases represent the results of testing the smoke simulation dataset using the RASH based similarity
function.

8. Results and discussion

As presented in Section 2, many of the previous methods
are classified as non real-time solutions due to their use
of pre-processing implying that they do not really process
data on-the-fly. Thus we compare our approach with a brute-
force implementation, which we define as one that uses no
pre-processing of the data and contributes no reduction in
the bandwidth required. Such brute-force solutions are still
widely used in real-time simulations like the one we perform
in this paper.

We performed tests with two datasets using three differ-
ent similarity functions (RMS, Max Diff and RASH) in our
temporal coherence framework. Results vary according to
the dataset behaviour. We first choose empirically a range
of ε values and then restricted that range according to the
quality measure (Q) from the HDR-VDP−2 (see Figure 2).
This quality measure represents the similarity between refer-
ence and test images as is explained in Section 5. A Q = 100
Value indicates that both the reference and the test images
are equal, while Q = 0 represents that these images are com-
pletely different. Thus, we decided to use ε values which
guarantee a Q > 50 value, for each frame and all the possi-
ble similarity functions.

Figure 2 shows the results of studying a smoke simulation
based on the method presented in [FSJ01] with a resolution
of 100× 100× 100 voxels and 500 time steps. In this case
we used the RASH based similarity function. Quartiles in the
graph of Figure 2-(a), represent the HDR-VDP−2 quality
value Q for all the frames of the time varying volume data
and four different ε values.

As is noted, most of the time step quality values are over
the mean, which is always higher than 50. Quartiles in the
graph of Figure 2-(b) represent the ratio between the total
number of blocks and the amount of extrapolated ones for

each frame. The ε values are the same used in the experiment
showed in Figure 2-(a). The distance from the mean to the
maximum and minimum values provides evidence of a low
variation of the extrapolation ratio across time step volumes.

As expected, the visual quality decreases when the ex-
trapolation percentage increases as we are predicting more
voxels by our linear extrapolation approximation. The vi-
sual quality tends to be similar for 0.5 < ε < 1.0. Note that
in these cases, Q is around 50 and above with an extrapola-
tion ratio always over 0.5. This fact demonstrates that we are
able to reduce at least 50% of the texture size for each frame
before loading it into the GPU, by selecting correct ε values.

Figure 3: Image quality results. Rendering of the time step
155 using Brute Force (Right). Rendering of the time step
155 using the RASH based similarity function with ε = 0.25
(Left).

A measure of the temporal predictor effectiveness is
shown in Figure 3. Images in this figure show the results of
rendering the time step 155 of the smoke simulation by copy-
ing the entire volume frame into the GPU (Brute Force), see
Figure 3-Right, and by sending only 13% of the volume sub-
blocks to the GPU memory (Figure 3-Left). In this case we
are extrapolating 87% of the blocks on the GPU. Images in
Figure 4 represent a map of the probabilities of detecting dif-
ferences per pixels [MKRH11]. The Image in Figure 4-Right

submitted to Vision, Modeling, and Visualization (2015)



6 T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data

Figure 4: Map of probabilities of detecting differences. Ren-
dering of the time step 155 using the RASH based similarity
function with ε = 0.25 (Right). Rendering of the time step
155 using the RASH based similarity function with ε = 0.75
(Left).

shows these results by rendering the studied dataset using the
RASH based similarity function with ε = 0.25. Figure 4-Left
shows the result of changing epsilon to ε = 0.75.

Visual results achieved with the RASH and the Max Diff
similarity functions are shown in figures 5 and 7 respec-
tively. Images in figures 6 and 8 show the map of proba-
bilities of detecting differences between the source and the
resultant images for this two similarity functions.

The mean quality measure Q achieved in the case of the
RASH similarity function was Q = 55% with a mean extrap-
olation ratio of 0.62%. For the Max Diff similarity function
these values were Q = 75% and an extrapolation ratio of
0.5%.

The frame rates achieved with our Temporal Predictor,
were in the same order than the ones we computed for the
Brute Force scheme, with the advantage that we reduce at
least 50% the traffic of data from the CPU to the GPU.
This fact validates the current framework to be extensible to
Client/Server network based architectures as well as parallel
schemes and multi-user based systems.

Our technique does not improve the rendering stage it-
self but the pre-rendering functions that we parallelise dur-
ing the simulation on both the CPU and GPU. Table 1 shows
a comparison of the pre-rendering functions for the smoke
simulation between our technique and the brute-force imple-
mentation. Note that the time-step processing-rates for the
temporal coherence predictor are in the same order of the
pre-rendering stages in the brute-force approach. This anal-
ysis allows us to assure that there is not a major decrease
of the overall pipeline performance due to temporal coher-
ence pre-rendering functions. That is, we assure an overall
improvement because we guarantee the same order of the
performance for the pre-rendering and rendering functions
while improving the CPU-GPU bandwidth requirements.

The image in Figures 10 and Figures 9, show the render-
ing after applying a clip plane to the smoke simulation to dis-
tinguish the 8× 8× 8 blocks extrapolated in frames 90 and
442 respectively. Blocks in red are the ones which are copied

Figure 5: Image quality results. Rendering of the time step
155 using the RASH based similarity function with ε = 0.25
(Left) and ε = 0.75(Right)

Figure 6: Map of probabilities of detecting differences. Ren-
dering of the time step 155 using the RASH based similarity
function with ε = 0.25 (Right) and ε = 0.75 (Left).

Figure 7: Image quality results. Rendering of the time step
155 using the Max Diff based similarity function with ε = 1
(Left) and ε = 7(Right)

Figure 8: Map of probabilities of detecting differences. Ren-
dering of the time step 155 using the Max Diff based simi-
larity function with ε = 1 (Right) and ε = 7 (Left).

to the GPU, while the white blocks are extrapolated from the
information of the previous cospatial frames as explained in
section 6. Note that a considerable amount of blocks in the
non null region are also extrapolated.

submitted to Vision, Modeling, and Visualization (2015)



T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data 7

Figure 9: Rendering of the smoke simulation at frame 90.
The image shows a cut planar for clarification. The white
blocks in the block subdivision are the ones which are ex-
trapolated in the GPU.

Figure 10: Rendering of the smoke simulation at frame 442.
The image shows a cut planar for clarification. The white
blocks in the block subdivision are the ones which are ex-
trapolated in the GPU.

Limitations: As we mention in section 9 we would like
to extend the predictive functions to a finer filter scheme.

Without Rendering With Rendering
Brute Force 0.135ms 29.635ms

Ep = 0.25 0.1695ms 38.485ms
Ep = 0.50 0.1624ms 37.527ms
Ep = 0.75 0.1604ms 36.544ms
Ep = 1.00 0.1577ms 36.068ms

Table 1: A comparison of the impact that our technique
has on average frame times. Here we compare Brute Force
against results from our RASH similarity function.

Our current implementation is only able to deal with physics
simulations that can be approximated by analysing the be-
haviour of the partial difference equations, thus a generalisa-
tion of this proposal is still needed. We also need to perform
a rigorous user test for perceptual evaluation of the required
parameters. A unique method to adjust the parameters with
different datasets is still required

9. Conclusions and Future Work

We have proposed a new framework for time-varying-
volume data visualization, well suited for physics simulation
based volumes. Our scheme reduces the volume data size
uploaded to the GPU by performing a predictive function
that exploits the local temporal coherence among consecu-
tive frames. Tests performed provide evidence that we are
able to reduce the texture transfer bandwidth by at least 50%
at each frame with a minimal loss of the visual quality.

The frame rates achieved with our Temporal Predictor,
were in the same order than the ones we computed for the
Brute Force scheme, with the advantage that we reduce at
least 50% the traffic of data from the CPU to the GPU.

In future work we expect to investigate the use of adapted
block size according to the temporal volume behaviour. We
want to replace the Linear Extrapolation function with a
more complex scheme based on the use of local filters as
predictive functions. Increasing quality measures by using
an analysis function that discriminates with exactness the be-
haviour of each frame, should be a future improvement. We
need this analysis function to be fast enough, to be computed
in real-time on the GPU side. The results of this analysis
function could then be sent as parameters for the similarity
function to the CPU side.

We also expect to refine the error metric involved in this
framework by including perceptual evaluation from user
tests. And finally we also realise that the reduction in band-
width we have achieved will have far greater positive effects
in environments which are more inherently bandwidth con-
strained, such as over a network. Because of this we would
also like to extend our scheme to a Client/Server network
based architecture to accommodate multi-user systems be-
ing able to render time variant datasets over a network.

submitted to Vision, Modeling, and Visualization (2015)



8 T. Noonan, L. Campoalegre & J. Dingliana / Temporal Coherence Predictor for Time Varying Volume Data

10. Acknowledgements

This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) un-
der Grant Number 13/IA/1895.

References

[AFM06] AKIBA H., FOUT N., MA K.-L.: Simultaneous clas-
sification of time-varying volume data based on the time his-
togram. In Proceedings of the Eighth Joint Eurographics / IEEE
VGTC Conference on Visualization (2006), Eurographics Asso-
ciation, pp. 171–178. 2

[BCCS06] BERNARDON F. F., CALLAHAN S. P., COMBA J. A.
L. D., SILVA C. T.: Interactive volume rendering of unstructured
grids with time-varying scalar fields. In Proceedings of the 6th
Eurographics Conference on Parallel Graphics and Visualization
(2006), pp. 51–58. 1

[DCS09] DU Z., CHIANG Y.-J., SHEN H.-W.: Out-of-core vol-
ume rendering for time-varying fields using a space-partitioning
time (spt) tree. In Visualization Symposium, 2009. PacificVis
’09. IEEE Pacific (April 2009), pp. 73–80. doi:10.1109/
PACIFICVIS.2009.4906840. 2

[FMHC07] FANG Z., MÖLLER T., HAMARNEH G., CELLER A.:
Visualization and exploration of time-varying medical image data
sets. In Proceedings of Graphics Interface 2007 (2007), GI ’07,
ACM, pp. 281–288. 2

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simula-
tion of smoke. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques (2001), ACM,
pp. 15–22. 5

[GS01] GUTHE S., STRASSER W.: Real-time decompression and
visualization of animated volume data. In Visualization, 2001.
VIS ’01. Proceedings (Oct 2001), pp. 349–572. 1

[JEG12] JANG Y., EBERT D. S., GAITHER K.: Time-varying
data visualization using functional representations. Visualiza-
tion and Computer Graphics, IEEE Transactions on 18, 3 (2012),
421–433. 2

[JWSK07] JANICKE H., WIEBEL A., SCHEUERMANN G.,
KOLLMANN W.: Multifield visualization using local statistical
complexity. IEEE Transactions onVisualization and Computer
Graphics 13, 6 (2007), 1384–1391. 2

[KLW∗08] KO C.-L., LIAO H.-S., WANG T.-P., FU K.-W., LIN
C.-Y., CHUANG J.-H.: Multi-resolution volume rendering of
large time-varying data using video-based compression. In IEEE
Pacific Visualization Symposium (2008), pp. 135–142. 1

[LMC02] LUM E. B., MA K.-L., CLYNE J.: A hardware-
assisted scalable solution for interactive volume rendering of
time-varying data. IEEE Transactions on Visualization and Com-
puter Graphics 8, 3 (July 2002), 286–301. 1

[Ma03] MA K.-L.: Visualizing time-varying volume data. Com-
puting in Science & Engineering 5, 2 (2003), 34–42. 2

[MKRH11] MANTIUK R., KIM K. J., REMPEL A. G., HEI-
DRICH W.: Hdr-vdp-2: A calibrated visual metric for visibility
and quality predictions in all luminance conditions. ACM Trans.
Graph. 30, 4 (2011), 40:1–40:14. 4, 5

[SCM99] SHEN H.-W., CHIANG L.-J., MA K.-L.: A fast vol-
ume rendering algorithm for time-varying fields using a time-
space partitioning (tsp) tree. In Proceedings of the conference
on Visualization (1999), IEEE Computer Society Press, pp. 371–
377. 2

[Wes95] WESTERMANN R.: Compression domain rendering of
time-resolved volume data. In Proceedings of the 6th Conference
on Visualization (1995), IEEE Computer Society. 2

[WGLS05] WANG C., GAO J., LI L., SHEN H.-W.: A mul-
tiresolution volume rendering framework for large-scale time-
varying data visualization. In Proceedings of the Fourth Euro-
graphics/IEEE VGTC conference on Volume Graphics (2005),
pp. 11–19. 2

[WYM08] WANG C., YU H., MA K.-L.: Importance-driven
time-varying data visualization. IEEE Transactions on Visual-
ization and Computer Graphics 14, 6 (2008), 1547–1554. 2

[YMC05] YOUNESY J., MOLLER T., CARR H.: Visualization
of time-varying volumetric data using differential time-histogram
table. In Volume Graphics, 2005. Fourth International Workshop
on (2005), pp. 21–224. 2

submitted to Vision, Modeling, and Visualization (2015)

http://dx.doi.org/10.1109/PACIFICVIS.2009.4906840
http://dx.doi.org/10.1109/PACIFICVIS.2009.4906840



