
 

 

 

 

 

 

A BRIDGMAN FURNACE FRONT TRACKING MODEL  

 
 

 

 

 

 

 

UNIVERSITY OF DUBLIN, TRINITY COLLEGE 

SCHOOL OF ENGINEERING, MECHANICAL AND MANUFACTURING DEPARTMENT 

 

 

 

 

 

A thesis submitted to the University of Dublin in partial fulfilment of the 

requirements for the degree of Ph.D 

 

by 

 

Robin Patrick Mooney, BE, MENG 

February 2015 





 

 

Abstract 

 

 

A Bridgman Furnace Front Tracking Model  

 

 

Thesis by  

Robin Patrick Mooney 

Project Supervisor 

Dr. Shaun McFadden 

 

The Bridgman furnace is widely used in industry and research, mainly because it provides a means 

to directionally solidify materials in a controlled manner, so that the resulting microstructure, and 

hence material properties, can be manipulated. This thesis details, firstly, the development and 

verification of a numerical Front Tracking Model (FTM) to track the position of, and growth 

conditions at, the columnar front during transient directional solidification in a Bridgman furnace; 

and, secondly, its application to experiments investigating Columnar to Equiaxed Transition (CET) 

in a gamma TiAl multicomponent hypoperitectic alloy. Previous FTMs have been applied in fixed 

grid numerical domains where the solidifying material—normally of hypoeutectic composition—is 

contained within that domain throughout simulations; the model demonstrated here accounts for 

movement of material through the domain and is adapted for hypoperitectic solidification. The 

model is applied, firstly, to characterise a Bridgman furnace in terms of heat transfer coefficients 

and, secondly, to simulate solidification conditions at, and ahead of, the growing columnar front 

during a unique set of experiments where Bridgman and power down modes of furnace operation 

are combined in series. The simulations carried out provide valuable insight, specifically, into the 

growth conditions that lead to CET in a multicomponent gamma TiAl alloy currently of interest to 

the aerospace industry; and, more generally, into the dynamics of the transient power down 

solidification process. The results from this work will be used in preparations for planned 

directional solidification experiments, using a similar gamma TiAl multicomponent alloy, on-board 

the European Space Agency MAXUS-9 sounding rocket (in microgravity) where a power down 

technique is employed. The model can be applied elsewhere, in industry and research, to provide 

insight into solidification conditions occurring in existing Bridgman processes and in the design of 

new furnaces.  
  



 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

A wise man begins in the end; a fool ends in the beginning. 
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Summary 

The ‘Bridgman’ furnace is widely used in industry and research to directionally solidify pure 

materials and alloys. The Bridgman process (for alloys) involves movement of the material through 

a tubular furnace consisting of hot and cold zones that are separated by a baffle or adiabatic gap. 

The hot zone is held at some temperature above the alloy liquidus, and the cold zone at some 

temperature below the alloy solidus, so that the material solidifies in a controlled manner in the 

space between. The sample is typically pulled through the furnace at a fixed rate to give steady 

solidification in a fixed temperature gradient (traditional ‘Bridgman’ mode); in this case, pulling 

rate changes can invoke transient solidification. In the Bridgman furnace ‘power down’ mode, the 

sample is stationary and the temperature of hot and cold zones is decreased at a fixed cooling rate. 

Steady solidification is achieved where both zone temperatures are decreased at the same cooling 

rate; transient solidification is achieved by applying different cooling rates in each zone.  

The overall objective of this thesis has been to gain a better understanding of the 

solidification conditions, in particular, growth rate and temperature gradient, leading to Columnar 

to Equiaxed Transition (CET) in directionally solidified castings of gamma titanium alloys (TiAl) 

using a Bridgman furnace apparatus through mathematical modelling. Currently, TiAl alloys have 

the potential to replace nickel superalloys in the aerospace and automotive industries on account of 

their comparatively low density (≈50%) and equivalent strength and stiffness properties at high 

temperatures. Applications for TiAl alloys include: aero-engine turbine blades, turbocharger rotors 

and high performance engine valves. CET is an unwanted phenomenon that can occur in castings 

that adversely affects mechanical properties of cast components. Knowledge of the conditions that 

lead to CET in castings is therefore imperative. Experimental data for a TiAl multicomponent 

hypoperitectic alloy, directionally solidified in a Bridgman furnace procedure that involved 

transient Bridgman and transient power down modes of solidification (in series), was provided to 

the author of this thesis (by others) for the purposes of numerical modelling. Given this data, the 

overall thesis objective was broken down into five more manageable sub-objectives. 

The first objective was to develop a numerical model suitable for transient Bridgman furnace 

solidification using an established Front Tracking Model (FTM) from the literature. A FTM refers 

to a numerical model that estimates and follows the growth of a solidification interface or grain 

envelope. A suitable FTM was adapted accordingly for transient Bridgman solidification where 

columnar growth of a hypoeutectic alloy was tracked. A hybrid 1-dimensional axial heat flow 

model, appropriate for low Biot number processes (<0.1), was numerically implemented that 

accounts for radial heat flow at the sample circumference. The approach is advantageous since the 

temperature profile is not assumed a priori. Two simulations were performed: the first 

demonstrated a method for estimating the starting temperature profile and columnar front position 

in a Bridgman experiment, and the second simulation showed the evolution of the temperature 

profile and front position over time as two step changes in pulling rate were applied.  
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The second objective was to verify the numerical model with an analytical model from the 

literature. Verification was achieved for the case of steady Bridgman solidification of a pure 

material (in this case pure titanium). Verification for transient Bridgman solidification of an alloy 

was not possible due to a lack of analytical models in the literature. The simulation results showed 

that the numerical model was first order accurate in space. 

The third objective was to characterise a real Bridgman furnace apparatus in terms of heat 

transfer coefficients. The model was implemented in series with a discrete Proportional Integral 

Derivative (PID) controller to solve an inverse heat transfer problem using experimental data from  

static Bridgman furnace experiments performed with a hypoperitectic TiAl alloy. The model was 

adapted, in terms of latent heat release, for hypoperitectic growth. Simulation results showed that 

the furnace heat transfer coefficient at the sample circumference varied with axial position. The 

method applied is useful to other experimentalists, and to industry, since it avoids the difficult task 

of calculating heat transfer coefficients in the traditional manner where uncertainty exists in 

estimating the thermal emissivity values for the surfaces exchanging radiated heat. Further 

simulations were performed using the results without the PID controller to corroborate the method. 

The fourth objective was to model unique experiments carried out in the same furnace where 

the transient ‘Bridgman’ and transient ‘power down’ modes were used in series to directionally 

solidify the same alloy at four different cooling rates. The model was used to simulate these 

experiments; one of which displayed CET in the sample microstructure; the others displayed ‘axial’ 

columnar to ‘radial’ columnar transition microstructures. Radial growth is an unwanted occurrence 

in CET experiments that tends to choke the undercooled region preventing the possibility of CET. 

The fifth objective was to explain these microstructural observations using the model. The 

solidification conditions at the location of CET were estimated, namely; temperature gradient, 

growth rate, undercooling and undercooled region width. Comparisons were made with the other 

results. The simulation results highlight an important consideration for CET experiment designers; 

conditions that favour CET, e.g., low temperature gradient, also support radial columnar growth 

which can eliminate the possibility of CET. Reversal of radial heat flow at the sample 

circumference is proposed as a precursor for radial columnar growth.  

A discussion is provided that focuses on a sensitivity analysis of dendrite kinetics. The 

model is practically insensitive to changes in the growth kinetics parameters in terms of 

temperature gradient and growth rate. However, columnar dendrite tip undercooling is substantially 

effected. It is concluded that a CET prediction criterion based on undercooling is preferable to one 

based on growth rate for transient directional solidification. Convection in the melt is not treated in 

the current model; however, it is considered as a logical next step in its development. Potential 

improvements to dendrite kinetics in the model are suggested, amongst others. The numerical 

results, contained herein, will be used in preparation for microgravity experiments on-board the 

European Space Agency MAXUS-9 sounding rocket, planned for launch in 2016, investigating 

CET in TiAl alloys. 
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Chapter 1 

 
1 Introduction  

Introduction 

 
In this chapter the Bridgman furnace is introduced, its operation explained in detail, and examples 

of its applications in industry and in research are given. Particular focus is given to examples of the 

Bridgman furnace in research. The thesis aims and objectives are outlined. This is followed by a 

description of the thesis chapter structure in the context of the aims and objectives given. 

1.1 The Bridgman Furnace 

1.1.1 Origin, history, and operation 

The ‘Bridgman Furnace’ takes its name from the 1946 Nobel Prize winning Physicist; Percy 

W. Bridgman. In the 1920’s, Bridgman developed a technique of lowering a cylindrical crucible at 

a fixed rate along the axis of a vertical tubular furnace, held at a fixed temperature, to produce 

single crystal materials [1]. The technique was later modified by Donald C. Stockbarger, in the 

1930’s, to produce large single crystals of lithium fluoride [2], where a high temperature gradient 

was required for successful growth. To achieve higher gradients, a second tubular heat sink is 

employed, separated from the furnace heater by a thin annular baffle. The resulting solidification 

procedure is known as the Bridgman-Stockbarger technique, Bridgman solidification, or the 

Bridgman method. Many variations of the original set-up have since been developed, however, the 

principle of operation has remained the same.  

Figure 1.1 shows a schematic of a typical Bridgman furnace with the characteristic 

temperature profile in the sample material. The arrangement allows for solidification to occur 

primarily in one direction (in this case, in the direction of the sample axis), and in a positive 

temperature gradient, i.e., dT/dx>0. Any such procedure can be referred to as directional 

solidification. The material, contained in a crucible or ampoule, is lowered through the furnace 

from the hot zone into the cold zone at some pulling rate, u.  The heater is maintained at a 

temperature, TH, above the equilibrium liquidus temperature for the material, Tl; and the heat sink is 

held at a temperature, TC, below the material equilibrium solidus temperature, Ts. The heater and 

heat sink are separated by a baffle of thickness, LA, thereby establishing a temperature gradient in 

the material, ~ (TH−TC)/LA. The key advantage of the method is that solidification can be performed 

in a controlled manner by adjustment of the either temperature gradient or pulling rate (or both).  
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Fig. 1.1 Schematic of a typical Bridgman furnace and temperature profile. 

When very large temperature gradients are required, the heat sink is sometimes achieved by 

surrounding the crucible in a liquid metal bath or via water cooling methods. The size of the 

temperature gradient in the sample is adjusted by changing the baffle thickness, LA, or by varying 

the heater temperature, TH, and heat sink temperature, TC, appropriately. 

Where it is desirable to grow a single crystal, the crucible usually has a sharp pointed 

bottom. In pure materials, normally a planar (flat) solid–liquid interface forms. With alloys, 

however, the solidification interface can take on a planar, cellular (curved) or dendritic (treelike) 

shape; the latter of which is most common [3]. In dendritic solidification the material forms a 

‘mushy’ zone (a combination of solid and liquid). The directional solidification occurring in the 

figure is typical for that of an alloy, i.e., the fully solid part of the sample is separated from the fully 

liquid part by a mushy region made up of dendritic solid and interdendritic liquid [4]. The interface 

in the figure is given by the mush–liquid boundary. During steady growth, the interface forms 

somewhere between the hot and cold zones and moves at the same rate (but in the opposing 

direction) as the pulling rate. 

The Bridgman furnace can be used in ‘power down’ mode to achieve directional 

solidification. This is similar to the Bridgman method, however the sample is not translated through 

the furnace, rather the sample is fixed and controlled cooling is applied to the sample by adjustment 

of the heater and heat sink temperatures. In this case, steady solidification is difficult to achieve. 

The process is inherently transient in nature unless a fixed temperature gradient can be maintained 
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at the interface; in other words, the cooling rate applied by the heater must equal the cooling rate 

applied by the heat sink for steady growth to occur. 

1.1.2 Applications in industry 

The Bridgman method can be used to produce single crystal materials; via careful crucible 

design or alternatively, by placement of a seed crystal at the crucible tip [5]. By ‘single crystal’ (or 

mono-crystal) it is meant that the entire material sample is made up from one continuous crystal 

lattice throughout; there are no grain boundaries. Careful control of the cooling process, possible 

using the Bridgman method, can ensure that the crystal lattices align and solidify. Such materials 

benefit from exceptional properties that are desirable for use in industry. The most common 

application is in the semiconductor industry where single crystal silicon is used in the production of 

microprocessors and wiring where extremely low electrical and thermal resistance is desirable. 

Silicon mono-crystals are widely used in the photovoltaics industry where the material is used to 

maximise energy conversion efficiency in solar panels [6]. Single crystal lithium fluoride is used in 

the optics industry (for UV transmission windows) and also in X-ray detectors, on account of its 

transparency to shortwave ultra-violet radiation [7]. It is possible to cast some alloys (nickel-based 

superalloys, or titanium alloys) using the Bridgman method as single crystals, for example, in the 

manufacture high pressure turbine blades. The resultant casting offers superior resistance to creep 

needed to endure the harsh centrifugal forces of the application at high temperature [8]. 

Bridgman solidification can be effective in metal purification [9]. This is because most 

impurities are more soluble in the liquid phase than in the solid phase, therefore, the solidification 

front pushes the impurities out into the liquid melt during growth. The solidification procedure is 

carried out a number of times, each time the top section of the sample (containing all the 

impurities) is cut off before repeating the procedure.  

1.1.3 Applications in research 

Experiments with transparent materials 

In 1965 Jackson and Hunt first published details about experiments on transparent compounds as 

analogues for freezing metals [10]. Using the Bridgman method they observe that the existence of 

transparent materials provide an opportunity to make direct observations of the phenomena that 

determine the structure of cast metals. For example, it was previously impossible to examine 

criteria for dendrite growth kinetics by direct observation. 

Twenty years later, Sato, Kurz, and Ikawa [11] presented results from direct observations, of 

a similar experiment, using transparent succinonitrile–camphor alloys. They set out to achieve a 

quantitative evaluation of secondary dendrite arm detachment during directional solidification. It is 

found in this study that detachment of secondary dendrite arms occurs more easily for higher 

growth rates, and for high concentrations of camphor. At high growth rates the secondary dendrite 

arm diameter tends to decrease and hence facilitate detachment. High concentrations of solute gives 
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larger values of dendrite tip undercooling leading to thinner arm necks; a condition favourable for 

dendrite detachment.  

The relationship of growth rate and primary dendrite arm spacing was investigated by Ding 

et al. [12] using ethanol and acetone transparent alloys of succinonitrile. The effect of step 

increments in growth rate (with a fixed temperature gradient), and changes in temperature gradient 

(at a fixed growth rate) are examined in this study. It is determined that primary dendrite arm 

spacing is heavily dependent on growth rate and temperature gradient, and that the historical values 

for these parameters have a major influence on the resulting arm spacing. In other words, the 

transient effects of varying the pulling rate or temperature gradient are notable. 

A combined experimental–numerical study was performed by Simpson et al. [13] where 

convection in the melt is considered for growth of pure succinonitrile in a Bridgman furnace. 

Digital cameras are employed to observe planar growth and flow paths due to convection using 

suspended particles in the melt. The solid–liquid interface shape and velocity are measured which 

compares well with two and three dimensional numerical models. 

Transparent material experiments using the Bridgman method have more recently been 

carried out in microgravity environments where convection effects in the melt are absent. Bergeon 

et al. [14] and Weiss et al. [15] give detailed accounts of a Bridgman solidification experiment 

using succinonitrile alloys carried out on the International Space Station (ISS) where three 

dimensional spatio–temporal evolution of solidification is observed. The aim of this experiment 

was to provide unique benchmark data for validation of numerical phase field models, and also to 

describe the physics of interface pattern selection, and to determine the criteria that govern planar 

to cellular, and cellular to dendritic transitions. 

Recently, studies by Mogeritsch and Ludwig [16][17][18] describe in-situ observations of a 

peritectic transparent organic material during solidification in an experimental micro-Bridgman 

furnace. Interphase spacing of the  and  peritectic phases is measured as a function of growth 

velocity for a fixed composition, and as a function of composition for a fixed growth velocity. 

Experiments with aerogel crucibles 

The development of aerogel crucibles was first introduced by Alkemper [19]. Aerogels are unique 

materials; they are transparent to visible light (especially at the infrared end of the light spectrum 

[20]), and have an extremely low thermal conductivity, around 0.02 W/m·°C. This material offers 

the possibility to observe solidification of metals in real-time by seeing through the mould and 

recording the solidification process on a charged-couple device (CCD) infrared camera. Alkemper 

later carried out directional solidification experiments on Al–Ni and Al–Si metal alloys [21] using a 

‘power down’ method of cooling.  
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Experiments with x-ray videomicroscopy  

Mathiesen and Arnberg [22] have taken a major step further into the observation of the 

solidification process using the Bridgman method. Experiments were carried out at the European 

Synchotron Radiation Facility (ESRF) where samples of Al–30wt.%Cu were directionally 

solidified whilst undergoing high resolution fast acquisition x-ray imaging. Using this method, it 

was possible to examine the microstructure evolution and local liquid constitution during 

solidification through a 2-dimensional field of view (1.35  1.35 mm
2
) at intervals of 0.45 s. The 

images were further analysed to extract information about interface morphology, dendrite tip 

growth rate at the solid–liquid interface and constitutional undercooling at the dendrite tip. Whilst 

steady dendrite growth is not realised in these experiments, they highlight the advantages of using 

x-ray radiography in understanding solidification phenomena, as well as providing important 

modelling data for dendritic growth models. 

Using the same technique, a subsequent study [23] focuses on observations of dendritic 

fragmentation resulting from local solute enrichment during the directional solidification of Al–

20wt.%Cu. It is found that the accumulation of solute at the root of tertiary dendrite arms can lead 

to a decrease in melting temperature of the solid–liquid interface, consequently resulting in 

remelting of the arm leading to detachment, i.e., fragmentation. This phenomenon is important in 

understating the problem of columnar to equiaxed transition (CET) in castings.  

More recently, further work [24] has been done using x-ray radiography to investigate 

coarsening in the mushy zone in Bridgman solidification of Al–30wt.%Cu. In this study, secondary 

dendrite arm spacing (SDAS) is measured during acceleration and deceleration of the solidification 

front. The observations show that the proximity of primary dendrites does not affect SDAS during 

deceleration of the solidification front. On the contrary, during accelerations of the solidification 

front secondary dendrite arms coarsened more, and were more likely to produce tertiary dendrite 

arms.  

A study by Reinhart et al. [25] was carried out where unrefined Al–3.5wt.%Ni and boron 

refined Al–5wt.%Ti–1wt.%B alloys were solidified in a vertical Bridgman furnace. In situ real-

time imaging of the solidification behaviour of thin samples (40 mm in length, 6 mm in width, and 

150 m to 200 m in thickness) of both materials is obtained by synchrotron x-ray radiography at 

the ESRF. A sharp jump in pulling rate is applied in order to provoke a CET in the sample. Several 

key observations in relation to the CET are made, for example; the evolution of undercooling ahead 

of the columnar tip, and the CET blocking mechanism. Importantly, this study outlines a method to 

calculate the evolution of nuclei density between successive images for equiaxed growth, a task 

only possible through x-ray radiography.  

Analytical modelling 

Chang and Wilcox [26] give an account of a 2-dimensional analytical model, using cylindrical 

coordinates, for vertical Bridgman furnace solidification where there is no adiabatic zone and 
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material properties are assumed constant in the liquid and the solid phases. Convection in the melt 

is assumed negligible. The model assumes a planar growth interface only. Latent heat is accounted 

for using a 1-dimesional analysis with the Stefan condition applied to solve for interface position. 

The heat transfer coefficients at both heaters are assumed equal. 

Naumann [27] presents a similar model suitable for use with small sample diameters (less 

than 10 mm) with the addition of an adiabatic zone and separate thermophysical properties for solid 

and liquid. Naumann further extends this work as a hybrid analytical–numerical 2-dimensional 

model [28] valid for long thin samples and very low pulling velocities (~100 mm/h) which are 

suitable for single crystal growth. The effect of adiabatic zone length and curvature of isotherms is 

analysed. 

Gandin, Schaefer and Rappaz [29] present an analytical model for predicting the growth of a 

single dendritic grain envelope solidifying in a Bridgman furnace where a fixed thermal gradient 

and isotherm velocity is assumed. The model is applied in two dimensions. The Kurz Giovanola 

and Trivedi [30] (KGT) model for dendritic growth is applied giving a quadratic relation of 

undercooling for growth rate. The model is limited because the growth kinetics are valid for low 

levels of undercooling, latent heat is assumed negligible, and the model cannot not cope with 

interactions of the single grain envelope with the mould wall or with another grain.  

Numerical modelling 

Brown and Kim [31] apply a fully implicit axisymmetric numerical model, to solve for heat 

transfer, melt convection and species transport in a vertical three zone Bridgman furnace. The 

purpose of the study is to accurately model crystal growth with a view to reducing radial 

segregation in the crystals. The model results are compared to experimental data for a dilute Ga–Ge 

alloy. The stagnant film model [32] and Scheil model [33] for solute transport at the solid–liquid 

interface are used in this analysis. It is found that the intensity of mixing in the melt has a strong 

bearing on the level of radial segregation observed.  

An experimental study by Neugebauer and Wilcox [34] shows that a booster heater located 

between the hot zone and the adiabatic zone of a Bridgman furnace can be used to thermally 

stabilise (or destabilise) the effect of convection depending on the power applied to the booster. It 

is found that convection effects in vertical Bridgman solidification could be avoided by applying 

low pulling rates, using dilute alloys, or by operating in a microgravity environment. 

Fu and Wilcox [35] use an explicit finite difference numerical scheme to investigate the 

effect of a sudden change in ampoule pulling rate in a three zone Bridgman furnace study. It is 

found that the freezing rate depends on three key factors: Biot number, latent heat of fusion, and 

adiabatic zone length. The numerical results are correlated to determine an equation to estimate the 

time required for the freezing rate to catch up with the new ampoule pulling rate, i.e., the transient 

settling time. However, this model assumes that the Stefan condition applies at the solid–liquid 

interface; so it is not appropriate for dendritic growth (with a mushy zone). Other important 
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assumptions include: equal heat capacity and density in the liquid and solid, fixed but separate 

thermal conductivity in the solid and liquid, fixed heat transfer coefficients at the hot and cold 

heaters, and large length-to-diameter ratio of the sample. 

Su,  Jemian and Overfelt [36] carried out an experimental study where sudden changes in 

pulling rate are investigated in Bridgman solidification of Al–Cu alloys. The model of Fu and 

Wilcox [35] is tested alongside a similar model by Saito and Hirata [37]. It is reported that the 

latter model is in better agreement with the experiments carried out.  

Eiken et al. [38] have carried out a case study of phase field simulations of Bridgman 

solidification of a Ti–Al–Nb alloy to examine microstructure morphology in early peritectic 

growth. The effect of varying critical undercooling for growth and adding grain refiners is 

simulated and compared to experimental data for three different values of aluminium content. The 

study is considered qualitative given the lack of reliable data for diffusion coefficients in the melt 

and interfacial energies. 

Li et al. [39][40] have carried out a two-part study where a fixed grid front tracking model 

was applied to Bridgman growth of succinonitrile. The model assumes a planar solidification front. 

The model considers buoyancy induced convection, applied moving boundary conditions to 

simulate the heater movement, and assumed fixed but separate thermophysical properties for the 

solid and liquid phases.  

1.2 Thesis Objectives 

The work presented in this thesis has been motivated by a need to understand the pertinent 

solidification conditions that may, or may not, produce a columnar to equiaxed transition in gamma 

titanium aluminide castings. The author is currently a member of a research group, GRADECET 

(described later in Section 2.5.2), that shares this motivation. One specific task, imparted by this 

research group to the author, emerged as follows:   

 

‘To numerically model terrestrial Bridgman furnace experiments for directional solidification in a 

gamma titanium aluminide alloy where the Bridgman method is combined in series with the power 

down technique; and to provide enlightenment into the experimental results obtained using the 

model’. 

 

The above task is the overall objective of this thesis; however, it is appropriate to break this task 

down into several, more manageable, objectives as follows: 

1. To develop a numerical model for transient Bridgman furnace solidification that 

incorporates a front tracking model from the literature.  

2. Perform an order verification exercise on the numerical model using an analytical 

solution from the literature. 
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3. Characterise the Bridgman furnace experimental apparatus (in terms of heat transfer 

coefficients) using the numerical model and experimental data. 

4. Apply the numerical model to the directional solidification experiments (carried out in the 

same furnace) where the Bridgman method is combined in series with a power down 

method. 

5. Use the numerical model to explain microstructural observations in the experiment 

samples and to provide insight into the experiment process.  

1.3 Thesis Structure 

Chapter 1 introduces the Bridgman furnace and its applications. This is followed by a 

statement of the thesis objectives. Chapter 2 gives a detailed review of relevant literature. Chapter 3 

addresses the first objective of this thesis: to develop a numerical model for Bridgman 

solidification using a front tracking model from the literature. Chapter 4 addresses the second 

objective: to perform an order verification exercise on the model. Chapter 5 deals with the third 

objective: to characterise a Bridgman furnace using the model and experimental data. Chapter 6 

addresses objectives four and five: to apply the developed model to directional solidification 

experiments; and to assess the simulation results in respect of microstructural observations in 

samples. As mentioned in the preface, Chapters 3, 4, 5 and 6 contain bespoke discussion and 

conclusion sections; Chapter 7 provides further relevant discussion; and finally, Chapter 8 contains 

conclusions for the thesis and suggestions for future work. 
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Chapter 2 

 
2 Literature Review 

Literature Review 

 
In this chapter a review of relevant literature is provided. Firstly, a summary of solidification 

morphologies commonly occurring in metallic systems is given (in Section 2.1). This is followed 

by a review of dendritic growth in metallic alloys (in Section 2.2). Eutectic and peritectic alloy 

solidification is explained (in Section 2.3 and Section 2.4, respectively). Peritectic gamma titanium 

aluminide alloys are then reviewed (in Section 2.5). This is followed by a detailed look at a front 

tracking model for dendritic solidification from the literature (in Section 2.6), and a short review of 

front tracking methods that account for convection (in Section 2.7). The chapter is concluded (in 

Section 2.8) and the scope of the current work, as part of this thesis, is given (in Section 2.9). 

2.1 Solidification Morphologies  

The morphology (shape) of the solid–liquid interface during solidification of metallic or non-

metallic systems can be categorised into one of three commonly occurring types: planar, cellular, 

and dendritic, as shown in Fig. 2.1. In each case shown, growth occurs in the positive x-direction 

and the material temperature, T, is shown by a thick black line. The liquid regions (white areas 

labelled ‘L’) have a higher temperature than the solid regions (grey areas labelled ‘S’). In other 

words, growth is occurring in a positive temperature gradient (dT/dx>0). This is known as 

directional solidification [3]. In metallic systems, the shape of the interface is primarily determined 

by the diffusion of heat and mass. 

 

Fig. 2.1 Solid–liquid interface morphologies in directional solidification: (a) planar, (b) cellular and 

(c) dendritic. 
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For pure metallic materials, the diffusion of heat controls the interface shape. Pure materials 

solidify with a planar interface when directionally solidified. A perturbation, i.e., a disturbance in 

shape, on the planar surface in Fig. 2.1(a) will find itself in liquid hotter than the melting point of 

the pure material. The perturbation will therefore melt back; in this case, latent heat generated is 

extracted via the solid. Pure materials can take on a dendritic morphology (not shown here), for 

example, in the case of a thermal dendrite growing in an undercooled melt, where solidification 

occurs in a negative temperature gradient and latent heat is extracted via the liquid. Surface 

perturbations, in this case, find themselves in liquid at a lower temperature than the local solidus 

temperature of the alloy and therefore can grow (eventually into a dendritic shape). 

In alloys, however, the interface morphology is mainly controlled by the diffusion of mass— 

specifically the diffusion of solute—such that all three interface types in Fig. 2.1 can occur. Tiller 

et al. [41] were the first to elucidate the link between the diffusion of solute and stability of a planar 

interface. In their analysis they determine the constitutional supercooling criterion to predict the 

stability of a planar interface in the directional solidification of binary alloys (having a partition 

coefficient kpart < 1), as follows: 

,ClGmG   (2.1) 

where G is the temperature gradient in the liquid, ml is the slope of the liquidus line from the 

equilibrium phase diagram for the alloy, and GC is the concentration (solute) gradient in the liquid. 

If G>mlGC then a planar interface will remain stable, Fig. 2.1(a). If G<mlGC then a planar interface 

is unstable and any perturbation on the planar surface will grow into a dendritic form, Fig. 2.1(c). 

In this case, the liquid near the interface is constitutionally supercooled. (Note that in the literature 

‘supercooled’ is often replaced by ‘undercooled’ and ‘constitutional undercooling’ is equivalent to 

‘solutal undercooling’.) Finally, if G≈mlGC, then a cellular interface may form, Fig. 2.1(b), which 

rapidly leads to dendritic form if G is decreased. Dendritic growth is the most common of the three 

interface morphologies for metallic alloy systems. 

2.2 Dendritic Growth 

Dendritic (from the Greek word dendron, meaning tree) growth refers to the formation and 

subsequent growth of treelike primary crystals during the solidification of a material where the 

solidifying shape is branched like a tree, with primary, secondary and tertiary dendrite arms [42]. 

The solid–liquid interface for most metallic alloy systems is atomically rough. The structure of the 

liquid phase is similar to that of the solid phase; so atoms in the liquid encounter an abundance of 

potential bonding sites. This leads to apparent random attachment of atoms during solidification 

giving a rough and uneven interface at the atomic scale, in other words, non-faceted growth. This 

occurs when Sf
m
 < 2 , where Sf

m
 is the molar entropy of fusion and   is the molar gas 

constant [3]. In this case, the kinetics of attachment of atoms at the interface is not significant and 

the shape of the interface is that which maximises the flow of heat and solute, and minimises the 
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solid–liquid interface energy, . The most successful interface shape in this case is dendritic. Two 

dendritic growth scenarios possible in metallic alloys systems are considered next: dendritic 

columnar growth and dendritic equiaxed growth. This is followed by a section dealing with the 

occurrence of both of these scenarios in a single casting, i.e., columnar to equiaxed transition. 

2.2.1 Columnar growth 

In a given casting, columnar dendrites begin growth at or near the mould wall, nucleating 

heterogeneously at the mould itself or emanating from chill grains. They grow with a preferred 

crystallographic direction—opposite to the direction of heat flow—into the liquid melt with a 

dendritic growth morphology. The latent heat generated (by solidification) is extracted via the solid 

columnar dendrite, to the mould wall. This can only occur when the temperature gradient at the 

solid–liquid interface, i.e., at the dendrite tip, is positive, as shown in Fig. 2.2(a). This means that 

the temperature of the liquid ahead of the columnar dendrite tip is higher than the temperature of 

the tip itself. Note the direction of the columnar growth rate, vtip, is opposite to the direction of heat 

flow, Q. The equilibrium liquidus temperature, Tl, is plotted as a function of position, x. At the 

dendrite tip Tl is reduced, primarily due to local enrichment of the liquid by solute rejected at the 

tip (solutal undercooling), and secondly due to the capillarity effects given by the curvature of the 

solid–liquid interface (curvature undercooling). The total difference between the equilibrium 

liquidus temperature for the alloy and the temperature at the tip is known as the dendrite tip 

undercooling, Ttip. This is the usually the primary driving force for growth in metallic alloys. At 

temperatures below the equilibrium solidus temperature, Ts, the columnar dendrite is fully solid. 

Columnar growth is also known as constrained growth, since the growth of the dendrites is 

constrained or fixed by the rate of heat extraction.  

 

 

Fig. 2.2 Thermal fields for columnar (a) and equiaxed (b) dendrites in alloys, adapted from [3]. 
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Fig. 2.3 (a) Columnar dendritic growth into a superheated liquid with imposed temperature 

gradient and (b) equiaxed dendritic growth into an undercooled melt with temperature T∞. 

Analytical modelling  

Analytical models of columnar growth focus on steady-state solutions to the solutal diffusion 

equation from the point of view of an observer fixed at the dendrite tip. Consider the moving 

coordinate system, with the origin fixed at the dendrite tip, as shown in Fig. 2.3(a), where x’ is the 

position within the moving reference frame. The thermal gradient at the dendrite tip, G, is imposed 

by the process. The cooling conditions (rate of heat extraction) constrain the growth rate of the 

dendrite, however, the temperature at which growth occurs is primarily a function of solute 

rejection and hence alloy composition. Solute is rejected at the tip during growth leading to a 

snowplough effect of solute so that a concentration gradient exists in the liquid ahead of the tip. 

This leads to a local decrease of equilibrium liquidus temperature of the liquid at the tip, increasing 

back to its original value for the alloy of Tl(C0) at some distance away, as shown in  Fig. 2.3(a), 

where the dashed line shows Tl as a function of x’ [9].  

The curvature of the tip itself also creates a departure from equilibrium leading to step 

decrease of the local equilibrium liquidus temperature at the tip. Columnar growth is often 

considered a solute-diffusion-controlled process given that curvature effect is less significant at low 

solidification velocities [42], however, both are considered here. The dendrite tip undercooling, 

Ttip, is made up by solutal undercooling, TC, and curvature undercooling, TR, such that; 

.RCtip TTT   (2.2) 

Considering solutal diffusion only, Ivantsov [43] found a solution to the steady-state 

diffusion equation for the growth of a dendrite tip having a paraboloid of revolution shape. 

Critically, this choice of shape is self-preserving during growth. The solution equates the 

dimensionless solutal supersaturation, ΩC, to a function of the solutal Péclet number, Iv(PeC), 

known as the Ivantsov function, as follows: 

,)( CC PeIv  (2.3) 
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where PeC=vtipR/2Dsolute is the solutal Péclet number (ratio of solutal advection rate to solutal 

diffusion rate), R is the dendrite tip radius and Dsolute is the diffusivity of solute in the liquid, and 

where ΩC=(Ctip−C0)/(Ctip(1−kpart)), Ctip is the composition of the liquid at the tip, C0 is the original 

binary alloy composition and kpart is the alloy partition coefficient (assumed less than unity), and 

finally the Ivantsov function is defined as, 

,)()exp()( 1 CCCC PeEPePePeIv   (2.4) 

where E1(PeC) is the exponential integral function. Equation (2.3) can be rewritten in terms of 

solutal undercooling, TC, by rearranging for Ctip and assuming straight lines for liquidus and 

solidus on the alloy phase diagram to give,  

.
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
  (2.5) 

This analysis provides a set of Péclet numbers for a given level of solutal undercooling and, as a 

result, only pairs of values for growth rate and dendrite tip radius are determined.   

The curvature undercooling is given by TR=2/R where  is the Gibbs–Thomson 

coefficient (the ratio of the solid–liquid interface energy to the entropy of fusion). By substituting 

this expression and equation (2.5) into equation (2.2) yields the dendrite tip undercooling for 

columnar growth from the analytical model of Kurz et al. [30]. In this model—known as the KGT 

model—the authors use the marginal stability criterion of Langer and Müller-Krumbhaar [44], 

where it is assumed that dendrites grow at the critical wavelength of stability for a planar interface. 

The marginal stability criterion introduces a stability parameter (a constant) * such that; 

1/*∝vtipR
2
, in this case *=1/(2

2
, thus providing a second relationship for growth rate and 

radius, and thereby permitting the calculation of explicit values of growth rate for any given 

dendrite tip undercooling. Under the KGT model, the solution to the following quadratic 

transcendental equation gives the columnar dendrite tip growth rate, 
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 (2.6) 

where ml is the slope of the liquidus line from the phase diagram, ξC is a function of solutal Péclet 

number (that approaches unity at low Péclet numbers or π
2
/kpartPeC at high Péclet numbers), and G 

is the mean temperature gradient at the interface.  

Where this model is to be used as part of a numerical simulation, it is sometimes convenient 

to pre-calculate a number of growth velocities over a range of undercooling values and fit a power 

law curve to the results, for example, vtip=C(Ttip)
b
, as demonstrated by Rebow and Browne [45].  



14 

 

2.2.2 Equiaxed growth 

Equiaxed growth in metallic alloys occurs from within an undercooled melt. That is, the melt 

has a temperature lower than the equilibrium liquidus temperature for the alloy. Once nucleation 

has occurred, an equiaxed dendrite (for cubic metallic systems) grows equally along all six 

crystallographic axes of the primary phase, hence the term equi-axed. Referring to Fig. 2.2(b), the 

growth direction in this case is the same as the direction of heat flow. Latent heat generated on 

solidification is transported away from the solid–liquid interface into the undercooled liquid and 

subsequently to the mould wall through the liquid. The temperature gradient at the dendrite tip 

must be negative for equiaxed growth. In a similar manner to the case of columnar growth, the 

liquidus temperature at the dendrite tip is reduced due to solute enrichment and because of 

capillarity effects. However, since the thermal gradient at the tip is negative, an additional 

contribution (thermal undercooling) is included in the overall bath undercooling, T. Note that the 

equiaxed dendrite is isothermal during growth; however the thermal gradient in the liquid is not 

known a priori. Equiaxed growth is also referred to as free growth or unconstrained growth since 

the growth rate is limited only by the available undercooling, as opposed to the rate of heat 

extraction [42]. 

Analytical modelling 

In equiaxed growth, modelling solutal diffusion, capillarity effects and thermal diffusion must be 

considered, since the latent heat generated is transported away from the dendrite tips via the liquid. 

Consider a moving coordinate system, fixed the tip of a growing equiaxed dendrite, as shown in 

Fig. 2.3(b). The undercooled melt provides an additional driving force for growth, i.e., thermal 

undercooling TT, not seen in columnar growth, such that the total bath undercooling is given by, 

.RCT TTTT   (2.7) 

The solution to the thermal diffusion problem is analogous to that of solutal diffusion where the 

thermal Péclet number, PeT, and thermal supersaturation, ΩT, replace the their solutal counterparts 

in the Ivantsov solution as follows: 

,)( TT PeIv  (2.8) 

where PeT=vtipR/2 is the thermal Péclet number,  is the thermal diffusivity (ratio of thermal 

conductivity to volumetric heat capacity), ΩT=(Ttip−T∞)/(LV/cL), T∞ is the far field bath temperature, 

LV is the latent heat of fusion per unit volume, and cL is the specific heat capacity of the liquid. The 

thermal undercooling, TT, can then be calculated as, 

.)( T

L

V
T PeIv

c

L
T   (2.9) 

Lipton et al. [46] demonstrate a model for equiaxed growth in an undercooled melt, known as the 

LGK model, that combined this result with the Ivantsov treatment of the solutal diffusion problem 
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and capillarity effects—already discussed for columnar growth—to get the following expression 

for total bath undercooling: 
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This equation fails to yield distinct values for growth rate and dendrite tip radius; rather, only pairs 

of their product are available by its solution. The LGK model applies the marginal stability 

criterion to give the following expression for dendrite tip radius, 
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where * is introduced as the stability criterion parameter, equal to 1/4
2
 (when using the marginal 

stability criterion). For a given value of bath undercooling, equation (2.10) and equation (2.11) can 

be solved using a numerical iteration method to determine explicit values for the growth rate and 

dendrite tip radius.  

2.2.3 Columnar to equiaxed transition (CET) 

In most castings either a columnar or equiaxed grain structure occurs. Sometimes, however, 

both columnar and equiaxed grain structures can be observed. This important phenomenon is 

known as columnar to equiaxed transition (CET). A CET is said to occur when the progress of 

constrained (columnar) grain growth is blocked by the nucleation and subsequent growth of 

unconstrained (equiaxed) grains [9]. Figure 2.4 shows an image of a CET in an  aluminium–silicon 

alloy (Al–7wt.%Si), taken from a directional solidification study by Gandin [47]. The elongated 

columnar grains on the left hand side of the image are distinctive from the equiaxed grains on the 

right hand side. A detailed account of theory and models for CET is given by Spittle [48]. 

 
Fig. 2.4 Columnar to equiaxed transition visible in a longitudinal section of a cylindrical sample 

(70 mm in diameter and 150 mm in length) of Al–7wt.%Si [47]. 
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Fully columnar or fully equiaxed grain structure is normally desired in completed cast 

components so that consistent mechanical properties are achieved throughout the casting. For 

example, castings with a columnar grain structure are used in directionally solidified turbine blades 

in order to reduce creep at high temperatures. Whereas, fully equiaxed cast components are used in 

applications where strength is important, to improve feeding, or reduce the possibility of hot 

tearing. It is therefore vital to understand the conditions that produce a CET in order to avoid it as 

necessary.  

Theories for the origin of equiaxed growth 

Hutt and St John [49] reviewed several theories regarding the mechanism by which equiaxed grains 

form and lead to a CET in castings.  

The Constitutional Supercooling hypothesis is proposed by Winegard and Chalmers [50]. 

During columnar growth, a region of constitutionally undercooled (or ‘supercooled’) liquid forms 

ahead of the dendrite tips, i.e., the region enclosed by the dashed line and the temperature profile 

line in Fig. 2.3(a), due to an accumulation of solute in the liquid. It is assumed that, once a critical 

level of undercooling is exceeded, heterogeneous nucleation of equiaxed crystals can occur on 

unknown particles in the undercooled melt. If the equiaxed grains are sufficient in size or number 

the progress of the columnar growth will be stopped. 

The Big Bang hypothesis of Chalmers [51] proposes that very large numbers of equiaxed 

crystals can nucleate in the supercooled region at or near the mould walls of a casting during 

pouring, in a manner similar to chill grain formation. However, the equiaxed grains are transported 

throughout the melt as a result of convection due to pouring. Equiaxed grains that survive remelting 

can then continue to grow when they encounter constitutionally undercooled regions in the melt.   

The Dendrite Arm Remelting theory is proposed by Jackson et al. [52] in a study observing 

solidification experiments of transparent alloy analogues. They noticed necking (thinning) of 

secondary dendrite arms due to solute build up. Latent heat release, convection, or fluctuations in 

growth rate could lead to fragmentation of these secondary arms which subsequently get 

transported by buoyancy forces into the melt where they grow as equiaxed grains.   

The Showering of Dendrite Particles theory is proposed by Southin [53] in a study that 

observed the solidified macrostructure of Al–Cu laboratory ingots. This theory suggests that 

dendritic crystals form at the free surface of an ingot could somehow break away and sink into the 

melt where upon they meet other grains growing from the mould wall. In this study, the observed 

equiaxed grains were comet shaped since they tended to grow in line with the columnar grains on 

impingement. 

The Separation theory is proposed by Ohno et al. [54]. Optical microscopy was used to 

observe the beginning of solidification at the mould in the unidirectional solidification of Sn–Bi, 

Bi–Sn, Sn–Pb and Pb–Sn alloys. It is suggested that equiaxed crystals, formed at the mould walls 
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in a similar manner to the Big Bang hypothesis, have narrow necks that can be broken by thermal 

convection forces before they fully solidify. The broken equiaxed dendrite would separate and be 

transported into the melt where they may continue to grow as free dendrites in undercooled regions. 

Hutt and St John conclude by stating that all of the above mechanisms can occur depending 

on alloy composition, casting conditions and the types of substrates available for nucleation of 

equiaxed grains in the melt. However, in the case of directional solidification of an alloy using the 

Bridgman method—with an imposed positive temperature gradient—and in the absence of 

convection effects or fluctuations in the cooling conditions, the origin of equiaxed grains is most 

likely to occur under the constitutional supercooling hypothesis. 

CET models 

A review of analytical and numerical models for predicting CET is given by Spittle [48]. Spittle 

helpfully states that one of two possibilities exist for the transition: either, columnar growth slows 

down allowing equiaxed grains to dominate; or, equiaxed grains take over and force the arrest of 

columnar grain growth. In any case, models for CET can use either direct or indirect prediction 

methods [55]. Direct prediction methods simulate the growth of both columnar and equiaxed 

grains, whereas indirect prediction methods simulate columnar growth only and analyse the 

condition at, or ahead of, the columnar growth front (e.g., temperature gradient and undercooled 

region size) with respect to the likelihood of equiaxed growth occurring. Some examples of indirect 

and direct CET modelling methods are given below.  

McFadden et al. [56] present a comparison of three indirect CET prediction methods using 

experimental data from a directional solidification study with aluminium–silicon alloys by Gandin 

[47]. The first method: ‘Constrained-to-Unconstrained’ criterion, proposed by Gandin [57], 

involves a 1-dimensional front tracking model that uses Landau transforms to estimate the growth 

rate and temperature gradient at dendrite tip. CET is predicted to occur when the cooling rate at the 

tip reaches a maximum and when the temperature gradient switches from a positive value to 

slightly negative value. The second method: ‘Critical Cooling Rate’ criterion, proposed by Siqueira 

[58], shows how measured  CET positions in aluminium–copper and tin–lead alloys coincided with 

a certain critical cooling rate. The cooling rate is calculated as the product of the modelled liquidus 

isotherm velocity and temperature gradient. (It is important to note that no information is known 

about conditions at the dendrite tip using this method.) The final method: ‘Equiaxed Index’ 

criterion proposed by Browne [59], examines the conditions ahead of the columnar dendrite tip, 

specifically, in the bulk undercooled liquid. By application of an explicit control volume (CV) front 

tracking method, the Equiaxed Index, Iex(t), is proposed as an indicator of the likelihood of 

equiaxed growth, given by the following equation: 
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where i and j are spatial labels of a 2-dimensional domain (nrows  ncols) of CVs, x in width and 

y in height, and Ub is the estimated bulk undercooling value at each control volume. This index 

has a single value for the entire domain, and is a function of time; the time at which its peak value 

occurs indicates the most likely time—and hence columnar front position—for CET to occur. 

Two direct CET methods are described next. Hunt [60] presents a 1-dimensional analytical 

model that predicts columnar, equiaxed or mixed microstructure for steady-state directional 

solidification using the Bridgman method. An analysis is presented that uses an intuitive approach 

to calculate the extended volume fraction of equiaxed grains using the Avrami equation [61]. The 

model predicts fully equiaxed growth when, 
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where G is the temperature gradient, N0 is the total number of available heterogeneous substrate 

particles per unit volume, TN is the nucleation undercooling, and Ttip is the dendrite tip 

undercooling of the columnar dendrites (calculated as a function of growth rate, vtip). This 

expression is derived from an assumption based on a probabilistic analysis of columnar and 

equiaxed grain geometry, where ‘fully equiaxed’ growth corresponds to an extended volume 

fraction of equiaxed grains equal to 0.66, and ‘fully columnar’ growth corresponding to volume 

fraction of equiaxed grains equal to 1% of this value. The results of the analysis are presented in 

plots of columnar growth rate versus temperature gradient, showing the predicted equiaxed, mixed 

(equiaxed and columnar), and fully columnar regions for a given alloy composition, nucleation 

density and nucleation undercooling. Hunt concludes the analysis stating that, at low growth rates 

equiaxed growth depends on the efficiency of grain refiners, and that, at high temperature gradients 

the number of nucleation sites is more important. The above described criterion for CET has 

become known as mechanical blocking [62] and is currently the most widely used in the literature. 

Alternative blocking criteria for CET have been suggested in the literature. One such 

alternative is proposed by Martorano et al. [63]. The authors consider the interaction between, the 

solutal field in the liquid surrounding the equiaxed dendrite envelope (extra dendritic liquid), and 

the solutal field in the liquid ahead of the growing columnar front. Using this approach, CET is 

assumed to occur when the average composition in the extra dendritic liquid rises to meet the 

composition of the liquid at the growing columnar dendrite tips, thus removing the solutal 

undercooling (i.e. the primary driving force for growth). This approach has become known as 

solutal blocking [48].  

2.3 Eutectic Solidification (hypoeutectic path) 

To continue the discussion it is appropriate to consider the equilibrium of phases for the 

alloy of interest, in other words, its equilibrium phase diagram. In this section, a binary eutectic 

alloy phase diagram is considered, as shown in Fig. 2.5. This type of alloy system is common, 
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examples include: lead–tin (Pb–Sn), aluminium–silicon (Al–Si), and copper–silver (Cu–Ag). 

Eutectic solidification involves the transformation of a liquid into two distinct phases, L, of 

fixed composition. Only alloys having a composition corresponding to the invariant point (position 

4 in Fig. 2.5), i.e., the eutectic composition, undergo a single phase transformation so that a fully 

liquid material appears to spontaneously solidify at the eutectic temperature, Teuc. An example of 

one such alloy is plumbers solder (Pb–61.9wt.%Sn) [64]. Where an alloy has an original 

composition, C0, less than the eutectic composition, but greater than the primary phase solubility 

limit (position 5 in Fig. 2.5), it is referred to as a hypoeutectic alloy. The solidification path of such 

an alloy is considered next. 

 

Fig. 2.5 Typical binary eutectic alloy phase diagram and hypoeutectic dendrite morphology, 

adapted from [4]. 

 

The material begins solidification as liquid, having a temperature higher than the alloy 

equilibrium liquidus temperature, Tl (position 1 in Fig. 2.5). As cooling progresses the first material 

to solidify is the primary -phase, having composition given by position 2. As the temperature 

decreases, the composition of -phase increases (moving along the -solidus line), until the 

eutectic temperature is reached. This is the L+ period of solidification. At this point the solubility 

of the -phase in -phase is saturated (at the solubility limit, position 5) so that any remaining 

liquid solidifies via the eutectic transformation, L. A mutual exchange of solute between the 

 and  phases, via transport in the liquid, allows this to occur [4]. 

A typical -phase dendrite for this alloy is shown on the right hand side of Fig. 2.5; its tip 

growing at a temperature below the equilibrium liquidus temperature, but above the eutectic 
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temperature, with undercooling, Ttip. The eutectic material is visible (ordered structure of parallel 

 and  phases) following the dendrite tip at some temperature just below the eutectic temperature.  

2.4 Peritectic Solidification (hypoperitectic path) 

Many important materials exhibit peritectic solidification behaviour. Some examples being; 

the iron–carbide (Fe–C) system for steels, bronze (Cu–Sn), brass (Cu–Zn), titanium–alumindes 

(Ti–Al), lanthanide magnets (Nd–Fe–B), and ceramic superconductors (Y–Ba–Cu–O) [9]. 

Typically, peritectic materials solidify via two distinct processes; the peritectic reaction, and the 

peritectic transformation. Consider the equilibrium phase diagram for a typical peritectic material, 

of composition C0, as shown on the left hand side of Fig. 2.6. The solidification path of this 

hypoperitectic material is now considered. 

 
Fig. 2.6 A binary peritectic phase diagram and hypoperitectic dendrite morphology. The inserts 

illustrate a peritectic reaction (upper) a peritectic transformation (lower), adapted from [4]. 

2.4.1 The peritectic reaction 

The material begins the solidification process as fully liquid at temperatures higher than the 

material equilibrium liquidus temperature, Tl (position 1 in Fig. 2.6). As the material is cooled 

below this temperature, the primary -phase will solidify first, initially with a composition as given 

by position 2, and gradually increasing in composition as the temperature decreases until the 

equilibrium peritectic temperature, Tper, is reached, given by position 3. This is the L+L period 

of the solidification process [4].  

As the material is cooled further, at some temperature just below Tper, the peritectic reaction 

occurs where the secondary -phase begins to grow at the +L interface. All three phases; ,  and 

Liquid, are in contact with each other during the reaction, as illustrated in Fig. 2.6 by the small 

black circle in the upper insert. This is the +L+period of the solidification process. The 

secondary -phase grows laterally around the existing -phase at some velocity, V.  
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2.4.2 The peritectic transformation 

As further cooling occurs (moving away from position 3 to position 4) the primary -phase 

continues to grow; however, the secondary -phase (left behind by the peritectic reaction) begins to 

engulf the -phase by diffusion at the  interface. The -phase also continues to grow at the 

expense of the Liquid phase through the L interface. In this case, the secondary -phase divides 

the Liquid and primary -phase [65]. This process is illustrated in the lower insert of Fig. 2.6 and is 

known as the peritectic transformation.  

It is important to note that the above example assumes that equilibrium solidification does 

not occur; rather, dendritic growth of the primary -phase occurs (in a positive temperature 

gradient) with some level of undercooling; this is followed by non-equilibrium peritectic growth 

through the peritectic reaction and transformation processes. Further details regarding these 

processes can be found in a review by Kerr and Kurz [66].  

2.4.3 Growth models of peritectic solidification 

Fredriksson [67] provides a detailed account of the peritectic reaction and transformation in 

relation to the iron–carbide and iron–nickel systems. There are some existing growth models that 

can reasonably predict the kinetics of peritectic growth. However, these models seem to work well 

for some alloys and not for others, in other words, the models are alloy specific. For example; 

Bosze and Trivedi [68] outline a model where a platelike (or Widmanstätten) morphology can be 

used to predict the growth of peritectics. Fredriksson and Nylén [69] found that this model 

compares very well with experimental data for Cu–Sn alloys, but very poorly with Ag–Sn alloys.  

Another study by Phelan [70] et al. employing the same growth model shows—using in-situ 

observations of the peritectic reaction—how Fe–C alloys grew much faster than predicted. This 

discrepancy is explained by the fact that stress and strain, between the primary and secondary 

phases, increases during solidification because of density differences between the phases. The free 

energy in each phase changes as a result, leading to changes in position of the solubility lines on 

the equilibrium phase diagram, this in turn leads to diffusionless transformation [67]. 

A recent study on the solidification of binary Al–Ni powders, by Tourret and Gandin [71], 

gives a 1-dimensional spherical growth model to predict peritectic growth (along with dendritic and 

eutectic). The model incorporates the growth model developed by the KGT model [30] for 

columnar dendritic growth. 

2.5 Gamma Titanium Aluminide Alloys 

At the turn of the millennium, gamma titanium aluminide (–TiAl, gamma TiAl) peritectic 

alloys had emerged as a viable structural material—particularly in aerospace and automotive 

applications [72]—on account of their excellent mechanical properties. While gamma TiAl alloys 

offer similar strength and stiffness properties to that of established structural materials, e.g., nickel 
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based superalloys, steel or other titanium alloys, they have a low density advantage over 

competitors. Dimiduk [73] outlined this using cross plots of material properties [74] for gamma 

TiAl to compare density normalised mechanical properties; specific strength (yield 

strength/density), and specific modulus (elastic modulus/density, i.e., stiffness-to-weight ratio), 

over a range of temperatures. For example, the specific modulus of gamma TiAl alloys can be 50-

70% greater than that of nickel-based superalloys, or other titanium alloys, at elevated 

temperatures. Also, the specific strength versus temperature for gamma TiAl alloys, relative to 

other alloys, is significantly larger, as shown in Fig. 2.7.  

 

 

Fig. 2.7 Specific strength versus temperature for various alloys [73]. 

These studies [72][73] predicted that approximately 10-15 years of  technology maturation 

would be required for successful implementation of TiAl in real applications, citing cost of 

production versus improvement in performance as key to its success. Casting issues surrounded the 

alloy given its high liquidus temperature (~1500 °C), the high reactivity of molten titanium, and 

other common casting problems such as shrinkage porosity, hot tearing and misrun [75]. Currently, 

however, a 2
nd

 generation gamma TiAl multicomponent alloy  (Ti–48Al–2Cr–2Nb, all at. %) is in 

service [76] as low pressure turbine (LPT) blades in the GEnx (General Electric’s next generation) 

aero engine [77], see Fig. 2.8. This engine is currently used to power Boeing’s 787 Dreamliner 

aircraft.  
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Fig. 2.8 GEnx aircraft engine [77]. 

While the introduction of this relatively new material into service marks an important 

milestone for the success of gamma TiAl alloys, rising fuel costs have led to higher engine 

efficiency targets and hence higher engine operating temperature requirements. So called 3
rd

 

generation gamma TiAl alloys, having a higher quantity of niobium or molybdenum, can increase 

the maximum application temperatures—limited by creep resistance—from 700 °C (for 2
nd

 

generation TiAl alloys) to 850 °C [78]. One such 3
rd

 generation alloy, with chemical composition 

Ti–45.5Al–4.7Nb–0.2B–0.2C (all at. %), has been the focus of an experimental study [79] 

examining CET in directionally solidified castings.  

2.5.1 The TiAl binary alloy phase diagram 

Murray [80] gives a thorough assessment of the TiAl system which has been subsequently 

updated by Okamoto, twice [81] [82]. Schuster and Palm [83] give a critical assessment of all 

available phase diagrams (from the literature) for the binary TiAl system. However, a recent 

experimental study by Witusiewicz et al. [84] observes that none of the available data in the 

literature could successfully represent the current experimental data for the TiAl system. They 

carry out a re-evaluation of the system using the CALPHAD (CALculation of PHAse Diagrams) 

approach to obtain the phase diagram shown in Fig. 2.9. The region of this phase diagram of 

interest—as part of this thesis—is encircled in grey in the figure. 

Clemens [78] notes that, for fine grained TiAl binary alloys, room temperature elongation to 

fracture varies directly with aluminium content, reaching a maximum at Ti–48Al (at. %). Since low 

temperature ductility is a limiting factor in structural applications, most engineering gamma TiAl 

binary alloys are restricted to the 45–48Al (at. %) range. However, early in the development of 
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gamma TiAl alloys, it was recognised that the use of binary TiAl alloys for structural applications 

would not be possible due to poor resistance to creep at high temperatures and oxidisation. To 

combat these issues various studies investigating the introduction of other alloying elements were 

initiated, two such studies are discussed in the following section. 

 

 

Fig. 2.9 Titanium-aluminium phase diagram [84]. 

2.5.2 Current studies involving multicomponent gamma TiAl alloys 

A recent investigation by the European Space Agency (ESA) backed research group 

IMPRESS (Intermetallic Materials PRocessing in relation to Earth and Space Solidification) [85] 

looked in detail at the effect of casting gamma TiAl alloys in microgravity environments, as part of 

the MAXUS 8 sounding rocket mission [86]. Niobium—as an alloying element—was considered 

in this study, with and without boron grain refinement. The alloy compositions of interest to this 

group were the following intermetallic compounds: the ternary unrefined alloy, Ti–46Al–8Nb (all 

at. %); and the multicomponent refined alloy, Ti–46Al–7.5Nb–2.5B (all at. %). A CET was not 

achieved in any of the alloys in the microgravity experiments. This, ultimately, was due to a 

furnace design problem leading to unwanted radial columnar growth in the unrefined samples that 

consequently disallowed the possibility of CET occurring [87]. 
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A similar alloy to that studied in IMPRESS—but with a lower level of boron, and low levels 

of carbon—is now the current focus of the ESA backed research group; GRADECET. The material 

of interest in this study is a gamma titanium aluminide multicomponent alloy with a nominal 

composition of: Ti–45.5Al–4.7Nb–0.2C–0.2B (at. %), hereafter referred to as alloy 455. (This alloy 

composition is also a focus of this thesis.) 

GRADECET (GRAvity DEpendence of Columnar to Equiaxed Transition in Ti–Al Alloys) 

aims to understand the effect that gravity has on the casting process of this alloy. Experiments, 

using a redesigned version of the IMPRESS furnace, are planned for microgravity environments 

(less than 10
-4

 g) on-board the MAXUS sounding rocket, in terrestrial environments (1 g) in a 

standard laboratory setting, and in hypergravity environments (up to 20 g) in the large diameter 

centrifuge at the ESA in Noordwijk, the Netherlands. The complicating effects of gravity, e.g., 

thermal and solutal convection and sedimentation, are suppressed in microgravity solidification 

experiments. By carrying out identical experiments in terrestrial environments, it is possible to 

distinguish the effect of these phenomena from others—common to both environments—and 

therefore refine and improve theoretical models for casting [88]. Hypergravity is important when 

considering the centrifugal casting technique, commonly used to manufacture, for example, high 

performance turbine blades for aero-engines.  

The main focus of GRADECET is to understand the relationship between the solidification 

conditions occurring (e.g., temperature gradient and growth rate), and the resulting cast 

microstructure. The conditions to produce a CET in the microstructure are of particular interest.  

2.5.3 Effect of further alloying elements (Nb, B, C) 

The addition of niobium to the binary gamma TiAl alloy is known to be beneficial in several 

ways. First, gamma TiAl alloys are strengthened by its addition, since the -tranus line on the 

phase diagram is shifted towards the Al rich side, narrowing the + field, and hence stabilising the 

(Ti) phase leading to microstructural refinement [89]. The resulting dense microstructure reduces 

dislocation glide and so increases yield strength, via the Hall-Petch boundary strengthening 

mechanism. Second, it is understood that stacking fault energies are reduced by high levels of 

niobium in gamma TiAl alloys, so that mechanical twinning becomes the prominent deformation 

mode giving an improved ductility [90]. Third, niobium increases the activation energy of diffusion 

which has the effect of improving creep resistance at high temperatures. Finally, oxidisation 

resistance is significantly improved [91].  

Small quantities of boron are commonly added to titanium alloys as a mechanism for grain 

refinement though the formation of titanium diboride (TiB2) acting as heterogeneous nucleation 

sites, a phenomenon first documented by Bryant [92].  

It is also possible for carbon to be added to gamma TiAl alloys, as an interstitial alloying 

element, to increase creep strength via precipitation hardening arising through the formation of 

perovskite type carbides (Ti3AlC) [93]. 
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2.5.4 Applications of gamma titanium alloys 

Established titanium alloys have traditionally been used in applications where weight and/or 

space saving is important without compromising strength. For example, the landing gear beams on-

board the Boeing 747 and 757 aircraft are titanium forgings [94]. The load requirements and space 

restriction for this application deem titanium alloys appropriate. The marine and chemical 

industries make use of commercially pure titanium alloys due to their unusually high corrosion 

resistance [64]. Peritectic gamma titanium aluminide alloys, however, are used in applications that 

demand a combination of several properties, e.g., low density, high strength, good ductility, good 

resistance to creep at high temperatures, good resistance to oxidisation, and burn resistance. There 

are a number of applications that demand such properties where gamma TiAl alloys have been used 

so far. The most current applications are now discussed.  

Aerospace applications 

The main application of interest has been already mentioned, i.e., low pressure turbine blades for 

aero engines. Some practical advantages associated with these alloys over rival materials are as 

follows. The weight saving in the blade itself is of the order of 50%. A knock on effect exists 

relating to other components in the turbine assembly, for example, the rotating disc that holds the 

blades in place can be made leaner, given that the centrifugal force requirements exerted by the 

spinning blades is lower [89]. The overall weight reduction results in a higher engine rotation speed 

and hence improved engine performance and efficiency. For gamma TiAl alloys, a higher stiffness 

to weight ratio gives a higher natural frequency of vibration when compared to traditional nickel 

superalloys. This results in a quieter less noisy engine [78]. General Electric have 20,000 gamma 

TiAl LPT blades in service on nineteen Boeing 787 and 747-8s [76]. Rolls Royce have been 

developing gamma TiAl alloys since 1999 [95], and have recently stated on their website that 

gamma TiAl alloys will be used in the LPT of their next generation Trent XWB aero engine [96].  

Apart from LPT blades, other engine components have been targeted for gamma TiAl such 

as: stator vanes, exhaust components, combustor casings, radial diffusers, transition duct beams and 

turbine blade dampers.  Finally, gamma TiAl was cited as a potential material to be used in the 

development of a future supersonic high speed civil transport aircraft [97]. 

Automotive applications 

Internationally, the motor industry is facing increasingly stringent legislation in terms of carbon 

dioxide emissions and fuel consumption. As a result, engine sizes are getting smaller, engine 

rotational speeds are increasing, and target exhaust gas temperatures are increasing. Gamma TiAl 

components can help to reach these efficiency and performance targets. For example, Mitsubishi 

Motor Corp have used a gamma TiAl alloy in the turbocharger rotors for the Lancer Evolution cars 

series [98]. While not in service yet, it has been reported recently [99] that, gamma TiAl will be 

used in the valve train of 4-stroke internal combustion engines. Interestingly, gamma TiAl engine 
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valves were introduced successfully in Formula-1 racing car engine valves [100] until the FIA 

subsequently banned their use from 2006 onwards. 

Processing Routes 

Several processing technologies are capable of producing parts from TiAl alloys, among them; 

investment casting [101], electron beam melting or EBM [102], and forging with advanced 

machining [103], the latter using pre-shaped cast feedstock.  

2.6 The Front Tracking Model (FTM) 

The casting process has traditionally been completed using experience-based techniques 

developed by foundry engineers [104]. Key discoveries, like that of Chalmers and co-workers [41] 

[50] relating constitutional undercooling, solid–liquid interface growth rate, and temperature 

gradient, have provoked a steady development of mathematical models for the solidification 

phenomena observed by casting engineers. Knowing the position, velocity and temperature 

gradient of the solid–liquid interface during alloy solidification is central to understanding of the 

final cast grain structure. Various models capable of predicting this structure—and specifically 

CET—have been developed at different length scales. Wu and Ludwig [105], Martorano and 

Biscuola [106] and Jacot et al. [107] have developed models to predict CET at the macroscopic 

length scale (at the scale of the casting). Models to predict CET at the mesoscale (at the scale of the 

grain) have been developed using the Monte Carlo method  [108] and cellular automation 

technique [109]. Microscale models (at the scale of dendritic features) to predict CET have been 

developed using the phase field method [110] and the cellular automation technique [111]. 

A front tracking model (FTM) refers to a numerical model that estimates and follows the 

growth of a solidification interface, or grain envelope, during solidification, i.e., at the macroscale 

or mesoscale of the casting (in the order of millimetres). FTMs have been used to track the 

solidification interface in simple phase change problems involving pure materials [39], and also in 

more complex problems involving binary alloys [112]. In this section, the key features of the front 

tracking model (FTM) algorithm by McFadden and Browne [113], capable of predicting CET, are 

outlined. This model is an extension of a previous front tracking model by Browne and Hunt [114].  

2.6.1 The heat equation 

The model uses an explicit finite difference control volume (CV) numerical method to solve 

the following heat equation over a 2-dimensional domain;  
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The first term on the left hand side (LHS) describes the time rate of change of thermal energy in the 

CV, where t is time,  is the material density, c is the material specific heat capacity, and T is 
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temperature. The first and second terms on the right hand side (RHS) give the net change in heat 

flux by thermal diffusion in the x and y directions, respectively, where k is the material thermal 

conductivity. The final term, E, is a source term used to deal with the latent heat released during 

solidification with units of W/m
3
. The model ignores the effect of convection in the melt. 

2.6.2 Nucleation 

To initiate crystal growth nucleation must occur. Hence, as the melt is cooled, at some 

temperature the free energy of the liquid phase reduces such that it equals the free energy of the 

solid phase, and a transformation from liquid to solid occurs [115]. The front tracking model 

assumes that this transformation occurs at some fixed temperature, Tnuc, below the equilibrium 

liquidus temperature of the alloy, Tl. The difference between these temperatures is known as the 

nucleation undercooling, Tnuc=Tl−Tnuc. 

This assumption is reasonable given that nucleation rate undergoes a steep increase below a 

certain temperature [116]. In the McFadden and Browne FTM, the values for nucleation 

undercooling are set independently for columnar and equiaxed crystal growth. The columnar 

growth nucleation undercooling is estimated using the ‘cap’ model of nucleation [117]. While the 

nucleation undercooling for equiaxed growth is determined by a relation involving the seed particle 

diameter, solid-liquid interfacial energy, and volumetric entropy of fusion [118].  For both types of 

growth, the user manually sets the seed locations (nucleation sites) on the domain grid from which 

columnar or equiaxed growth could initiate once the seed is activated, i.e., when some specific 

value for Tnuc is reached. 

2.6.3 Tracking the front 

The McFadden and Browne FTM is developed for binary hypoeutectic alloys. A schematic 

for dendritic and eutectic growth of a hypoeutectic material in the southwest quadrant of a square 

mould is shown in Fig. 2.10(a). Columnar dendrites (in black) are growing from the mould wall 

into the liquid melt (white area), equiaxed dendrites (in grey) are forming in the melt, and eutectic 

solid (cross hatched) is following behind the progressing columnar dendrites.  

Figure 2.10(b) depicts how the FTM treats this scenario. The columnar front is given by a 

line joining the large columnar dendrite tips. The area between this line and the fully solid area is 

called the columnar mush, made up by solid columnar dendrites and interdendritic liquid. In a 

similar manner, the equiaxed dendrite tips are joined to form a front. However, in this case there is 

one front per equiaxed dendrite, which encompasses it, giving an equiaxed envelope. Each 

envelope contains solid equiaxed dendrites and interdendritic liquid and each envelope represents a 

single grain.  
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Fig. 2.10 (a) Schematic of dendritic growth. (b) Front tracking model applied to dendritic growth. 

The columnar front can be made up by a number of columnar grains that have grown 

independently, impinged upon one another, and merged to form a new front. A more detailed 

illustration of typical evolution of columnar growth in the FTM is shown in Fig. 2.11 [87]. The 

solidification front is given by computational markers at the intersections with the square CV 

gridlines. Piecewise linear segments between the markers define the columnar front. 

 

Fig. 2.11 Evolution of nucleation sites showing early columnar growth and impingement [87]. 

 

Once a nucleation site is activated it is permitted to grow as a grain. At every time step thereafter, 

the undercooling and hence dendrite tip velocity at every marker (making up that grain) is 

calculated using dendrite kinetics. The front marker locations are then updated to form a new front 

envelope and the process is repeated. The dot hatched areas in Fig. 2.11 are mushy regions and the 

non-hatched areas are liquid regions.  

It is clear that nucleation sites 1 and 2 have nucleated at the same time, followed by sites 3, 

4, and 5 at subsequent times. Site 6 has not yet nucleated. The grains formed by sites 1 and 2 have 

impinged. The insert shows an enlarged view of a CV containing the liquid–mush front, i.e., the 

columnar front. This shows how the front markers separate the liquid and mushy zones to give a 
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captured volume of mush in that CV, used to calculate the latent heat released as solidification 

progresses. 

2.6.4 Dendrite kinetics 

The solution of equation (2.14) gives the temperature at all CVs. The temperature at any 

front marker, i.e., the temperature at the modelled dendrite tip, Ttip, is then calculated using bilinear 

interpolation of the surrounding CV temperatures. This temperature is used to calculate 

undercooling at the marker, Ttip, as follows: 

,tipltip TTT   (2.15) 

where Tl is the equilibrium liquidus temperature. The undercooling at this position is then used to 

calculate the subsequent growth rate, vtip, i.e., the magnitude of dendrite tip velocity, according to a 

dendrite growth law (power law) for low thermal gradients by Burden and Hunt [119], as follows: 

,b

tiptip TCv   (2.16) 

where C is the dendrite growth coefficient having units of m/s·°C
b
, and b is the dimensionless 

undercooling exponent. The direction of growth of a front marker is given by the bisector of the 

angle made by the line segments that meet at the marker.  

2.6.5 Latent heat 

To solve equation (2.14) the value for the source term, E, must be known. This term is the 

rate of latent heat released during solidification per unit volume. An equation for E can be 

assembled by considering; latent heat released by a per unit volume (LM) times the volume of 

material solidified per second (VS/t), thus giving units of Watts; then dividing by the volume of 

one CV (VCV) gives the heat rate per unit volume in one CV, having units of W/m
3
. The equation is 

as follows: 
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where LM is the latent heat of fusion per unit mass and VS is the volume of material solidified. The 

volume of material solidified is calculated using the internal solid fraction approach after Banaszek 

and Browne [120], which is illustrated in Fig. 2.12. A typical CV (with the front passing through) 

is shown in the figure. The captured volume of mush, d, is given by the region made up of solid 

columnar dendrites (dark grey) of volume, VS, and interdendritic liquid (dot hatched), all within the 

CV of volume, VCV. The internal fraction of solid (volumetric), gS, is given the ratio of solid volume 

to captured volume within the mush region, 
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Rearranging for VS and differentiating with respect to time gives: VS/t=gS(d/t)+d(gS/t). This 

relation allows the latent heat term to be dealt with in two parts: viz. E=Ea+Et where, 
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The term Ea accounts for latent heat released due to the advancement of the front, while Et accounts 

for latent heat released due to the thickening of the mush in the CV. These latent heat terms are 

calculated on a per CV basis. 

 

Fig. 2.12 Captured volume. 

For a given alloy composition, the volumetric fraction of solid, gS, can be expressed in 

another way; as a function of the local CV temperature, T. The Browne and Hunt [114] FTM uses a 

linear function to estimate fraction of solid such that; it equates zero at the equilibrium liquidus 

temperature Tl, and unity at the equilibrium solidus temperature Ts, as follows: 
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This approach is too simplistic. In real solidification problems a non-linear function like the one 

presented by Scheil [33] is more appropriate; 
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where Tm is the alloy melting temperature and kpart is the partition coefficient for the alloy. The 

partition coefficient is taken from the alloy phase diagram as the ratio of composition of solid, CS, 
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to composition of liquid, CL, at any given temperature in the solidification range; Ts to Tl. It is 

assumed that the liquidus and solidus lines from the alloy equilibrium phase diagram are straight.  

With equation (2.22) inserted in the latent heat term Et, an iteration scheme is required to 

solve equation (2.14). The McFadden and Browne FTM uses a Newton–Raphson scheme to do so 

as follows. An error function, y(gS), is set up by subtracting gS from the right hand side of equation 

(2.22) to give, 
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The local CV temperature, T, in the above equation, is estimated by the explicit numerical solution 

to equation (2.14) as follows: 
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where T
m
 is the local CV temperature from the previous time step, fc is the net flow of heat by 

conduction into a CV, fa is the latent heat released due to the advancement of the front, ft is the 

latent heat released due to the thickening of mush, and t is the time step duration. Note that 

fa=EaVCV and ft=Et VCVwhere VCV=x·y·1, in words, x is the CV width, yis the CV height, and 

the CV has unity depth. 

To initiate the iteration scheme, the value of gS from the previous time step is used as the 

first estimate of solid fraction. The final value for gS is determined (within a specified tolerance) by 

performing iterations of the following (Newton–Raphson) equation,  
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where superscript p is the iteration index and )(' p

Sgy is the first derivative of equation (2.23) with 

respect to gS. 

2.6.6 Eutectic solidification in the FTM 

Where the alloy being modelled is of eutectic composition, it is assumed that eutectic 

solidification occurs in equilibrium. That is, a solid front follows behind the tracked front at the 

equilibrium eutectic temperature for the alloy, i.e., as indicated by the line labelled ‘solid’ in Fig. 

2.10(a). The growth of eutectic solid is calculated using an enthalpy method for isothermal 

freezing, as given by Voller [121].  The fraction of solid at which eutectic solidification begins is as 

follows: 

,1
1

1

















partk

lm

eucm

eucS
TT

TT
g  

(2.26) 



33 

 

where Teuc is the equilibrium eutectic temperature, and the total enthalpy, H, per CV is given by, 
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where T
m
 and gS

m
 are the local CV temperature and solid fraction from the previous time step, 

respectively. The first two terms on the RHS of equation (2.27) represent the enthalpy in a CV at 

the previous time step, and the last term on the RHS is the change in enthalpy due to thermal 

diffusion for the current time step. The following conditions determine the local CV temperatures;  
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and the local CV solid fractions are given by; 
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where the subscript ‘Scheil’ refers to the solution to equation (2.25). 

2.6.7 Thermophysical properties 

The FTM uses polynomial functions of temperature to estimate specific heat capacity c, 

density , and thermal conductivity k, for a given alloy at any temperature T, as follows:  
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where the polynomial coefficients a0, a1, a2 and a3 are specific to the alloy being modelled, and to 

each individual property. When a CV contains a mixture of liquid and mush, or liquid and solid, 

each property is approximated, per CV, by the law of mixing, for example, the thermal 

conductivity of a CV, kCV, is calculated as follows: 
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2.7 Front Tracking Methods with Convection 

A number of authors have carried out modelling work using front tracking methods where 

convection in the liquid is accounted for. A short review of this work is provided next.  

A study by Li et al. [39] present a detailed description of a fixed grid explicit finite 

difference method, with 2
nd

 order discretisation, for tracking the position and shape of a planar 
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solidification interface in Cartesian and cylindrical coordinates. Li et al. extend the model [40] to 

account for natural convection induced in the liquid. The model is applied to a horizontal Bridgman 

furnace solidification scenario and compared with experimental data for pure succinonitrile [13]. 

Moving boundary conditions are used to simulate the movement of the sample through the furnace. 

Distortion of the interface shape, due to thermally induced natural convection in the liquid, is 

discussed. Good agreement between numerical and experimental results is found. 

Banaszek and Browne [120] extend the FTM of Browne and Hunt [114] (for binary alloys) 

so that it accounts for natural convection induced by thermal gradients in the liquid, viz. ahead of 

the columnar front and within the mushy zone. A control volume method is applied to one quadrant 

of a square mould containing liquid Al–Cu with a fixed heat transfer coefficient applied at the 

mould walls. Conservation equations of energy, mass and momentum are solved to determine the 

thermal and velocity fields where Boussinesq natural convection of a Newtonian and 

incompressible fluid (the liquid) is assumed. Convection in the mushy zone is treated. The dendrite 

kinetics law by Burden and Hunt [119] is used to track the columnar front and a simple linear solid 

fraction to temperature relationship is assumed. While equiaxed growth is not simulated, the 

authors discuss the potential for equiaxed growth with and without the natural convection 

accounted for. The study concludes stating that natural convection tends to promote conditions for 

equiaxed growth in two ways: by lowering the temperature gradient at the columnar front, thereby 

widening the extent of undercooled liquid; and by providing nucleation sites, potentially via 

dendrite arm fragmentation.  

Banaszek et al. [122] later validated a more advanced FTM with experimental data, for 

directionally solidified Al–7wt.%Si, by power down method. The model employs the same 

treatment of convection as in reference [120], a Scheil [33] solid fraction to temperature 

relationship, and KGT dendrite kinetics. They demonstrate the effect of convection (compared to 

conduction only) using a metric for evaluating the likelihood of equiaxed growth: equiaxed index, 

as proposed by Browne [59]. It is concluded that the equiaxed index is lowest (and therefore 

equiaxed growth is least likely) in the early and late stages of solidification, and, that convection 

increases equiaxed index and hastens its peak value when compared to the conduction only case. 

(Very recently, Banaszek and co-workers [123] have extended the FTM to simulate dendritic 

growth in a 3-dimensional domain where convection in the melt is accounted for.) 

Mirihanage et al. [124] further developed the McFadden and Browne FTM to include the 

growth and transportation (due to natural convective effects) of equiaxed grains ahead of a growing 

columnar front. Simulations of square mould castings of Al–7wt.%Si over a 2-dimensional domain 

are presented. The mushy zones in both columnar and equiaxed regions are treated as porous media 

for convective flow. The study is limited to cases where the solutal diffusion length is reasonably 

smaller than the equiaxed grain size and where solutal convection is weak. 

Ludwig and Wu [125] present a qualitative study where a front tracking method is employed 

to simulate the CET in steel castings (Fe–0.34wt.%C), melt convection and equiaxed grain 
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transport are included. Mechanical and soft blocking mechanisms for arresting columnar growth is 

considered, viz. due to the presence and sufficient number of equiaxed grains, or due to the 

disappearance of constitutional undercooling, respectively. The dendritic growth model of Lipton 

et al. [46] (known as the LGT model) is used to track the solidification front. A control volume 

method is used to solve conservation equations of mass, momentum, species and enthalpy in three 

separate phases (liquid, columnar and equiaxed) over a 2-dimensional axisymmetric domain. The 

main limitation of this model is that ideal solidification morphologies are assumed; cylindrical for 

columnar growth and spherical for equiaxed. Wu and Ludwig [105] have subsequently developed 

this model for 3-dimensional domains. 

2.8 Conclusion to the Literature Review 

It is clear that (from Chapter 1) that the Bridgman furnace solidification process has long 

been established, and is widely used in industry and research for the purposes of directional 

solidification. The main advantage of the process is that solidification conditions can be controlled 

in a precise manner through adjustment of temperature gradient and pulling rate. It is mainly for 

this reason that the Bridgman method is popular in solidification research. 

The literature review (given in this chapter) describes typical solidification morphologies 

that occur in directional solidification of alloys. This is followed by a description of the columnar 

and equiaxed types of dendritic growth, and the phenomenon of columnar-to-equiaxed transition in 

castings. Eutectic and peritectic solidification are explained; particular focus is given to a 3
rd

 

generation gamma titanium aluminide alloys (peritectic) that have potential applications in the 

aerospace and automotive industries. Front tracking methods of modelling solidification are 

defined and an established front tracking model for alloy solidification from the literature (for 

eutectic solidification) is described in detail. This is followed briefly by the role of convection in 

the liquid as applied in front tracking models. 

Following the review, it is noted that the FTM originally proposed Browne and Hunt [114], 

and later extended by McFadden and Browne [113], has not been adapted for traditional Bridgman 

furnace solidification, i.e., where the sample is pulled through the furnace. Thus far, any 

implementation of this model has been carried out on a fixed numerical grid, without any 

movement of the sample through that grid. The McFadden and Browne FTM has been applied to 

binary alloy solidification problems and, in most instances, to hypoeutectic solidification. Also, this 

model has not been applied to multicomponent alloys (or to pure materials), nor has it been applied 

to hypoperitectic alloy solidification with a realistic model for latent heat release.  

The gamma titanium aluminium system is currently in its infancy in terms of alloy 

development for the aerospace and automotive industries. Whilst these alloys offer a low density 

advantage over their competitors, casting issues and the control of as-cast microstructure remain as 

barriers to their success. Accurate modelling of the solidification phenomena occurring during 

growth in these alloys is therefore needed. 
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2.9 Scope of the Current Research 

The scope of the current work relates to the adaption of the front tracking model of 

McFadden and Browne [113] to model the process of Bridgman furnace solidification in any of its 

modes: steady Bridgman, transient Bridgman, steady power down, or transient power down. The 

model is adapted for multicomponent alloy solidification (in terms of latent heat release), 

specifically, for a hypoperitectic titanium aluminide alloy. The model is also adapted to simulate 

steady growth in a pure material for the purposes of a verification exercise. Convection in the melt 

during solidification is not considered in this work. However, consideration of convection would be 

a logical next step in the development of the model (at a later stage). 

The developed model is applied in series with a discrete proportional integral derivative 

controller for the purposes of characterising a real Bridgman furnace (in terms of heat transfer 

coefficients). The model is adapted, at this stage, to simulate a hypoperitectic gamma titanium 

aluminide multicomponent alloy.  The developed model, and characterised furnace data, is then 

used to simulate directional solidification experiments in the same Bridgman furnace. These 

experiments combine traditional Bridgman solidification in series with power down solidification; 

both of which involve transient heat transfer. The results from these experiments are then 

interpreted accordingly using the model.  

Relevant discussion and conclusions are provided in each of the four chapters that follow. 

Further discussion and overall conclusions are then given in two separate chapters to complete the 

thesis.
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Chapter 3 

 
3 Model Development 

Model Development 

 
In this chapter, a 1-dimensional front tracking model of transient Bridgman solidification of a 

cylindrical rod is developed and demonstrated for use with binary hypoeutectic alloys, in simple 

solidification scenarios, and for simple furnace geometries. Referring to Section 1.2, this chapter 

addresses the first objective of this thesis. Reference [126] is the main source of content for this 

chapter.   

3.1 The Biot Number  

A 1-dimensional heat flow model is considered reasonable for Bridgman solidification of 

metallic alloys where the rod diameter is small, since the majority of the heat flow in the rod occurs 

in the axial direction [127]. The Biot number, Bi, is used to help vindicate this assumption. The 

Biot number is defined as the ratio of thermal resistance within a material, to the thermal resistance 

at its surface; in this case, the thermal resistance within the material is Lchar/k, and at its surface is, 

by definition, the inverse of the heat transfer coefficient (1/h), giving the following:  

,
k

hL
Bi char  

 

(3.1) 

where h is the heat transfer coefficient at the surface of the rod, Lchar is characteristic length of the 

rod and k is the thermal conductivity. When the Biot number is less than 0.1, the temperature at the 

centre of the rod is very nearly equal to the temperature at the surface of the rod for any point along 

its axis [128] since the rate of heat transfer within the rod is much faster than that occurring at its 

surface. The characteristic length of the rod is given by the rod volume divided by the effective 

surface area through which h acts. For a long rod (large length-to-diameter ratio) the characteristic 

length is equal to half the rod radius. Therefore, a low Biot number is expected for Bridgman 

solidification of metallic alloys (having high thermal conductivity) where the rod diameter is small.  

3.2 Bridgman Furnace Front Tracking Model (BFFTM) 

The objective of the model is to simulate columnar growth in Bridgman furnace 

solidification where the pulling rate is variable, i.e. transient solidification, and using the front 

tracking model (FTM) of McFadden and Browne [113]. Two key modifications are necessary to do 

this. Firstly, the numerical algorithm is updated to account for advection of heat through a fixed 
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domain as the sample moves. This means that the governing heat equation contains an extra term to 

deal with the translation of the sample. Secondly, the front position must be able to advance and 

retreat—within a fixed domain—given that the pulling rate is a function of time. These aspects and 

other important features of the model are expounded upon in the following sub-sections. 

3.2.1 The heat equation 

Considering internal heat flow in the axial direction only; the heat equation for a long 

cylindrical rod of uniform cross sectional area A, and perimeter p, moving at a pulling rate u along 

its axis, and transferring heat radially at its circumference to (or from) a surrounding heat sink (or 

source) with a heat transfer coefficient h, is given by,  
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(adapted from [127] and [129]) where , c and k are the density, specific heat capacity and thermal 

conductivity of the rod material respectively, T is the temperature of the surrounding source (or 

sink), and E is the latent heat generated per unit volume. The first term on the left hand side (LHS) 

is the time rate of change of sensible energy per unit volume. The first term on the right hand side 

(RHS) of this equation gives the diffusion of thermal energy by conduction in the axial direction 

per unit volume. The second term on the RHS is the change in thermal energy of a mass as it 

moves through space. (This term is not included in the McFadden and Browne FTM.) In other 

words, this term is the difference between the energy advected into and out of a fixed volume. The 

full derivation of equation (3.2) from first principles can be found in Appendix A.1. 

  

 

Fig. 3.1 Schematic of heat transfer occurring in a moving rod. 

Figure 3.1 shows a schematic of the heat transfer scenario dealt with using equation (3.2). 

Note that the x-axis fixed to ground and aligned with the rod axis. The axial heat flux due to 



39 

 

diffusion in the rod is shown as qdiffusion (acting in the positive and negative x-directions) and the 

axial heat flux due to advection is qadvection (acting in the positive x-direction, i.e., same direction as 

the rod movement). A radial heat flux, qradial, acts at the rod circumference at any position along its 

length that is surrounded by the heat source (or sink) having temperature T∞. Finally, E in this is the 

latent heat released during a solidification process occurring within the rod.  

In the simulations carried out in this chapter, the following Dirichlet boundary conditions are 

applied at the domain boundaries, 
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In words, this means that the domain ends are maintained at a fixed temperature; TH at the hot end 

and TC at the cold end. 

3.2.2 The domain 

Figure 3.2 shows a 1-dimensional domain of a Bridgman furnace. The hot region is given by 

0<x<x1, the adiabatic (or ‘baffle’) region by x1<x<x2 and the cold region by x2<x<l. The hot region 

heater is held a temperature TH and heat is transferred to the sample here, with heat transfer 

coefficient hH. Similarly, the cold region heater is held at TC and heat is transferred away from the 

sample here, with heat transfer coefficient hC. Note that TH or TC replaces T∞ in equation (3.2) 

depending on axial location and in the same manner hH or hC replaces h. In the adiabatic zone the 

heat transfer coefficient with the surroundings is zero.  

 

Fig. 3.2 Bridgman furnace front tracking model domain and co-ordinate system. 

The domain is fixed in space, and the sample is being drawn through the fixed domain at some 

pulling rate u. The domain is divided into disc-shaped volumes of thickness x. The mush–liquid 

interface (the front) is shown in the domain given by a front marker (×).  

This arrangement allows for the adiabatic zone to be any length (less than the domain 

length). Alternatively, the adiabatic zone can be eliminated, i.e., set to be an adiabatic point, by 

letting x1 = x2. In the numerical algorithm that follows, only the thermal history within the domain 

is recorded at every time step. As the sample gets passed out of the domain (beyond x=l) its 

temperature is no longer of concern since it is assumed that the material here is fully solid. This 

arrangement is suitable given that TC is normally set below the liquidus temperature for the alloy. It 
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is possible that mush could exist beyond the domain extent; however, this can be dealt with by 

increasing the domain size or lowering TC, accordingly. 

3.2.3 The heat fluxes 

Equation (3.2) can be numerically discretised using the control volume (CV) approach and 

written as a sum of heat flux terms where the sample is divided into disc shaped CVs, x metres 

wide, as shown in Fig. 3.3(a). The resulting explicit solution is given as follows: 
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where the term in parentheses is the change in temperature at any CV, for example, the CV labelled 

‘i’ in Fig. 3.3 (b), during a time t. See Appendix A.2 for a full derivation of equation (3.4).  

 

Fig. 3.3 (a) Disc shaped control volumes (b) control volume with heat flux shown.  

The temperature of the CV labelled ‘i’ is Ti and the superscripts ‘m’ and ‘m+1’ refer to the present 

and future temporal locations in the algorithm, respectively. The temperatures of the CVs on the 

west and east sides of the CV labelled ‘i’ are given by Ti-1 and Ti+1 respectively.  

The heat fluxes due to thermal diffusion across the west and east faces of the CV in Fig. 3.3 

(b) are given by qi-1 and qi+1, respectively, and are calculated using the following finite difference 

equations:  
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The advection heat flux qadv is the difference in thermal energy advected into and out of a CV 

during one time step, while the sample is moving at a pulling rate u, and is given by, 
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The radial heat flux q2—occurring at the circumference of the CV—is related to the heat transfer 

coefficient h, and the surrounding temperature of the source (or sink) T∞ as follows: 

  ,2  TThq m

i  (3.8)

 

where the subscript ‘2’ refers to the circumference of the disc shaped CV such that p=2r2 and 

A=(r2)
2
 so that; p/A=2/r2.  

The latent heat term, E, in equation (2.17)—from the McFadden and Browne FTM, refer to 

Section 2.6.5—is expanded and discretised to give the latent heat flux terms; qa and qt. Given that 

the volume of solid, VS, is equal to the captured volume of mush, d, multiplied by the volumetric 

fraction of solid, gS, i.e., VS=gSd, then it follows that; VS/t=gS(d/t)+d(gS/t). Discretising the 

derivative terms and substituting into equation (2.17) yields: E=(qa+qt )/x, where; 
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The subscripts ‘a’ and ‘t’ refer to the advancement of the front, and thickening of the mush behind 

the front, respectively. When the front marker (×) is in a CV, as shown in Fig. 3.3, the captured 

volume of mush in that CV is given by the volume d, and the position of the marker is given by the 

distance d/A, where A is the cross sectional area of the CV.  

The heat flux due to the advancement of the front, qa, can be directly calculated using simple 

dendrite kinetics. However, to calculate the heat flux due to thickening of the mush, qt in equation 

(3.10), and when using the Scheil relation for gS, equation (2.22), the volumetric fraction of solid at 

the future time step, gS
m+1

, is unknown, since it is a function of the future local CV temperature, 

Ti
m+1

. Therefore, to solve for Ti
m+1

 in equation (3.4), a Newton–Raphson iteration scheme is used to 

estimate qt in mushy CVs as per the method described in Section 2.6.5.  

3.2.4 Movement of the front 

Bidirectional requirement  

The BFFTM model is designed for bidirectional movement of the front within the fixed domain, 

i.e., the front can move in the positive x-direction and negative x-direction during one time step of 

the numerical algorithm. Previous front tracking models [113][114] are designed to only advance 

the mush–liquid interface within the domain; there is no way (or need) in these models to decrease 
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the captured volume of mush. In Bridgman solidification, however, bidirectional movement of the 

front is a necessity (when using in a fixed grid) since the pulling direction is in opposition to the 

growth direction. This is dealt with by updating the front position due to dendritic growth (in the 

negative x-direction, see Fig. 3.2), and due to translational movement of the crucible through the 

furnace (in the positive x-direction, Fig. 3.2), separately, and in sequence, during each time step of 

the numerical algorithm.  This means that latent heat released due to the advancement of the front 

is calculated based on the change in front position (and hence change in volume) due to growth in a 

moving solid, as opposed to the overall change in front position with respect to the fixed grid.  

The BFFTM uses the same approach to dendrite kinetics as the front tracking model 

outlined in Section 2.6.4, i.e., a power law function of undercooling is used to calculate the growth 

rate, equation (2.16). In the BFFTM, however, the axial position of the front relative to the fixed 

domain, x, must account for the growth rate of the columnar tip (vtip) and the pulling rate due to the 

movement of the sample (u), and is calculated as follows: 

  ,1 tvuxx tip

mm 
  (3.11) 

where x
m
 and x

m+1
 are the axial positions of the front at present and future time steps in the 

numerical algorithm, respectively. Note that u and vtip always exist in opposing directions, and that 

the front will appear (from the point of view of the fixed grid) to move with the sample when 

u>vtip, and vice versa when vtip>u. The value for u can be pre-determined or set to be a function of 

time, for example, a ramp or step input. 

Status flags 

The resulting front position is recorded and used to identify a particular scenario or ‘status’ flag for 

each CV, individually. The CV status then identifies whether or not the latent heat fluxes qa and qt 

are active for that CV at that time step. Table 3.1 shows all the possible scenarios (status flags) that 

a CV can encounter, all of which depend on the front position. Note that the other heat fluxes, 

equations (3.5), (3.6), (3.7) and (3.8), do not depend on these status flags and are applied in the 

algorithm regardless of front position.  

Figure 3.4 illustrates the typical progress of the front marker and the status flag at each CV 

during successive time steps. At time = t the front is in CV ‘i’ with status (3) and is growing in the 

negative x-direction. In this scenario both latent heat fluxes are active since the front is advancing 

and the mush is thickening. As the front grows into CV ‘i-1’, at time = t + t, the status is changes 

to (2), since it is the first time the front has entered that CV, i.e., only advancement is occurring so 

only qa is active. 
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Table 3.1 Control volume status flags used to activate latent heat flux. 

Status flag State Illustration Value of qa and qt 

 (1) fully liquid 

 

0 ta qq  

 (2) 

front in the CV for the 

first time, partial 

mush  

0,0  ta qq  

 (3) 
front in the CV, 

partial mush 
 

0,0  ta qq  

 (4) 
front has passed the 

CV, fully mush 
 

0,0  ta qq  

 (5) fully solid 

 

0 ta qq  

 

 

 

Fig. 3.4 Typical progress of the columnar front marker with status flag values shown. 

At the next time step, time = t + 2t, this same CV changes to status (3) and so on. CVs 

immediately to the right of the CV containing the front will have status (4) since the CV is fully 
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mush and only thickening occurs, i.e., only qt is active. Where the temperature of a fully mush CV 

drops below the equilibrium solidus temperature, Ts, the status changes to (5) as illustrated in the 

figure in CV ‘i+1’ at time = t + 3t. 

3.2.5 Nucleation, thermophysical properties, and numerical stability 

The BFFTM uses the same nucleation criterion for columnar growth as the front tracking 

model as outlined in Section 2.6.2. Only one seed location, however, can be specified given the 1-

dimensional nature of the problem. The seed may be placed anywhere in the domain from 0 to l. 

The BFFTM uses the same method of calculating the thermophysical properties as the front 

tracking model outlined in Section 2.6.7. 

The BFFTM uses an explicit numerical method. The following condition is checked to 

ensure numerical stability at every time step, after [130] as follows: 
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3.2.6 Code structure 

The BFFTM is written in FORTRAN 90 with double precision used for all real variables. 

The code is divided into five subroutines; each deals with a major task required per pass through 

the time loop. The code is presented in a simplified flowchart form in Fig. 3.5. The subroutines are 

labelled 1-5. 

All variables are initiated before entering the time loop. Once the value for time is less than 

the end time, the algorithm continues to cycle through subroutines 1-5. The first subroutine checks 

for nucleation; the temperature at the seed position is checked against the nucleation undercooling 

value, and will nucleate if it satisfies the pre-set criterion. Once nucleated the algorithm skips this 

subroutine thereafter. 

The second subroutine updates the front position. The dendrite tip growth rate calculation 

requires the undercooling at the tip. This is calculated, for any given front position, by linear 

interpolation of temperature between CV centres to get the tip temperature (i.e., at the front), and 

hence undercooling. The pulling rate is predefined. The net change in front position, (u−vtip)t, is 

then calculated, and added to previous front position, as per equation (3.11) in this subroutine. 

In the third subroutine, the change in captured volume of mush is calculated for each CV. 

The fourth subroutine determines what status should be assigned to each CV, based on; front 

position and solid fraction, in that order. This subroutine is designed such that a CV must progress 

from one status to the next in the correct order, i.e., 1-2, 2-3, 3-4 and 4-5. It also allows for the 

reversal of the front relative to the domain, i.e., when u > vtip, by the following permitted status 
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changes; 2-1, 3-1, 4-1, 5-1, 4-3 and 5-4. The solid status (5) is determined solely on solid fraction, 

i.e., a solid fraction of unity gives status (5). 

 

 

Fig. 3.5 Bridgman furnace front tracking model algorithm flowchart. 

The fifth (and final) subroutine is by far the most involved. Initially it calculates the material 

properties at each CV using a polynomial function of temperature specific to the simulation alloy, 

as per Section 2.6.7. (However, the code is designed such that the user can switch between fixed 

and variable properties as required.) Next the conduction, advection, and radial heat fluxes are 

calculated in series for each CV. With regard to the fraction of solid calculation, the model allows 

the user switch between a linear function of temperature, as in equation (2.22), a Scheil type 

function, as in equation (2.21), or a user-defined lookup table. Finally, the algorithm calculates 

each CV temperature for the following time step by the solution to equation (3.4).  
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The code repeats subroutines 1-5 until the time exceeds the end time for the simulation. The 

code is written such that the user specifies how many output data files are required. The 

temperature at each CV is recorded at suitable equal intervals to achieve the desired number of 

output files and the sequential time step number for each file is stored as part of the ‘.txt’ file name. 

The maximum number of time steps that can be requested is 100 billion. Other output data is also 

recorded at these time intervals as follows: front position, dendrite tip growth rate, dendrite tip 

temperature, temperature gradient at the tip, mush width, Biot number at each CV, and all of the 

heat fluxes values at each CV. In addition, the user may specify one particular CV of interest to get 

the following data from that CV at each of the data output intervals; solid fraction, temperature, 

total enthalpy, flag status, and cooling rate.  

Finally, the code uses an error reporting system that stops the program with an error 

message, while preserving the run data. Typical traceable errors include; ‘numerical scheme 

instability’, ‘Biot number too high’, ‘non-convergent iteration scheme’, ‘user input error’, and ‘too 

many output files requested’. 

3.3 Modelling Bridgman Solidification of Al–7wt.%Si 

Al–7wt.%Si was chosen as a suitable hypoeutectic binary alloy, for the purposes of 

simulation modelling, since it is well documented in the literature, for example by Gandin [47][57], 

and also because it has been modelled previously using the McFadden and Browne FTM, in 

references [113] and [56]. 

3.3.1 A transient solidification problem 

A notional problem is designed for the purpose of demonstrating the transient solidification 

facility of the BFFTM. Two scenarios are simulated. In the first simulation (‘Simulation 1’) the 

initial temperature distribution is linear in the adiabatic zone and held constant in the hot and cold 

regions. The sample pulling rate is set to zero. Given this initial condition, the temperature profile 

in the sample is then permitted to find a steady-state. In the second simulation (‘Simulation 2’) the 

initial temperature profile is given by the final (steady-state) temperature profile from Simulation 1. 

The pulling rate then undergoes two separate step changes. The subsequent change in front position 

and temperature profile is observed. 

3.3.2 Properties of Al–7wt.%Si 

The material selected for modelling was Al–7wt.%Si. Material properties for this binary 

hypoeutectic alloy are taken from the study by McFadden et al. [56] where polynomial functions of 

temperature are used to estimate the materials’ density , volumetric heat capacity c, and thermal 

conductivity k, using equation (2.30). The polynomial coefficients for this alloy, as well as other 

important thermodynamic and dendritic growth data, used in the simulations, are given in Table 

3.2. 
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Table 3.2 Material properties for Al–7wt.%Si [56].  

Property Units Coef. Liquid Solid 

Volumetric heat capacity, c [J/m
3
] 









2

1

0

a

a

a
 

3.06  10
6
 2.349  10

6
 

−324.7 972 

0 0 

Thermal conductivity, k [W/m·°C] 








2

1

0

a

a

a
 

44 1.3581 

0.022747 0.2284 

0 −3.840  10
-5

 

Density,  [kg/m
3
] 









2

1

0

a

a

a
 

2370 2535 

0 0 

0 0 

Equilibrium liquidus temperature, Tl [°C]  618 

Equilibrium eutectic temperature, Teuc [°C]  577 

Melting temperature of pure Al, Tm [°C]  660.2 

Partition coefficient, kpart [–]  0.13 

Volumetric latent heat of fusion, LV [J/m
3
]  1064  10

6 

Dendrite growth constant, C [m/°C
b
]  2.9  10

-6
 

Undercooling exponent, b [–]  2.7 

 

3.3.3 Simulation details  

The hot heater temperature TH, and cold heater temperature TC, are set at 50 °C above the alloy 

equilibrium liquidus temperature Tl, and 50 °C below the alloy equilibrium eutectic temperature 

Teuc, respectively. The heat transfer coefficient in the hot and cold zones is set to a high value, 

hH=hC=1500 W/m
2
·°C, which is in keeping with the Biot number requirement for the model, i.e., 

Bi < 0.1. Referring to Fig. 3.2 and Fig. 3.3, the domain length is set at 100 mm, sample radius is set 

to 8 mm, and the adiabatic zone length is fixed at 20 mm (such that x1 = 40 mm and x2 = 60 mm).  

Two simulations are carried out. In Simulation 1, the initial temperature profile is set 

(arbitrarily) to equal to the hot and cold heater temperatures, in the hot and cold regions, 

respectively; and vary linearly between these temperatures in the adiabatic region. The pulling rate 

in Simulation 1 is fixed to zero. The simulation time is set to 300 s. The model finds a steady-state 

temperature profile in this time.  

In Simulation 2, the steady-state temperature profile from Simulation 1 is used as the initial 

temperature profile. In Simulation 2, the pulling rate undergoes a step change at a time t =100 s of 

u = 0→0.5 mm/s, followed by another step change in pulling rate at a time t = 500 s of u = 0.5→1 

mm/s. The simulation time is set to 1000 s in this case. The model finds a steady-state temperature 

profile in this time.  

In both simulations the numerical time step is set at t = 0.75  10
-3

 s which satisfies the 

stability criterion given by equation (3.12). The columnar nucleation undercooling is set to 1 °C 
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which is in keeping with the work of McFadden et al. [56] in simulations using the same alloy 

composition. In both simulations, the seed is located at the centre of the CV having an initial 

temperature just below the temperature at which nucleation would occur (i.e., in this case, just 

below 617 °C). This was done so that the model nucleated the seed at time t = 0 s, and so that the 

CV flag status array—referred to in Section 3.2.4—was populated appropriately for the given 

scenario. 

3.4 Modelling Results 

3.4.1 Grid convergence study 

A grid convergence study was carried out according to the method outlined by De Vahl 

Davis [131]. In this method, simulations are performed at three different grid sizes—i.e., using 

three different CV widths—and the difference between the results is used to find the order of error, 

n, for the numerical procedure (without a requirement for an exact solution) as follows: 
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where Tsim is the numerical solution given by equation (3.4), x1 is the finest grid resolution, and  

is the refinement ratio, such that,  = x1/x2 =x2/x3. Table 3.3 summarises the results obtained. 

Table 3.3 Grid convergence study results. 

CV Width [mm] Truncation error order 

x1 x2 x3 n 

5 10 20 0.5707 

2.5 5 10 0.6559 

1 2 4 0.9998 

 

The above results demonstrate grid independence for CV widths of 2 mm or less. In other words, 

the order of error in the numerical procedure has converged to ≈ 1. (See Chapter 4 for further 

analysis of error in the BFFTM.) A factor of safety of four was applied in simulations that follow; 

x was conservatively set to 0.5 mm.  

3.4.2 Simulation 1: Results 

The evolution of the temperature profile in the sample, for Simulation 1, is shown in Fig. 3.6. 

The initial temperature profile for the simulation is labelled as Tinitial and the final steady-state 

temperature profile is shown as Tsteady. The adiabatic zone start and finish positions, x1 and x2, are 

shown in the figure.  
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Fig. 3.6 Simulation 1: Evolution of a steady-state temperature profile. 

Figure 3.7 shows the corresponding thermal history (solid lines) for this simulation at 

positions in the adiabatic region of the domain, x = 44 mm, 46 mm, 48 mm, 50 mm, 52 mm, 54 

mm and 56 mm. The dashed line shows the progression of the front marker in terms of axial 

position, x, plotted as a function of time with the axial position on the right hand side y-axis of the 

figure. 

 

Fig. 3.7 Simulation 1: Thermal history in the adiabatic zone and change in front position.  

3.4.3 Simulation 2: Results 

The evolution of the temperature profile in the sample, for Simulation 2, is shown in Fig. 3.8. 

The initial temperature profile for the simulation is labelled as Tinitial. (Note that this is equal to 
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Tsteady from Simulation 1.) The final steady-state temperature profile is for this simulation is shown 

as Tfinal in the figure. 

 

 

Fig. 3.8 Simulation 2: Evolution of temperature profile with two step changes in pulling rate. 

 

 

Fig. 3.9 Simulation 2: Thermal history in the adiabatic zone and change in front position. 

Figure 3.8 shows the corresponding thermal history (solid lines) for this simulation at positions in 

the adiabatic region of the domain, x = 44 mm, 46 mm, 48 mm, 50 mm, 52 mm, 54 mm and 56 

mm. The dashed line shows the progression of the front marker in terms of axial position, x, plotted 

as a function of time with the axial position on the right hand side y-axis of the figure. 
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3.5 Discussion 

In the results for Simulation 1, i.e., Fig. 3.6 and Fig. 3.7, where the pulling rate is set to zero, 

it is shown how the sample temperature profile and front position settle—from an arbitrary initial 

state—to a steady-state. This simulation result is of practical importance as it calculates the an 

estimate for the initial condition of a real Bridgman furnace experiment before pulling of the 

sample begins. The final temperature profile for Simulation 1 is the starting temperature profile for 

Simulation 2. 

In the results for Simulation 2, the effect of suddenly changing the pulling rate is observed. 

The temperature profile undergoes a net increase in temperature due to new advection heat flux 

from the hot heater zone as a result of the change in pulling rate. The reaction of the front position 

is typical of a first-order type response to a step input. The front reaches a steady-state, i.e., when 

the front growth rate and pulling rate eventually match, and the temperature profile does not change 

with respect to time within approximately 100 s after each step change. The net effect of increasing 

the pulling rate was to increase the dendrite tip undercooling and the volume of undercooled liquid 

ahead of the front. This scenario is useful in that these conditions could produce a columnar to 

equiaxed transition (CET) in a Bridgman furnace experiment.  

3.6 Conclusion 

The method used to adapt the FTM of McFadden and Browne [113] to model columnar 

growth in the Bridgman method is fully described. The resulting model is appropriate for processes 

with a low Biot number. Issues relevant for front tracking, as applied to Bridgman solidification 

and not dealt with before in the McFadden and Browne FTM, are explained in terms of their 

solution and implementation. For example, the method to correctly calculate latent heat release 

where bi-directional movement of the columnar front occurs during one numerical time step is 

provided.  

Bridgman furnace solidification of the binary hypoeutectic alloy; Al–7wt.%Si, was 

simulated. This was chosen for simulation modelling since the McFadden and Browne FTM has 

been implemented previously for hypoeutectic compositions and this particular alloy has been 

modelled significantly in the literature. A double jump in pulling rate is simulated and conditions to 

promote a CET are apparent. The simulations demonstrate the transient capability of the model. 

The simulation approach is useful in that the initial condition, i.e., the temperature profile in 

the sample, is not assumed a priori; rather it is calculated based on furnace conditions (heat transfer 

coefficient) that can be measured separately.  

This chapter satisfies Objective 1 of this thesis, as given in Section 1.2. Now that the 

BFFTM algorithm has been developed and demonstrated, it is appropriate to look at a method of 

verification for the model. 
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Chapter 4 

 
4 Order Verification 

Order Verification 

 
In this chapter, an order verification procedure is applied to the BFFTM in a simple solidification 

scenario: steady solidification (i.e., at a fixed pulling rate, u) of pure titanium. Verification 

exercises require analytical solutions from the literature—for comparison purposes—which is what 

restricts this particular exercise to a steady process involving a pure material. Further verification 

modelling, e.g., transient solidification of an alloy, would require appropriate analytical solutions 

from the literature (presently not available). However, this chapter details the first step in the broad 

task that is verification for the BFFTM. Referring to Section 1.2, this chapter addresses the second 

objective of this thesis. Reference [132] is the main source of the content for this chapter.   

4.1 Definition of ‘Verification’ 

The word verification (from Latin, verus, meaning true) is defined as the act of 

demonstrating truth or correctness by comparison to fact, theory, or statement [133]. In numerical 

modelling, verification refers to the process by which one demonstrates that a partial differential 

equation (PDE) code correctly solves its governing equations [134]. This process involves 

comparison of numerically simulated results with a known analytical (exact) solution to the PDE. 

The numerical model is verified if this comparison is adequately close. In other words, the 

numerical model accurately solves the equations that constitute the mathematical model. Model 

verification is not to be confused with model validation. Boehm [135] and Blottner [136] define 

verification as “solving the equations right”, and validation as “solving the right equations”. Model 

validation should be carried out after successful model verification, and usually involves 

comparison of numerically simulated data with experimental data, in order to confirm that the PDE 

being solved is representative of the real system being modelled. Note that there are differences in 

opinion regarding these definitions in the literature and, for the purposes of this thesis, the 

methodology of Roache [137] is adopted.  

4.2 Order Verification Method 

The formal order verification procedure used in this chapter was first implemented by 

Steinberg and Roache [138]. A summary of the procedure is given by Knupp and Salari [134]. The 

method focuses on order of accuracy. Under this method, a numerical model is verified when; the 
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observed order of accuracy from simulated results matches the theoretical order of accuracy of the 

governing partial differential equation, upon which it is based; given that the model is consistent 

and convergent. 

4.2.1 Theoretical order of accuracy 

The discretisation of the governing PDE gives the theoretical order of accuracy of the model. 

The PDE is broken down into estimations of each partial derivative using a truncated Taylor series 

expansion for each derivative term, yielding simple finite difference equations. The truncation error 

is the difference between the actual value for the derivative term and the estimated value using the 

difference equations, and can readily be written in terms of the grid resolution. One can then state 

the theoretical order of accuracy of the discretisation method by looking at the power to which the 

grid resolution is held in the leading term of the truncation error. For example, considering a one-

dimensional domain with grid resolution x, the Taylor series expansion for a second order partial 

derivative of the dependant variable T, in respect of the spatial variable x, is given by; 
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where subscript ‘i’ refers to a central node or control volume location in the domain. The first term 

on the right hand side (RHS) of equation (4.1) is the finite difference approximation of the second 

order partial derivative, while the second term on the RHS is the truncation error.  The truncation 

error is the sum of the terms excluded from the Taylor expansion for the second order partial 

derivative, i.e., O(x)
2
=((x)

2
/4!)d

4
T/dx

4
 + higher order terms, as shown by Özışık [139]. In this 

case, the lowest power of x in the leading term of the truncation is two; therefore the theoretical 

order of accuracy for this discretisation method is second order. Where a PDE contains multiple 

derivative terms, the lowest power of x in the leading term of the truncation—across all partial 

derivative terms in the PDE—gives the overall theoretical order of accuracy for the model. 

Boundary conditions also effect the model order of accuracy. 

4.2.2 Observed order of accuracy 

The observed order of accuracy of the model is determined by comparing the simulated 

results for an arbitrary test problem at two grid resolutions with a known analytical solution. The 

difference between the simulated results and the analytical solution is known as the numerical 

error, made up primarily by the truncation error (sometimes called discretisation error), plus the 

round off error associated with the algorithm software, plus any iterative convergence error. Round 

off errors are usually negligible relative to the truncation error and iterative convergence error 

occurs only with implicit finite difference solvers that require a statement of solution tolerance 

[140].  
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The numerical solution gives a value for the dependant variable Ti
num

 at distinct locations in 

the modelled domain. The analytical solution—which is continuous—is evaluated at the same 

locations to give Ti
exact

. The local numerical error NEi
local

 can be calculated by their difference, at 

each discrete position as follows:  

.num

i

exact

i

local

i TTNE   (4.2)
 

Where the numerical scheme uses a fixed grid resolution, it is useful to calculate the global 

numerical error NE
global

 as follows: 
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where NCVs is the total number of control volumes or mesh nodes. (This is also known as the l∞ 

norm of the numerical error.) The observed order of accuracy for the numerical scheme, po, is 

calculated using the global numerical error at two grid resolutions, x1 and x2, as follows [134]:  
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4.2.3 Order verification procedure 

The verification procedure is illustrated by the flowchart in Fig 4.1. Firstly, the theoretical 

order of accuracy of the model is determined via its governing equations and the finite difference 

scheme used in the model. Secondly, a test problem is designed. This is where the model is 

constrained to solve the modelling scenario of interest by setting the boundary conditions; 

Dirichlet, Neumann or Robin, and other factors required to define the problem. While the physical 

properties of the material are required in this step—in order to run the numerical model later—they 

are arbitrary in terms of the success of the order verification procedure itself. Thirdly, an exact 

solution to the PDE of interest must be found. Following this, the code is run at two different grid 

resolutions. The results from these simulations are used in the next step to calculate the observed 

order of accuracy, i.e., via equations (4.3) and (4.4). If the observed order of accuracy does not 

match the theoretical order of accuracy, one must go back through the code to look for coding 

errors before re-running the code at two grid resolutions, and so on until the code is verified. 

As mentioned at the beginning of Section 4.2, for this verification procedure to be 

successful, it is taken that the numerical model being treated is consistent and convergent. The 

Lax–Rychtmyer [141] theorem, summarised as follows: 

consistency + stability  convergence  , 
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helps to explain how consistency and convergence are related in finite difference methods. A finite 

difference scheme is convergent if and only if the numerical scheme is stable and consistent; the 

converse also being true, a convergent scheme must be stable and consistent. Ultimately, for a 

scheme to be stable the numerical error for that scheme must not amplify without bounds [139]. 

This is normally dealt with by using a suitably small spatial grid and time step combination to 

satisfy a defined mathematical stability criterion. Consistency means that, as the as the spatial or 

temporal step size approaches zero, the finite difference approximations for the derivative terms in 

the governing equation should become arbitrarily close to the real derivative values. One may 

surmise that any finite difference scheme, applied using Taylor series’ approximations for the 

partial derivative terms, is consistent; however, this is not always the case. An interesting example 

being the Du Fort–Frankel scheme [142] which is inconsistent even though it is unconditionally 

stable. 

  

Fig. 4.1 Code verification procedure, adapted from Knupp and Salari [134]. 

With reference to the verification procedure outlined here, the numerical model is consistent when 

the value calculated for po is greater than zero. This means that the continuum PDE equation is 

recovered as x→0. In all simulations that follow, the spatial and temporal step sizes used obey the 

numerical scheme stability criterion, i.e., equation (3.12). 
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4.3 Bridgman Solidification 

In this section a Bridgman furnace arrangement is described. This is followed by details of a 

particular problem to be solved as part of the order verification procedure, i.e., a test problem is 

defined in terms of boundary conditions, thermophysical properties, and other input data required 

for modelling. 

4.3.1 The Bridgman procedure 

A schematic of a Bridgman furnace is shown in Fig. 4.2. The furnace is tubular and made up 

of three zones: a hot zone with heater held at a temperature, TH, having a heat transfer coefficient 

with the sample, hH; an insulated adiabatic zone (shown hatched) of length, LA; and a cold zone 

with heater held at a temperature, TC, having a heat transfer coefficient with the sample, hC. 

Normally, the hot and cold zones have differing heat transfer coefficients (depending on the 

apparatus), and the hot zone is held at a temperature above the liquidus or melting temperature of 

the sample material, while the cold zone is held at a temperature below the material solidus or 

melting temperature. A cylindrical sample with radius, r, is contained in a hollow thin walled 

crucible. Both are translated at a fixed pulling rate, u, through the furnace. The heaters impose a 

fixed temperature gradient in the sample (long curved line) as it is passed through the furnace. 

 

 

Fig. 4.2 Schematic of a Bridgman furnace. 

A solidification interface is formed at some position in the adiabatic zone where the temperature is 

equal to the material melting temperature, Tm. In steady solidification, the position of the interface 

and the temperature profile is stationary relative to the furnace, which is fixed to ground. 

Note that the sample and crucible are shown to be infinitely long in the figure. In reality a 

sample and crucible would have a fixed length, however—for the purposes of developing an 

analytical model—the rod is treated as infinite.  
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4.3.2 The test problem  

The modelling scenario is that of steady solidification of a pure material at a constant pulling 

rate. The material used for modelling purposes was arbitrarily chosen as high purity titanium. Table 

4.1 shows the thermophysical properties for this material and other input data necessary for 

modelling.  

Table 4.1 Thermophysical properties for high purity titanium and other modelling input data. 

Input Units Liquid Solid 

Thermal conductivity, k [W/m·°C] 17 17 

Density,   [kg/m
3
] 4110 4350 

Specific heat capacity, c  [J/kg·°C] 925 925 

Heat of fusion per unit mass, LM [J/kg] 2.95 × 10
5
 

Speed of sound, vsound [m/s] 5090 

Melting temperature, Tm  [°C] 1670 

Hot heater temperature, TH  [°C] 1700 

Cold heater temperature, TC  [°C] 1300 

Hot zone heat transfer coefficient, hH  [W/m
2
·°C] 100 

Cold zone heat transfer coefficient, hC [W/m
2
·°C] 600 

Sample radius, r [mm] 5 

Adiabatic length, LA [mm] 40 

Pulling rate, u [mm/s] 0.4 

Numerical time step, t [s] 0.75 × 10
-3

 

CV thickness (grid resolution), x [mm] 0.8, 0.4, 0.2, 0.1 

Modelled domain length, l [mm] 200 

 

4.4 Modelling 

In this section a mathematical model of the Bridgman furnace is set out. This is followed by 

details of an exact analytical solution for that model in the context of the test problem from Section 

4.3.2. Finally, details of the BFFTM to be verified are given, and the theoretical order of accuracy 

of the model is calculated.  

4.4.1 Mathematical model  

Considering heat flow in the axial direction only, and referring to Fig. 4.2, the heat equation 

for a long cylindrical rod of uniform cross sectional area A, and perimeter p, moving at a pulling 

rate u along its axis, and transferring heat laterally to the surroundings with a heat transfer 

coefficient h, is given by equation (3.2). Noting that; T∞ = TH and h = hH for x > x1, and T∞ = TC 
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and h = hC for x < −x1. This 1-dimensional model, with an additional term for peripheral heat loss, 

is deemed appropriate scenarios where the Biot number is less than 0.1. 

4.4.2 Analytical solution 

Naumann [27] demonstrates a 1-dimensional analytical model and solution for Bridgman 

furnace solidification. With reference to Fig. 4.2, Naumann’s analytical solution is adapted here for 

the test problem given in Section 4.3.2. Assuming steady heat transfer (partial derivative terms with 

respect to time are set to zero), and using the transformation for dimensionless position, X=x/r, 

where r is the rod radius and x is the real axial position, the dimensionless steady-state form of 

equation (3.2) for equilibrium solidification can be written as;  
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where TH,C refers to the temperature of the hot or cold heater regions (depending on axial position) 

and Pe is the thermal Péclet number, Bi is the Biot number—as given in equations (4.6) and (4.7), 

respectively—and assuming a characteristic length for the rod equal to its radius [128]. 
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Note that; hH,C refers to the heat transfer coefficient in the hot or cold region of the furnace 

(depending on axial position). Assuming a pulling rate u > 0 the solution to (4.5) is given by 

equations (4.8), (4.9), (4.10) and (4.11), where TL(X) and TS(X) refer to temperature as a function of 

dimensionless position in the liquid and solid parts of the rod, respectively. 

 )(*exp)( 1XXDTXT HL      1XX   (4.8)
 

)exp()( XPeBAXT LL     01 XXX   (4.9)
 

)exp(**)( XPeBAXT SS     10 XXX   (4.10)
 

 )(*exp)( 1XXCTXT CS       XX1  (4.11)
 

The constants: , *,  and * are calculated as follows: 

  ,2/4* 22

SS PePe    ,2 CBi  (4.12)
 

  ,2/4* 22

LL PePe    .2 HBi  (4.13)
 

This solution is valid for a planar solid liquid interface located at a dimensionless position X0 

within the limits of the adiabatic zone ±X1 only. The thermal resistance of the crucible wall is 
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assumed to be negligible. Seven unknowns exist; A, A*, B, B*, C, D, and X0. To solve for these 

unknowns, the following conditions are applied; TL and dTL/dX are continuous at −X1, and similarly 

TS and dTS/dX are continuous at X1. It is assumed that the temperature in the liquid is equal to the 

temperature of the solid at the solid liquid interface, and that solidification occurs in equilibrium at 

the melting temperature for the material, Tm. It is assumed that the latent heat generated at the 

liquid–solid interface is equal to the net conduction away from the interface in the solid and liquid 

phases, in other words, the Stefan condition is applied at the interface. Noting that the temperature 

gradient in the liquid and in the solid, at the interface, are both negative with respect to the 

coordinate system in Fig. 4.2, the following equation is applied: 
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where qlatent is the rate of latent heat liberated at the interface per unit area; 

,MLlatent uLq   (4.15)
 

and LM is the latent heat of fusion of the material per unit mass. Finally, the position of the 

interface, X0, is found through an iterative procedure to solve the following transcendental 

equation; 
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The remaining terms are calculated as follows: 
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The problem data in Table 4.1 is applied to this set of equations. A solution for the front 

position is computed using the fzero [143] command in Matlab
®
 for solving nonlinear functions. 

The temperature profile in each section of the furnace is then determined. 

4.4.3 Numerical solution 

In this section, an outline is given of how the Bridgman furnace front tracking model 

(BFFTM) of Mooney et al. [126] is implemented to solve the test problem set out in Section 4.3.2. 

The theoretical order of accuracy of the model is determined. This is followed by details of the 

growth law used and the treatment of solid fraction in the solution. 

Implementation of the BFFTM  

The BFFTM has been demonstrated in a transient solidification problem involving a binary alloy 

where step changes in the pulling rate are applied [126]. It is shown how the model can be used to 

determine a steady-state temperature profile, given a fixed pulling rate, and assuming some 

arbitrary initial temperature profile in the sample. The model is applied in the same way to 

determine a steady-state solution to the test problem set out in Section 4.3.2. Firstly, the steady-

state temperature profile for the test problem is found where the sample is stationary. A step change 

in pulling rate is then introduced and the evolution of the temperature profile is observed until a 

steady-state is reached. The final temperature profile is then used to compare with the results from 

the analytical model. 

Note that, in the numerical solution, thermal resistance at the crucible wall is assumed 

negligible (as in the analytical solution). Also, Dirichlet boundary conditions are applied to the 

domain boundaries such that; T=TH at x = –l /2, and T=TC at x = +l /2. The value for l was chosen 

suitably long enough so that the temperature profile approached TH at the west domain boundary 

and TC at the east domain boundary (as predicted by the analytical model). 

Theoretical order of accuracy of the BFFTM 

The control volume (CV) approach is used in the BFFTM. The sample is divided into disc-shaped 

CVs, x metres wide. The governing heat equation (3.2) is integrated over one CV to give the 

following [139]; 
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where VCV is the volume of the CV, the subscripts ‘e’ and ‘w’ refer to the east and west flat faces of 

the CV respectively, LM is the latent heat generated per unit mass, VS is the volume of solid material 

in a CV, and LMVS/t=EVCV. Dividing across by, VCV = Ax, and introducing Taylor series’ 

expansions for the partial derivative terms (except for VS/t), gives; 
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where the superscript ‘m’ is the temporal label, and the subscript ‘i’ is the spatial label for CVs 

lined up in the x-direction. Looking at the final term in this equation—that deals with the latent heat 

released during solidification—note that VS = gS d, where gS is the fraction of solid within a CV and 

d is the captured volume in a CV, so then VS/t=gS(d/t)+d(gS/t) giving the following equation 

when Taylor series’ replace the partial derivative terms: 
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For more detailed accounts of the latent heat release mechanism used in the BFFTM see references 

[113] and [114]. {Refer to Appendix A.2 for detailed derivations of equations (4.23) and (4.24).}  

Looking at the truncation terms—given by the “order of” notation, “O”—in equation (4.24), 

the lowest power of x is two, and in equation (4.25) the lowest power of t is one. This gives the 

theoretical order of accuracy for the discretised heat equation (used in the in the BFFTM) as first 

order in time and second order in space. However, it can be shown that the spatial accuracy of the 

BFFTM is in fact first order. This is due to the Neumann boundary condition imposed at the 

circumference of the sample used to estimate radial heat flow via the heat transfer coefficient, hH,C. 

Removal of the truncation terms from (4.24) leaves the explicit finite difference scheme used in the 

BFFTM. Refer to [126] and [144] for a further description of the BFFTM algorithm.  

Growth law for high purity titanium  

The BFFTM, and its predecessors [113] and [114], are used to simulate dendritic columnar growth 

of alloys. However, the BFFTM can be adapted for growth of pure materials—where a planar non-

dendritic interface occurs—by suitable adjustment of the growth law kinetics. The growth rate of 

the solid liquid interface, during the solidification of a pure material, is directly proportional to the 

level of kinetic undercooling at the interface [4] as follows: 

,KK Tv    (4.26)
 

where v is the interface growth rate, K is the attachment kinetics coefficient, and TK is the kinetic 

undercooling at the interface which is equal to the difference between the material melting 

temperature and the temperature at the interface. Typically, for pure materials, the level of 
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undercooling is very small (less than 3 °C) unless solidification occurs at a very high speeds (100 

m/s to 1000 m/s) [4]. The attachment kinetics coefficient is estimated using the collision limited 

growth model of Turnbull and Bagley [145]; 
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where vsound is the speed of sound, Lmol is the molar latent heat of fusion for the material, is the 

molar gas constant, and Tm is the material melting temperature (in units of Kelvin). The modelling 

data in Table 4.1 is used to calculate K to have a value of 2.294 m/s·°C.  

Fraction of solid 

The volumetric fraction of solid, gS, as a function of temperature for pure titanium, is estimated by 

an approximation to a step change of 0→1 near the melting temperature as follows:  
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where  is the thermal range over which phase change occurs, set to a very low value (0.01 °C in 

this case). This arrangement is equivalent to having a linear solid fraction to temperature 

relationship for an alloy with a solidification interval of 0.01 °C. This approach gives a result 

similar to the enthalpy linearisation method [121] where enthalpy is varied over a very small 

temperature range about the melting temperature. 

4.5 Results 

As per the description in Section 4.4.3 ‘Implementation of the BFFTM’ above, the steady-

state temperature profile for a fixed pulling rate was determined dynamically using the BFFTM. 

Firstly, the temperature profile for a stationary sample was estimated using the BFFTM, shown as 

Tinitial in Fig. 4.3. Then a step change in pulling rate was introduced and the evolution of the 

temperature profile was observed until a steady-state was reached, shown as Tsteady in in Fig. 4.3.  

This figure shows the temperature profile evolution over a 500 s period with the step change 

in pulling rate (u=0→0.4 mm/s) introduced at t > 0. The time between subsequent temperature 

profiles shown in the figure is 10 s. The front marker for each curve is shown as an asterisk. 

Simulations were carried out at four different grid resolutions, as per Table 4.1, starting at x 

= 0.8 mm and increasing the resolution by a factor of two until x = 0.1 mm. In each case the 

resulting steady-state temperature profile from the numerical model was compared to the analytical 

solution and the global numerical error was calculated. The observed order of accuracy was then 

calculated by comparing results over two consecutive grid refinements. Table 4.2 shows a 

summary of the results obtained. 
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Fig. 4.3 Evolution of temperature profile resulting from step change in pulling rate. 

 

 

 

Fig. 4.4 Temperature profile for comparison of analytical and numerical solutions. 
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Table 4.2 Order verification simulation results  

Simulation 
Grid resolution,

x [mm] 

Global numerical error, 

NE
global

 [°C] 

Observed order of 

accuracy, po 

#1 0.8 2.11  

   0.61 

#2 0.4 1.38  

   1.07 

#3 0.2 0.66  

   0.98 

#4 0.1 0.33  

 

Figure 4.4 shows the temperature profiles obtained from simulation #3 (x = 0.2 mm) and 

simulation #4 (x = 0.1 mm) along with the analytical solution. The liquid–solid interface location, 

as predicted this time by the analytical model, is shown by an asterisk. 

4.6 Discussion 

The discussion is limited to spatial order of accuracy verification since there is no transient 

analytical solution available to verify the temporal order of accuracy of the model.  

Table 4.2 shows that the observed order of accuracy—obtained by comparing simulations at 

successively refined grid resolutions—converged to within two significant digits of the spatial 

order of accuracy for the BFFTM, i.e., it converged to one (first order). The model uses a 

numerically consistent finite difference scheme, since po > 0. Also, since the model is numerically 

stable, the scheme must be numerically convergent according to the Lax–Richtmyer theorem. The 

results reflect this inference since the numerical solution displayed asymptotic convergence with 

each grid refinement, i.e. the global numerical error was tending to zero as x was decreased. Also, 

the first term in the truncation error dominates the higher order terms, given that the value for po 

was shown to be converging [134]. The global numerical error converges by a factor of 

approximately two during successive grid refinements. This is to be expected given that the 

refinement ratio is 2 and that po was approximately equal to 1. If, for example, po was 

approximately equal to 2, i.e., second order accuracy, one would have expected the numerical error 

to decrease by approximately a factor of 4 since, NE ∝ (x) op
. 

The source of the error is most certainly due to the truncation of the derivative estimates in 

the discretisation scheme only. Round-off error is negligible, given that the code is implemented in 

double precision, thereby assigning 16 significant digits for storage of all numerically processed 

variables. Also the numerical scheme requires no iterative procedure so there is no potential for 

iterative convergence error in the numerical scheme. The analytical model is solved, however, 

using an iterative procedure—specifically equation (4.16) in Matlab
®
—but the error tolerance 

using this software is negligible at 2.22 × 10
–16

. 



65 

 

The truncation error could be decreased by adding more terms to the Taylor series 

approximations of the partial derivative terms in the discretisation scheme. Alternatively, the 

existing Taylor series approximations could be improved using numerical techniques such as 

Heun’s method or the midpoint method [140].  

Figure 4.4 shows the analytical temperature profile compared with the numerically estimated 

temperature profiles for simulation #3 (x = 0.2 mm) and simulation #4 (x = 0.1 mm). It is clear 

that the numerical solution is tending towards the analytical solution as the grid resolution is 

refined. The maximum local error observed in simulation #3 was approximately 0.2% of the 

temperature range, and 0.1 % of the temperature range in simulation #4. This gives an accuracy of 

0.8 °C at a grid resolution of 0.2 mm, and 0.4 °C at a grid resolution of 0.1 mm, over a 400 °C 

temperature range. The simulated front position is within 0.04 mm of the analytical prediction for 

simulation #3, i.e., 0.02% of the domain size, and 0.02 mm for simulation #4, i.e., 0.01% of the 

domain size. 

It is noted that the analytical model assumes that equilibrium solidification occurs. In other 

words, the liquid–solid interface temperature is fixed at the equilibrium melting temperature during 

solidification. While, on the other hand, the BFFTM assumes that non-equilibrium solidification 

occurs. In the latter case, the front is at some temperature below the equilibrium melting 

temperature during solidification, i.e., it is assumed to be undercooled. Since the material 

solidifying is pure, this is a kinetic undercooling which is normally very small at low solidification 

velocities. For example in the test problem outlined, u = 0.4 mm/s giving an undercooling 

approximately equal to 2 × 10
–4

 °C. This accounts for minor differences between the predicted 

front location in the analytical and numerical model results. For example, given the temperature 

gradient at the solidification front (from the steady-state temperature profile) of 2739 °C/m, this 

equates to a difference of 7.3 × 10
–4

 mm between numerical and analytical front positions. 

Finally, in the BFFTM model, it is necessary to model the phase change over a small but 

finite temperature range. This feature of the model is a numerical artefact whose effect on the 

results should be minimal. An exercise was carried out to investigate what effect increasing the 

range of temperature over which phase change occurs,, had on order accuracy.  

Table 4.3 Effect of increasing the thermal range for phase change. 

Thermal range,  [°C] Observed order of accuracy, po 

0.01 0.98 

0.1 1.02 

0.25 1.13 

0.5 Non-convergent (negative po) 

 

The observed order of accuracy, po, was calculated by comparing numerical results at a grid 

resolution of 0.2 mm and 0.1 mm and by increasing the thermal range, , from 0.01 °C to 0.5 °C. 
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Table 4.3 gives the results from this exercise where it can be seen that first order accuracy was lost 

above a thermal range of 0.1 °C. The order verification procedure is non-convergent when the 

thermal range is set to 0.5 °C. This exercise outlines the sensitivity of the method used to calculate 

po and also shows that a very small thermal range, i.e., less than 0.1 °C, is appropriate for the 

chosen test problem. 

4.7 Conclusion 

The BFFTM code of Mooney et al. [126] is verified for a simple steady scenario using the 

order verification method given by Knupp and Salari [134] by way of demonstrative example, 

specifically, steady solidification of high purity titanium. The verification method applied requires 

knowledge of a closed-form analytical solution (for comparison purposes with numerical results) to 

the governing partial differential equation of the process. This limited the choice of potential test 

problems to steady solidification of pure materials, since an analytical solution for transient 

solidification of an alloy system is not currently available in the literature. 

The model is first order accurate in space. The source of numerical error is primarily 

truncation error. The order of accuracy of the model could be increased by using a higher order 

interpolation in the discretisation scheme of the model.  

For the test problem investigated, asymptotic convergence of the global numerical error is 

observed for grid resolutions of 0.8 mm or less, and the grid resolution necessary for a maximum 

local numerical error of < 1 °C is 0.2 mm. A value of 0.01 °C is deemed appropriate for the thermal 

range over which phase change occurs in the numerical model.  

This chapter satisfies Objective 2 of this thesis, as given in Section 1.2. An order verification 

exercise has been carried out for steady solidification of a pure material. Now that the numerical 

model has been developed and verified (albeit for a limited case), it is appropriate to apply the 

model to a real Bridgman furnace. 
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Chapter 5 

 
5 Characterisation of a Bridgman Furnace 

Characterisation of a Bridgman 

Furnace 

 
This chapter details how the BFFTM is applied in series with a numerically implemented 

proportional integral derivative (PID) controller for the purposes of determining the heat transfer 

coefficients of a real Bridgman furnace apparatus. A combined experimental-numerical approach is 

adopted. Experimental data, viz. thermocouple measurements at various axial positions in the 

sample and for different furnace temperatures from static Bridgman experiments using a 

hypoperitectic multicomponent alloy (alloy 455, see Section 2.5.2), is fed into the model and 

controller. An inverse heat transfer problem is solved that consequently characterises the furnace. 

This characterisation exercise was performed so that the resulting heat transfer coefficients could 

be used (as input data) in other key experiments using the same furnace. The model solves for the 

heat flux at the circumference of the sample as a function of axial position. This allows for the heat 

transfer coefficient at the circumference of the crucible to be estimated. The method outlined is 

useful as it may be applied to other Bridgman furnaces.  

Referring to Section 1.2, this chapter addresses the third objective of this thesis. Reference 

[144] is the main source of content for this chapter. It is noted that the experiments detailed in this 

chapter were carried out by others, i.e., co-authors Lapin and Gabalcová of reference [144]. The 

following objectives were identified as part of this chapter: 

(a) To estimate the heat flux at the ends of the cylindrical sample; 

(b) To estimate the heat transfer coefficient at the ends of the cylindrical sample; 

(c) To estimate the heat flux at the circumference of the sample as a function of axial 

position;  

(d) To estimate the heat transfer coefficient at the circumference of the crucible as a 

function of axial position.  

 

5.1 Bridgman Furnace Heat Transfer Coefficients  

Determining the heat transfer coefficients in a Bridgman furnace using traditional techniques 

can be time consuming and difficult to do accurately. The calculation depends on furnace and 

sample geometry, the sample properties, the crucible properties, and the atmospheric conditions 
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inside the furnace. It is necessary for experimentalists to know the heat transfer coefficient of their 

furnace so that they can accurately estimate the true temperature gradient and temperature profile in 

a test sample. 

An experimental procedure is outlined by Banan et al. [146] where an average heat transfer 

coefficient between a sample and the surrounding furnace is estimated using a lumped capacity 

cooling model. An isothermal sample is suddenly moved to a hotter part of the furnace and the 

thermal history recorded.  

An experimental study by Rosch et al. [147] combines radiation and convection heat fluxes 

to estimate an overall heat transfer coefficient in a Bridgman furnace. The radiation heat flux is 

linearised with respect to temperature difference through the following relation: 

  ,4 344

mufflefurnaceavmufflefurnace TTTTT   (5.1) 

where Tfurnace is the furnace temperature, Tmuffle is the surface temperature of the muffle tube 

containing the ampoule, and Tav is their average. This approximation produces an error of less than 

2 percent provided that Tfurnace/Tmuffle and Tmuffle/Tfurnace is less than 4/3. Ultimately, Rosch et al. 

merge the 4(Tav)
3
 into the overall combined heat transfer coefficient. Rosch et al. subject the sample 

to additional heating—within the operating furnace—using an electrical heating coil wrapped 

around the crucible (i.e., the muffle); thus, creating a known temperature difference between the 

sample and furnace heater. The work has been extended [148] to estimate convection coefficients 

in different gas environments, and emissivities for different coil sleeve materials. Neither of these 

studies treat the heat transfer coefficient as a function of axial position, that is, fixed values are 

used for the heat transfer coefficient in the hot and cold zones. However, both studies conclude that 

the overall heat transfer coefficient is non-linear (i.e., a function of temperature cubed) at higher 

temperatures due to dominant radiation heat transfer.  

A numerical study by Bartholomew and Hellawell [149] looks at changes in growth rate and 

temperature gradient where the radiation heat transfer incorporates a view factor to account for a 

typical furnace geometry. Separate values for liquid and solid thermal conductivity are used.  

Several analytical studies [26][150][151], concerned with interface shape and interface 

velocity during growth of crystalline materials, use a fixed value for heat transfer coefficient to 

specify their boundary conditions. However, it is noted that the heat transfer coefficient should 

increase at high temperatures due to increased radiative effects. 

5.2 Methodology 

5.2.1 Experimental method 

The experiment apparatus  

The experiments were carried out using a vertical Bridgman furnace, as shown schematically in 

Fig. 5.1. The furnace, fully described elsewhere [152], consisted of a cold formed smooth 

molybdenum resistance heating element in the hot zone. The cylindrical heating element had a 
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length of 300 mm and inside diameter of 33 mm. The space between the hot and cold zones was 7 

mm, made up by a 5-mm thick annular aluminium oxide baffle and a 2 mm gap on the hot side. 

The cold zone heat sink consisted of a cylindrical water-cooled ‘crystalliser’ with inside diameter 

of 16 mm.  

 

Fig. 5.1 Schematic of the Bridgman furnace apparatus. 

 

The sample was a 170-mm long rod of titanium aluminide, with a diameter of 10 mm. The 

sample was contained in a high purity yttrium oxide (Y2O3), crucible with outside diameter of 15 

mm, and a wall thickness of 2.5 mm. A moveable thermocouple was located in the longitudinal 

axis of the sample, contained in a protective closed-end alumina tube, with inside and outside 

diameters of 3 mm and 5 mm, respectively.  The tube was plasma sprayed with a layer of yttrium 

oxide to minimise reaction between the tube and the melt. The thermocouple was free to traverse in 
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the axial direction of the crucible. The alumina tube was fixed and contained air at standard 

atmospheric pressure. The open end of the tube was closed with a sealant. 

A fixed thermocouple was contained in a protective ceramic tube and positioned at a fixed 

distance from the crucible wall. The reading from this thermocouple was used to control the heater 

temperature by comparing directly with the heater temperature set-point. The furnace was enclosed 

in a low pressure chamber so that solidification could occur in a contaminant free and rarefied 

atmosphere.  

The experimental procedure 

The furnace chamber was evacuated to an absolute pressure of 3 Pa and flushed with Argon 

(99.9995% purity) six times, before being backfilled with argon to an absolute pressure of 10 kPa. 

The hot region heater was set so that the fixed thermocouple read 1680 °C, to partially melt the 

sample, for a period of 1200 s. The crucible and sample were drawn 20 mm into the cold region of 

the furnace where they were allowed to achieve a steady-state temperature profile for a period of 

300 s. The moveable thermocouple was located at an initial axial position of 2 mm from the zero 

datum position at the bottom of the sample (in the cold zone). The thermocouple was moved 

upwards along the sample axis, at 0.25 mm increments, stopping to measure the axial temperature. 

The final temperature measurement was taken at an axial position of 160 mm from the zero datum 

position.  

This procedure was repeated for three other heater settings corresponding to a fixed 

thermocouple reading of 1650 °C, 1630 °C and 1600 °C. The water-cooled crystalliser had a 

constant output water temperature of 17 °C during all experiments.  

5.2.2 Mathematical model and the numerical implementation  

The BFFTM model—as described in Section 3.2—is applied to the experimental data. Some 

modifications are required to deal with the more complicated multi-component titanium aluminide 

alloy, specifically with respect to the calculation of volumetric solid fraction, gS. This is dealt with 

later, in detail, in Section 5.3.4. In addition, the calculation of the radial heat flux q2 requires 

attention to account for the physical aspects of the experimental apparatus. It is noted that in the 

experimental procedure the sample is stationary, i.e., u = 0, so the advection term in equation (3.2) 

is zero. The following describes in detail how the BFFTM is applied to the experimental apparatus 

in order to characterise it. 

Application of the mathematical model to the experiment apparatus 

Figure 5.2 shows a schematic section of the experimental Bridgman furnace apparatus in Fig. 5.1. 

The schematic shows the cold (a) and hot (b) regions of the furnace separately. The alumina tube 

assembly that contains the moveable thermocouple is not considered in this analysis. It is assumed 

that the effect of the presence of the alumina tube assembly is negligible at very high temperatures, 



71 

 

so that the temperature at the centre of the sample is equal to the temperature measured by the 

movable thermocouple.  

 

Fig. 5.2 Schematic of the cold (a) and hot (b) regions of the Bridgman furnace apparatus. 

The temperature throughout the sample is assumed to vary in the axial direction only; that is, 

the temperature at the centre of the sample T1 is assumed to be equal to the temperature of the 

sample at the sample–crucible boundary, T2. This is a reasonable assumption for processes with a 

Biot number less than 0.1. 

The sample experiences a heat flux q2 at the sample–crucible boundary (i.e., at the sample 

circumference) in the hot and cold regions of the furnace. The crucible wall is treated as a thermal 

resistance between the sample surface and the outside surface of the crucible such that T2≠T3. In the 

hot region of the furnace T3 is greater than T2, and vice-versa in the cold region. It is assumed that 

heat transfer in the crucible occurs by conduction in the radial direction only, and that the contact 

resistance between the sample and the crucible inner wall is negligible. Then, by conservation of 

radial heat flow and assuming no axial heat flow in the crucible, the radial heat flux at the outside 

of the crucible q3, is related to the radial heat flux at the sample–crucible boundary, q2, such that, 

,2233 rqrq   (5.2)
 

where r2 is the radius of the sample and r3 is the outside radius of the crucible.  

The temperature at the crucible wall, T3, is a function of the ratio of the outer to inner radii of 

the crucible (r3/r2), the thermal conductivity of the crucible material (kcru) and the radial heat flux 

(q2) [153], and is given by; 
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Note that, equations (5.2) and (5.3) are used together to replace equation (3.8) in the BFFTM 

numerical scheme, when characterising the furnace, to account for the crucible which was 

previously ignored. See Appendix A.4 for the derivation of equations (5.2) and (5.3). 
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The heat transfer coefficients 

Figure 5.2(a) shows the cold region of the furnace—the crystalliser component—where the water 

temperature at the outlet of the crystalliser is T4. The heat transfer coefficient at the circumference 

of the crucible, as a function of axial position in the crystalliser, is then given by; 
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Since the furnace is rarefied to approximately one-tenth of atmospheric pressure during 

experiments, it is assumed that only radiative heat transfer occurs in the hot region of the furnace 

between the crucible and the heater surface. Referring to Fig. 5.2(b), the radiation heat transfer 

coefficient at the crucible circumference is given by the net radial heat flux q3, divided by the 

temperature difference between the surfaces exchanging thermal radiation, T5−T3 [154]. However, 

the heater temperature T5 is unknown in this case. Instead, the known temperature T4 (as measured 

by the fixed thermocouple) is used to define a heat transfer coefficient at the crucible wall h3 for the 

hot zone, according to equation (5.4).  

Similarly, the heat transfer coefficient for heat transferred through the end faces of the 

sample, hx, is given by;  

,
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4 x

xx
TT

qh


  (5.5)
 

where qx and Tx are the net axial heat flux and the temperature, respectively, at the sample ends, 

i.e., at x=0 and x=l (see Fig. 5.3 below). 

Model domain 

A simple 1-dimensional numerical domain is applied to the sample only, within the experimental 

setup, as illustrated in Fig. 5.3. Note the orientation change in this figure when referring back to 

Fig. 5.1, the x-direction relates to the vertical axis of the sample in the furnace. The numerical 

domain is in the range 0<x<l. The cold region is given by 0<x<x1, the baffle region is given by 

x1<x<x2 and the hot region given by x2<x<l. The domain is divided into disc-shaped volumes of 

thickness x. The mush–liquid interface (front) is shown in the domain given by a front marker (×).  

 

Fig. 5.3 A 1-dimensional numerical domain applied to the sample in the experimental set up. 
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Boundary conditions 

A Neumann boundary condition is applied at both ends of the numerical domain. The temperature 

profile from each experiment is extrapolated using the shape preserving pchip (Piecewise Cubic 

Hermite Interpolating Polynomial) command in Matlab
®
 [155] to estimate the temperature gradient 

at x=0 and at x=l.  This permits a simple calculation for the diffusion heat flux (in the axial 

direction only) by application of Fourier’s law at both ends of the domain, such that; 
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PID method for solving the inverse heat transfer problem 

An inverse heat transfer problem is one where a thermal effect is known and the cause is 

discovered [156]. In this case, the temperature at the centre of the sample (the effect) is known and 

the heat flux at the surface of the sample (the cause) is unknown. Various procedures involving 

iterative matrix calculations exist [157][158] to solve the inverse heat transfer problem for 

relatively simple heat equations. However, computational effort is substantially increased for non-

linear problems [159] like the one presented here.  

An alternative, non-traditional method for solving the inverse heat transfer problem is to 

manipulate the heat flux q2 in a controlled manner, based on the error between the experimentally 

measured temperature and the same temperature as simulated by a numerical procedure. This 

method is implemented in a similar manner by McFadden et al. [56] to estimate heat flux at a heat 

sink during a directional solidification experiment using a proportional integral derivative (PID) 

control algorithm.  

Figure 5.4 shows a control system block diagram with negative feedback, applied on a per 

CV basis, where ‘PID’ refers to a discrete PID controller process and ‘BFFTM’ is the process that 

solves equation (3.4) for Ti
m+1

. Given some starting value for the heat flux at the surface of the 

sample q2, the BFFTM can simulate the corresponding CV temperature T1(sim).  

 

 

Fig. 5.4 Control system block diagram with negative feedback loop to control CV temperature. 



74 

 

This temperature is fed back and compared with the experimental temperature measurement T1(exp) 

and an error signal is generated. The PID controller uses the error signal to continuously and 

dynamically manipulate the value of q2 so that the error value is minimised and a steady-state 

temperature output is reached. At this point the simulated temperature is equal to the experimental 

sample temperature. This process is carried out at each CV independently. 

An ideal PID controller with filtered derivative is used to implement the discrete PID 

controller process. The control equation—written in the Laplace domain—is given by [160], 

,

1

1
1)()(2























s
N

s

s
Ksesq

D

D

I

c 




 (5.7)

 

and is illustrated in Fig. 5.5, where Kc is the controller gain, Iis the integral time constant, D is the 

derivative time constant.  The controller includes an adjustment variable N for the break frequency 

of the low pass filter in the derivative term.  

 

 

Fig. 5.5 Ideal PID controller with derivative filter. 

Taking the proportional (P), integral (I) and filtered derivative (D) signals individually, each signal 

can be rewritten in the continuous time domain as follows: 

,)(teKP c  (5.8)
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These equations are discretised—for implementation in series with the BFFTM algorithm—using a 

forward difference approximation in the derivative signal and the trapezoidal rule in the integral 

signal, yielding, 
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Determining the heat transfer coefficient at the crucible circumference 

The temperature output from the BFFTM, T1(sim), and the steady-state value of the controller 

manipulated variable q2, is used to calculate the temperature at the exposed side of the crucible T3 

using equation (5.3), given that T2 ≈ T1. This allows for the heat transfer coefficient h3 to be 

calculated via equation (5.4), as illustrated in the block diagram in Fig. 5.6.  

 

 

Fig. 5.6 Block diagram for the calculation of the heat transfer coefficient, h3. 

5.3 Simulation Input Parameters 

5.3.1 Geometrical properties 

The geometrical properties used in the numerical procedure are given in Table 5.1.  

Table 5.1 Geometrical properties used in all simulations. 

Property Value 

Sample length, l [mm] 170 

Baffle zone start, x1 [mm] 20 

Baffle zone end, x2 [mm] 27 

Sample radius, r2 [mm] 5 

Crucible outer radius, r3 [mm] 7.5 

 

The geometric location of the baffle zone is trivial in the simulations that follow where the PID 

controller is active. This is because the PID controller determines the sign of the radial heat flux at 

the sample circumference (q2), i.e., negative for heat flowing away from the sample and positive 

for heat flowing into the sample along its entire length (even in the baffle region). The model is 

implemented so that only an adiabatic point exists (in effect, x1=x2) at the position of zero heat flux, 

as predicted by the PID controller.  
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5.3.2 Numerical parameters 

The numerical parameters used in all simulations are given in Table 5.2. The numerical time 

step t, and control volume thickness x, are selected so that the explicit finite difference scheme is 

stable. Convergence of the model was tested by carrying out trial simulations with the inverse heat 

transfer controller switched off. The trials demonstrated a suitably convergent result using these 

numerical parameters. 

Table 5.2 Numerical parameters used in all simulations. 

Property Value 

Control volume thickness, x [mm] 0.2 

Time step, t [s] 7.5 × 10
-4

 

Number of control volumes  850 

 

5.3.3 Controller parameters  

The discrete PID controller is tuned using the Ziegler Nichols ultimate cycle method [161]. 

Table 5.3 shows the resulting values for controller gain Kc, integral time I, and derivative time D 

used in all simulations. 

Table 5.3 Ideal PID controller settings for all simulations. 

Controller setting Value 

Controller gain, Kc 2 

Integral time, I [s] 8 

Derivative time, D [s] 0.12 

Filter variable , N 10 

 

5.3.4 Material properties 

Thermophysical properties 

The density, specific heat capacity and thermal conductivity of the alloy are estimated by first, 

second and third order polynomial functions of temperature using equation (2.30), where the 

polynomial coefficients are taken from a study by Egry et al. [162] for the ternary titanium 

aluminide alloy, Ti–45.5Al–8Nb (all at.%). This alloy is constitutionally very similar to alloy 455 

used in the experiments described here.  

Table 5.4 shows the polynomial coefficients used to calculate these properties, where  is 

the thermal diffusivity (k/c) and the latent heat of fusion per unit mass is, LM = 3.4 × 10
5
 J/kg. The 
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thermal conductivity of the yttrium oxide crucible is estimated by a second order polynomial 

function of temperature fitted to data from Touloukian [163], the coefficients of which are shown 

in the final column of Table 5.4. 

For a given CV, the algorithm calculates the variable property value based on the 

temperature of that CV at the previous time step. According to Özışık [139] this method of lagging 

properties by one time step is appropriate for non-linear problems. 

Table 5.4 Polynomial coefficients used to estimate thermophysical properties of the sample alloy 

and crucible, adapted from Egry [162] and Touloukian [163]. 

 Sample Alloy Crucible

 
Specific heat capacity, c 

[J/kg·°C] 

Density,   

[kg/m
3
] 

Thermal 

diffusivity, 

[m
2
/s] 

Thermal conductivity, 

kcru 

[W/m·°C]

 (liquid) (solid) (liquid) (solid) (liquid or solid) (solid) 

a0 1040 632.4 4215 3133 5.36 × 10
-6

 21.31 

a1 0 7.4 × 10
-2

 −0.295 −0.457 5.18 × 10
-9

 −0.020855 

a2 0 −2.1 × 10
-4

 0 0 4.3 × 10
-13

 5.83 × 10
-6

 

a3 0 2.9 × 10
-7

 0 0 −3.01 × 10
-15

 0 

 

Dendrite kinetics 

The growth rate, vtip, of the front marker (×) during solidification, is calculated in the BFFTM using 

a suitable dendritic growth law taken from a study by Rebow et al. [164] as; 

,1063.2 79.26

tiptip Tv  
 (5.14)

 

where Ttip is the undercooling at the front, i.e., the difference between the temperature at the front 

marker and the equilibrium liquidus temperature for the alloy. The alloy, upon which this growth 

law is based, is constitutionally similar (Ti–46at.%Al) to alloy 455. 

Solid fraction estimation 

In the BFFTM model, the volumetric fraction of solid gS must be known as a function of 

temperature. Solid regions have a solid fraction of unity; liquid regions have a solid fraction of 

zero; while mushy regions have some value in between unity and zero, depending on the 

temperature and the composition. The Scheil relation, equation (2.22), is suitable for binary alloys. 

Another approach is required in order to be able to calculate equations (3.9) and (3.10) when 

modelling a multicomponent titanium aluminide alloy. The CALPHAD (CALculation of PHAse 

Diagrams) method uses validated thermodynamic databases for each of the alloy elements to 

estimate the Gibbs free energy, and hence the phase diagram for that alloy [4]. Thermocalc® [165] 

used the CALPHAD method to determine a function for solid fraction in terms of temperature for 
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the multicomponent alloy. Figure 5.7 shows the resulting solid fraction to temperature relationship 

for alloy 455. The equilibrium solidus temperature Ts = 1434 °C and the equilibrium liquidus 

temperature Tl = 1550 °C are taken from this data set as the temperatures corresponding to a solid 

fraction of unity and zero respectively. The data is generated using the ‘Modified Scheil Module’ 

based on the approach of Chen and Sundman [166]. The model assumes Scheil type solidification 

[33], that is, no diffusion in the solid;  however, equilibrium back diffusion of the interstitial alloy 

elements (boron and carbon) is permitted. 

 

 

Fig. 5.7 Solid fraction to temperature relationship for alloy 455 as estimated using Thermocalc® 

[165] via the ‘Modified Scheil Module’. 

5.4 Results 

In this section the results are categorised into experimental and numerical results. Reference 

numbers for each of the experiments, E.1–E.4, and their respective hot and cold region 

temperatures, are given in Table 5.5. Note that in the cold region of the furnace, T4 refers to the 

steady-state water outlet temperature at the crystalliser, while in the hot region of the furnace, T4 

refers to the steady-state temperature measurement at the heater’s thermocouple.  

Table 5.5 Experiment reference numbers with hot and cold region reference temperatures. 

 Experiment Number 

 E.1 E.2 E.3 E.4 

COLD REGION, T4 [°C] 17 17 17 17 

HOT REGION, T4 [°C] 1680 1650 1630 1600 
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5.4.1 Experimental results 

Figure 5.8 shows the axial temperature profiles that were measured for each of the 

experiments referenced in Table 5.5.  

 

Fig. 5.8 Experiment temperature profiles at various heater settings. 

5.4.2 Numerically processed results 

Heat flux and heat transfer coefficients at the domain boundaries   

Table 5.6 shows the estimated values for the heat flux qx, from equation (5.6), and heat transfer 

coefficient hx, from equation (5.5), at the domain boundaries. The temperature at the boundaries, Tx, 

is also shown (as extrapolated from the experimental data). 

Table 5.6 Heat flux, heat transfer coefficients, and extrapolated temperature at the domain 

boundaries. 

Experiment 

No. 

x=0 (COLD END)  x=l (HOT END) 

qx  

 

 

 

[kW/m
2
] 

hx  

[W/m
2
°C] 

Tx  

[°C] 

 qx  

[kW/m
2
] 

hx  

[W/m
2
·°C] 

Tx  

[°C] [kW/m
2
] [W/m

2·°C] [°C]  [kW/m
2
] [W/m

2·°C] [°C] 

E.1 −96 146 670.51  0.34 68 1675.00 

E.2 −104 161 661.92  0.87 292 1647.03 

E.3 −120 188 653.86  0.21 20 1619.09 

E.4 −101 154 671.44  2.18 471 1595.37 

 

Heat flux at the circumference of the sample 

Figure 5.9 shows the heat flux at the circumference of the sample q2—as simulated by the PID 

controller for each experiment—plotted as a function of axial position (grey plots). The average 

heat flux for all the experiments is also shown (black plot).  
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Fig. 5.9 Heat flux at the sample circumference versus axial position. 

Heat transfer coefficient at the circumference of the crucible  

Figure 5.10 shows the resulting heat transfer coefficient h3 as a function of axial position for each 

experiment (grey plots). The average heat transfer coefficient as a function of axial position is also 

shown (black plot). 

 

 

Fig. 5.10 Heat transfer coefficient at the crucible circumference versus axial position. 
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5.5 Discussion  

5.5.1 Discussion of results 

Experimental results 

Figure 5.8 shows the measured temperature profile for each experiment, where the only difference 

between the experimental trials is that the furnace set point temperature was changed in accordance 

with Table 5.5. Experimental trial E.1 had the highest heater setting (1680 °C) and E.4 had the 

lowest heater setting (1600 °C).  As the heater setting was decreased the temperature profile in the 

hot region decreased proportionally. However, in the cold region the temperature profiles were 

convergent to each other. This was to be expected given that the outflow temperature from the 

water-cooled crystalliser was held constant during experiments.  

Heat flux and heat transfer coefficients at the domain boundaries 

Table 5.6 shows that the heat flux at the cold end of the domain (x = 0) was much larger than that 

observed at the hot end (x = l). This was to be expected as the temperature gradient was much 

higher at the cold end of the sample than at the hot end. The estimated heat transfer coefficients at 

the cold end of the sample were of similar magnitude in each experiment simulation, i.e., in the 

range 146 W/m
2
·°C to 188 W/m

2
·°C. 

Heat flux in the axial direction at the hot end of the sample range from 0.21 kW/m
2
 to 2.18 

kW/m
2
. These heat fluxes are very small compared to the axial heat fluxes at the cold end, ranging 

from −96 kW/m
2
 to −120 kW/m

2
.  The extrapolation exercise at the hot end of the sample was 

more sensitive than at the cold end. This was because the slope of the extrapolated temperature 

profile (i.e., at x = 170 mm) for each data set was very close to zero but, in some instances, an order 

of magnitude apart. Consequently, the hot end axial temperature gradient estimation shows greater 

variance than that of the cold end. This result is, therefore, reflected in the variation of the 

estimated heat fluxes and heat transfer coefficients for the hot end. 

Additionally, in relation to the hot end, it should be noted that the temperature at x = l (from 

the extrapolated curve) is not equal to the heater reference temperature in each case, i.e., the profile 

does not reach the heater temperature. If the temperature profile did reach the heater temperature 

one might expect a very large hx at x = l. Note, for example, in E.1 how Tx at x = l is 5 °C below the 

heater reference temperature (T4 = 1680 °C). This explains the magnitude and difference in values 

of the heat transfer coefficient at the hot end, since hx = qx /(T4Tx). 

It should be noted that other authors neglect the heat flux at the hot end of the sample where 

the sample is relatively ‘long and thin’, for example, in reference [149] where the length-to-

diameter ratio is 12.5 (17 in the case presented here). Alternatively, in other studies [56][57], and in 

a similar manner to the approach used here, a small nominal value for the heat flux at the hot end qx 

is set at a fixed value during simulations.  
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Finally, note that from the model results the heat flux at the hot end of the sample has a 

minimal effect on the radial heat flux predictions in Fig. 5.9. At the cold end, however, the situation 

is different; the relatively large axial heat flux condition has a greater influence on the radial heat 

flux at x = 0. 

Heat flux at the circumference of the sample  

In Fig. 5.9 it is shown that the heat flux at the sample circumference in the cold zone is negative. 

This means that the controller extracts heat from the CVs in this region. Similarly, the heat flux at 

the sample circumference in the hot region is always positive, that is, the controller adds heat to 

CVs here. The transition from negative to positive heat flux occurs in the baffle region of the 

furnace. The transition from cold to hot zone (where the heat flux is zero) is therefore an adiabatic 

location.  This result is cognisant with a simpler mathematical analysis. Rewriting equation (3.2) as 

a steady-state equation (removing the transient terms) giving, 
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If the radial heat flux q2 is zero for an adiabatic condition, then the RHS of this equation is also 

zero. Hence, mathematically, any adiabatic location should correspond with a point of inflection in 

the temperature profile, i.e., the second derivative of temperature with respect to axial position. It 

can be shown that all of the temperature profiles in Fig. 5.8 share points of inflection in the vicinity 

of the baffle zone in the experimental apparatus. In Bridgman furnace terminology the baffle zone 

is sometimes called the adiabatic zone. The approach used here has independently confirmed the 

existence of the adiabatic condition within the baffle region. 

It should be noted that a direct solution for equation (3.2) is difficult to obtain because of the 

non-linear nature of the problem and the inherent numerical difficulties with differentiating noisy 

experimental data. The problem is non-linear because thermal conductivity is a function of 

temperature and solid fraction. The approach adopted here—which is based on an integrative 

control volume algorithm—is a practical method for achieving the aims and objectives outlined at 

the beginning of this chapter.  

The heat flux at the circumference of the crucible (q3) is assumed to be due to radiative heat 

transfer only, as the experiments were carried out under vacuum. Since the heat flux at the 

circumference of the sample (q2) is directly related to q3 by equation (5.2), it is interesting to 

examine the result obtained in Fig. 5.9 with respect to the equation for radiative heat flux in 

concentric cylinders [128], 
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where F is the radiation view factor (equal to 1 for concentric cylinders),  is the Stefan–

Boltzmann constant, A is the area through which the radiative heat flux acts, T is the surface 
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temperature in units of Kelvin,  is the spectral emissivity, r is the radius of each cylinder, and 

subscripts ‘3’ and ‘5’ refer to the surfaces exchanging heat by radiation. In this case, ‘3’ is the outer 

surface of the crucible and ‘5’ is heater surface in the hot region of the furnace, or the inner surface 

of the crystalliser in the cold region. Assuming constant emissivities, equation (5.16) is a function 

of the term in brackets in the numerator, i.e., the difference between the temperatures of each 

surface to the power of 4. Using this equation, one would expect for q3 to increase as this difference 

increases. Figure 5.11 shows how this occurs for the majority of the sample length.  

 

 

Fig. 5.11 Measured temperature profile for experiment E.1 (top) and heat flux at the sample 

circumference calculated via the PID controller (bottom) to give the same simulated temperature 

profile. 
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In this figure, the measured temperature profile plot for experiment E.1 is aligned above the 

corresponding plot for radial heat flux as calculated by the PID controller. The baffle zone (x = 20 

to x = 27 mm) is the region between the two vertical lines through each plot. Assuming that, T4 ≈ T5 

and T1 ≈ T3, it is clear that (looking at the light grey areas in both plots within this figure) the 

magnitude of the predicted heat flux is increasing as the difference between the temperatures of the 

surfaces exchanging heat is increasing. Therefore, the values predicted by the PID controller for q2 

in these regions qualitatively agree with equation (5.16). 

Recall, from Section 5.3.1, that the PID controller does not distinguish between the hot and 

cold regions; rather it independently estimates where heat should be added or extracted at every 

position along the sample to make the simulated and experimental temperature profiles match. This 

method of implementation was a requirement; other simulations, where the PID controller was 

applied in the hot and cold regions only, and q2 was set to zero in the baffle region, gave unrealistic 

results where a ‘spike’ in heat flux occurred very near to the junctions with the baffle zone. The 

approach used here ensures a continuous plot of heat flux as a function of x across the whole 

sample. This explains why the heat flux in the hot zone must decrease from its maximum value (at 

x = 31 mm), to zero within the baffle zone (at x = 23 mm). Similarly, in the cold region, the 

maximum absolute value of heat flux (at x = 12 mm) must decrease to zero in the baffle region (at x 

= 23 mm).  

The dark grey areas in both plots do not follow the physical explanation that relates radiative 

heat flux to temperature difference applicable in the light grey areas. However, it is noted that the 

baffle region is not physically adiabatic; it is made up by a 5-mm thick annular aluminium oxide 

baffle ring and 2-mm gap (on the hot side). This means that from x = 25 mm to x = 27 mm the 

crucible surface is in view of the heater surface, albeit with a reduced view factor, i.e., less than 1. 

This provides a physical explanation for the mostly positive heat flux prediction in the baffle region 

produced by the PID controller. 

Heat transfer coefficient at the circumference of the crucible  

The method presented here estimates heat transfer coefficients using known reference temperatures 

in the heater and the crystalliser. For the heater system, the thermocouple for controlling the hot 

zone temperature is used to provide the reference temperature. Ideally, the surface temperature of 

the heater would have been used as the reference temperature; however, it is typical in high-

temperature furnace designs to control the heater with a thermocouple in the vicinity of the heater 

which is not on the surface itself.  This practical solution was deemed necessary and sufficient for 

future use. For the crystalliser, the reference temperature is simply the temperature of the water at 

the outlet of the crystalliser. This temperature was regulated throughout the experiments. 

As discussed earlier, with reference to equation (5.1) and the study by Rosch et al. [147], the 

magnitude of the furnace heat transfer coefficient (at the crucible circumference) should increase in 



85 

 

proportion to a function of temperature cubed. However, this behaviour is not clearly apparent in 

the results presented here. Additional experiments over a wider range of temperatures would be 

required to confirm any dependence on the heater’s temperature setting. 

The heat transfer coefficient values (Fig. 5.10) are calculated directly from the results for the 

heat flux at the sample circumference (Fig. 5.9) by equation (5.4).  It is proposed that the resulting 

heat transfer coefficient values obtained are, effectively, a bespoke ‘signature’ of the furnace 

design when modelled using the BFFTM. 

Following on from the findings, it was possible to take the data from the results and develop 

an average value for the heat flux at the sample circumference and the heat transfer coefficient at 

the crucible circumference at each axial location. The averaged results are provided in Fig. 5.9 and 

Fig. 5.10. The averaged values could be applied to other scenarios providing that they are within a 

similar range of the operating parameters. This application is demonstrated next. 

Average heat transfer coefficient at the circumference of the crucible 

For demonstration purposes, the average heat transfer coefficient curve given in Fig. 5.10 is applied 

to independent simulation runs for each of the experimental trials. The PID controller is removed 

from the model; hence the simulations are direct calculations with no error correction. The 

adiabatic point that divides the hot and cold zones is given by the position of zero radial heat flux 

according to the averaged results, i.e., where the averaged heat transfer coefficient in Fig. 5.10 is 

zero (x = 23.3 mm). Figure 5.12 shows the resulting steady-state temperature profiles. It is clear 

that there is close agreement between experimental and simulated data. The level of agreement is 

better in the hot zone of the furnace than in the cold zone.  

 

Fig. 5.12 Experimental and simulated temperature profiles using the average heat transfer 

coefficient. 
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5.5.2 Discussion of the 1-dimensional heat flow assumption 

It is assumed that a 1-dimensional model for heat flow in the sample is reasonable for this 

problem given that a low Biot number exists at the surface of the sample, as discussed in Section 

3.1. For the problem being addressed in this chapter, the heat transfer coefficient used to calculate 

the Biot number is referenced to the sample radius at r2. This heat transfer coefficient, h2, can be 

calculated by combining the thermal resistance of the crucible and the thermal resistance at the 

exposed side of the crucible wall, as per the method used by Fu et al. [167], as follows: 
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From the results in Fig. 5.10, the maximum value observed for h3—across all simulations—was 

h3=125 W/m
2
·°C, occurring in experiment E.2 at x = 34.5 mm. The resulting maximum heat 

transfer coefficient at the surface of the sample is then h2 = 170 W/m
2
·°C. Using h2 to calculate the 

corresponding maximum Biot number yields, Bi = 0.03. This being the worst case scenario, the one 

dimensional heat flow assumption is justified.  

5.5.3 Discussion on convection in the liquid  

Using the BFFTM, thermo–solutal convection in the molten alloy and in mush regions is 

neglected for the following reasons. Firstly, in the experiment the sample is stationary, i.e., u=0, 

and the sample is allowed to settle for 300 s before measurements are taken. This is important in 

respect of solutal convection. For alloy 455, when u > 0, the primary component rejected at the 

interface during solidification is aluminium (45.5 at.%) having a partition coefficient of 

approximately kpart = 0.9. Since aluminium has a lower density than titanium, the aluminium rich 

liquid at the interface can become hydrostatically unstable during growth, leading to convection in 

the melt [168]. The secondary alloy component to consider is niobium (4.7 at.%) having a partition 

coefficient of approximately kpart=1.1. This may also cause a destabilising effect on the melt. The 

partitioning of aluminium and niobium at the interface is a dynamic effect only present when u > 0. 

In any case, it should be noted that, since kpart ≈ 1 for both aluminium and niobium in titanium, the 

partitioning is weak. It is assumed that any solutal convection—induced during the growth part of 

the experiment—has dissipated during the settling period of 300 s before the experimental 

measurements begin. 

Secondly, in a vertical Bridgman furnace scenario the thermal gradient is parallel with the 

gravity vector. Given that the alloy used has a lower density at higher temperatures, the axial 

temperature gradient has a stabilising effect on convection in the melt. In addition, it is assumed 

that the sample is isothermal in the radial direction. 

Where it is required to model the solidification of a multicomponent alloy, and the 

destabilising effects of convection in the liquid are to be accounted for, a suitable model should be 

considered such as the one demonstrated by Anderson et al. [169].  
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5.5.4 Discussion on heat flow in the crucible  

It is assumed that heat flow in the crucible occurs in steady-state and in the radial direction 

only. However, it is probable that some axial heat flow occurs in the crucible. This assumption may 

introduce some error into the calculation of the heat transfer coefficient at the circumference of the 

crucible. A thought experiment, where the crucible is divided into annular volumes of thickness x, 

internal radius r2 and external radius r3, allows one to perform a qualitative heat balance exercise, 

as follows. 

The value for q2 is fixed by the PID controller so that the experimental and simulated 

temperatures match. From the point of view of the annular crucible volume, q2 is negative as it is 

heat leaving the annular volume for the sample, and q3 is positive as it is heat entering the annular 

volume. If some net axial heat flow were to occur in the crucible, the value for q3 would have to 

change accordingly, so that q2 is maintained. 

While the approach used for predicting the heat transfer coefficient across the crucible does 

have potential for error—in respect of axial heat flow—it is noted that the method is consistent 

with other authors [167] using similar crucible geometries. 

5.6 Conclusion 

Firstly, the objectives of this chapter have been met, as follows: 

(a) The heat flux at both ends of the sample was estimated;  

(b) The heat transfer coefficient at both ends of the sample was estimated;  

(c) The heat flux at the circumference of the sample was estimated as a function of axial 

position using a combined experimental-numerical approach;  

(d) The heat transfer coefficient at the circumference of the crucible was estimated as a 

function of axial position. 

The BFFTM is applied in this chapter—for the first time—to a gamma TiAl multicomponent 

hypoperitectic alloy (alloy 455, as referred to in Section 2.5.2). One main point of difference for 

modelling this alloy, as opposed to a hypoeutectic alloy or pure material, is in the estimation of 

solid fraction in the mushy zone. The solid fraction to temperature relationship, which affects the 

latent heat calculation within the BFFTM algorithm, is dealt with by the introduction of a pre-

defined curve determined using a Scheil based CALPHAD method. 

The method presented here estimates heat transfer coefficients using known reference 

temperatures in the heater and the crystalliser regions of the furnace. The resulting heat transfer 

coefficients can be used as benchmark input data for simulating other experiments performed using 

the same furnace, with similar operating conditions, and using the same alloy. (This is the subject 

of the following chapter.) 

From a wider perspective, the approach used is useful to experimentalists and modellers, 

where the temperature of the furnace heater surface (or heat sink surface) T5 is known a priori. In 

this case, the radiation heat transfer coefficients in the hot region of the furnace could be estimated, 
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a task that is normally quite difficult, due to uncertainty in values for the spectral emissivity of the 

surfaces exchanging heat. The method of using a PID controller for this purpose has not been 

previously reported in a Bridgman furnace analysis.  

The usefulness of the method is demonstrated by re-running each simulation with the PID 

controller removed from the model. The average heat transfer coefficient curve is used to calculate 

the heat flux at the circumference of the sample. The resulting simulated temperature profiles 

closely matched the experimental data. The main assumptions of the method are discussed, namely; 

1-dimensional heat flow in the sample, negligible convection effects in the liquid parts of the 

sample, and no axial heat flow in the crucible. 

This chapter satisfies Objective 3 of this thesis, as given in Section 1.2. Now that the model 

has been developed, verified, and used to characterise an experimental Bridgman apparatus, the 

next step is to apply the model to Bridgman furnace experiments where traditional Bridgman 

solidification is combined in series with the power down method. 
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Chapter 6 

 
6 Power Down Experiment Modelling  

Power Down Experiment Modelling 

 
In this chapter, the BFFTM is applied to directional solidification experiments, as described by 

Lapin et al. [79], in the same Bridgman furnace apparatus as that used in the previous chapter. In 

these experiments, the traditional Bridgman solidification process is uniquely combined in series 

with the power down technique (over a range of cooling rates) and using alloy 455. The 

characterisation work from the previous chapter is used here to model these experiments 

accordingly. Referring to Section 1.2, this chapter addresses the fourth and fifth objectives of this 

thesis. Reference [170] is the main source of the content for this chapter. It is noted that the 

experiments and sample analysis detailed in this chapter were carried out by others, i.e., co-authors 

Lapin, Gabalcová and Hecht of reference [170]. 

In consideration of the experimental results, this chapter refers to the solidification 

morphology of hypoperitectic -phase dendrites, observed in post-mortem analysis of samples. The 

BFFTM is used to interpret these results and to examine the critical growth conditions for CET that 

may occur during transient solidification.  

While the CET phenomenon and various equiaxed nucleation models have been discussed in 

literature [48][49], only a few investigations focus on gamma TiAl alloys [87][152]. This is due to 

the experimental difficulties presented by handling the highly reactive melt and also because 

solidification patterns are easily lost, for example, being overrun by solid state transformations. 

One experimental difficulty can arise where unwanted radial temperature gradients lead to radial 

columnar growth instead of equiaxed growth at the expected location of CET. The BFFTM is used 

next to provide insight into this occurrence.  

 

6.1 Methodology 

In this section, a summary is given of the experimental apparatus, the experiment procedure 

and subsequent sample analysis, as carried out by Lapin et al. [79]. This is followed by details of 

the numerical model as applied to these experiments. 

6.1.1 Experiment apparatus 

Figure 6.1 shows a schematic of the Bridgman furnace apparatus and arrangement used in 

the experiments. The furnace is fully described elsewhere [152]. The hot zone of the furnace 
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comprised of a cylindrical molybdenum resistance heating element (300 mm in length and 33 mm 

in inside diameter) contained in a sealed low-pressure chamber. The hot and cold zones of the 

furnace were separated by a 5-mm thick annular baffle and a 2-mm gap (on the hot side). The cold 

zone consisted of a water-cooled ‘crystalliser’ having an inside diameter of 16 mm. Samples, 150 

mm in length, were contained in a 2.5-mm thick yttrium oxide crucible. A fixed thermocouple, 

present near the outside wall of the crucible, was used to measure and control the furnace 

temperature. 

 

Fig. 6.1 Schematic of the Bridgman furnace apparatus. 

6.1.2 Experimental procedure  

The experiments were carried out under an argon atmosphere at constant absolute pressure of 

10 kPa. The following five steps describe the procedure used. 
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 Step 1 (heating): the sample was heated until the fixed thermocouple read 1720 °C.  

 Step 2 (stabilisation): the sample was allowed to stabilise at this temperature for 300 

seconds.  

 Step 3 (pulling): the sample—initially located as shown in Fig. 6.1, i.e., the cold end of 

the sample in line with the top of the water-cooled crystalliser—was pulled a distance of 

20 mm into the crystalliser at a constant pulling rate of 2.78  10
-4

 m/s.  

 Step 4 (controlled cooling): the furnace temperature was decreased in a controlled manner 

at a fixed cooling rate from 1720 °C to 1420 °C.  

 Step 5 (uncontrolled cooling): the furnace was allowed to cool to room temperature 

without controlling the cooling rate.  

This procedure was performed at four controlled cooling rates (step 4): 15 °C/min, 20 °C/min, 30 

°C/min, and 50 °C/min, as such, the controlled cooling rate was the defining process parameter that 

distinguishes each experimental run. Figure 6.2 illustrates the experimental procedure steps by 

showing typical process signals for pulling rate, controlled cooling rate and thermocouple 

temperature, all versus time during each step of the procedure.  

 

 

Fig. 6.2 Schematic plot of the process signals: pulling rate, controlled cooling rate, and 

thermocouple temperature, all versus time for the experimental procedure. 

 

Note that Step 3 is the typical Bridgman mode of solidification, used here to induce initial 

columnar grain growth, while Step 4 is the typical power down mode. The pulling rate is the speed 
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at which the crucible is moved through the furnace. Incidentally, due to the transient nature of the 

experiment, the growth rate of columnar grains never equated to the pulling rate of the sample in 

the simulations that follow. 

6.1.3 Sample analysis 

The sample post-mortem analysis was carried out by optical microscopy. Chemically-etched 

samples were polished and examined under the stereo-microscope using; firstly, a grazing light at 

an approximate angle of 45° rotated into various positions to reveal each individual grain, and 

secondly, under flat light at 0° with the light beam parallel to the flat surface thereby revealing the 

primary dendrite structure (original -phase) within each grain. The -phase dendrite structure was 

used to distinguish columnar growth in the axial direction, columnar growth in the radial direction 

and equiaxed growth (if any) in each sample. The alloy composition was determined by chemical 

analysis using inductively coupled plasma (ICP) mass spectrometry and hot extraction. 

6.1.4 Numerical model 

The Bridgman Furnace Front Tracking Model (BFFTM)—described by Mooney et al. 

[126]—is a hybrid 1-dimensional transient model for axial heat flow in a cylindrical sample, 

solidified using the Bridgman method, where heat can be gained or lost radially at the 

circumference of the sample. The model uses an explicit finite difference control volume (CV) 

method to solve the following heat equation for temperature in a cylindrical rod of cross sectional 

area A, and perimeter p, moving at a pulling rate u, 
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where , c and k are the density, specific heat capacity and thermal conductivity of the rod material, 

respectively; T is the temperature of the surrounding source (or sink), and E is the latent heat 

generated per unit volume. A heat transfer coefficient, h, applies to the radial heat flow at the 

circumference of the sample. 

Figure 6.3 illustrates how the model is applied to the experimental apparatus. Figure 6.3(a) 

shows a schematic drawing of the physical aspects and geometry of the furnace: the cold zone 

(crystalliser), the baffle and air gap region (shown hatched), the hot zone (heater), and the 

cylindrical sample moving at some pulling rate, u, as a function of time.  

Figure 6.3(b) shows the numerical features of the BFFTM as applied to this physical 

scenario. A fixed grid of disc-shaped control volumes (CVs), each of width x, make up the 

numerical domain that encompass the length of the sample. The front marker () position denotes 

the estimated location of the columnar dendrite tips, which have a growth rate, vtip. This growth rate 

is calculated as a function of columnar dendrite tip undercooling, Ttip, which is given by the 

difference between the equilibrium liquidus temperature for the alloy, Tl, and the dendrite tip 
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temperature, Ttip. The new front marker position, x
m+1

, is updated over the numerical time step, t, 

by integrating the growth vector. The growth vector is the sum of the pulling rate and columnar 

growth rate (which act in opposing directions); hence, 

  ,1 tuvxx tip

mm 
 (6.2) 

where x
m
 is the previous marker position. (Note that this is equivalent to equation (3.11), however, 

the sample is being pulled, in this case, in the negative x-direction.) 

 

 

Fig. 6.3 (a) The physical model and (b) the numerical model of the Bridgman furnace apparatus 

aligned with (c) a typical sample temperature profile result. 
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Figure 6.3(c) shows a typical result for the temperature profile in a sample as produced by 

the model at some instance in time. The dendrite tip undercooling is due, primarily, to 

constitutional effects in the liquid. This is the constitutional undercooling, after Tiller et al. [41]. 

The extent of constitutionally undercooled liquid in the figure is shown as C.U. LIQUID and is 

given by the distance between the front marker and the equilibrium liquidus temperature isotherm. 

Liquid ahead of this isotherm is known as BULK SUPERHEATED LIQUID. The extent of the 

dendritic COLUMNAR MUSH is given by the distance from the front marker back to the position 

of the solidus marker, and material at a temperature below this isotherm is fully SOLID. The model 

predicts the thermal history in the sample, T(x,t), and the columnar growth conditions: tip 

temperature, tip undercooling, temperature gradient at the tip and growth rate.  

The material properties, numerical parameters, solid fraction to temperature relationship, and 

geometrical properties for the numerical simulations presented in this chapter were set as per 

Chapter 5, with the exception of sample length which was 20 mm shorter at 150 mm for the 

experiments described here. The simulation boundary conditions were also taken from Chapter 5, 

as the averaged result for heat transfer coefficient (as a function of axial position), and averaged 

result for heat flux at both ends of the sample. 

6.2 Results 

6.2.1 Experimental results 

Following the sample microstructure analysis by stereoscope microscope, it was possible to 

identify distinct growth patterns of the primary -phase. Figure 6.4 shows section images of the 

etched and polished samples, where image I is for the sample cooled at 15 °C/min, image II is for 

the 20 °C/min sample, image III is for the 30 °C/min sample, and image IV is for the 50 °C/min 

sample. In each sample the predominant growth pattern(s) of the primary -phase was identified 

and the transition between each region is given by a solid white line in the figure.  

 

Fig. 6.4 Images of etched and polished samples with primary -phase microstructure regions 

identified as follows: U–unmelted, C–axial columnar, R–radial columnar, and E–equiaxed.   
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Regions marked ‘U’ were unmelted during the procedure, regions marked ‘C’ had axial 

columnar growth, regions marked ‘R’ had radial columnar growth, and regions marked ‘E’ had 

equiaxed growth. In three of the samples—images I, II and IV—more than one of each growth 

structure type coexisted along the length of the sample. For example, in image I, the sample 

exhibited a region (from 70 mm to 115 mm, marked ‘C R E’) where axial columnar, radial 

columnar, and equiaxed grains coexisted. In images II and IV, axial columnar growth existed 

alongside radial columnar growth, which eventually choked the axial growth. These regions are 

marked ‘C R’. The positions of each microstructural transition shown in Fig. 6.4 are listed in Table 

6.1, with the exception of the ‘U’ to ‘C’ transition which was approximately the same for each 

sample at 14 mm. Figure 6.5 shows detailed images of: the ‘C R E’ region from image I; the ‘C’ to 

‘E’ transition from image III; and the ‘C’, ‘C R’, and ‘R’ regions in image IV. 

 

Fig. 6.5 Detailed images of samples I, III, and IV showing the typical microstructural regions 

observed. 

Finally, The chemical analysis of the alloy samples by ICP and hot extraction returned the 

following alloy composition: Ti–45.5Al–4.7Nb–0.2C–0.2B (all at.%).  

Table 6.1 Experimental results. 

 Experiment No. 

 I II III IV 

Controlled 

cooling rate 

[°C/min] 

15 20 30 50 

Transition 

position [mm] 
70 115 65 68 76 100 57 65 

Transition type  

(marker) 

C to  

C R E 

(↑) 

C R E 

to R 

(♦) 

C to  

C R 

(↑) 

C R  

to R 

(♦) 

C to E 

(CET) 
E to R 

C to  

C R 

(↑) 

C R  

to R 

(♦) 
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6.2.2 Numerical results 

The BFFTM simulated the conditions at the dendrite tip, namely, undercooling (Ttip), 

growth rate (vtip), and temperature gradient (Gtip), throughout the solidification process. Table 6.2 

gives the simulated values for these variables at the axial columnar microstructural transitions. 

Since the model only simulates axial columnar growth, the model may only be used to interpret 

solidification conditions occurring during axial columnar growth and at the subsequent transition 

from the axial columnar structure (given by the top row of data in Table 6.2). This approach of 

modelling and analysing axial columnar growth in the absence of equiaxed solidification is known 

as the indirect approach and was successfully applied to CET analysis by McFadden et al. [56]. 

Discussion on the direct and indirect approaches to solidification analysis are available in 

McFadden et al. [55]. The simulated undercooled width for each axial columnar transition is also 

given in Table 6.2, i.e., the width of constitutionally undercooled liquid ahead of the columnar front 

at the moment the transition occurred.  

Table 6.2 Measured axial columnar transition positions and corresponding numerical results. 

 Simulation No. 

 I II III IV 

Axial columnar 

transition 

position [mm] 

70 65 76 57 

Ttip [°C] 3.3 3.3 4.0 3.8 

vtip [mm/s] 0.0730 0.0739 0.128 0.1171 

Gtip [°C/mm] 2.073 2.957 1.089 3.876 

Undercooled 

width [mm] 
1.6 1.1 3.7 1.0 

 

The evolution of dendrite tip growth rate, and corresponding tip undercooling, are plotted 

against front position in Fig. 6.6 and Fig. 6.7, respectively.  

Figure 6.8 shows dendrite tip growth rate plotted against temperature gradient at the dendrite 

tip. This type of graph is frequently used in CET modelling when a Hunt analysis [60] is performed 

and is sometimes known as a ‘Hunt plot’. Each plot on the graph is a locus of temperature gradient 

and growth rate evolution at the columnar tips. Each plot in Fig. 6.8 should be interpreted by 

following the loci (all of which start on the x-axis) initially travelling from left to right before 

looping around in a clockwise direction, and continuing from right to left in the general direction 

towards the y-axis of the graph. 
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Finally, Fig. 6.9 shows a plot of the undercooled width (extent of bulk undercooled liquid 

ahead of the marker) versus front position. The transition type markers (‘↑’, ‘♦’ and ‘CET’), listed 

in Table 6.1, are included in each figure to demarcate the principal microstructural transitions 

observed in each experiment. As noted previously, the numerical model simulates axial columnar 

growth only, i.e., the model is valid up to and including the initial marker locations (up arrow ‘↑’ or 

‘CET’ markers). 

 

 

Fig. 6.6 Dendrite tip growth rate versus front position. 

 

 

Fig. 6.7 Dendrite tip undercooling versus front position. 
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Fig. 6.8 Dendrite tip growth rate versus tip temperature gradient. 

 

 

 
Fig. 6.9 Undercooled region width versus front position. 

6.3 Discussion 

6.3.1 Summary of experiment results 

Only the dendritic primary -phase was considered in the sample analysis. All of the samples 

revealed a distinguishable unmelted region approximately 14 mm long, labelled ‘U’ in Fig. 6.4, 

followed by period of columnar growth in the axial direction of the furnace, labelled ‘C’ in the 

same figure. Columnar to equiaxed transition was observed in only one of the four experimental 

samples (Fig. 6.4, image III) where the controlled cooling rate was 30 °C/min. 
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In the samples cooled at 20 °C/min and 50 °C/min, columnar growth in the radial direction 

was observed emanating from the circumference of the crucible. This led to ‘choking’ of axial 

columnar growth in these samples, so that only radial columnar microstructure was prevalent in the 

latter stages of solidification. Image ‘IV’ from Fig. 6.5 is reproduced below, in Fig. 6.10, with 

annotations to illustrate an example of such an occurrence. Axial columnar growth is overcome by 

radial columnar grains that appear to have nucleated at the circumference of the sample during 

solidification.  

 

Fig. 6.10 Axial and radial columnar growth in the sample cooled at 50 °C/min. 

In the sample cooled at 15 °C/min, axial columnar, radial columnar and equiaxed 

microstructures coexisted for a significant length of the sample until, eventually, a fully radial 

columnar microstructure was observed. 

Similar results are found in the literature in directional solidification experiments using a 

gamma TiAl alloy of similar composition to that used in the experiments here. Mooney et al. [86] 

describe how radial columnar growth prevented the possibility of CET in power down experiments 

on board the MAXUS-8 sounding rocket. Kartavykh et al. [171] present terrestrial experiment 

results showing centreline segregation in cylindrical samples owing to radial temperature gradients. 

6.3.2 Radial columnar growth 

In directional solidification experiments investigating CET using the Bridgman or power 

down method, nucleation events at the circumference of the mould wall are normally an unwanted 

phenomenon. If the conditions allow, columnar grain growth in the radial direction can occur and 

subsequently interfere with the progress of columnar growth in the axial direction. In columnar 

grain growth, the preferred growth direction (100) is opposite to that of the heat flow. Figure 6.10 

illustrates this, where the growth direction is shown and the heat flow direction is indicated by 

white arrows.  

When a Bridgman furnace is used for directional solidification, a positive axial temperature 

gradient is desired so that heat flow occurs in the negative x-direction. In other words, when 

dT/dx>0, heat flows axially to the cold zone (crystalliser). If a concurrent radial temperature 

gradient occurs at any axial position in the sample, i.e., dT/dr  0, where r is the sample radius, 

heat may also flow in the radial direction. In this case, if dT/dr > 0 heat will flow radially into the 

sample from the surroundings and, conversely, if dT/dr < 0 heat will flow from the sample to the 
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surroundings. Note that, in accordance with Fourier’s law, the direction of the axial (Qaxial) and 

radial (Qradial) heat components occur in opposition to the sign of their respective temperature 

gradients. 

Consider an axial section through the sample. The shape of the 2-dimensional columnar front 

(that joins all of the columnar dendrite tips in the section) is influenced by the direction of the 

radial heat flow component.  A simple thought experiment shows that when both dT/dr and dT/dx 

are positive, one would expect a convex front shape, which will suppress radial columnar growth. 

This is illustrated in Fig. 6.11(a). Conversely, when dT/dx is positive and dT/dr is negative, one 

would expect a concave front shape which promotes radial columnar growth, as in Fig. 6.11(b). 

The latter case corresponds to the scenario observed in Fig. 6.10, and as such, is the undesirable 

case.  

 

Fig. 6.11 Effect of radial heat flow direction on front shape: (a) desirable convex front shape, (b) 

unfavourable concave front shape. 

The BFFTM assumes that the temperature in a CV does not vary significantly in the radial 

direction. It does, however, account for heat flow at the circumference of the CV, i.e., radial heat 
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flow. This approach is suitable for situations, like the one presented here, with a low Biot number 

(less than 0.1). The direction of the axial and radial heat flow components—as predicted by the 

model—can be used to predict the most likely front shape to occur during solidification.  

When the cooling phase begins the front is located at an axial location of approximately 25 

mm, i.e., in the baffle region. Soon thereafter, the front moves into the hot region of the furnace (at 

27 mm). At this point—in all simulations—the axial heat flow component, Qaxial, occurs in the 

negative x-direction, i.e., heat flows axially towards the cold zone, and Qradial occurs in the negative 

r-direction, i.e., heat is received by the CV from the surroundings. This scenario is conducive to a 

convex (desirable) front shape, as illustrated in Fig. 6.11(a).  

In the early stages of solidification, the front shape progresses in this convex manner. As 

cooling progresses, and the solidification front moves through the hot zone, at some point (due to 

the controlled cooling) the heater becomes cooler than the temperature at the front, TH < T. In this 

case, the radial heat flow changes sign, and now radial heat flow (at the front position) is from the 

sample to the heater, i.e., Qradial is in the positive r-direction. This is illustrated in Fig. 6.11(b). The 

BFFTM was used to determine the axial location at which the radial heat flow component—in the 

CV containing the front—changes sign, i.e., the position of radial heat flow reversal. The results of 

this exercise are given in Table 6.3. Three observations were made clear by this analysis: (1) radial 

heat flow reversal occurred in all samples, (2) the timing of the radial heat flow reversal lagged 

behind the moment the furnace switched from Bridgman to power down solidification, (3) radial 

heat flow reversal occurred earlier (closer to the cold zone) as the cooling rate was increased.  

Table 6.3 Simulated positions of radial heat flow reversal. 

 Simulation No. 

 I II III IV 

Position of 

radial flow 

reversal [mm] 

63.0 58.8 52.9 46.0 

 

No direct correlation is found by comparing radial heat flow reversal predictions with the 

onset of radial growth in the microstructures. It is considered that at the instant radial heat flow 

reverses, a zero radial gradient exists, and this should favour a flat solidification front. The radial 

growth will require some nucleation undercooling and a sufficient radial heat flow to initiate. 

However, it is clear that the radial heat flow reversal is a prerequisite for radial growth; therefore, 

the radial heat flow reversal is a necessary but insufficient condition for the onset of radial 

columnar growth. 

It is interesting to note that the thermal scenario shown in Fig. 6.11(b) is difficult to achieve 

in traditional steady Bridgman solidification, since the heater temperature is always higher than that 

of the moving sample. Martorano et al. [172] did observe, however, radial columnar growth in 

experiments using the Bridgman method where large changes in pulling rate were applied, in other 
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words, transient Bridgman solidification. Both scenarios, (a) and (b) shown in Fig. 6.11, are 

possible when using the power down method in steady or transient conditions. The cooling rate 

influences the possibility of scenario ‘Fig. 6.11(a)’ leading to scenario ‘Fig. 6.11(b)’. A low 

cooling rate delays the moment of radial heat flow reversal (causing it to occur further along the 

sample from the cold zone). A high cooling rate promotes an earlier onset of radial heat flow 

reversal with the reversal occurring closer to the cold zone.  

6.3.3 Columnar to equiaxed transition 

A full CET occurred in the sample cooled at 30 °C/min. It is well established in the literature 

that equiaxed nucleation and growth tends to occur ahead of columnar dendrites when growing at 

high growth rates and at low temperature gradients [48]. A high columnar growth rate implies that 

sufficient undercooling exists ahead of the columnar dendrites for equiaxed nucleation to occur. 

Although solutal undercooling at the columnar dendrite tip and constitutional undercooling in the 

liquid ahead of the tip are different, under constrained growth conditions, the undercooling at the 

tip gives a limiting value to the peak constitutional undercooling ahead of the tip. Figure 6.12 

illustrates how the solutal undercooling at the tip and undercooling ahead of the tip are related 

(within a moving frame of reference, such that the x’-axis is fixed to the dendrite tip). 

 

Fig. 6.12 The width of the undercooled region ahead of a columnar dendrite. 

The dot-hatched region represents constitutionally undercooled liquid. In a positively 

partitioning system, the liquid in this region is enriched by solute rejected from the growing 

dendrite so that the equilibrium liquidus temperature, Tl(x’), is lower than its value for the original 

alloy composition, Tl(C0). Generally, if solutal undercooling at the columnar tip is increased or 

lowered, then the constitutional undercooling ahead of the tip is increased or lowered accordingly. 

In addition, if the temperature gradient decreases, then the undercooled width increases. Given a 

sufficient level of undercooling and the availability of nucleated particles in the melt, equiaxed 

crystals can nucleate and grow in the undercooled region ahead of the columnar tips. A low 
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gradient will reduce the likelihood of a strong preferential growth direction, hence leading to 

equiaxed growth. 

The CET in the 30 °C/min sample occurred at the highest columnar growth rate, vtip = 0.128 

mm/s, and highest columnar tip undercooling, Ttip = 4.0 °C. However, this undercooling value is 

only marginally greater than the columnar tip undercooling values for the columnar to radial 

transitions in the other samples.  

Figure 6.8 shows that the simulated temperature gradient is continually decreasing and 

approaching zero in all cases. The CET occurred at the lowest temperature gradient, Gtip = 1.089 

°C/mm, when compared to the other columnar transitions (ranging from 2.073 °C/mm to 3.876 

°C/mm). The lower temperature gradient increased the width of undercooled liquid ahead of the 

front, which in turn increased the likelihood of equiaxed grain nucleation in the undercooled liquid. 

The width of undercooled liquid ahead of the front at the position of CET was larger, at 3.7 mm, 

than that of the other columnar transitions: 1.0 mm to 1.6 mm. This is illustrated in Fig. 6.9.  

6.3.4 Convection in the melt 

Natural convection is defined as flow resulting from the effects of gravity on density 

differences, i.e., where a density gradient exists, in the liquid [9]. Such density differences in the 

liquid can be due to a temperature gradient (thermal convection), a concentration gradient (solutal 

convection), or both (thermo-solutal convection). The BFFTM does not consider heat transfer 

occurring due to natural convection in the liquid.  

In the previous chapter (Section 5.5.3) some discussion is given on this. The discussion 

assumes that no radial temperature gradient exists in the liquid; and focusses on the fact that the 

crucible and sample do not move during the experimental procedure (resulting in a static columnar 

front). It is assumed that, since no growth is occurring, no solute is rejected at the columnar front, 

and any concentration gradient in the liquid has had time to equilibrate by chemical diffusion. 

Therefore, it is implied that no solutal convection exists. An axial thermal gradient does exist; but 

the gradient is aligned with the gravity vector (in a vertical Bridgman furnace), so that hotter 

(lower density) liquid overlays cooler (higher density) liquid, thereby providing an inherently 

stabilising effect on the liquid.  

The situation, however, is different in the experimental procedure described in this chapter 

since the Bridgman apparatus is used for the purposes of directional solidification. While the 

thermal gradient is still aligned with the gravity vector), a concentration gradient in the liquid must 

exist during directional solidification. Whether the concentration gradient has a stabilising or 

destabilising effect on liquid depends on the density of solutes being rejected. The main elements 

contained in the solutes of alloy 455 (i.e., aluminium and niobium) both have a destabilising effect 

on the liquid during growth. Buoyant aluminium (less dense than titanium) is rejected at the 

columnar front, whilst—contrarily, but having the same effect on the density field—heavy niobium 

(more dense than titanium) is consumed from the melt during growth. However, partitioning is 
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weak in both cases: kpart≈0.9 for Al in Ti, and kpart≈1.1 for Nb in Ti. For this reason, it is 

appropriate to say that the results obtained in this chapter may contain a margin of error due to 

natural convection in the melt. The inclusion of natural convection in the current numerical model 

is a considerable undertaking and would be a logical next step in its development. 

It should be noted that there are other mechanisms (apart from natural convection ahead of 

the columnar front) that can lead to convective flow in the Bridgman process. For example, flow in 

the mushy zone, shrinkage driven flow, and surface tension forces leading to Marangoni 

convection [9]. Incorporation of these mechanisms in the current model would, again, require 

considerable further effort.  

6.4 Conclusion 

Following a complete microstructural evaluation of all samples, and in consideration of the 

primary -phase, it was found that CET occurred in the sample cooled at 30 °C/min only. The 

solidification modelling carried out explained the conditions that produced this CET, since, 

compared to the other microstructural transitions modelled, the CET position had the highest 

dendrite tip growth rate (vtip = 0.128 mm/s), highest dendrite tip undercooling (Ttip = 4.0 °C), the 

lowest temperature gradient (Gtip = 1.089 °C/mm) and the widest undercooled region (3.7 mm). In 

all of the other samples the axial columnar growth was interrupted by radial columnar growth, thus, 

preventing the possibility of CET in those samples. 

The model highlights an important consideration for CET experiment designers who intend 

to use the power down method. High cooling rates can lead to a situation where the heater 

temperature is less than that of the liquid in the sample. This can subsequently lead to an 

unfavourable heat flow pattern that promotes radial columnar growth, thereby ‘choking’ 

undercooled liquid ahead of (axial) columnar grains and preventing the possibility of CET. Even 

though the radial temperature gradients, in the case presented here, were relatively small, the axial 

temperature gradient had to be decreased to a low value for CET, and, ultimately, the axial and 

radial gradients must have reached a similar order of magnitude.   

In conclusion, CET studies using the power down method should utilise appropriate thermal 

modelling to ensure that the conditions promoting detrimental radial heat flow away from the 

sample in the hot zone are avoided. The use of large sample diameters and low cooling rates would 

delay the reversal of radial heat flow that is a precursor to radial growth. However, one should be 

mindful that sufficient undercooling in the liquid is required to allow for the nucleation and growth 

of equiaxed dendrites. 

This chapter satisfies Objective 4 and Objective 5 of this thesis, as given in Section 1.2. The 

results presented in this chapter will directly assist in the preparations for microgravity experiments 

on-board the ESA sounding rocket mission: MAXUS-9 (planned for 2016), to investigate CET in 

gamma TiAl based alloys, as referred to by Lapin et al. [79]. 
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Chapter 7 

 
7 Discussion 

Discussion 

 

This chapter provides a discussion on the dendrite kinetics growth law used to model columnar 

growth of alloy 455 in the BFFTM. This topic has not been discussed in any of the previous 

chapters. The discussion is given in three parts: background theory on dendrite kinetics for alloy 

455, sensitivity analysis of dendrite kinetics, and discussion summary.   

7.1 Background Theory on Dendrite Kinetics for Alloy 455 

The dendrite kinetics growth law: vtip = 2.63  10
-6

 Ttip
2.79

 {equation (5.14)}, is presented in 

Chapter 5 as a power law approximation for the columnar growth rate in alloy 455 as a function of 

tip undercooling. In this equation, C is the growth coefficient (equal to 2.63  10
-6

 m/s·°C
b
) and b is 

the undercooling exponent (equal to 2.79). This growth law is applied in the BFFTM simulations 

described in Chapter 5 and Chapter 6. The values for C and b were obtained through a curve fitting 

exercise using individual data points for growth rate and tip undercooling calculated using the 

analytical KGT model, as applied to a constitutionally similar binary alloy (Ti–46at.%Al), after 

Rebow et al. [164]. Rebow et al. estimate the stability parameter (*) in the KGT model to be 

equal to 0.0506, i.e., twice its normal value under the marginal stability criterion (*=1/4
2
).  

The reason for doubling the stability parameter in this way is explained and justified by 

Rebow and Browne [45]. Evidence exists to support dendrite tip radius selection according to the 

marginal stability criterion (where *=1/4
2
) when growth is controlled by thermal diffusion [44]. 

For example, during the growth of a pure substance in an undercooled melt where the thermal 

properties of the liquid and solid are assumed equal.  This is the symmetric model of diffusion. 

However, it is found that the marginal stability criterion underestimates the growth rate by a factor 

of two when growth is controlled by solutal diffusion [173][174]. For example, during the growth 

of an alloy from a supersaturated solution; in this case chemical diffusion in the liquid dominates 

and is negligible in the solid phase. This is the asymmetric model of diffusion. 

In any case, the resulting growth law (with *=0.0506) is an estimate at best since it is 

restricted to binary alloys. It is likely that the correct growth law parameter values for the 

multicomponent alloy 455 would vary somewhat from the values given in equation (5.14). 
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7.2 Sensitivity Analysis of Dendrite Kinetics  

A very recent study by Mooney et al. [175] examines the effect of varying the growth law 

parameters values. Simulations of the power down experiment described in Chapter 6, for the 

sample cooled at 30 °C/min, are presented. (This is the experiment that produced a CET.) The 

growth law parameters are varied about the central values: C = 2.63  10
-6

 m/s·°C
b
 and b = 2.79, as 

taken from equation (5.14). Table 7.1 shows the range of values used. This represents a 38% 

variation in C and a 35% variation in b about the central values. Figure 7.1 shows how this gives a 

wide ranging spread in growth rate versus dendrite tip undercooling.  

Table 7.1 Matrix of values for growth coefficient and undercooling exponent. 

Growth coefficient, C [m/s·°C
b
] 

Undercooling exponent, b 

b1 = 1.79 

(dotted) 

b2 = 2.79 

(dashed) 

b3 = 3.79 

(solid) 

C1 = 1.63 × 10
-6

 (grey) C1, b1   C1, b2   C1, b3   

C2 = 2.63 × 10
-6

 (dark grey) C2, b1    C2, b2   C2, b3   

C3 = 3.63 × 10
-6

 (black) C3, b1   C3, b2   C3, b3   

 

 

Fig. 7.1 Columnar dendrite tip growth rate versus dendrite tip undercooling for values of growth 

coefficient and undercooling exponent in Table 7.1. 

Recalling Section 6.1.2, the experiment procedure steps were as follows: heating (step 1), 

stabilisation (step 2); pulling (step 3), controlled cooling (step 4), and uncontrolled cooling (step 5). 

In the simulation results that follow, the ‘stabilisation’ step begins at time, t = 0 s; the ‘pulling’ step 

begins at time, t = 300 s; and the ‘controlled cooling’ step begins at time, t = 372 s. Directional 

solidification begins at the start of the pulling period and continues in the controlled cooling period. 
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Figure 7.2 shows; (a) the simulated front position x, (b) the dendrite tip growth rate vtip, and (c) the 

temperature gradient at the dendrite tip Gtip, plotted against simulation time t.  

 

Fig. 7.2 Simulated front position (a), columnar tip growth rate (b) and tip temperature gradient (c) 

all versus time. 

It is important to recall that the CET position measured by post mortem analysis in the 

experiment sample was x = 76 mm. Simulations are valid up to this position since the BFFTM 

simulates columnar growth only. According to the model predictions, the equivalent time taken for 

the columnar front to reach 76 mm is approximately 975 s, regardless of the growth parameters 

used. It is clear—from Fig. 7.2(a)—for t < 975 s, the simulated progress of the columnar front is 

practically unaffected by using different growth parameters. A similar outcome is observed in the 

simulated plots of tip growth rate, Fig. 7.2(b), and tip temperature gradient, Fig. 7.2(c).   

 

Fig. 7.3 Simulated tip growth rate (a) and tip temperature gradient (b) versus front position. 

Figure 7.3 shows; (a) the simulated columnar dendrite tip growth rate, and (b) the simulated 

temperature gradient at the dendrite tip, plotted against columnar front position. In a similar manner 

to Fig. 7.2, the simulation results display an indifference to the various combinations of growth 

parameters, when plotted against front position, up to the point at which CET occurred. This 

observation is also well illustrated when the growth rate is plotted against temperature gradient, as 

in Fig. 7.4 (similar to a Hunt plot [60]). The position (on this plot) corresponding to the CET in the 
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sample is given by the intersection of each curve with the black line annotation labelled: ‘CET (76 

mm)’. 

 

Fig. 7.4 Simulated columnar tip growth rate versus tip temperature gradient. 

Figure 7.5 shows; (a) the simulated dendrite tip temperature, and (b) the undercooling at the 

dendrite tip, plotted against front position. The true effect of using different growth parameters is 

made clear in this figure. The plot lines do not overlap as before. The tip temperature, and 

consequently tip undercooling, vary accordingly so that the power law (vtip=CT
b
) delivers the 

growth rate required to satisfy the cooling conditions imposed on the sample by the process. 

Referring to Fig. 7.5(b), the simulated tip undercooling at CET for the central set of growth 

parameters (C2, b2) was 3.8 °C (*). The highest simulated tip undercooling at CET, T = 10.1 °C 

(●), occurred with the lowest pair of growth parameters (C1, b1), and conversely, the lowest 

simulated tip undercooling at CET, T = 2.5 °C (×), occurred for the highest pair of growth 

parameters (C3, b3).  

 

 

Fig. 7.5 Simulated tip temperature (a) and tip undercooling (b) versus front position. 
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Bearing in mind the magnitude of this variation, this is an important finding when 

considering the analysis of the microstructural transitions in the solidified sample, particularly 

when CET is present. It is accepted in the literature [56] that the condition of the bulk undercooled 

liquid ahead of the columnar front is important in predicting the onset of the equiaxed mushy zone 

and, hence, the CET. The extent of constitutional undercooling ahead of the columnar front is 

dependent on the tip undercooling and temperature gradient at the columnar front. Hence, accurate 

knowledge of the thermal conditions at the tip is required.  It follows that having an accurate 

dendrite kinetic growth law for alloy 455 is important from the point of view of CET investigation. 

Interestingly, these results demonstrate a particular shortcoming of the classic Hunt CET 

analysis, when applied to transient directional solidification. The Hunt analysis (developed for 

steady Bridgman solidification) considers the combination of Gtip and vtip as the defining parameter 

set for predicting CET. In this case of CET, however, it is shown that the Gtip–vtip plot is insensitive 

to a selection of dendrite growth parameters. Furthermore, the undercooling at the tip (which is an 

indicator of conditions for CET) is sensitive to the selected dendrite growth parameters. The 

analysis concludes that, for transient solidification conditions, a CET prediction criterion based on 

tip undercooling is preferable to one that uses growth rate. 

7.3 Discussion Summary 

The dendrite kinetics growth law used to simulate columnar growth in alloy 455 is discussed. 

The BFFTM employs a power law equation, in the form: vtip=CTtip
b
, to estimate columnar growth 

rate (vtip) as a function of dendrite tip undercooling (Ttip). The genesis for calculating the growth 

parameters values (C and b) for alloy 455 is provided. The KGT model is applied to a 

constitutionally similar binary TiAl alloy where the stability parameter (*) set to 0.0506 on the 

assumption of asymmetric chemical diffusion of solute during solidification. A power law curve 

fitting exercise is then carried out. The resulting growth law is an approximation. It is likely that 

the correct growth law parameter values for the multicomponent alloy 455 would vary somewhat 

from this approximation. This begs the question: what effect would varying these parameters have 

on the BFFTM simulations? 

A sensitivity analysis on the growth law parameter values used to model alloy 455 is 

provided. Simulations are carried out of the power down experiment that yielded a CET in Chapter 

6. A wide range of growth law parameter values are used in these simulations. The simulation 

results for front position, dendrite growth rate and tip temperature gradient show an indifference to 

the various combinations of growth parameter values up to the measured position of CET in the 

sample. The true effect of varying the growth parameter values manifests itself in the dendrite tip 

temperature and, hence, the tip undercooling. This is an important result when considering CET 

since the extent of constitutional undercooled liquid ahead of the columnar tip is dependent on tip 

undercooling. It follows that an accurate growth model is desirable when investigating CET. 
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8 Conclusions and Future Work 

Conclusions and Future Work 

 
8.1 Conclusions 

A Bridgman furnace front tracking model (BFFTM) capable of modelling transient 

solidification conditions in a multicomponent TiAl alloy is presented in this thesis. The model 

developed employs a front tracking method from the literature to simulate columnar grain growth. 

The model is best described as a hybrid 1-dimensional model, since it permits 1-dimensional heat 

flow in the axial direction of a cylindrical sample, but also incorporates a radial heat flow 

component at the circumference of the sample. The radial component accounts for heat flowing to 

(or from) the tubular heat sink and heat source that make up the Bridgman furnace.  The model is 

appropriate and useful for processes with a low Biot number, in other words, processes where an 

order of magnitude difference exists between the thermal resistance within the solidifying sample 

and the thermal resistance at its circumference. Hence, the model is applicable when radial 

temperature gradients are low. The model is capable of dealing with directional solidification using 

the traditional Bridgman method (where the sample is moved through the furnace) or using the 

power down method (where the sample is stationary and controlled cooling is applied to the sample 

by decreasing the heater temperatures). Both modes of solidification can be simulated using the 

model, as demonstrated in Chapter 6. The model permits steady or transient solidification and can 

be applied to any alloy given its thermophysical properties. 

Referring to Section 1.2, the objectives of this thesis were as follows: 

1. To develop a numerical model for transient Bridgman furnace solidification that 

incorporates a front tracking model from the literature.  

2. Perform an order verification exercise on the numerical model using an analytical 

solution from the literature. 

3. Characterise a Bridgman furnace experimental apparatus (in terms of heat transfer 

coefficients) using the numerical model and experimental data. 

4. Apply the numerical model to directional solidification experiments (carried out in the 

same furnace) where the Bridgman method is combined in series with a power down 

method. 
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5. Use the numerical model to explain microstructural observations in the experiment 

samples and to provide insight into the experiment process.  

Objective 1 was achieved in Chapter 3. A front tracking model from the literature was 

successfully adapted to numerically model Bridgman furnace solidification where transient 

conditions were applied (in this case, in the form of a step change in pulling rate). Practical issues 

for numerical implementation were explained, e.g., how to correctly deal with a front that moves 

bi-directionally (forward and backward) on a fixed grid during one time step in terms of latent heat 

release. Importantly, this chapter provides a useful procedure to find the initial temperature profile 

of a sample in a Bridgman furnace where the heat transfer coefficients in the hot and cold zones of 

the furnace are known. This procedure is of practical importance since it provides the initial 

condition temperature profile in the sample for the beginning of a Bridgman furnace experiment. 

The results obtained also demonstrated how columnar dendrite tip undercooling increased in 

response to a step change in pulling rate, a condition that can lead to CET in a real experiment.  

Objective 2 was achieved in Chapter 4. Verification of the model for steady solidification of 

a pure material was carried out. The applied order verification procedure requires a suitable closed-

form analytical solution to compare with the numerical results. It was not possible to find a solution 

from the literature for transient solidification of an alloy where the position of the dendrite tips 

could be predicted analytically. A solution does exist, however, for a pure material in a steady 

solidification scenario. This solution was successfully implemented in the order verification 

procedure. It was shown that global numerical error reduced with grid refinement and that the 

source of error was primarily truncation error. The BFFTM was verified as first order accurate in 

space.  

Objective 3 was achieved in Chapter 5. A thorough characterisation exercise—which can be 

applied to any Bridgman furnace—was demonstrated that estimates the heat transfer coefficients at 

the sample circumference as a function of axial position. Other Bridgman furnace studies, 

references [26] and [143–148], assume fixed values for the heat transfer coefficient in the hot and 

cold zones, respectively; which may not accurately represent the furnace. The method presented in 

Chapter 5 is advantageous since it effectively provides tuned heat transfer coefficients from 

experimental data without the need for traditional calculation methods involving properties that are 

difficult to measure, e.g., spectral emissivity (when dealing with radiative heat transfer). The 

applied method gave the necessary data for further modelling, using the BFFTM, of subsequent 

experiments carried out in the same furnace.  

Objective 4 and Objective 5 were achieved in Chapter 6. The results from the previous 

chapter were used to model the directional solidification experiments, carried out by Lapin et al. 

[79]. In these experiments the sample was initially translated through the furnace for a short period 

(traditional Bridgman method) before application of controlled cooling of the heater (power down 

method). The BFFTM was deemed suitable for modelling this procedure. Various solidification 

conditions, normally not measurable by experiment, were predicted using the model, e.g., columnar 
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dendrite tip growth rate, tip undercooling and temperature gradient at the tip. The modelling results 

were used to evaluate and provide insight into the microstructure observed in the solidified 

samples. The observed microstructures included CET and axial-columnar to radial-columnar 

transition. The analysis led to an important consideration for experiment designers when attempting 

to achieve CET using the power down method. Where high cooling rates are used—normally to 

achieve a high undercooling for equiaxed growth—a situation may arise where the direction of 

radial heat flow in the sample is reversed. In other words, heat flows radially from the sample 

towards the heater (in the hot zone). This leads to conditions that favour unwanted radial columnar 

growth, i.e., growth emanating from the circumference of the crucible wall. The reversal of radial 

heat flow at the sample circumference is proposed as an indicator for the onset of radial columnar 

growth in samples. In a general sense, the results provide useful insight into the power down 

process of directional solidification.  

One advantage of the BFFTM is that temperature is not assumed a priori. This means that 

the temperature profile in the sample is not predetermined as an assumption; rather it is calculated 

within the BFFTM algorithm. This is particularly relevant to CET studies. It is common for models 

that examine the solutal field in the liquid melt, for example, in references [111] and [176], to 

assume a fixed thermal gradient in the liquid, on the basis that latent heat is extracted away from 

the liquid via columnar dendrites. Often in CET experiments, however, ideal conditions where a 

fixed temperature gradient can be correctly assumed are rare and difficult to prove; a point 

especially important when considering transient solidification. The BFFTM takes on this problem 

by continuously calculating (and recording) the temperature gradient at the columnar front.  

Chapter 7 provides a detailed discussion on the dendrite kinetics used in the BFFTM to 

model columnar growth in the multicomponent alloy: alloy 455. The current growth model is based 

on an estimate for binary alloy solidification (of similar composition to alloy 455) and therefore 

requires further effort to accurately simulate dendritic growth of the multicomponent alloy. A 

sensitivity analysis exercise has shown that the effect of changing the growth law parameter values 

manifests itself in the simulated dendrite tip undercooling. The simulated growth rate and 

temperature gradient were practically unaffected up to the measured position of CET. This finding 

is important when considering the solidification conditions for CET, since equiaxed growth is 

strongly dependent on the degree of undercooling in the melt. 

This work presented here is novel. Chapter 3 details the first adaption of the McFadden and 

Browne FTM [113] to Bridgman furnace solidification of a binary eutectic alloy, thereby creating 

the BFFTM. The BFFTM uses a new hybrid 1-dimensional heat flow treatment for processes with 

a low Biot number. The developed model can simulate transient solidification conditions, viz. by 

pulling rate changes in Bridgman solidification (as demonstrated in Chapter 3) and through 

changes in the furnace temperature gradient during power down solidification (as demonstrated in 

Chapter 6). In Chapter 4, the BFFTM was adapted for the first time—by necessity of model 

verification—to track the solid–liquid interface of a pure material. In Chapter 5, the 
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characterisation method used to determine heat transfer coefficients in a Bridgman furnace is novel. 

The approach of using a PID controller to solve the inverse heat transfer problem (and hence 

characterise the furnace) in this manner, has not been applied previously for this purpose. In 

addition, the furnace heat transfer coefficients are determined as a function of axial position, so the 

method used is more accurate than assuming a fixed heat transfer coefficient in each zone of the 

furnace. Also, latent heat release in a multicomponent peritectic alloy is dealt with for the first time 

(using the BFFTM) in this chapter. In Chapter 6, a unique solidification process is modelled; that 

is, Bridgman solidification in series with a power down technique. Finally, in Chapters 5 and 6, it is 

noted that the KGT model of dendrite kinetics is used in the BFFTM algorithm to estimate growth 

rate instead of the previously implemented Burden Hunt growth model [119] (inherited from the 

McFadden and Browne FTM [113]). 

Some limitations of the current model are summarised next. From the beginning of model 

development it has been a prerequisite that the BFFTM is applied to processes with a low Biot 

number. This is clear limitation of the model. The BFFTM is not suitable to simulate columnar 

growth in samples of large diameter since the Biot number is a function of sample radius. For a 

fixed furnace heat transfer coefficient and a given material conductivity, if the sample radius is 

large enough the Biot number may have a value greater than 0.1; consequently, the 1-dimensional 

treatment of heat flow in the sample would not be valid. If the model were to be extended to 2-

dimensional axisymmetric it would be possible to simulate columnar solidification in larger 

diameter samples.  

Currently, the model has a radial heat component, applied in the 1-dimensional heat 

equation, equation (3.2), by way of lateral heat transfer at the sample circumference. Whilst this 

manages to account for heat supplied in the hot zone (or extracted in the cold zone), there is no 

means to calculate a radial temperature gradient within the sample. A 2-dimensional axisymmetric 

model would provide a means to calculate this. Following the discussion on convection in Chapter 

6 (Section 6.3.4), this is an important point since radial temperature gradients in Bridgman 

solidification are known to lead to lateral density differences which produce convective flow 

regimes in the liquid [177][178]. A recent study by Kartavykh et al. [179] demonstrate the effect of 

this in a directionally solidified TiAl ternary alloy. Ultimately, the BFFTM is limited from a 

convection point of view; as convection (of any type) in the liquid is not treated.  

8.2 Future Work 

The capability of the BFFTM has been demonstrated in this thesis. The results are 

sufficiently encouraging to suggest future extension of the model. Initially, improvements to more 

accurately model the dendrite kinetics of a multicomponent peritectic alloy are suggested. This is 

followed by suggestions for other potential improvements to the BFFTM and other relevant 

modelling exercises.   
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Chapter 7 provides a detailed discussion centred on the dendrite kinetics growth law used to 

model columnar growth of a TiAl multicomponent alloy (alloy 455). A number of alternative, and 

potentially better, modelling approaches from the literature suitable to model columnar dendritic 

growth of alloy 455 are suggested next.  

The KGT columnar growth model is widely applied in the solidification modelling of binary 

alloys, for example, in this thesis and in references [122] and [180]. This growth model is not easily 

applicable to multicomponent alloys (because of its binary origins) without significant 

assumptions. Cockcroft et al. [181] demonstrate a method where the KGT model is applied to the 

multicomponent single crystal alloy CMSX-4 [182]. Using this method, the liquidus slope (ml) and 

partition coefficient (kpart) for each alloying element in the solvent material is extracted from the 

literature (or by other means, e.g., using CALPHAD methods) giving equivalent ‘pseudo-binary’ 

values of these parameters for the multicomponent alloy, according to the following equations: 
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where the subscript ‘j’ refers to the number of alloy components. These values are then used as 

normal in the KGT calculation. However, this method assumes that the solute fields at the dendrite 

tip for each solute species can be superimposed and that the diffusion coefficients each solute 

species are the same. This approach may be useful to model alloy 455 as an alternative to the 

model used in Chapter 5 and Chapter 6, however, at present this has not yet been tested. 

Another, more advanced, modelling method potentially suitable to estimate the dendrite 

kinetics of alloy 455 is outlined by Hunziker [183]. In this approach any number of components 

can be considered and diffusive interactions between solutes in the liquid are accounted for. The 

model applies marginal stability theory, but effectively iterates to find the appropriate stability 

parameter, starting at *=1/(2)
2
. A limitation of this method is that it requires knowledge of the 

diffusion coefficients for each solute; currently this information is unknown for alloy 455. 

Referring to Section 2.4.3, some existing peritectic growth models appear to be unreliable, 

working well with some alloys but not for others. The model outlined by Tourett and Gandin [71], 

however, incorporates the widely used KGT model to account for concomitant growth of the 

dendritic -phase and peritectic -phase. Whilst still restricted to binary alloys, this approach may 

be useful to accurately model the peritectic growth kinetics of alloy 455, since it considers the 

growth of the -phase (not treated in this work). 

Ultimately, the estimation of the stability parameter, *, is a very important consideration 

for all of the above mentioned models, since this defines the product of dendrite tip radius squared 

times the dendrite tip growth rate for any given value to dendrite tip undercooling.  

Microsolvability theory—first applied to diffusion controlled growth by Kessler and Levine 
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[184]—provides an alternative method of independently calculating the stability parameter. The 

method takes into account the solid–liquid interface energy, , and crystalline anisotropy strength, . 

However, both interface energy and anisotropy strength tend to be difficult to measure; neither 

have been measured (in the literature) for alloy 455.  

It is important to note that none of the above growth models have been tested or validated by 

the author for use with alloy 455. Therefore, it is inappropriate to comment as to which model 

would be most suited. To validate any of these models an experimental procedure capable of 

measuring columnar dendrite growth rate and temperature at the dendrite tip would be required. 

Ultimately, the motivating factor in finding an improved growth model would be to more 

accurately estimate dendrite tip undercooling in simulations (for the reasons given in Chapter 7).  

Other suggested improvements to the BFFTM, in the generic sense of the model, are 

considered next.  The existing model has been verified (using an order verification procedure) 

against a steady-state analytical model. It is desirable to verify the model in the transient case. An 

exact solution to the transient problem must be found to do this. At present the author is not aware 

of such a solution in the literature. Alternatively, transient verification could be overlooked through 

validation of a transient solidification scenario with appropriate experimental data. A study by 

Schmachtl et al. [185] provides such data. In this study an ultrasonic pulse-echo method is used to 

measure the position and growth rate of the solid–liquid interface during transient Bridgman 

solidification (by a step change in pulling rate) of a Cu–Mn binary alloy. Alternatively, the 

experiments that use synchotron x-ray videomicroscopy, e.g., as in references [22–25], could be 

used as validation data, since the position of the columnar dendrite front can be measured in real-

time.  

One significant improvement for the BFFTM would be to model heat flow in the axial and 

radial directions within the sample, as opposed to only in the axial direction. This would be 

possible by increasing the dimensionality for the governing process heat equation from hybrid 1-

dimensional to 2- dimensional axisymmetric. While this would significantly improve the BFFTM 

in terms of radial heat flow estimation, a considerable effort would be required in terms of code re-

design, re-writing, testing and code order verification.  

Extension of the model to simulate columnar growth in a 2-dimemsional domain would 

provide a means to model natural convective flow in the liquid. The approach of Banaszek et al. 

[122] and, more recently, Mirihanage et al. [124] would be appropriate in this case since both of 

these studies have their genesis in the original FTM of Browne and Hunt [114]. To further treat 

convection in multicomponent alloys two studies are relevant; that of Trivedi et al. [168] and 

Anderson et al. [169].  

 The BFFTM model is of value to the industrial and research communities. As discussed in 

Section 1.1.2, the Bridgman method is used in industry for directional solidification, for example, 

to produce single crystal materials for semiconductors and photovoltaics, and also in metal 

purification. The model could be applied in industry to provide insight into the solidification 
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conditions in existing Bridgman processes and in the design of new furnaces. Also, as discussed in 

Section 1.1.3, the Bridgman method has been used in a wide spectrum of solidification research 

experiments. The BFFTM could be applied (further than this work) to model any of these studies. 

 A very recent study by Miller and Pollock [186] may be of particular interest for further 

modelling work. In their study, the authors examine the change in dendrite morphology and 

interface shape in two multicomponent alloys, solidified using the Bridgman method with liquid 

metal cooling (LMC). LMC provides enhanced radial heat extraction that can sometimes lead to 

lateral growth, in other words, radial columnar growth. They provide experimental and numerical 

results, and propose a criterion to predict lateral growth. It would be interesting to apply the 

BFFTM to these experiments and to compare their numerical results with the ‘radial heat flow 

reversal’ criterion proposed in Chapter 6. 

 Finally, with reference to the last paragraph of Section 6.4, and as part of the ESA 

GRADECET research group, the author intends to apply the BFFTM to model new experimental 

data from recent preparatory power down experiments with a re-designed version of the three zone 

furnace described in reference [86]. The new furnace has been modified to combat unwanted radial 

columnar growth in samples of gamma TiAl and will be launched on the MAXUS-9 sounding 

rocket in 2016.  



117 

 

Bibliography 

Bibliography 
[1] P. W. Bridgman, “Certain physical properties of single crystals of tungsten, antimony, 

bismuth, tellurium, cadmium, zinc and tin,” Proc. of the American Academy of Arts and 

Sciences, vol. 60, p. 303, 1925. 

[2] D. C. Stockbarger, “The production of large single crystals of lithium fluoride,” Review of 

Scientific Instruments, vol. 7, no. 3, pp. 133–136, 1936. 

[3] W. Kurz and D. J. Fisher, Fundamentals of solidification. Aedermannsdorf: Trans Tech 

Publications, 1986. 

[4] J. A. Dantzig and M. Rappaz, Solidification, 1st ed. Lausanne: EPFL Press, 2009. 

[5] T. Duffar and L. Sylla, “Vertical Bridgman Technique and Dewetting,” in Crystal Growth 

Processes Based on Capillarity, T. Duffar, Ed. John Wiley & Sons, Ltd, 2010, pp. 355–411. 

[6] A. Goetzberger and C. Hebling, “Photovoltaic materials, past, present, future,” Solar 

Energy Materials and Solar Cells, vol. 62, no. 1, pp. 1–19, 2000. 

[7] Crystran, “Lithium Fluoride (LiF).” [Online]. Available: http://www.crystran.co.uk/optical-

materials/lithium-fluoride-lif. [Accessed: 15-Jul-2014]. 

[8] A. Kermanpur, N. Varahraam, E. Engilehei, P. Mohammadzadeh, and M. Davami, 

“Directional solidification of Ni base superalloy IN738LC to improve creep properties,” 

Materials Science and Technology, vol. 16, no. 5, pp. 579–586, 2000. 

[9] D. M. Stefanescu, Science and Engineering of Casting Solidification, 2nd ed. Springer, 

2008. 

[10] K. A. Jackson and J. D. Hunt, “Transparent compounds that freeze like metals,” Acta 

Metallurgica, vol. 13, no. 11, pp. 1212–1215, Nov. 1965. 

[11] T. Sato, W. Kurz, and K. Ikawa, “Experiments on Dendrite Branch Detachment in the 

Succinonitrile-Camphor Alloy,” Transactions of the Japan Institute of Metals, Vol. 28 No. 

12, 1987. [Online]. Available: http://www.jim.or.jp/journal/e/28/12/1012.html. [Accessed: 

26-Jan-2012]. 

[12] G. L. Ding, W. D. Huang, X. Huang, X. Lin, and Y. H. Zhou, “On primary dendritic 

spacing during unidirectional solidification,” Acta Materialia, vol. 44, no. 9, pp. 3705–

3709, 1996. 

[13] J. E. Simpson, S. V. Garimella, and H. C. De Groh, “Experimental and numerical 

investigation of the Bridgman growth of a transparent material,” Journal of Thermophysics 

and Heat Transfer, vol. 16, no. 3, pp. 324–335, 2002. 

[14] N. Bergeon, R. Trivedi, B. Billia, B. Echebarria, A. Karma, S. Liu, C. Weiss, and N. 

Mangelinck, “Necessity of investigating microstructure formation during directional 

solidification of transparent alloys in 3D,” Advances in Space Research, vol. 36, no. 1, pp. 

80–85, 2005. 



118 

 

[15] C. Weiss, N. Bergeon, N. Mangelinck-Noël, and B. Billia, “Declic scientific program - 

Directional solidification,” in AIAA 57th International Astronautical Congress, IAC 2006, 

2006, vol. 2, pp. 876–882. 

[16] A. Ludwig and J. Mogeritsch, “In Situ Observation of Coupled Peritectic Growth,” in John 

Hunt International Symposium, 2011, pp. 233–241. 

[17] J. P. Mogeritsch, A. Ludwig, S. Eck, M. Grasser, and B. J. McKay, “Thermal stability of a 

binary non-faceted/non-faceted peritectic organic alloy at elevated temperatures,” Scripta 

Materialia, vol. 60, no. 10, pp. 882–885, 2009. 

[18] J. P. Mogeritsch and A. Ludwig, “In-situ observation of coupled growth morphologies in 

organic peritectics,” IOP Conference Series: Materials Science and Engineering, vol. 27, p. 

012028, Jan. 2012. 

[19] J. Alkemper, S. Diefenbach, and L. Ratke, “Chill casting into aerogels,” Scripta 

Metallurgica et Materiala, vol. 29, no. 11, pp. 1495–1500, 1993. 

[20] J. Fricke and A. Emmerling, “Aerogels—Preparation, properties, applications,” in 

Chemistry, Spectroscopy and Applications of Sol-Gel Glasses, vol. 77, R. Reisfeld and C. 

JJørgensen, Eds. Springer Berlin / Heidelberg, 1992, pp. 37–87. 

[21] J. Alkemper, S. Sous, C. Stöcker, and L. Ratke, “Directional solidification in an aerogel 

furnace with high resolution optical temperature measurements,” Journal of Crystal 

Growth, vol. 191, no. 1–2, pp. 252–260, 1998. 

[22] R. H. Mathiesen and L. Arnberg, “X-ray radiography observations of columnar dendritic 

growth and constitutional undercooling in an Al–30wt%Cu alloy,” Acta Materialia, vol. 53, 

no. 4, pp. 947–956, Feb. 2005. 

[23] D. Ruvalcaba, R. H. Mathiesen, D. G. Eskin, L. Arnberg, and L. Katgerman, “In situ 

observations of dendritic fragmentation due to local solute-enrichment during directional 

solidification of an aluminum alloy,” Acta Materialia, vol. 55, no. 13, pp. 4287–4292, Aug. 

2007. 

[24] D. Ruvalcaba, R. H. Mathiesen, D. G. Eskin, L. Arnberg, and L. Katgerman, “In-Situ 

analysis of coarsening during directional solidification experiments in high-solute aluminum 

alloys,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials 

Processing Science, vol. 40, no. 3, pp. 312–316, 2009. 

[25] G. Reinhart, N. Mangelinck-Noël, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, 

J. Härtwig, and J. Baruchel, “Investigation of columnar–equiaxed transition and equiaxed 

growth of aluminium based alloys by X-ray radiography,” Materials Science and 

Engineering: A, vol. 413–414, pp. 384–388, Dec. 2005. 

[26] C. E. Chang and W. R. Wilcox, “Control of interface shape in the vertical bridgman-

stockbarger technique,” Journal of Crystal Growth, vol. 21, no. 1, pp. 135–140, 1974. 

[27] R.J. Naumann, “An analytical approach to thermal modeling of Bridgman-type crystal 

growth: I. One-dimensional analysis,” Journal of Crystal Growth, vol. 58, no. 3, pp. 554–

568, 1982. 

[28] R.J. Naumann, “An analytical approach to thermal modeling of bridgman-type crystal 

growth: II. Two-dimensional analysis,” Journal of Crystal Growth, vol. 58, no. 3, pp. 569–

584, 1982. 



119 

 

[29] C.-A. Gandin, R. J. Schaefer, and M. Rappax, “Analytical and numerical predictions of 

dendritic grain envelopes,” Acta Materialia, vol. 44, no. 8, pp. 3339–3347, 1996. 

[30] W. Kurz, B. Giovanola, and R. Trivedi, “Theory of microstructural development during 

rapid solidification,” Acta Metallurgica, vol. 34, no. 5, pp. 823–830, 1986. 

[31] D. H. Kim and R. A. Brown, “Modelling of the dynamics of HgCdTe growth by the vertical 

Bridgman method,” Journal of Crystal Growth, vol. 114, no. 3, pp. 411–434, 1991. 

[32] J. A. Burton, R. C. Prim, and W. P. Slichter, “The Distribution of Solute in Crystals Grown 

from the Melt. Part I. Theoretical,” The Journal of Chemical Physics, vol. 21, no. 11, p. 

1987, Nov. 1953. 

[33] E. Scheil, “Bemerkungen zur schichtkristallbildungle,” Zeitschrift Fur Metallkunde, no. 34, 

pp. 70–72, 1942. 

[34] G. T. Neugebauer and W. R. Wilcox, “Convection in the vertical Bridgman-Stockbarger 

technique,” Journal of Crystal Growth, vol. 89, no. 2–3, pp. 143–154, 1988. 

[35] T.-W. Fu and W. R. Wilcox, “Rate change transients in Bridgman-Stockbarger growth,” 

Journal of Crystal Growth, vol. 51, no. 3, pp. 557–567, 1981. 

[36] R.-J. Su, W. A. Jemian, and R. A. Overfelt, “Transient effects in the directional 

solidification of Al-Cu alloys,” Journal of Crystal Growth, vol. 179, no. 3–4, pp. 625–634, 

1997. 

[37] M. Saitou and A. Hirata, “Numerical calculation of two-dimensional unsteady solidification 

problem,” Journal of Crystal Growth, vol. 113, no. 1–2, pp. 147–156, 1991. 

[38] J. Eiken, M. Apel, V. T. Witusiewicz, J. Zollinger, and U. Hecht, “Interplay between α(Ti) 

nucleation and growth during peritectic solidification investigated by phase-field 

simulations,” Journal of Physics Condensed Matter, vol. 21, no. 46, 2009. 

[39] C.-Y. Li, S. V. Garimella, and J. E. Simpson, “Fixed-grid front-tracking algorithm for 

solidification problems, part I: Method and validation,” Numerical Heat Transfer, Part B: 

Fundamentals, vol. 43, no. 2, pp. 117–141, 2003. 

[40] C.-Y. Li, S. V. Garimella, and J. E. Simpson, “Fixed-grid front-tracking algorithm for 

solidification problems, part II: Directional solidification with melt convection,” Numerical 

Heat Transfer, Part B: Fundamentals, vol. 43, no. 2, pp. 143–166, 2003. 

[41] W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute 

atoms during the solidification of metals,” Acta Metallurgica, vol. 1, no. 4, pp. 428–437, 

1953. 

[42] R. Trivedi and W. Kurz, “Dendritic growth,” International Materials Reviews, vol. 39, no. 

2, pp. 49–74, 1994. 

[43] G. P. Ivantsov, “Temperature field around a spheroidal, cylindrical and acicular crystal 

growing in a supercooled melt,” Doklady Akademiya Nauk SSSR, vol. 58, p. 567, 1947. 

[44] J. S. Langer and H. Müller-Krumbhaar, “Theory of dendritic growth—I. Elements of a 

stability analysis,” Acta Metallurgica, vol. 26, no. 11, pp. 1681–1687, Nov. 1978. 



120 

 

[45] M. Rebow and D. J. Browne, “On the dendritic tip stability parameter for aluminium alloy 

solidification,” Scripta Materialia, vol. 56, no. 6, pp. 481–484, Mar. 2007. 

[46] J. Lipton, M. E. Glicksman, and W. Kurz, “Dendritic growth into undercooled alloy 

metals,” Materials Science and Engineering, vol. 65, no. 1, pp. 57–63, Jul. 1984. 

[47] C.-A. Gandin, “Experimental study of the transition from constrained to unconstrained 

growth during directional solidification,” ISIJ international, vol. 40, no. 10, pp. 971–979, 

2000. 

[48] J. A. Spittle, “Columnar to equiaxed grain transition in as solidified alloys,” International 

Materials Reviews, vol. 51, no. 4, pp. 247–269, Aug. 2006. 

[49] J. Hutt and D. StJohn, “The origins of the equiaxed zone -Review of theoretical and 

experimental work,” International Journal of Cast Metals Research, vol. 11, no. 1, pp. 13–

22, 1998. 

[50] W. C. Winegard and B. Chalmers, “Supercooling and dendritic freezing in alloys,” 

Transactions of the American Society of Metals, vol. 46, pp. 1214–1224, 1954. 

[51] B. Chalmers, “The structure of ingots,” Journal of the Australian Institute of Metals, vol. 8, 

no. 3, pp. 255–263, 1963. 

[52] K. A. Jackson, J. D. Hunt, D. R. Uhlmann, and T. P. Seward, “On the origin of the equiaxed 

zone in castings,” Transactions of the Metallurgical Society of AIME, vol. 236, pp. 151–

158, 1966. 

[53] R. T. Southin, “Nucleation of the equiaxed zone in cast metals,” Transactions of the 

Metallurgical Society of AIME, vol. 239, pp. 220–225, 1967. 

[54] A. Ohno, T. Motegi, and H. Soda, “Origin of the equiaxed crystals in castings,” 

Transactions of the Iron and Steel Institute of Japan, vol. 11, no. 1, pp. 18–23, 1971. 

[55] S. McFadden, D. J. Browne, and J. Banaszek, “Prediction of the Formation of an Equiaxed 

Zone Ahead of a Columnar Front in Binary Alloy Castings: Indirect and Direct Methods,” 

in Materials Science Forum, 2006, vol. 508, pp. 325–330. 

[56] S. McFadden, D. J. Browne, and C.-A. Gandin, “A Comparison of Columnar-to-Equiaxed 

Transition Prediction Methods Using Simulation of the Growing Columnar Front,” 

Metallurgical and Materials Transactions A, vol. 40, no. 3, pp. 662–672, Jan. 2009. 

[57] C.-A. Gandin, “From Constrained to Unconstrained Growth During Directional 

Solidification,” Acta Materialia, vol. 48, no. 10, pp. 2483–2501, Jun. 2000. 

[58] C. A. Siqueira, N. Cheung, and A. Garcia, “Solidification thermal parameters affecting the 

columnar-to-equiaxed transition,” Metallurgical and Materials Transactions A: Physical 

Metallurgy and Materials Science, vol. 33, no. 7, pp. 2107–2118, 2002. 

[59] D. J. Browne, “A New Equiaxed Solidification Predictor from a Model of Columnar 

Growth,” ISIJ International, vol. 45, no. 1, pp. 37–44, 2005. 

[60] J. D. Hunt, “Steady state columnar and equiaxed growth of dendrites and eutectic,” 

Materials Science and Engineering, vol. 65, no. 1, pp. 75–83, 1984. 



121 

 

[61] M. Avrami, “Granulation, Phase Change, and Microstructure Kinetics of Phase Change. 

III,” The Journal of Chemical Physics, vol. 9, no. 2, p. 177, Dec. 1941. 

[62] W. U. Mirihanage, “Modelling of Columnar to Equiaxed Transition in Alloy Solidification 

(Thesis),” University College Dublin, 2010. 

[63] M. A. Martorano, C. Beckermann, and C.-A. Gandin, “A solutal interaction mechanism for 

the columnar-to-equiaxed transition in alloy solidification,” Metallurgical and Materials 

Transactions A: Physical Metallurgy and Materials Science, vol. 34 A, no. 8, pp. 1657–

1674, 2003. 

[64] W. D. Callister Jr., Material Science and Engineering, 3rd ed. John Wiley & Sons, 1994. 

[65] H. Fredrikksson, “Solidification of Peritectics,” ASM Handbook, Volume 15 - Casting, pp. 

125–129, 1988. 

[66] H. W. Kerr and W. Kurz, “Solidification of peritectic alloys,” International Materials 

Reviews, vol. 41, no. 4, pp. 129–164, 1996. 

[67] H. Fredriksson, “On the Peritectic Reaction and Transformation in Metal Alloys,” in John 

Hunt International Symposium, 2011, pp. 219–232. 

[68] W. P. Bosze and R. Trivedi, “On the Kinetic Expression for Growth of Precipitate Plates,” 

Metallurgical Transactions, vol. 5, no. 2, pp. 511–512, 1974. 

[69] H. Fredriksson and T. Nylén, “Mechanism of peritectic reactions and transformations,” 

Metals Science, vol. 16, pp. 283–294, 1982. 

[70] D. Phelan, M. Reid, and R. Dippenaar, “Kinetics of the peritectic reaction in an Fe–C 

alloy,” Materials Science and Engineering: A, vol. 477, no. 1–2, pp. 226–232, 2008. 

[71] D. Tourret and C.-A. Gandin, “A generalized segregation model for concurrent dendritic, 

peritectic and eutectic solidification,” Acta Materialia, vol. 57, no. 7, pp. 2066–2079, 2009. 

[72] E. A. Loria, “Gamma titanium aluminides as prospective structural materials,” 

Intermetallics, vol. 8, no. 9–11, pp. 1339–1345, Sep. 2000. 

[73] D. M. Dimiduk, “Gamma titanium aluminide alloys—an assessment within the competition 

of aerospace structural materials,” Materials Science and Engineering: A, vol. 263, no. 2, 

pp. 281–288, May 1999. 

[74] M.F. Ashby, Materials Selection in Mechanical Design. Pergamon Press, Oxford, 1992. 

[75] H. Wang, G. Djambazov, K. A. Pericleous, R. A. Harding, and M. Wickins, “Modeling of 

the Tilt-Casting Process for the Tranquil Filling of Titanium Alloy Turbine Blades,” in 

Proc. Modeling of Casting, Welding, and Advanced Solidification Processes XII, 2009, pp. 

53–60. 

[76] B. P. Bewlay, M. Weimer, T. Kelly, A. Suzuki, and P. R. Subramanian, “The Science, 

Technology, and Implementation of TiAl Alloys in Commercial Aircraft Engines,” MRS 

Proceedings, vol. 1516, pp. 49–57, Jan. 2013. 

[77] “GEnx Aircraft Engine,” 2014. [Online]. Available: 

http://www.ecomagination.com/portfolio/genx-aircraft-engine. [Accessed: 08-Apr-2014]. 



122 

 

[78] H. Clemens and W. Smarsly, “Light-Weight Intermetallic Titanium Aluminides – Status of 

Research and Development,” Advanced Materials Research, vol. 278, pp. 551–556, Sep. 

2011. 

[79] J. Lapin, Z. Gabalcová, U. Hecht, R. P. Mooney, and S. McFadden, “Columnar to Equiaxed 

Transition in Peritectic TiAl Based Alloy Studied by a Power-Down Technique,” Materials 

Science Forum, vol. 790–791, pp. 193–198, 2014. 

[80] J. L. Murray (Ed.), Phase Diagrams of Binary Titanium Alloys. Metals Park, OH: ASM 

International, 1987. 

[81] H. Okamoto, “Al-Ti (aluminum-titanium),” Journal of Phase Equilibria, vol. 14, no. 1, pp. 

120–121, Feb. 1993. 

[82] H. Okamoto, “Al-Ti (aluminum-titanium),” Journal of Phase Equilibria, vol. 21, no. 3, pp. 

311–311, May 2000. 

[83] J. Schuster and M. Palm, “Reassessment of the binary Aluminum-Titanium phase diagram,” 

Journal of Phase Equilibria and Diffusion, vol. 27, no. 3, pp. 255–277, 2006. 

[84] V. T. Witusiewicz, A. A. Bondar, U. Hecht, S. Rex, and T. Y. Velikanova, “The Al–B–Nb–

Ti system III. Thermodynamic re-evaluation of the constituent binary system Al–Ti,” 

Journal of Alloys and Compounds, vol. 465, no. 1–2, pp. 64–77, Oct. 2008. 

[85] D. J. Jarvis and D. Voss, “IMPRESS Integrated Project—An overview paper,” Materials 

Science and Engineering: A, vol. 413–414, pp. 583–591, Dec. 2005. 

[86] R. Mooney, D. Browne, O. Budenkova, Y. Fautrelle, L. Froyen, A. Kartavykh, S. 

McFadden, S. Rex, B. Schmitz, and D. Voss, “Review of the MAXUS 8 sounding rocket 

experiment to investigate solidification in a Ti-Al-Nb alloy,” in European Space Agency, 

(Special Publication) ESA SP, 2011, vol. 700 SP, pp. 453–458. 

[87] R. P. Mooney, S. McFadden, M. Rebow, and D. J. Browne, “A front tracking model of the 

MAXUS-8 microgravity solidification experiment on a Ti-45.5at.% Al-8at.%Nb alloy,” 

IOP Conference Series: Materials Science and Engineering, vol. 27, no. 1, p. 12020, 2012. 

[88] F. Lemoisson, S. McFadden, M. Rebow, D. J. Browne, L. Froyen, D. Voss, D. J. Jarvis, A. 

V. Kartavykh, S. Rex, W. Herfs, D. Groethe, J. Lapin, O. Budenkova, J. Etay, and Y. 

Fautrelle, “The Development of a Microgravity Experiment Involving Columnar to 

Equiaxed Transition for Solidification of a Ti-Al Based Alloy,” Materials Science Forum, 

vol. 649, pp. 17–22, May 2010. 

[89] F. Appel, J. D. H. Paul, and M. Oehring, Gamma Titanium Aluminide Alloys: Science and 

Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. 

[90] F. Appel, M. Oehring, and R. Wagner, “Novel design concepts for gamma-base titanium 

aluminide alloys,” Intermetallics, vol. 8, no. 9–11, pp. 1283–1312, Sep. 2000. 

[91] H. Nickel, N. Zheng, A. Elschner, and W. J. Quadakkers, “The oxidation behaviour of 

niobium containing ?-TiAl based intermetallics in air and argon/oxygen,” Mikrochimica 

Acta, vol. 119, no. 1–2, pp. 23–39, Mar. 1995. 

[92] J. D. Bryant, L. Christodoulou, and J. R. Maisano, “Effect of TiB2 additions on the colony 

size of near gamma titanium aluminides,” Scripta Metallurgica et Materialia, vol. 24, no. 1, 

pp. 33–38, Jan. 1990. 



123 

 

[93] C. Scheu, E. Stergar, M. Schober, L. Cha, H. Clemens, A. Bartels, F.-P. Schimansky, and A. 

Cerezo, “High carbon solubility in a γ-TiAl-based Ti–45Al–5Nb–0.5C alloy and its effect 

on hardening,” Acta Materialia, vol. 57, no. 5, pp. 1504–1511, Mar. 2009. 

[94] R. R. Boyer, “An overview on the use of titanium in the aerospace industry,” Materials 

Science and Engineering: A, vol. 213, no. 1–2, pp. 103–114, 1996. 

[95] W. Voice, “The future use of gamma titanium aluminides by Rolls-Royce,” Aircraft 

Engineering and Aerospace Technology, vol. 71, no. 4, pp. 337–340, Jan. 1999. 

[96] “Low density materials,” 2014. [Online]. Available: http://www.rolls-

royce.com/about/technology/material_tech/low_density_materials.jsp. [Accessed: 10-Apr-

2013]. 

[97] NASA and Boeing Commercial Airplanes, “(NASA CR-4234) High-Speed Civil Transport 

Study: Summary,” 1989. 

[98] T. Tetsui, “Development of a TiAl turbocharger for passenger vehicles,” Materials Science 

and Engineering: A, vol. 329–331, pp. 582–588, Jun. 2002. 

[99] K. Gebauer, “Performance, tolerance and cost of TiAl passenger car valves,” Intermetallics, 

vol. 14, no. 4, pp. 355–360, Apr. 2006. 

[100] William Kimberley, “EuroAuto: Advanced Material for Racing,” Automotive Design and 

Production, Jun-2006. 

[101] J. Aguilar, A. Schievenbusch, and O. Kättlitz, “Investment casting technology for 

production of TiAl low pressure turbine blades – Process engineering and parameter 

analysis,” Intermetallics, vol. 19, no. 6, pp. 757–761, Jun. 2011. 

[102] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, 

and C. Badini, “Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and 

mechanical properties investigation,” Intermetallics, vol. 19, no. 6, pp. 776–781, Jun. 2011. 

[103] T. Tetsui, K. Shindo, S. Kaji, S. Kobayashi, and M. Takeyama, “Fabrication of TiAl 

components by means of hot forging and machining,” Intermetallics, vol. 13, no. 9, pp. 

971–978, Sep. 2005. 

[104] D. J. Browne, “Advanced Metal Casting Technology,” Transactions of the Institution of 

Engineers of Ireland, vol. 18, pp. 20–39, 1993. 

[105] M. Wu and A. Ludwig, “Using a Three-Phase Deterministic Model for the Columnar-to-

Equiaxed Transition,” Metallurgical and Materials Transactions A, vol. 38, no. 7, pp. 

1465–1475, May 2007. 

[106] M. A. Martorano and V. B. Biscuola, “Columnar front tracking algorithm for prediction of 

the columnar-to-equiaxed transition in two-dimensional solidification,” Modelling and 

Simulation in Materials Science and Engineering, vol. 14, no. 7, pp. 1225–1243, Oct. 2006. 

[107] A. Jacot, D. Maijer, and S. L. Cockcroft, “A two-dimensional model for the description of 

the columnar-to-equiaxed transition in competing gray and white iron eutectics and its 

application to calender rolls,” Metallurgical and Materials Transactions A, vol. 31, no. 8, 

pp. 2059–2068, Aug. 2000. 



124 

 

[108] S. G. R. Brown and J. A. Spittle, “Computer simulation of grain growth and macrostructure 

development during solidification,” Materials Science and Technology, vol. 5, no. 4, p. 7, 

1989. 

[109] G. Guillemot, C.-A. Gandin, H. Combeau, and R. Heringer, “A new cellular automaton—

finite element coupling scheme for alloy solidification,” Modelling and Simulation in 

Materials Science and Engineering, vol. 12, no. 3, pp. 545–556, May 2004. 

[110] J. Li, J. Wang, and G. Yang, “Phase-field simulation of microstructure development 

involving nucleation and crystallographic orientations in alloy solidification,” Journal of 

Crystal Growth, vol. 309, no. 1, pp. 65–69, Nov. 2007. 

[111] H. B. Dong and P. D. Lee, “Simulation of the columnar-to-equiaxed transition in 

directionally solidified Al–Cu alloys,” Acta Materialia, vol. 53, no. 3, pp. 659–668, Feb. 

2005. 

[112] J. Banaszek, P. Furmański, and M. Rebow, Modelling of transport phenomena in cooled 

and solidifying single component and binary media. Oficyna Wydawnicza Politechniki 

Warszawskiej, 2005. 

[113] S. McFadden and D. J. Browne, “A front-tracking model to predict solidification 

macrostructures and columnar to equiaxed transitions in alloy castings,” Applied 

Mathematical Modelling, vol. 33, no. 3, pp. 1397–1416, Mar. 2009. 

[114] D. J. Browne and J. D. Hunt, “A Fixed Grid Front-Tracking Model of the Growth of a 

Columnar Front and an Equiaxed Grain During Solidification of an Alloy,” Numerical Heat 

Transfer Part B-Fundamentals, vol. 45, no. 5, pp. 395–419, May 2004. 

[115] R. E. Smallman, “Free energy of transformation,” in Modern Physical Mettalurgy, Fourth., 

Butterworth-Heinemann Ltd, 1985. 

[116] D. Turnbull and J. C. Fisher, “Rate of Nucleation in Condensed Systems,” The Journal of 

Chemical Physics, vol. 17, no. 1, p. 71, Jan. 1949. 

[117] L. Greer, “Control of grain size in solidification,” in Solidification and Casting, B. Cantor 

and K. O’Reilly, Eds. Bristol: Institute of Physics Publishing, 2003, p. 199247. 

[118] T. E. Quested and A. L. Greer, “Grain refinement of Al alloys: Mechanisms determining as-

cast grain size in directional solidification,” Acta Materialia, vol. 53, no. 17, pp. 4643–

4653, 2005. 

[119] M. H. Burden and J. D. Hunt, “Cellular and Dendritic Growth II,” Journal of Crystal 

Growth, vol. 22, pp. 109–116, 1974. 

[120] J. Banaszek and D. J. Browne, “Modelling Columnar Dendritic Growth into an 

Undercooled Metallic Melt in the Presence of Convection,” Materials Transactions, vol. 46, 

no. 6, pp. 1378–1387, 2005. 

[121] V. R. Voller, “An Overview of Numerical Methods for Solving Phase Change Problems,” in 

Advances in Numerical Heat Transfer, Volume 1, W. J. Minkowycz and E. M. Sparrow, 

Eds. CRC Press, 1997, pp. 341–380. 

[122] J. Banaszek, S. McFadden, D. J. Browne, L. Sturz, and G. Zimmermann, “Natural 

Convection and Columnar-to-Equiaxed Transition Prediction in a Front-Tracking Model of 

Alloy Solidification,” Metallurgical and Materials Transactions A, vol. 38, no. 7, pp. 1476–

1484, Jun. 2007. 



125 

 

[123] P. Andrzej J. Nowak, M. Seredyński, and J. Banaszek, “Front tracking approach to 

modeling binary alloy solidification,” International Journal of Numerical Methods for Heat 

& Fluid Flow, vol. 24, no. 4, pp. 920–931, 2014. 

[124] W. U. Mirihanage, S. McFadden, and D. J. Browne, “Prediction of columnar to equiaxed 

transition in alloy castings with convective heat transfer and equiaxed grain transportation,” 

in Shape Casting: 3rd International Symposium 2009, 2009, pp. 257–264. 

[125] A. Ludwig and M. Wu, “Modeling the columnar-to-equiaxed transition with a three-phase 

Eulerian approach,” Materials Science and Engineering: A, vol. 413–414, pp. 109–114, 

Dec. 2005. 

[126] R. P. Mooney, S. McFadden, M. Rebow, and D. J. Browne, “A Front Tracking Model for 

Transient Solidification of Al–7wt%Si in a Bridgman Furnace,” Transactions of the Indian 

Institute of Metals, vol. 65, no. 6, pp. 527–530, 2012. 

[127] A. Bejan, Heat Transfer, 1st ed. New York: John Wiley & Sons, 1993. 

[128] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and 

Mass Transfer, 6th ed. New York: John Wiley & Sons, 2007. 

[129] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. London: Oxford 

University Press, 1959. 

[130] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. McGraw Hill, 1980. 

[131] G. De Vahl Davis, “Natural convection of air in a square cavity: A bench mark numerical 

solution,” International Journal for Numerical Methods in Fluids, vol. 3, no. 3, pp. 249–

264, May 1983. 

[132] R. P. Mooney and S. McFadden, “Order verification of a Bridgman furnace front tracking 

model in steady state,” Simulation Modelling Practice and Theory, vol. 48, pp. 24–34, 

2014. 

[133] Oxford University Press, “verification, n.,” OED Online. [Online]. Available: 

http://www.oed.com/view/Entry/222504. [Accessed: 08-Aug-2013]. 

[134] P. Knupp and K. Salari, Verification of Computer Codes in Computational Science and 

Engineering. Boca Raton: CRC Press, 2003. 

[135] B. W. Boehm, Software Engineering Economics. New Jersey: Prentice-Hall, 1981. 

[136] F. G. Blottner, “Accurate Navier-Stokes results for the hypersonic flow over a spherical 

nosetip,” Journal of Spacecraft and Rockets, vol. 27, no. 2, pp. 113–122, Mar. 1990. 

[137] P. J. Roache, “Verification of Codes and Calculations,” AIAA Journal, vol. 36, no. 5, pp. 

696–702, May 1998. 

[138] S. Steinberg and P. J. Roache, “Symbolic manipulation and computational fluid dynamics,” 

Journal of Computational Physics, vol. 57, no. 2, pp. 251–284, 1985. 

[139] M. N. Özışık, Finite difference methods in heat transfer, 1st ed. Boca Raton: CRC Press, 

1994. 



126 

 

[140] S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, 6th ed. McGraw Hill, 

2010. 

[141] P. D. Lax and R. D. Richtmyer, “Survey of the stability of linear finite difference 

equations,” Communications on Pure and Applied Mathematics, vol. 9, no. 2, pp. 267–293, 

May 1956. 

[142] P. Moin, Fundamentals of Engineering Numerical Analysis, 2nd ed. Cambridge University 

Press, 2010. 

[143] MathWorks, “fzero, Root of nonlinear function.” [Online]. Available: 

http://www.mathworks.co.uk/help/matlab/ref/fzero.html. [Accessed: 12-Aug-2013]. 

[144] R. P. Mooney, S. McFadden, Z. Gabalcová, and J. Lapin, “An experimental–numerical 

method for estimating heat transfer in a Bridgman furnace,” Applied Thermal Engineering, 

vol. 67, no. 1–2, pp. 61–71, 2014. 

[145] D. Turnbull and B. G. Bagley, Treatise on Solid State Chemistry, Vol. 5: Changes of state. 

New York: Plenum, 1975. 

[146] M. Banan, R. T. Gray, and W. R. Wilcox, “An experimental approach to determine the heat 

transfer coefficient in directional solidification furnaces,” Journal of Crystal Growth, vol. 

113, no. 3–4, pp. 557–565, 1991. 

[147] W. Rosch, W. Jesser, W. Debnam, A. Fripp, G. Woodell, and T. K. Pendergrass, “A 

technique for measuring the heat transfer coefficient inside a Bridgman furnace,” Journal of 

Crystal Growth, vol. 128, no. 1–4 part 2, pp. 1187–1192, 1993. 

[148] W. Rosch, A. Fripp, W. Debnam, and T. K. Pendergrass, “Heat transfer measurements in 

the Bridgman configuration,” Journal of Crystal Growth, vol. 137, no. 1–2, pp. 54–58, 

1994. 

[149] D. M. L. Bartholomew and A. Hellawell, “Changes of growth conditions in the vertical 

Bridgman-Stockbarger method for the solidification of aluminum,” Journal of Crystal 

Growth, vol. 50, no. 2, pp. 453–460, Oct. 1980. 

[150] S. Sen and W. R. Wilcox, “Influence of crucible on interface shape, position and sensitivity 

in the vertical Bridgman-Stockbarger technique,” Journal of Crystal Growth, vol. 28, no. 1, 

pp. 36–40, Jan. 1975. 

[151] P. C. Sukanek, “Deviation of freezing rate from translation rate in the Bridgman-

Stockbarger technique I. Very low translation rates,” Journal of Crystal Growth, vol. 58, no. 

1, pp. 208–218, Jun. 1982. 

[152] J. Lapin and Z. Gabalcová, “Solidification behaviour of TiAl-based alloys studied by 

directional solidification technique,” Intermetallics, vol. 19, no. 6, pp. 797–804, Jun. 2011. 

[153] J. M. Kay and R.M. Nedderman, Fluid mechanics and transfer processes. Cambridge 

University Press, 1985. 

[154] H. R. N. Jones, Radiation heat transfer. Oxford University Press, 2000. 

[155] MathWorks, “Piecewise Cubic Hermite Interpolating Polynomial (PCHIP).” [Online]. 

Available: http://www.mathworks.co.uk/help/matlab/ref/pchip.html. [Accessed: 16-Aug-

2013]. 



127 

 

[156] M. N. Özışık and H. R. B. Orlande, Inverse Heat Transfer: Fundamentals and Applications. 

New York: Taylor & Francis, 2000. 

[157] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill posed problems. Washington, D.C.: 

Wiley, 1977. 

[158] O. M. Alifanov, “Solution of an inverse problem of heat conduction by iteration methods,” 

Journal of Engineering Physics and Thermophysics, vol. 26, no. 4, pp. 471–476, Apr. 1974. 

[159] J. V. Beck, B. Blackwell, and C. R. St. Clair Jr., Inverse heat conduction: ill-posed 

problems. New York: Wiley, 1985. 

[160] D. E. Seborg, D. A. Mellichamp, T. F. Edgar, and F. J. Doyle III, Process Dynamics and 

Control, 3rd ed. Wiley, 2011. 

[161] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,” Transactions 

of the ASME, vol. 64, pp. 759–768, 1942. 

[162] I. Egry, R. Brooks, D. Holland-Moritz, R. Novakovic, T. Matsushita, E. Ricci, S. 

Seetharaman, R. Wunderlich, and D. Jarvis, “Thermophysical Properties of γ-Titanium 

Aluminide: The European IMPRESS Project,” International Journal of Thermophysics, vol. 

28, no. 3, pp. 1026–1036, Aug. 2007. 

[163] Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties 

of Matter: Vol 2 Thermal Conductivity Nonmetallic Solids. New York-Washington: 

IFI/Plenum, 1970. 

[164] M. Rebow, D. J. Browne, and Y. Fautrelle, “Combined Analytical and Numerical Front 

Tracking Approach to Modeling Directional Solidification of a TiAl-Based Intermetallic 

Alloy for Design of Microgravity Experiments,” Materials Science Forum, vol. 649, pp. 

243–248, Aug. 2010. 

[165] Thermo-Calc Software AB, “Thermo-Calc 3.0,” 2013. [Online]. Available: 

http://www.thermocalc.com/Thermo-Calc.htm. [Accessed: 26-Feb-2013]. 

[166] Q. Chen and B. Sundman, “Computation of partial equilibrium solidification with complete 

interstitial and negligible substitutional solute back diffusion,” Materials Transactions JIM, 

vol. 43, no. 3, pp. 551–559, 2002. 

[167] T.-W. Fu, W. R. Wilcox, and D. J. Larson, “Rate change transients in Bridgman-

Stockbarger growth of MnBi-Bi eutectic,” Journal of Crystal Growth, vol. 57, no. 1, pp. 

189–193, 1982. 

[168] R. Trivedi, A. Karma, T. S. Lo, P. Mazumder, J. S. Park, and M. Plapp, “Dynamic Pattern 

Formation in the Two-Phase Region of Peritectic Systems,” in 2nd Workshop on 

Solidification Microstructures, 1998. 

[169] D. M. Anderson, G. B. McFadden, S. R. Coriell, and B. T. Murray, “Convective instabilities 

during the solidification of an ideal ternary alloy in a mushy layer,” Journal of Fluid 

Mechanics, vol. 647, p. 309, Mar. 2010. 

[170] R. P. Mooney, U. Hecht, Z. Gabalcová, J. Lapin, and S. McFadden, “Numerical modelling 

of axial heat transfer and columnar growth in power down experiments using a TiAl alloy,” 

(submitted), 2014. 



128 

 

[171] A. V Kartavykh, V. P. Ginkin, and S. M. Ganina, “Numerical modeling of power-down 

directional solidification process of Ti–46Al–8Nb refractory alloy,” Journal of Alloys and 

Compounds, no. 0, p. -, 2012. 

[172] M. A. Martorano, J. B. F. Neto, T. S. Oliveira, and T. O. Tsubaki, “Refining of 

metallurgical silicon by directional solidification,” Materials Science and Engineering: B, 

vol. 176, no. 3, pp. 217–226, Feb. 2011. 

[173] H. Müller-Krumbhaar and J. S. Langer, “Sidebranching instabilities in a two-dimensional 

model of dendritic solidification,” Acta Metallurgica, vol. 29, no. 1, pp. 145–157, Jan. 1981. 

[174] C. Misbah, “Velocity selection for needle crystals in the 2-D one-sided model,” Journal de 

Physique Paris, vol. 48, no. 8, pp. 1255–1263, 1987. 

[175] R. P. Mooney and S. McFadden, “Sensitivity analysis of dendritic growth kinetics in a 

Bridgman furnace front tracking model,” in 4th International Conference on Advances in 

Solidification Processes, 2014. 

[176] A. Badillo and C. Beckermann, “Phase-field simulation of the columnar-to-equiaxed 

transition in alloy solidification,” Acta Materialia, vol. 54, no. 8, pp. 2015–2026, 2006. 

[177] G. B. McFadden and S. R. Coriell, “Thermosolutal convection during directional 

solidification. II. Flow transitions,” Physics of Fluids, vol. 30, no. 3, p. 659, Mar. 1987. 

[178] C. J. Chang and R. A. Brown, “Radial segregation induced by natural convection and 

melt/solid interface shape in vertical bridgman growth,” Journal of Crystal Growth, vol. 63, 

no. 2, pp. 343–364, Oct. 1983. 

[179] A. Kartavykh, V. Ginkin, S. Ganina, S. Rex, U. Hecht, B. Schmitz, and D. Voss, 

“Convection-induced peritectic macro-segregation proceeding at the directional 

solidification of Ti–46Al–8Nb intermetallic alloy,” Materials Chemistry and Physics, vol. 

126, no. 1–2, pp. 200–206, Mar. 2011. 

[180] M. F. Zhu and C. P. Hong, “A Modified Cellular Automaton Model for the Simulation of 

Dendritic Growth in Solidification of Alloys,” ISIJ International, vol. 41, no. 5, pp. 436–

445, 2001. 

[181] S. L. Cockcroft, M. Rappaz, A. Mitchell, J. Fernihough, and A. J. Schmaltz, “An 

Examination of Some of the Manufacturing Problems of Large Single-Crystal Turbine 

Blades for use in Land-Based Gas Turbines,” in Materials for Advanced Power 

Engineering, Part II, D. Coutsouradis, J. H. Davidson, J. Ewald, P. Greenfield, T. Khan, M. 

Malik, D. B. Meadowcroft, V. Regis, R. B. Scarlin, F. Schubert, and D. V. Thornton, Eds. 

Dordrecht, Netherlands: Kluwer Academic Publishers, 1994, pp. 1145–1154. 

[182] “CMSX-4.” [Online]. Available: http://www.c-mgroup.com/spec_sheets/CMSX_4.htm. 

[Accessed: 22-Jul-2014]. 

[183] O. Hunziker, “Theory of plane front and dendritic growth in multicomponent alloys,” Acta 

Materialia, vol. 49, no. 20, pp. 4191–4203, Dec. 2001. 

[184] D. Kessler and H. Levine, “Velocity selection in dendritic growth,” Physical Review B, vol. 

33, no. 11, pp. 7867–7870, Jun. 1986. 

[185] M. Schmachtl, A. Schievenbusch, G. Zimmermann, and W. Grill, “Crystallization process 

control during directional solidification in a high-temperature-gradient furnace by guided 



129 

 

ultrasonic waves and real-time signal evaluation,” Ultrasonics, vol. 36, no. 1–5, pp. 291–

295, Feb. 1998. 

[186] J. D. Miller and T. M. Pollock, “Stability of dendrite growth during directional 

solidification in the presence of a non-axial thermal field,” Acta Materialia, vol. 78, pp. 23–

36, Oct. 2014.  



130 

 

Appendix 

Appendix 
 

A.1 Derivation of the 1-Dimensional Heat Flow Equation  

Adapted from Bejan [127]; consider a cylindrical rod of constant cross sectional area A, and 

radius r, having a fixed density , and moving at a rate u along its axis, through a fixed cylindrical 

elemental volume of thickness x, and volume, V, as shown in Fig. A.1. The elemental volume is 

gaining heat radially, Qrad, through its curved surface area Arad, and heat is being internally 

generated due to the release of latent energy from a solidification process, Qlatent. Considering net 

heat by conduction (diffusion of heat); heat enters the volume at its west face, Qx, and is leaving the 

volume at its east face, Qx+x. Considering sensible energy carried by the moving mass (advection 

of heat); heat is advected into the volume at its west face, 
xcTm



, and advected out of the volume at 

its east face, 
xxcTm 



, where 


m  is the mass flow rate of the rod through the volume, i.e., Aum 


, 

where c is the specific heat capacity of the rod material, and T is the temperature of the rod at the 

west face Tx, or at the east face Tx+x. 

 

Fig. A.1 Conservation of energy in a cylindrical elemental fixed volume. 

By conservation of energy in the elemental fixed volume; 

Time rate of change of energy in the volume = Sum of heat energies acting on the volume 

  ,latentradxxxxxx QQcTmcTmQQVcT
t









  (A.1)
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By Fourier’s law; 
x

x
dx

dT
kAQ    and  

xx

xx
dx

dT
kAQ



     

so that,  x
dx

dQ
QQ x
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kA
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d
QQ xxx 


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
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
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Sensible energy terms; .x
dx

dT
cmcTmcTm xxx 







   

Latent heat term; ,
t

V
LQ S

Mlatent



   where LM is the latent heat of fusion per unit mass 

for the material, and VS is the volume of material solidified. 

 

The radial heat term; ,radradrad qAQ    where Arad=2rx and qrad is the radial heat flux. 

 

Now, substitute into the conservation equation, assuming a fixed density, fixed heat capacity, and a 

fixed mass flow rate; 
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Divide across by, Ax; 
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Since, A=r
2
, and defining E as latent heat released per unit volume, p as the volume perimeter, 

and qrad=-h(T−T∞), yielding; 
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A.2 Discretisation of the 1-Dimensional Heat Flow Equation  

As per Section 3.2.1, the heat equation for 1-dimensionsal heat flow in a moving rod is given by 

equation (3.2) as follows: 

    .ETT
A

hp

x

T
cu

x

T
k

x
cT

t
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










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


  (A.5)

 

 

The control volume method [139] is applied to develop finite difference equations.  

 

 

Fig. A.2 Control volume ‘i’. 

The heat equation is integrated over a cylindrical-shaped control volume (‘i’ in figure A.2) giving, 
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The mean value theorem is applied to integrals 1, 4, and 5. This means that an average value is 

taken for each variable being integrated; denoted below by a bar (
 

) over the averaged variable. 

The divergence theorem is applied to integrals 2 and 3. This converts a volume integral to a surface 

integral. The surface (S) over which the integration takes place is that through which heat is 
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permitted to flow into or out of the CV by diffusion (integral 2) and advection (integral 3), i.e., 

through the east and west faces of the CV, each having surface area A. This leads to the following 

form of the heat equation, 

 

  ,CVCV

e

wS

e

wS

CV VEVTT
A

hp
dSTcudS

x

T
kV

t

T
c 









   (A.7)

 

 

where the sub-scripts ‘e’ and ‘w’ denote the east and west faces of the CV, respectively. Evaluating 

the integrals yields, 
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Equation (A.8) is equivalent to equation (4.23), noting that; T∞ and h are used in place of TH,C and 

hH,C, respectively, and that, the final term on the RHS of both equations are equal. Next, Taylor 

series’ expansions are introduced in place of the partial derivative terms giving,   
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In this equation, a forward difference approximation {equation (A.17)} is applied for the time 

derivative terms (having first order accuracy), and a central difference approximation {equation 

(A.24) and equation (A.25)} is used for the spatial derivative terms (having second order 

accuracy); see Appendix A.3 for details of these approximations. Divide by VCV =Ax to get,  
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Rearranging gives, 
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Equation (A.11) is corresponds to equation (4.24) noting that, as before, T∞ and h are used in place 

of with TH,C and hH,C, respectively. The final term on the RHS of each equation is equivalent, and is 

evaluated as )/( tVLE SM    with VS/t=gS(d/t)+d(gS/t). The partial derivative terms, that 

comprise VS/t, are estimated using forward difference Taylor series approximations (having first 

order accuracy) as follows: 
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When all the Taylor series’ truncation error terms are dropped from equation (A.11) it can be 

rearranged as follows: 
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where P/A = 2/r, Te−Tw=(Ti+1−Ti-1)/2, T∞ is replaced with TH,C, and h is replaced with hH,C. Equation 

(A.13) corresponds to equation (3.4), reproduced below, recalling from Chapter 3 that, r = r2 and q2 

is the radial heat flux at the circumference of the CV.  
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A.3 Taylor Series Formulations for First Order Derivatives  

Consider Taylor series expansions of a function f(x) about a point x0 in the forward (i.e., positive x) 

and backward (i.e., negative x) directions, respectively, 
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where x is the size of the step forward, or backward, from x0. Rearranging the first expression for 

df/dx about x0 gives the forward difference approximation for the first derivative of the function f(x) 

as follows: 
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where, 
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The “order of” notation, O(x), characterises the truncation error for the finite difference 

approximation. This is the difference between the actual derivate and the value given by the 

approximation. In this case, the approximation is first order accurate. 

Subtracting the backward direction Taylor series expansion from the forward direction 

Taylor series expansion gives the central difference approximation for the first derivative of the 

function f(x) as follows: 
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Rearranging the for df/dx about x0 gives, 
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where, 
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In this case, the approximation is second order accurate. 
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In Appendix A.2, the approximation to the first derivative of temperature with respect to x at 

the east and west faces of a CV {see figure A.2 and equation (A.9)} is made using the central 

difference formula where with the size of the step forward, and backward, from the CV face to the 

next CV node centre is equal to x/2. The appropriate formula in this case is determined by 

substituting x/2 for x in equation (A.20) to give, 
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where, 
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so that, in terms of the CV arrangement shown in figure A.2, the central difference approximation 

for the spatial first derivatives at the east and west faces of the CV are given by, 
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respectively. 
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A.4 Radial Heat Flow in a Pipe (Crucible) 

 

 

Fig. A.3 Heat flow in a pipe. 

Consider steady-state radial heat flow (Q) in a solid pipe, with no internal heat generation, as 

shown in figure A.3. For continuity, 

,2 rLqQ   (A.26)
 

 

where L is the pipe length and q is the radial heat flux in the pipe at any radius r. Apply Fourier’s 

law to give, 
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Integrate from r1 to r2, 
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Rearrange for T2 with Q=2r2Lq2, giving, 
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Also, rearrange equation (A.30) for Q, 
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since, Q=2rLq. Equation (A.33) is gives q at any radius r. 

 

To get T(r), in equation (A.30) replace r2 with r to get, 
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and divide by equation (A.30) to get, 
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