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Abstract: NO2 and particulate matter are the air pollutants of most concern in Ireland, with 

possible links to the higher respiratory and cardiovascular mortality and morbidity rates 

found in the country compared to the rest of Europe. Currently, air quality limits in Europe 

only cover outdoor environments yet the quality of indoor air is an essential determinant of 

a person’s well-being, especially since the average person spends more than 90% of their 

time indoors. The modelling conducted in this research aims to provide a framework for 

epidemiological studies by the use of publically available data from fixed outdoor monitoring 

stations to predict indoor air quality more accurately. Predictions are made using two modelling 

techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air 

quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor 

relationship of the building. This joint approach has been used to predict indoor air 

concentrations for three inner city commercial buildings in Dublin, where diurnal monitoring 

of indoor and outdoor had been carried out on site. This modelling methodology has been 

shown to provide reasonable predictions of average NO2 indoor air quality compared to the 

monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. 

Hence, this approach could be used to determine NO2 exposures more rigorously of those 

who work and/or live in the city centre, which can then be linked to potential health impacts. 
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1. Introduction 

The United Nations Urban Environment Unit associates up to one million premature deaths 

annually to urban air pollution and over 90% of the air pollution in developing cities has been linked 

with poor quality vehicles [1]. Illnesses to which poor outdoor air quality has been attributed include; 

cancers of the bladder, kidney, stomach, oral cavity, pharynx and larynx, multiple myeloma, leukaemia, 

Hodgkin’s disease, and non-Hodgkin's lymphoma [2]. 

The predictive models developed in this research were based upon measured concentrations of PM2.5 

and NO2 inside and outside commercial buildings in Dublin, Ireland [3]. A study into air pollution in 

26 cities across Europe [4] noted that Dublin, with a population of approximately 1.2 million [5] in an 

area of 290 km2, has comparatively low concentrations of air pollutants, such as NO2 and PM2.5, which 

were within EU limits. However, a recent report by the Irish Environmental Protection Authority 

(EPA) stated that NO2 and particulate matter were the two pollutants of most concern in Ireland [6] 

which may be due to the high respiratory and cardiovascular mortality and morbidity rates in Ireland 

compared to most of the rest of Europe [1,7]. Although these illnesses may not be directly caused by 

poor air quality, they may be worsened by it. In particular, respiratory illness (such as asthma and 

bronchitis) is the third most reported illness in Ireland after cardiovascular and musculoskeletal diseases. 

Sufferers of respiratory illnesses are a high-risk group with respect to air quality; and are adversely 

impacted with declining air quality faster than the general population. The loss of working hours due to 

asthma has been estimated at three days per adult and is estimated to cost the Irish economy  

€16.6 million [8]. Statistically significant increases in hospital admissions have been recorded with 

increased periods of NO2 in Athens [9], which concur with a calculated 0.5% increase expected for 

every 10 μg·m−3 increase in NO2 concentrations [10]. Oxides of Nitrogen (NOx) and PM2.5 put strain 

on the cardiovascular and respiratory systems, thereby aggravating illness, and so any reduction in 

concentrations, regardless of limit values, should benefit a population with high rates of such illnesses. 

Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air 

is an essential determinant a person’s well-being, especially since the average person spends more than 

90% of their time indoors [11,12]. Indoor health was not considered when comparing European PM2.5 

and NO2 legislative concentrations, yet poor indoor air quality has been associated with symptoms like 

headaches, fatigue, trouble concentrating, and irritation of the eyes, nose, throat and lungs, all of which 

effect the productivity of a workforce [2,13–15]. Most cities now have a number of ambient air quality 

monitoring stations but studies have found that such ambient outdoor measurements can prove to be a 

poor predictor of personal work-day exposure, with the higher personal exposures often due to 

increased indoor concentrations of the measured pollutant. For example the EXPOLIS study found 

median correlations of personal exposure and outdoor monitoring of PM2.5 ranging from 0.39 to 0.91 

across Europe [16,17]. The link between indoor and outdoor air quality in commercial buildings was 

also studied by Mosqueron et al. [18], who found a correlation of r = 0.05 when comparing urban 
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background concentrations with in-office concentrations for NO2 and PM2.5 in Paris. Zeger et al. [19] also 

previously found that fixed site monitoring was not ideal for calculating exposure. A European wide 

study known as AIRMEX reported that indoor concentrations of Volatile Organic Compounds (VOCs) and 

PM10 in two Dublin city centre offices in May 2007 were often higher than outdoor concentrations [20]. 

There has been much recent research into the use of different modelling approaches to predict a 

variety of different outdoor air pollutant concentrations at higher resolutions for specific locations in 

the urban environment to improve upon the relatively sparse ambient monitoring data that is normally 

available, see for example [21–25]. However, there have been much fewer studies that have tried to 

predict indoor air quality from the local outdoor conditions in such an urban environment. Hence, this 

research aims to provide a methodology based upon modelling which can use publically available data 

from fixed site monitoring stations in order to predict indoor air quality more accurately. Predictions 

are made using two modelling techniques. Initially Artificial Neural Networks models were developed 

to determine the dynamic relationship between the measured outdoor and indoor air quality of several 

monitored buildings. The Personal-exposure Activity Location Model (PALM) model [26,27] was then 

used to predict the outdoor air quality at any particular building in the city and thus provide an input 

into the ANN models to predict indoor air quality. This approach ultimately provides predicted indoor air 

concentrations, which can then be used to determine urban workers’ pollutant exposures more rigorously. 

This data could then be linked to future epidemiological studies, for example the incidence of 

respiratory illnesses of those who work and/or live in the city centre. 

2. Experimental Section 

2.1. Experimental Data 

As part of a wider research project, summarized in Challoner and Gill [3], ten commercial buildings 

were chosen for air quality monitoring, all located along busy street canyons in Dublin’s city centre. 

Three of these buildings were chosen for this more detailed study which has developed artificial neural 

networks (ANN) based models to predict indoor air quality from of outdoor air quality measurements, 

as discussed later. These buildings were chose due to their proximity to each other, on one side of a 

heavily trafficked inner city street (Pearse Street), in addition to having different ventilation and use 

attributes: two are mechanically ventilated and the third is naturally ventilated (see Table 1 for details). 

The indoor monitoring at the first of the mechanically ventilated buildings (Mc2) took place in a small 

office space (2.9 m × 4.2 m plan and 4.5 m high) while the indoor monitoring at the second mechanically 

ventilated building (Mc3) was in a large open gallery space (room volume 702 m3). The ventilation 

systems for both buildings were controlled upon a set-point temperature and humidity matrix rather 

than on a specific number of air changes per hour. The naturally ventilated space (Nt2) was a medium 

sized office (9.7 m × 4.0 m plan and 4.0 m high) with six occupants. PM2.5 and NO2 concentrations 

were measured simultaneously indoors and outdoors of the different buildings (shops and offices). 

Outdoor concentrations were measured in two locations either at ground level outside the building or at 

the air intake of the building’s ventilation system. For example, for the first monitoring period (Run 1) 

at Mc2, outdoor air quality was monitored at roof level whilst for Run 2 outdoor air quality was monitored 

at ground level (as detailed in Table 1). For Run 2 at Mc4 an extra set of monitors was resourced to 
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enable outdoor monitoring to be conducted at roof and ground level simultaneously to the indoor monitoring. 

Both indoor and outdoor measurements were taken at a height of 1 to 1.5 m above ground level. 

Table 1. Monitoring sites summary and details. 

Site 

No. 

Building 

Type 

Vent. 

Type 

Age 

(Years) 
Opening (h) Run 1 Run 2 

Nt2 Office Nat. ~120 a 10 a.m.–6 p.m. 26–29 April 2011 Ground 27 June–1 July 2011 Ground 

Mc2 Office Mech. ~5 8 a.m.–6 p.m. 6–9 July 2010 Roof 12–15 July 2010 Ground 

Mc3 Shop Mech. ~5 8 a.m.–8 p.m. 13–16 December 2010 Ground 27–31 March 2011 Roof/Ground 

The indoor and outdoor measurements of PM2.5 were measured by two identical Haz-Dust monitors 

(Environmental Devices Corporation, EPAM-5000, Haz-Dust) set at a flow rate of 2 L·min−1. For NOx, 

two Teledyne, M200 monitors (which work on the principle of chemiluminescence) were used to measure 

NO and NO2: a M200E model was used for outdoor monitoring with a limit of detection of less than  

1 ppb and a M200EU model used for indoor monitoring with limit of detection of 0.05 ppb. Both monitors 

were set to a flow arte of 0.479 L·min−1. Weather data were sourced from the national meteorological 

(Met Eireann) monitoring stations located in Phoenix Park and Dublin Airport. Full details of the results 

are contained in Challoner and Gill [3]. 

2.2. Artificial Neural Network Model 

An artificial neural network (ANN) is a robust non-linear computational method which was originally 

designed to emulate biological nervous systems but has since been applied to many fields of study 

including air pollution [28,29]. ANNs do not have pre-defined assumptions such as prior hypotheses 

regarding variable relations; they have a low sensitivity to error term assumptions and a high tolerance 

to noise. ANN makes use of a complex combination of weights and functions to convert input variables 

into an output (prediction). It can be employed to examine relationships in complex non-linear data 

sets in the same way as conventional statistical techniques, but without many of the parametric 

restrictions about the nature of the data relationships. ANNs use previously collected times series data 

(e.g., indoor concentrations and outdoor meteorological data in the case of this research), that the model 

is being developed to predict. In the current study, the Levenberg-Marquardt Algorithm [30,31], a type 

of feed-forward ANN, is utilised for the modelling procedure Equation (1). This algorithm provides a 

numerical solution to the problem of minimising a function, generally nonlinear, over a space of 

parameters of the function. The Levenberg-Marquardt Algorithm (LMA) interpolates between the 

Gauss-Newton Algorithm [32,33] and the method of gradient descent, which is a first order 

optimisation algorithm. 

(𝐽𝑇𝐽 + λ𝑑𝑖𝑎𝑔(𝐽𝑇𝐽))δ = 𝐽𝑇[𝑦 − 𝑓(β)] (1) 

where: 

J—Local gradient of f with respect to β at Xi 

β—Parameters  

y—Independent and dependent variables 

δ—Increment 



Int. J. Environ. Res. Public Health 2015, 12 5 

 

 

The ANN has an inputs layer, at least one neuron layer (although usually a group of interconnecting 

neurons are present) and an outputs layer [34]. Using input data the ANN is “trained” by inputting a set 

of “target” values (in this case the indoor air quality concentrations), which the ANN should achieve 

by processing the input data. Once trained and tested, the ANN can be applied widely in a number of 

applications because of their fascinating characteristics of robustness, fault tolerance, adaptive learning 

ability and massive parallel processing capabilities. For example, ANNs have been used for time series 

prediction of air pollution levels at monitoring station locations [35], at street level [24,36] and at 

locations of particular interest such as road intersections [25]. 

Input Parameters 

A Matlab toolbox called “Neural Network Time series Tool” using a non-linear auto-regression 

with external input networks (NARX) modelling technique was chosen to calculate interactions 

between indoor and outdoor concentrations of PM2.5 and NO2, and meteorological data. The NARX 

network is a two-layer feed forward time delay neural network (TDNN) which uses a sigmoid transfer 

function in the hidden layer and a linear transfer function in the output layer. In order to train the 

system, the feedback loops between the output and input (which are usually closed) were opened. A 

pre-set time lag of two time steps, between input variables and target reactions was initially selected. 

The input variables chosen were; time of day, barometer level pressure (hPa), sea level pressure (hPa), 

temperature (°C), relative humidity (%), wind speed (knots), wind direction (knots), Pasquill atmospheric 

stability class, global solar radiation (j·cm−2) and outdoor pollutant concentrations. 

The indoor concentration datasets, or targets, were divided into three subsets in order to train, 

validate and test the Matlab NARX model. The proportion of this division was chosen to be 75% for 

training, 10% for validation and 15% for testing of the model as used in other studies [25,36]. The idea 

of training is to pick up on hidden neurons or interactions between the data, which may be a 

combination of several variations in meteorological data that vary the relationship between indoor and 

outdoor concentrations. These neurons increase the prediction ability of the ANN over a simple 

regression. The validation process was then used to further refine the neural network construction and 

to minimise over-fitting. Validation checks ensured that increases in the accuracy of the network as a 

result of training were due to increased accuracy over the data set that was not previously seen. Finally, 

once the Matlab routine had found the best solution to the training and validation of the network, 

testing of the remaining 15% of data was performed. Testing was carried out in order to confirm the 

actual predictive power of the network. 

2.3. Prediction of Outdoor Levels using PALM Model 

The PALM-GIS model [27] was used to predict the outdoor pollution levels at the locations of the 

test sites. The PALM-GIS model uses custom Python scripts to integrate various air dispersion models 

(such as the Operational Street Pollution Model [37], the General Finite Line Source Model [38] and 

Gaussian Dispersion models) with a Geographic Information Systems (ArcGIS) platform;  

the advantage of this solution is that scripts are used to automate the time-consuming and complex GIS 

workflows, such as the iteration of the modelling procedure for different modelling tests and weather 

conditions. ArcGIS also allows the user to create a custom user script tool by coding the workflow and 
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the succession of commands. The custom tool can then be easily called and used by any ArcGIS user. 

This integration aims to provide the researchers, Local Authorities and others with a tool to calculate 

the concentration levels of air pollutants and to correlate them with other thematic layers, such as land 

use and population density, in order to link localized peaks in air pollutants with particular activities. 

As such, the following outcomes were obtained by using dedicated ArcGIS workflows and tools: 

(1) Modelled background concentration levels; 

(2) Modelled traffic related concentration levels in urban and sub-urban environments; 

(3) Modelled industrial sources related concentration levels; 

(4) Modelled domestic sources related concentration levels; 

The concentration levels were then combined in ArcGIS in order to obtain total concentration levels 

at the test locations for the periods during the different monitoring runs. 

Data for PALM Model 

The following datasets were used in the models described in the previous section: 

(1) Weather data: weather data at a hourly time step was obtained from Met Eireann for the  

Dublin Airport synoptic stations (located 8 km from the city centre on the north side of the 

city) for: wind speed, wind direction, temperature, humidity, dew point, atmospheric pressure, 

rainfall, solar radiation and atmospheric stability classes. 

(2) NO2 and PM2.5 data: daily average NO2 and PM2.5 concentration levels were sourced from the 

monitoring stations in the Great Dublin Area, classified as “Background” stations by the Irish EPA. 

(3) Traffic data: the traffic data used for the OSPM (Operational Street Pollution Model) model [37] 

was obtained from Dublin City Council (DCC). DCC monitors traffic continuously at different 

traffic intersections (critical junctions) around the city. The time resolution is was generally 15 min 

aggregate data. For the motorways, Port Tunnel, etc., information is collected by The National 

Road Authority (NRA) and then stored/archived by DCC. 

(4) Building geometry and road network: streets and buildings data for the Great Dublin Area were 

supplied by Dublin City Council in GIS format; as such the initial main challenge in using 

OSPM in this project is to import these street and buildings data into the environmental software. 

The buildings and road network were imported in OSPM using AirGIS [39]. 

2.4. Forward Prediction of Indoor Air Quality using Artificial Neural Networks 

The training of open networks as previously discussed is a useful method to check if hidden 

connections between indoor and outdoor air quality and other meteorological factors can be found, 

therefore increasing the prediction power over that of a simple regression. While this is useful, the real 

power in the use of an ANN lies in forward prediction. The forward prediction model used the original 

ANN run at a specific site to train a network as previously discussed. This network was then closed, 

meaning that no more target (i.e., indoor) data could be provided. Once the network was closed,  

new inputs for the second run, i.e., the outdoor concentrations and meteorological conditions,  

were used in conjunction with the previously trained network to predict the new indoor concentrations. 
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The add-on code required three input files (original inputs, original targets and inputs for forward 

prediction model). Changes to the input delays or hidden networks were specified at this point if 

required, in addition to changes in the amount of data used for training, validation and testing of the 

open network. At this point the network was trained using the first run of data, as was done in the 

previous sections. Once the original network was trained, the code automatically closed the network, 

which means that no more target data (i.e., indoor concentrations) would be provided. The new input 

data, as calculated in the previous section, for forward predictions was then fed into the trained network 

and the model predicted the response of the indoor air quality concentrations due to fluctuations in outdoor 

air quality and weather data. 

3. Results 

3.1. Development of ANNs for Individual Sites 

ANNs for all three buildings were computed for both NO2 and PM10 using the real data from the 

parallel indoor and outdoor monitoring described in Section 2.1. An illustrative set of figures are 

shown for the first site and other pertinent examples, whilst all other data has been plotted and 

provided as Supplementary Information (see Figures S1–S17). 

3.1.1. NO2 Artificial Neural Network Model Performance 

Mc2 (Office) 

The trained data set for Mc2 run 1, where the outdoor monitoring was located at roof level produced 

an R value of 0.967 for testing, with an overall R of 0.990 for the testing, validation and training 

periods, as shown on Figures S1 and S2. Mc2 run 2 (when outdoor monitors were located at ground 

level) resulted in only 2 errors above 1 ppb, the highest of which occurs at Time = 52, (i.e., 52 h into 

the data set) as shown in Figure S3. The goodness of fit for testing of the newly trained network was  

R = 0.91, with a perfect fit for the training period data. 

Mc3 (Mechanically Ventilated Gallery Space) 

The errors for the training, testing and validation phases of Mc3 run 1 are shown in Figure 1.  

The neural network has a test data set R value of 0.988 (Figures 1 and 2), indicating that a well-trained 

Neural Network was developed using the meteorological variables and monitored outdoor concentrations 

of NO2 to predict indoor concentrations. Run 2 also produced a very well trained Neural Network with 

few errors as shown in Figure S4. Figure S5 shows the regression of the training, validation and test 

data, with test data showing an R = 0.964 for Mc3 run 2. 
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Figure 1. Time series of neural network training Mc3 run 1 NO2. 

 

Figure 2. Mc3 run 1 NO2 regression of trained output data set. 

Nt2 (Naturally Ventilated Office) 

The difference between indoor and outdoor concentrations for Nt2 was significant during both 

monitoring runs. This was attributed to an unknown process (suspected to be heterogeneous reactions) 

significantly influencing the data set. In order to ensure this was not due to a once off event, data was 
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collected again several months later for this ground floor naturally ventilated office. For both runs the 

outdoor data were collected directly outside the main entrance to the office, located less than 10 m 

from the internal door to the office. Very low indoor concentrations of less than 9 ppb were measured 

during both runs with outdoor concentrations averaging just under 30 ppb. The training, testing and 

validation of the ANN for run 1, resulted in a single error above 1 ppb on the second morning near 

hour 25 (see Figure S6). This error occurred as a sharp spike, and similar to Sites Mc2 and Mc3 did not 

influence the trend-line. Errors occurring between the hours of 35 and 50 however did drag the  

trend-line down by 1 ppb, which is a considerable error as the range here is only between 3 ppb and 9 ppb. 

Figures S6 and S7 give an R of 0.956 for the testing of the trained neural network. 

The errors for run 2, when the monitor was again outside the office door, were less frequent than 

run 1. The range of indoor NO2 data during this run was 0.5 to 4 ppb and, therefore, even errors of 0.5 ppb 

are significant. In reviewing the individual errors, they occurred at times when sharp spikes in data 

occurred and have little influence on the trend-line of the data set. Figure S8 shows the regression analysis 

of the training, validation and test data, with an overall R = 0.990 and R = 0.81 for the testing phase. 

3.1.2. PM2.5 Artificial Neural Network Model Performance 

In general, the modelling of the PM2.5 data showed a higher number of errors, a larger range of 

errors and lower Pearson’s R values for regressions, than the previously described NO2 models.  

The range of hidden neurons was from 10–14 and delays were up to 3 intervals. The delay was set to  

30 min. 

Mc2 (Mechanically Ventilated Office) 

The ANN model for PM2.5 at Mc2 resulted in some large errors (Figure 3). The monitoring for Run 1 

was conducted at the ventilation intake level and the room where indoor monitoring took place had a direct 

feed to this air intake. Errors for this site range from −8.09 to 4.93 µg·m−3. The errors are largest for the 

validation and training data with only 1 test error point lying outside the range of −1.23 to 0.82 µg·m−3.  

The regression analysis of the neural network also returned poor R values compared to the NO2 data 

set for this site of 0.647, 0.234, and 0.708 for training, validation and testing respectively, as shown in 

Figure 4. 

The regression analysis for run 2 yielded better R values for training (R = 0.984), validation  

(R = 0.780) and testing (R = 0.776) than for run 1. These predictions were strong compared to the original 

regression done between indoor and outdoor air quality concentrations which had an R2 = 0.11.  

Errors ranged from −6.86 to 4.62 µg·m−3 although all except for six were within the range of −2.02 and 

2.20 μg·m−3. 
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Figure 3. Time series of neural network training Mc2 run 1 PM2.5. 

 

Figure 4. Mc2 run 1 PM2.5 regression of trained output data set. 

Mc3 (Mechanically Ventilated Gallery Space) 

Errors for Mc3 run 1 ranged between −2.73 to 7.37 μg·m−3, although only five points were outside 

the range of −1.14 to 1.52 μg·m−3 (Figure S9). The regression analysis on the ANN data in Figure S10 

shows R values for training, validation and testing of 0.953, −0.011 and 0.864, respectively. The poor 
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validation regression is mainly due to 1 high leverage error; other than this, the validation points 

produced a relatively good prediction. 

During run 2, PM2.5 at Mc3 was monitored simultaneously at roof level, ground level and indoors. 

This therefore presented an opportunity to see if the extra data i.e., from both ground and roof level 

simultaneously, improved the ANN performance. The performances of the three different ANNs to 

predict the indoor data are assessed as follows. Run 2 provided a better R value for the regression of the 

modelled and target values than for run 1, particularly for the validation of the training data (Figure S11). 

The errors for this run were higher than other runs due to the greater range over which data is  

spread—between −54.78 and 38.55 μg·m−3 (although all instances except for six lie between −25.31 

and 4.16 µg·m−3). 

The roof level data inputs showed a higher R value and fewer errors than the street level data, as 

shown in Figure S12. The errors were within the range of −25.67 to 61.02 μg·m−3 but all except five 

were in the range of −16.54 to 6.27 µg·m−3. Most of the larger errors again occur during the peaks, but 

the roof level data seems to account for a greater number of these than the street level data. 

Mc3 run 2 produced a strong ANN from training using the target data but with high errors due to the 

significant spike that was seen for the first day and a half of monitoring (see Figure S13). These errors 

range from −30.05 to 30.95 µg·m−3 but all, except seven, lie within the range of −14 to 8.47 µg·m−3.  

An extra input was included in this run as both ventilation intake, or roof level PM2.5 data, and ground 

level data were included, unlike the two previous runs at this site. The inclusion of both roof and 

ground level data significantly reduced errors during the first day and a half of monitoring during 

which period the large increase in indoor concentrations were monitored. The large spike at Time = 7 h 

and magnitude −30.05 occurs for testing data, this error creates a dip in the data between the previous 

and proceeding data points. Regression analysis for the training, validation and testing of the ANN 

versus the target data yielded high R values of 0.992, 0.973, and 0.957, respectively, the high R value 

for testing being due to a high leverage point. These points occurred due to testing and validation 

points being checked during the first two days, a time when unusually high peaks occurred. The R 

value seems reasonable if these high leverage points were removed. 

The actual indoor data, or target, and the three neural networks trained using data containing roof 

level data, street level data and a combination of the two as well as meteorological data for each 

network have been plotted on Figure 5. A comparison of the three trained networks reveals its strong 

prediction ability with R values above 0.95. The results of two sample t-tests show estimates of the 

difference of 1.29, −5.51 and −1.04 between target and roof level, street level and a combination of the two 

respectively. The two sample t-tests found that all three 95% confidence intervals contained zero, 

therefore, the predicted data using the trained networks for all three situations predicts outputs that 

have a mean value statistically indifferent from zero. Furthermore, the R values found that the target 

was best predicted by a combination of ground level data and roof level data R = 0.976, a lower  

R = 0.965 was found for roof level and finally the lowest R was found between street level and target 

data. While the combination of roof and ground level combined with meteorological data found the 

best prediction ability, both street level and roof level found good prediction ability individually. 
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Figure 5. Time series of ANN trained versus measured indoor concentrations at Mc3 (run 2). 

Nt2 (Naturally Ventilated Office) 

Nt2 run 1 shows a reasonable output for the error during the time series (Figure S14). Errors were 

between –6.85 and 4.62 μg·m−3 although all except five of these error points lie between −2.02 and  

2.20 μg·m−3. The regression analysis carried out on the 15% of target data set aside for testing yielded 

an R = 0.984, with the validation data yielding a lower R = 0.630 and the testing data an R = 0.660. 

Run 2 for Nt2 had a very noisy time series, as reflected with a larger number of errors due to the 

high number of fluctuations (Figure S15). The errors range from −7.21 to 5.03 µg·m−3 and have a 

Gaussian distribution. Regression analysis returned R = 1 for training and R = 0.936 for testing of the 

trained data. A stronger R of 0.813 was also found for validation compared to run 1. 

3.1.3. Discussion of Trained ANNs 

The predictions of indoor air quality using the ANNs were much stronger for NO2 than PM2.5 due to 

the less erratic NO2 time series. The measured NO2 time series had more regular diurnal patterns due 

to the fact that the pollutant is more affected by meteorological variables (e.g., global radiation, etc.) 

than PM2.5. R values for NO2 data were usually above 0.90 for training, validation and testing with 

error points which usually did not affect the time series of the data. Therefore, a reasonable prediction 

for exposure could be calculated over an annual average to make some estimates as to the health 

impacts in these working environments. The prediction of PM2.5 indoor air quality however, were 

considerably more varied with some R values for training, testing and validation of the networks below 

0.53 ranging up to 0.97 (average R value = 0.819). Errors generally fell within the range of ±7 µg·m−3 

although most are much less than this. Error points for PM2.5 had higher leverage causing the removal 

of peaks and troughs. This would ultimately affect the accuracy of the average exposure that could be 

calculated from such a modeled output. The R value decreases if training data is removed; when only 

test and validation data is calculated, the value decreased to 0.604 for validation and 0.779 for testing. 

For NO2 this value remained higher with R values of 0.893 for validation and 0.945 for testing. 
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The improvement of the prediction ability by the ANNs over use of best subsets regression can be 

seen at all sites. The R values significantly increased as hidden connections between the input data and 

the indoor concentrations were developed. The R = 0.952 (Table 2 and Figure S1) for testing of the 

newly trained NO2 network at Mc2, while the best subset regressions for the same data set had found 

R2 values above 80% without using the hidden networks. Equally, an R value of 0.988 was attained for 

the ANN test data set for NO2 at Mc3 indicating that a well-trained ANN had been developed using the 

meteorological variables and monitored outdoor concentrations of NO2 to predict indoor concentrations. 

This is compared to a best subset regression correlation of R2 values of 79.9% for the same data set. 

For PM2.5 a low correlation at Mc2 (R2 = 0.2) was found between indoor and outdoor concentrations 

when a best subsets regression was carried out prior to training of the ANN. This indicates that there 

was little direct interaction between indoor and outdoor concentrations and so other factors must have 

been influencing the indoor fluctuations. However, for the training, validation and testing the ANN 

produced an R value of 0.525. Mc2 run 2 produced a much stronger trained Neural Network than run 1. 

Mc2 run 2 outdoor monitoring was at ground level and the better-trained network may be due to the 

longer time that meteorological conditions have to influence the concentrations and therefore are more 

useful predictors. Challoner and Gill (2014) previously found that ground level concentrations had a 

greater influence on indoor fluctuations than the roof level concentrations for this site. The prediction 

ability of R = 0.899 were strong compared to the original regression between indoor and outdoor 

values which had an R2 = 0.11 in Mc2 run 2. 

Table 2. Summary of Pearson R values for each run. 

Site Training Validation Test All 

NO2 

Mc2 Run 1 0.999 0.988 0.967 0.991 

Mc2 Run 2 1.000 0.815 0.952 0.968 

Mc3 Run 1 0.996 0.994 0.988 0.994 

Mc3 Run 2 1.000 0.903 0.965 0.986 

Nt2 Run 1 0.977 0.804 0.956 0.968 

Nt2 Run 2 1.000 0.915 0.814 0.980 

PM2.5 

Mc2 Run 1 0.648 0.235 0.709 0.526 

Mc2 Run 2 0.985 0.781 0.776 0.900 

Mc3 Run 1  0.954 0.012 0.865 0.668 

Mc3 Run 2 (street)  0.984 0.969 0.925 0.951 

PM2.5 

Mc3 Run 2 (roof)  0.999 0.965 0.811 0.966 

Nt2 Run 1 0.984 0.631 0.666 0.844 

Nt2 Run 2 1.000 0.814 0.940 0.908 

The significance of errors on the models depend upon when they occur-those which drag or push 

the time series away from its target trend-line are considerably more important than those which do not. 

In general, the errors found for the training of the ANNs, particularly for NO2 concentrations, did not 

all have high leverage on the data sets. Although many were large errors, the impacts on the data series 

trend-line were small, due to the positioning of the previous and proceeding data points. However, for 
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the PM2.5 data, the errors did significantly influence the time series over an extended period of time, 

over-predicting for certain time periods and under-predicting for others (see for example Mc3 run 1). 

Finally, the simultaneous outdoor air quality monitoring at both roof level and ground level during 

run 2, PM2.5 at Mc3 demonstrated how the ability of the ANN to predict the indoor monitored data was 

significantly improved. 

3.2. Results from PALM Model 

The PALM-GIS model was applied to the three inner city sites with the purpose of modelling the 

NO2 and PM2.5 outdoor concentrations for the “Run 2” periods (Table 3). The purpose of this modelling 

step is to provide a modeled input for the forward prediction of Indoor Data model presented in Section 4. 

Table 3. Summary statistics for the PALM-GIS model for NO2. 

Model Summary 

Building R2 Std. Error 

Mc2 0.854 3.15 

Mc3 0.870 4.66 

Nt2 0.829 3.91 

3.2.1. NO2 

The correlation between NO2 measured and modelled data (using PALM-GIS) is described in detail 

in the model summary statistics (Table 3) and ANOVA (Table 4) tables presented below. The coefficient 

of determination ranges between 83% and 87% means that the PALM-GIS model was able to predict 

with good accuracy the NO2 levels outside the selected buildings. 

Table 4. Analysis of variance between measured and modelled data for NO2. 

ANOVA 

Building Model Sum of Squares DF Mean Square F Sig. 

Mc2 

Regression 4357.6 1 4357.6 438.2 0 

Residual 745.9 75 9.95   

Total 5203.4 76    

Mc3 

Regression 10,009.2 1 10,009.2 460.9 0 

Residual 1498.5 69 21.72   

Total 11,507.6 70    

Nt2 
Regression 6980.9 1 6980.9 455.9 0 

Residual 1439.3 94 15.31   

Total 8420.3 95    

3.2.2. PM2.5 

The correlation between PM2.5 measured and modelled data is described in detail in the model summary 

statistics (Table 5) and ANOVA (Table 6) tables presented below. The coefficient of determination 

ranges between 71% and 77%, revealing a lower correlation than for the NO2 cases. This might be due to 

the contribution from long-range sources of PM2.5, which is not explicitly accounted for in the  

PALM-GIS model. 
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Table 5. Summary statistics for the PALM-GIS model for PM2.5. 

Model Summary 

Building R2 Std. Error 

Mc2 0.711 2.17 

Mc3 0.760 2.06 

Nt2 0.770 1.85 

Table 6. Analysis of variance between measured and modelled data for PM2.5. 

ANOVA 

Building Model Sum of Squares DF Mean Square F Sig. 

Mc2 

Regression 810.0 1 810.0 172.48 0 

Residual 328.7 70 4.696   

Total 1138.7 71    

Mc3 

Regression 927.1 1 927.1 218.44 0 

Residual 292.9 69 4.244   

Total 1220.0 70    

Nt2 

Regression 1071.6 1 1071.6 311.96 0 

Residual 319.5 93 3.435   

Total 1391.0 94    

4. Forward Prediction of Indoor Data 

4.1. Forward Prediction Using the Trained ANNs 

The outdoor NO2 and PM2.5 air quality data as predicted by the PALM-GIS model at the three inner 

city sites for the “Run 2” periods of monitoring were entered as input data into the ANN models to 

forward predict the indoor air quality in these buildings. This has then been compared against the 

actual monitored indoor air quality. 

4.1.1. Results of Forward Prediction of NO2 Concentrations 

The availability of monitoring data with two runs at the same monitoring locations left two opportunities 

to carry out a forward prediction for NO2, at Mc3 (a recently constructed mechanically ventilated building) 

and Nt2 (an older naturally ventilated building). Both sites showed different I/O ratios between the data for 

run 1 and 2 and a varying influence of meteorological parameters. 

Mc2 (Mechanically Ventilated Office) 

140 h of data were inputted into the model using indoor and outdoor concentrations from run 1 plus 

outdoor concentrations from run 2 (see Figures S1 and S2); these were supplemented by meteorological 

conditions for the two runs. Figure 6 shows the modelled concentrations of NO2 compared to the 

measured indoor concentrations. While the R2 correlation between measured and modelled indoor 

concentrations was only 0.14, a 2 Sample t-test of the indoor and predicted data gave reasonable result 

with a t-value = −1.51, p-value = 0.132, DF = 129. The 95% confidence interval for the difference was 

(−4.68, 0.62). Hence, whilst the model does not predict the exact timings of the peaks and troughs in 
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the monitored data, it does give a fairly accurate reflection of the average level of exposure throughout 

the day, which is of importance from a health perspective. 

 

Figure 6. Measured versus modelled NO2 concentrations at Mc2. 

Nt2 (Naturally Ventilated Office) 

The outdoor data for site Nt2 had comparable mean values for run 1 and run 2 (29.13 and 30.29 ppb 

respectively,) however, indoor concentrations revealed a greater difference in mean values (5.36 and 

1.63 ppb respectively)—see Figure 7, with a varying start to the morning peaks giving the plots of both 

indoor concentrations a lagged effect. The difference in average indoor concentrations affected the 

ANN Model. As discussed previously, this reduction in concentrations indoors was due to a suspected 

increase in heterogeneous reaction rates indoors, which was not explicitly included as an additional 

input variable in the model. The modelled concentrations were therefore consistently higher than actual 

values for run 2, as shown in Figure 8, although the model did forecast relatively good predictions for 

the fluctuations. The difference in mean indoor concentrations (attributed the NO2 sink) over the run 

was 3.735 ppb which, if removed from each time step of the modelled values results in a much closer 

revised prediction, as shown Figure 8. Results from this adjusted model show a two Sample t-test give 

a 95% Confidence interval for difference: (−0.217, 0.494), t-value = 0.77, p-value = 0.443 and  

DF = 132. 
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Figure 7. Measured indoor and outdoor NO2 concentrations at Nt2 (run 1 and run 2). 

 

Figure 8. Measured versus modelled indoor NO2 concentrations at Nt2 (run 2). 
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4.1.2. Results of Forward Prediction of PM2.5 Concentrations 

As noted previously the relationship between pollutants for PM2.5 showed a much greater amount of 

variability compared to that for NO2. This led to weaker network predictions for PM2.5, and consequently 

poorer forward predictions using the trained network, as detailed below. 

Mc3 (Mechanically Ventilated Gallery Space) 

The relationship between indoor and outdoor for run 1 and run 2 differed significantly; with a 

considerable increase in indoor PM2.5 concentrations indoors during run 2. These peaks, as seen in 

Figure  on a log scale and Figure 10, were not picked up in ground level outdoor data, but were present 

at roof level. These indoor peaks during run 2, which were not present outdoors at ground level or 

apparently caused by a change in meteorological conditions, meant that it was not likely that the 

trained network would be able to anticipate their presence, as was the result shown in Figure 10. 

While the model achieved the indoor value range for the beginning and second half of the data set, 

the peaks as shown in Figure 9 are not present and therefore, modelled data shows no indication of the 

peaks indoors (Figure 10). The use of outdoor roof level data, which showed reduced versions of peaks 

may have improved the predictions but since only street level outdoor data was available for run 1, the 

network could not be trained using roof level data. 

 

Figure 9. Measured indoor and outdoor PM2.5 concentrations at Mc3 (run 1 and run 2). 
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Figure 10. Measured versus modelled indoor PM2.5 concentrations at Mc3 (run 2). 

Nt2 (Naturally Ventilated Office) 

Figures S16 and S17 show the relationships between run 1 and 2 for indoor and outdoor concentrations 

for PM2.5 at Site Nt2. Outdoor concentrations produced similar patterns with a clear diurnal pattern for 

both runs. Conversely, indoor concentrations did not show the same pattern (2 sample t-test results: 

95% C estimate of difference (−4.850, −3.253), t-value = 10.1, p-value = 0.0, DF = 80) with run 1 

having a considerably smoother pattern than run 2 and a higher mean. Again, as for the NO2 results at 

this site, this pattern appeared to be due to indoor variations rather than meteorological changes or a 

difference in outdoor concentrations, which the trained network did not incorporate. 

The forward prediction model was run using PM2.5 data from run 1 at Site Nt2 as inputs, with the 

resultant output concentrations shown in Figure 7. A 2 Sample t-test found with 95% confidence that 

indoor run 1 and the modelled indoor run were not statistically significantly different (t-value = −1.37,  

p-value = 0.174, DF = 121). This indicates that the model may not be able to predict very short-term 

fluctuations, however it can predict a mean indoor value using the outdoor and met data that is statistically 

similar to the actual value. A further two Sample t-test was run to compare the modelled value and 

indoor run 2 concentrations. The results show that the two are significantly different statistically  

(t-value = 8.98, p-value = 0.000, DF = 92). This was expected as the two indoor runs vary in both 

magnitude and pattern. 
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Figure 11. Measured PM2.5 concentrations versus modelled concentrations at Nt2. 

4.2. Forward Prediction of a Generic Inner City Commercial Building 

The forward prediction ability of the modelling approach was further assessed by using a trained 

ANN model from one site (Mc3) to predict the indoor air quality at another site (Mc2) of similar 

properties (i.e., both mechanically ventilated) using the inputs (outdoor pollutant concentrations and 

meteorological data) from the second site. Figure 12 shows that the results yielded a poor prediction 

with an estimate of the difference between the mean predicted indoor concentrations and actual 

concentrations of 4.58 ppb and 11.1%. Although these two buildings were similar; both built at the 

same time, located next to each other, and both with mechanical ventilation systems, other differences 

in building characteristics such as different uses and layouts were obviously not accounted for in the 

ANN model which had been trained to the characteristics of just one building. 

 

Figure 12. Modelled indoor NO2 concentrations at Mc2 (using Mc3) vs. measured indoor concentrations. 
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5. Discussion 

5.1. Forward Prediction Ability 

The ANN modelling approach does show an ability to predict mean indoor NO2 exposure values 

from outdoor air quality data and ambient meteorological conditions for a given building, providing 

there is no other significant indoor production or degradation process occurring between the period 

where data is collected to train the network and the period for which the model is being used to make 

predictions. The ability of the model to predict PM2.5 however is much reduced. Improved predictions 

should be found if longer monitoring periods can be used to train the model, particularly if these 

include more variation in indoor and outdoor conditions. The ANN did show the ability to adapt to 

variations in the relationship between indoor and outdoor air quality. For example, at the end of run 1 

at Mc3 a change in the air pressure caused the relationship to change between indoor and outdoor 

which was similar to the relationship fluctuation seen in run 2. As the network was trained with run 1, 

the resultant forward prediction ability for indoor concentrations during run 2 was strong. This was not 

the case however, at Nt2 where the run 1 data upon which the network was trained, did not seem to 

include the full dynamics between outdoor and indoor air quality that occurred during the second run. 

The relationship seen in run 2 showed a stronger sink between outdoor and indoor for NO2 with the results 

that the trained model was unable to correctly predict the level of indoor concentrations during run 2. 

The ANN models also proved to be not so flexible when trying to transfer their indoor air quality 

predictions to other inner city buildings of apparently similar characteristics (on which they had not be 

explicitly trained) which indicates a significant limitation to the approach of this type of air quality 

modelling, based upon such limited monitoring data at least. It would obviously be infeasible to carry 

out detailed indoor and outdoor air quality monitoring for all buildings of interest in order to develop 

appropriate models. 

However, once trained, these networks can be used to predict future longer-term averages in indoor 

air quality concentrations in the monitored buildings using updated outdoor concentrations provided by 

the PALM-GIS model and weather data from ambient stations. In Ireland, the EPA does not monitor 

PM2.5 data at hourly intervals therefore forward prediction would only be applicable for use in 

conjunction with NO2, which is available in hourly resolution. However, the testing of PM2.5 for forward 

prediction using data from Nt2 showed a poor result indicating that even if hourly data was available it 

is unlikely to predict indoor pollutant exposure sufficiently. 

It is interesting to note that interviews with building occupants showed an enthusiasm to learn about 

their air pollutant exposure levels. Hence, a future application of this work could be online tool or 

phone application to give building occupants indicative indoor concentrations. This would require a 

robust data base of generalized building types trained with a forward prediction model which could be 

linked with an online tool. Linking with real time traffic information and metrological data has the 

potential to give real time data feeds. Such a generalised model could realistically be fully developed 

for NO2 but maybe not for PM2.5 due to the model’s apparent poor ability for forward prediction. 

However, the WHO has previously stated that NO2 is strongly correlated with other toxic traffic related 

pollutants, such as benzene and toluene. Therefore, NO2 could be used as a surrogate to indicate 

concentrations of various other pollutants. 
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5.2. Implications to Public Health 

The quality of air is rarely, if ever, considered when choosing a place of work, yet poor air quality 

will significantly affect the quality of health enjoyed by the employees. The average human inhales 

20,000 litres of air daily or 14 litres per minute increasing to 50 litres per minute under intense 

physical exercise [40]. Over the past two decades strong evidence has been gathered showing links 

between fine particulate matter and respiratory/cardiovascular illnesses [14,41–45]. These illnesses 

include asthma, acute bronchitis, lung cancer, damage to nasal passages and respiratory tract inflammation. 

Previous research [46], noted that even a 2 µg m−3 difference in average exposure to PM2.5 over a life 

time in Dublin can reduce the life expectancy of a person by 6 months. Recent indoor studies have also 

provided evidence of effects on respiratory symptoms among infants at NO2 concentrations below the 

annual mean 21 ppb limit [47]. Hence, the modelling approach as presented in this research can help to 

provide information as to realistic daily and longer-term exposures and thereby feed into debates 

surrounding new indoor air quality legislation. 

The data presented here was part of a wider research project (see [3]) that was carried out on 10 inner 

city buildings (five mechanically ventilated, five naturally ventilated). This found that the indoor air 

quality in several of the buildings showed an exceedance of the WHO annual mean 21 ppb guideline 

value for NO2 [48] during averaged working hours, but no site exceeded the maximum 1 h NO2 

concentration WHO guideline limit of 105 ppb. In general, naturally ventilated buildings showed lower 

NO2 concentrations indoors, than the mechanically ventilated buildings. The highest maximum 1 h 

values recorded indoors were at Mc3 (run 2) of 38.6 ppb. An interesting feature from the indoor data at 

many sites was that the indoor NO2 concentrations only dropped to 10 to 12 ppb, particularly inside the 

mechanically ventilated buildings, even though outdoor concentrations had dropped to much lower 

levels. Outdoor roadside NO2 concentrations at the 10 monitored sites had an average concentration at 

22.4 ppb and a max 1 h concentration of 79.6 ppb in heavily trafficked areas of Dublin city centre.  

For comparison, the European average for trafficked sites in 2008 was found to be 43.2 ppb, almost 

double the average roadside concentration found in Dublin [49]. Equally, a study in Osaka, Japan 

found average winter concentrations of NO2 of 53 ppb and summer time concentrations of 49 ppb for 

urban monitoring. 

For PM2.5 there is no outdoor 1 h or daily limit under EU legislation currently, but an annual mean limit 

of 25 μg·m−3 has been set out by the CAFE directive [50]. The mean indoor PM2.5 concentration in the 

naturally ventilated buildings during working hours was 24.2 ± 8.5 μg·m−3, compared to 18.9 ± 6.2 µg·m−3 

during non-working hours. Equally, in the mechanically ventilated buildings the mean indoor PM2.5 

concentration during working hours was 23.7 ± 9.2 µg·m−3, compared to 20.9 ± 12.0 µg·m−3 outside 

working hours. Five sites were found to exceed the annual mean 25 µg·m−3 PM2.5 objective value during 

working hours. 

This combined modelling approach of developing trained ANNs for specific inner city buildings, 

which are then fed by realistic outdoor concentrations at that street in the city from the PALM-GIS 

model could be used to provide a reasonable estimate of long-term indoor air quality in such workplaces. 

Such data can then be used to make assessments of public health given the amount of time an average 

person spends indoors at their workplace; it has been estimated, for example, that up to 75% of daily 

NO2 exposure occurs during working hours [51]. This modelling approach could also be used to assess 
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how different building types, sites and other operational characteristics may act to either enhance or 

mute the ingress of outdoor pollutants into such working environments, which will be of interest to 

urban planners, architects and engineers in the future. 

6. Conclusions 

The ANN predictions showed stronger predictive abilities for indoor NO2 concentration fluctuations 

when compared to PM2.5 using outdoor concentrations, with meteorological variables. This was attributed 

to the more uniform NO2 diurnal patterns which are influenced by meteorological variables such as 

global radiation to a much greater extent than PM2.5. 

Use of the forward predictions for NO2 showed an ability of the ANN model to accurately predict 

mean exposure values as long as similar meteorological conditions occurred to the data set that the 

model was trained upon. If longer monitoring periods, which covered a variety of meteorological 

conditions and indoor/outdoor relationships, were used in order to initially train the network, errors 

may be reduced. 

Unfortunately, it was found that the ANN could not use a network trained using data from one site 

to predict indoor concentrations at another site. This was due to the differences in various buildings 

relationships between indoor and outdoor concentrations. Hence, its use as a predictive model may be 

somewhat limited and only applicable to sites which have gathered detailed indoor and outdoor air 

quality data previously. 

Finally, the study has shown that the greatest influence on the quality of indoor air for the majority 

of buildings was the quality of outdoor air. Hence, once outdoor air is at a standard, which protects 

human health the implication is that indoor air will more than likely be close to this level. The 

monitoring undertaken for this paper was short term in nature but indicates that the air quality in 

Dublin is within EU limit values. 
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