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€ _ lens using 3P labelled cDNA synthesized from p7 and p14 mouse lenses. We demonstrated that 161
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apoptosis-related genes were expressed at levels significantly above background and 20 genes were
potentially significantly differentially expressed (P < 0.05) by at least 2-fold between p7 and p14. We

Keywords: used RT-PCR to confirm expression of these genes in newborn, p7, p14 and 4 wk mouse lens cDNA
E}?:l(se samples. Expression of 19/20 of the genes examined was confirmed, while 5 genes (Huntingtin, Mdm2,
lens Dffa, galectin-3 and Mcl-1) were confirmed as differentially regulated between p7 and p14. RT-PCR was
development also used to examine the expression of the chick homologues of the most-highly expressed and/or
apoptosis potentially differentially regulated genes in chick embryo lenses at E6-E16. The majority of genes
array expressed in the postnatal mouse lens were also expressed in the chick embryo lens. Western blotting
p53 confirmed developmentally regulated expression of Axl and Mcl-1 during mouse lens development and
Xd”t{z , of Mdm2, Mdm4/X and p53 during mouse and chick lens development. Western blotting also revealed
untingtin

the presence of p53 and Mdm4/X splice variants and/or proteolytic cleavage products in the developing
lens. Since Mdm?2 is a regulator of the tumour suppressor gene p53, we chose to thoroughly investigate
the spatio-temporal expression patterns of p53, Mdm2 and the functionally related Mdm4/X in mouse
lens development at E12.5-E16.5 using immunocytochemistry. We also examined Mdm?2 expression
patterns during chick lens development at E6-E16 and Mdm4/X and p53 at E14. Expression of Mdmz2,
Mdm4/X and p53 was spatio-temporally regulated in various compartments of the developing lens in
both mouse and chick, including lens epithelial and lens fibre cells, indicating potential roles for these
factors in regulation of lens epithelial cell proliferation and/or lens fibre cell differentiation This study
provides a thorough initial analysis of apoptosis gene expression in the postnatal mouse lens and
provides a resource for further investigation of the roles in lens development of the apoptosis genes
identified. Furthermore, building on the array studies, we present the first spatio-temporal analysis of
expression of p53 pathway molecules (p53, Mdm2 and Mdm4/X) in both developing mouse and chick
lenses, suggesting a potential role for the p53/Mdm2 pathway in lens development, which merits further
functional analysis.
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1. Introduction

Lens development occurs throughout the lifetime of the indi-
vidual and involves the terminal differentiation of lens epithelial
cells into lens fibre cells (Piatigorsky, 1981; Wride, 1996). This
process begins during embryogenesis and continues, albeit at
a slower rate, into adulthood and old age. A number of character-
istic morphological changes are observed in lens fibre cells during
differentiation. The cells increase in length by 50- to 100-times,
accompanied by an increase in fibre-specific proteins, including
intermediate filament proteins CP49 and CP95 (Ireland et al., 2000)
and crystallins (Cvekl and Piatigorsky, 1996).

The elimination of potentially light-scattering intracellular
organelles, including nuclei and all associated nucleic acid, is a key
feature of the differentiation of lens epithelial cells into fibre cells
and is thought to involve at least some components of the apoptosis
signalling pathway (Dahm, 1999; Wride et al.,, 1999, 2003; Wride,
2000, 2007; Bassnett, 2002, 2008). However, unlike in ‘conven-
tional’ apoptosis, the cells from which the organelles have been
removed persist throughout life, rather than being destroyed.
Additional structural differences have been observed, including the
persistence of the cytoskeleton in mature fibre cells, whereas it is
completely degraded during apoptosis (Bassnett and Beebe, 1992;
Dahm et al., 1998). Also, there is no flipping of phosphatidylserine
to the outer membrane of the lens fibre cells as observed in
apoptosis (Bassnett and Mataic, 1997; Wride and Sanders, 1998).
Finally, in executioner caspase (caspase-3, -6 and -7) knockout
mice, lens fibre cell organelle loss proceeds as normal (Zandy et al.,
2005).

Cataract occurs when opacities form in the normally transparent
lens and is the commonest cause of blindness worldwide (Francis
etal,, 1999, 2000; Congdon, 2001). Lens opacities can be congenital
or appear during ageing and can form as a result of genetic muta-
tions or exposure to toxic insults; e.g. UV radiation. Many of the
genetic mutations causing cataract affect structural and/or trans-
parency related components of the lens (e.g. connexins and crys-
tallins, Graw and Loster, 2003). Congenital cataracts are rare in
developed countries (30 cases per 100,000 births) (Graw, 2004).
Moreover, maternal rubella virus infection causes bilateral
congenital cataract (Gregg and Banatvala, 2001; McAlister Gregg,
2001), possibly as a result of defects in lens fibre cell organelle
degradation. Accumulation of nuclear and mitochondrial fragments
in cortical cataract can occur due to incomplete organelle degra-
dation in the equatorial region of the lens (Pendergrass et al., 2005,
2006). Prevention of DNA degradation in a mouse model, due to
DNase II-like acid DNase (DLAD) deficiency leads to DNA accumu-
lation in the lens, thereby causing cataract (Nishimoto et al., 2003).
Therefore, DLAD must be the DNase responsible for nuclear
degradation during lens cell differentiation (Nishimoto et al., 2003;
Nakahara et al., 2007).

Microarray studies have been used to profile gene expression in
the lens during early postnatal development in order to compare
gene expression therein with non-lens tissues and to compare gene
expression profiles in lens compartments at different stages of
maturation (Wride et al., 2003; Ivanov et al, 2005; Xiao et al,,
2006). This technology has also pinpointed gene expression
changes between cataractous and normal age-matched lenses in
humans and in mouse models of cataract, including the Sparc and
Mimecan knockouts (Hawse et al., 2003; Ruotolo et al., 2003;
Hawse et al., 2004; Mansergh et al., 2004; Segev et al., 2004). These
studies demonstrated significant differential gene expression
between cataractous lenses and age-matched controls. Expression
of many unexpected genes has been identified in the lens using
arrays, including those encoding the haemoglobin subunits (Wride
et al., 2003; Mansergh et al., 2004, 2008). Notably, study of genes

expressed in normal lens development highlighted the presence of
many genes associated with apoptotic processes.

Here, we have used nylon arrays comprised of 243 cDNAs rep-
resenting genes with known roles in apoptosis in order to carry out
an initial screen of the expression of these genes at postnatal day 7
(p7) and postnatal day 14 (p14) of mouse lens development. These
stages were chosen as the postnatal period before day 14 is a period
of rapid lens growth, accompanied by lens fibre cell differentiation
and organelle loss involving apoptosis signalling pathways (Wride,
2000). Formation of the organelle free zone (OFZ) is complete at
p14 when the eyes open, allowing for clear vision (Kuwabara and
Imaizumi, 1974). A number of highly expressed or differentially
regulated genes were selected for follow-up using RT-PCR. In order
to further select for biological relevance via cross-species compar-
ison, we tested expression of the chick homologues of selected
genes during chick embryo lens development (E6-E16) using
RT-PCR.

The mouse double minute 2 (Mdm 2) gene, the product of which
is a regulator of p53, was differentially regulated between the two
stages studied in the mouse lens, while p53 itself was also highly
expressed. Mdm4/X, was not printed on the array used, but is
known to be intimately functionally related to both p53 and Mdm2
(Marine et al., 2006). The p53 pathway is a key component of
apoptotic signalling; p53 is possibly the most pivotal tumour
suppressor gene and its ablation is a primary cause of cancer
(Toledo and Wahl, 2007). Furthermore, it is becoming apparent that
p53/Mdm?2 signalling is involved in various developmental
processes including osteoblast differentiation (Lengner et al.,
2006), nervous system development (Xiong et al.,, 2006) and in
regulating proliferation and progenitor expansion in various cell
lineages (Liu et al., 2007). The role of p53 family molecules in
embryonic development has recently been reviewed (Danilova
et al.,, 2008a,b) and it was suggested that a significant number of
congenital developmental abnormalities may be due to defects in
the p53 protein family. Furthermore, there is some evidence that
the p53 pathway may be involved in eye and/or lens development.
P53 expression has been demonstrated in the normal adult mouse
eye in the corneal epithelium (Tendler et al., 2006) and in the lens
epithelial cells of the central and pre-equatorial zones and in the
lens fibre nuclear bow region (Pokroy et al., 2002), while increased
p53 expression in the rat lens epithelium following exposure to UV
light has been associated with apoptosis and cataract (Ayala et al.,
2007). Furthermore, temporally distinct patterns of p53-dependent
apoptosis have been identified during mouse lens development
(Pan and Griep, 1995) and overexpression of human wild-type p53
in the mouse lens results in defects in lens fibre cell differentiation
(Nakamura et al., 1995). However, there is no prior evidence for
Mdm2 expression in the lens and the spatio-temporal pattern of
expression of members of the p53 pathway in lens development
remains undetermined. In the latter half of the studies presented
here, we therefore focused on Mdmz2, p53 and Mdm4/X in Western
blotting and immunocytochemistry studies during mouse and
chick lens development.

2. Materials and methods
2.1. Collection of lenses

Mice (129SvEv) were maintained on a 12 h light/12 h dark light
cycle with food and water ad libitum and were handled according to
Home Office UK guidelines. Lenses were extracted from mice at
different stages of maturation: newborn (Nb), postnatal day 7 (P7),
postnatal day 14 (P14) and 4 wk (4wk). Mice were cervically dis-
located and enucleated. The lenses were then removed from
a posterior incision in the eyeballs under a research stereo
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microscope (Nikon SMZ800) using No. 5 forceps (Sigma, UK) and
pooled for RNA sample collection. A different litter was used for
each pooled lens RNA sample collected.

Lenses were also collected from White Leghorn chick embryos
(Henry Stewart and Co., Lincolnshire, UK). Fertile eggs were placed
in a humidity-controlled incubator (Brinsea Octagon 100, Jencons,
UK) at 37.8 °C. Embryos were placed at —4 °C for 20-30 min to cool,
then decapitated using a fresh scalpel blade before the lenses were
removed using tungsten needles under a dissecting microscope
(Nikon SMZ800). Lenses were collected from both eyes at embry-
onic days (E) 6, 8,10,12, 14 and 16 and were pooled to generate each
RNA sample.

2.2. RNA extraction, quantification and integrity

Lenses were immediately homogenised in TRIzol® reagent
(Invitrogen, UK) using a tissue grinder (Wheaton) and RNA was
isolated using the manufacturer’s protocol. RNAs were quantified
using a spectrophotometer (GeneQuant II, Pharmacia Biotech) at
260 nm and checked for RNA integrity via agarose gel electropho-
resis by assessing 18 and 28S band intensities.

2.3. Apoptosis arrays: experimental design and MIAME standards

We used Panorama™ mouse apoptosis arrays (Sigma-Genosys,
UK; cat# G1039), in conjunction with RNA extracts from p7 and p14
mice. These arrays consisted of nylon membranes on which cDNAs
representing 243 known apoptosis-related genes were printed.
Four biological repeats were carried out for day 7, and 3 for day 14
lenses. Each array carried duplicate spots, giving 8 and 6 repeats
respectively. These arrays comply with MIAME standards (Brazma
et al., 2001); the array platform and all data described in this paper
were submitted to the GEO database http://www.ncbi.nlm.nih.gov;
GEO accession: GSE8731. The complete list of genes present on the
array is provided in Supplementary Table 1.

2.4. Array hybridisation

Radiolabelled cDsNAs were synthesized from the purified RNA
according to the manufacturer’s instructions (Sigma-Genosys, UK)
incorporating >3P-dCTP (Amersham Biosciences, UK). Arrays were
first pre-hybridised to prevent non-specific binding of DNA by
washing in 50 ml 2 x SSPE (Sigma, UK) at room temperature for
5 min then in hybridisation solution (Sigma, UK) containing salmon
testes DNA (100 pl Salmon testes DNA in 10 ml hybridisation
solution) at 65 °C for at least an hour before the addition of the
radiolabelled cDNA.

Unincorporated radiolabelled nucleotides were removed using
a sephadex bead containing spin column (Sigma-Genosys, UK) and
centrifugation.

Purified radiolabelled cDNA was then added to 2-3 ml hybrid-
isation solution (5 x SSPE, 2% SDS, 5 x Denhardt’s reagent, 100 pg/
ml sonicated denatured salmon testes DNA) and denatured by
heating at 95 °C for 10 min and then added to the arrays, which
were hybridised overnight for 18 h in a hybridisation oven (UVP,
HC-3000 Hybricycler) at 65 °C. The hybridisation solution was
decanted and arrays were washed with solution I (0.5 x SSPE; 1%
SDS), 3 x 2-3 min each. Wash solution I was then used to wash the
arrays at 65 °C, 2 x 20 min. Arrays were then washed for a further
20 min at 65 °C using solution II (0.1 x SSPE, 1% SDS). The wash
solution was discarded and the arrays were wrapped in clingfilm
before placing into a storage phosphor screen (Amersham Biosci-
ences, UK) for 5-7 days. The phosphor screen was scanned using
a Typhoon scanner (Amersham Biosciences, Typhoon 9410 Variable

Mode Imager); a phosphoimage of an array hybridised with P7
radiolabelled RNA is presented in Supplementary Fig. 1.

Some arrays were subsequently stripped using boiling stripping
solution (10 mM Tris-HCI, 1 mM EDTA, 1% SDS, pH 8; Sigma, UK).
Stripped arrays were wrapped in clingfilm and exposed to the
phosphor screen in order to check that all radiolabelled cDNA had
been removed before re-use. Scatter plots providing an overview of
the reproducibility of array results between repetitions are pre-
sented in Supplementary Fig. 2.

2.5. Array analysis

Array images were analyzed using ImaGene 5 (Biodiscovery)
and spot intensity and a background signal values for each indi-
vidual spot were determined. The background value for each spot
was calculated as a mean of the intensity of a set number of pixels
surrounding the spot. The individual background values were then
subtracted from the corresponding spot intensity, to give a cor-
rected intensity value (i.e. corrected intensity =original spot
intensity minus background value for that spot). Data were
subsequently exported to Microsoft® Excel for further analysis. The
mean and standard deviation (+2SD) spot intensity values were
calculated for each spot; these values were subsequently used to
filter the data. Spots with signals lower than mean + 2SD of the
background were removed from the data set following normal-
isation. Each corrected spot value was normalised before being
filtered so that the spot intensities could be compared between
arrays. Two different approaches for normalisation were used: 1)
housekeeping gene normalisation, 2) global normalisation. In the
first approach, the spots were normalised with respect to the mean
value for the housekeeping genes on each array. In global nor-
malisation, the spots were normalised using the mean spot inten-
sity calculated for all spots on each array excluding housekeeping
genes, negative controls and positive controls.

Following normalisation, a mean intensity value was calculated
for each gene on each array at each time point. The mean values
were compared between P7 and P14 using an unpaired Student’s
t-test. Genes were considered to be significantly differentially
regulated if they showed a 2-fold or greater difference between the
time points and p < 0.05. Using the housekeeping gene normal-
isation method, 20 genes were significantly differentially regulated,
while with global normalisation 60 genes were significantly differ-
entially regulated. The latter data set also included the 20 genes
identified using the housekeeping gene method. Therefore, since
the housekeeping gene method of normalisation was more strin-
gent, this was the preferred method. In order to estimate which
genes were highly expressed at each stage, we asked that at least one
of the spots representing each gene be above background + 2SD in
all replicates for a given stage (p7 or p14). Analysis of all p7 repeats
versus all p14 repeats was carried out by t-test, we also required
a fold change of 2. Statistically significant, differentially regulated
genes were tested by PCR using 3 biological replicates for each stage.

2.6. RT-PCR confirmations

Before cDNA synthesis, DNase digestion was completed using
the TURBO DNase protocol (Ambion, UK) according to the manu-
facturer’s instructions. cDNA was generated using the Superscript™
First-Strand Synthesis System (Invitrogen), also according to the
manufacturer’s instructions. Mouse PCR primers were designed
using Primer3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_
www.cgi) from Genbank reference sequence for each gene. The
mouse housekeeping gene (Gapdh) used for the PCR confirmations
was taken from Mansergh et al. (2004). Primers were obtained
from Operon and were resuspended in nuclease free water (Sigma,
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Sequence of mouse PCR primers for the genes identified from these arrays, annealing temperatures and the expected product size.

Accession number Gene Forward primer Reverse prime Annealing temperature (°C) PCR product size (bp)
NM_001001303 Gapdh ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA 61 450
Genes shown to be differentially expressed between the two time points

NM_010414 Hd CTGCCACTCACCATTCTCACC CCTCATCCCATTCCTCCTCTC 62 213
NM_008771 P2rx1 CTTGGCTATGTGGTGCGAGAG TTGAAGAGGTGACGACGGTTT 62 233
NM_010044 Dffa ACTTCCTCTGCCTTCCTTCCA GCCACATTCTTCCACTTCACC 62 160
NM_010786 Mdm2 GCACACACACACACACACACA AACATAGGCAACCACCAGGAA 61 240
NM_008594 Mfge8 CAACAACTCCCACAAGAAGAACA AGAAGGTCGTCAGCCACAGAA 61 220
NM_010513 IGF1r GCGGCGATGAAGAGAAGAAA TCAGGAAGGACAAGGAGACCA 62 216
NM_009465 Axl AAGAGCGATGTGTGGTCCTTC GGCAGAGCCTTCAGTGTGTTC 61 248
NM_010705 Galectin-3 ACAGTGAAACCCAACGCAAAC GCACAGACACACAACACACAAA 61 594
NM_009742 Al ATTGCCCTGGATGTATGTGCT GGTTCTCTCTGGTCCGTAGTGTT 61 219
NM_009870 Cdk4 CGACGCAGAGTGAGAAGAGG TCAGGGAGGGAAGAAGACAGA 61 231
NM_009367 Tef-p2 TTGGATGCTGCCTACTGCTTT GCTTCGGGATTTATGGTGTTG 61 212
NM_011640 p53 GCTGGATAGGAAAGAGCACAGA GGTTGAGGGCAAGAAATGGA 61 239
NM_146057 Dap1 CTGTGTCGCTAAGGAGGGATG TTACAACGGGAGAAACTGACGA 62 121
XM_127995. Srebf2 CAAGTCAGCAGCCAAGGAGAG TCACAAATCCCACAGAGTCCA 61 233
NM_008402 Itg-ov GGCTGCTGTGGAGATAAGAGG GCCTTGCTGAATGAACTTGGA 61 162
NM_007829 DAXX AAAGAAGCAACTGGGCTCTGG GAGAAGCAGGGATGGAGAAGG 63 214
NM_008562 Mcl-1 ATTTCTTTCGGTGCCTTTGTG AAACCCATCCCAGCCTCTTT 59 144
NM_010512 IGF-1 CTCTGCTTGCTCACCTTCACC CACTCATCCACAATGCCTGTCT 63 176
NM_011480 Srebf1 TGGCTTGGTGATGCTATGTTG AGGGAACTGTGTGTGTTTCTGG 61 150
NM_011580 Thrombospondin CTGTGACCCTGGACTTGCTGT AGTATCCCTGAGCCCTTGTGG 64 203

UK). Chick primers were also designed as above. However, for
sequences unavailable on Gene, BLAST searches were used to
identify the likely chick homologues. The primer sequences for the
housekeeping gene used, Gapdh, was taken from (Faulkner-Jones
et al., 2003). The mouse and chick primer sequences are shown in
Tables 1 and 2 respectively.

The GoTaq® protocol (Promega, UK) was used for PCRs using
standard procedures. Equal loading of cDNA was monitored using
the products of the gapdh PCR reaction and subsequent image
analysis. Adjustments were made to the amount of cDNA used in the
PCR reactions until the resulting bands from the gapdh PCR reaction
were shown to be of the same intensity in each cDNA sample used at
a minimum number of cycles. The semi-quantitative RT-PCR
method used was similar to that described in our previous publi-
cations (Wride et al., 2003; Mansergh et al., 2004). For each gene,
the number of cycles used for each set of primers was based on
initial experiments in which the number of PCR cycles was varied

such that, for all genes, the PCRs were in the linear part of the PCR
amplification curve (examples of this for 3 genes are shown in
Supplementary Fig. 3). We have recently demonstrated that the
semi-quantitative method we describe here is robust, since we have
revealed similar differential patterns of expression of the chick
Survivin gene during chick lens development using both semi-
quantitative RT-PCR and QPCR (Jarrin et al., unpublished data).

2.7. PAGE/Western blotting

Protein was isolated from pooled postnatal mouse lenses or
embryonic chick lenses using RIPA buffer (Upstate, USA) containing
protease inhibitor cocktail (Sigma, UK). Samples were incubated at
4°C on a rotator for 30 min and then centrifuged at 13,000xg for
30 min at 4 °C. The supernatant was removed, aliquoted and stored
at —20 °C. Protein samples were quantified using a BCA assay (Pierce,
UK) according to the manufacturer’s protocol. SDS-PAGE was carried

Table 2

Chick PCR primers for homologous genes of differentially regulated genes, including accession numbers of the sequence from which the primers were designed, annealing
temperatures and expected product sizes. Genes for which a sequence could not be identified are highlighted in bold.

Accession number Gene Forward primer Reverse primer Annealing temperature (°C) PCR product size (bp)
NM_001001303 Gapdh GGAGAAACCAGCCAAGTATGATG AAAGGTGGAAGAATGGCTGTCA 61 138
Genes shown to be differentially expressed between the two time points

XM_420822 Hd CCAGAAGGAGGTGGTGGTGT AACAGGGCGAAGGGAAGAAG 62 250
- P2rx1 Gene sequence not identified - - -
XM_417610 Dffa CTTGCCCAGAATCAAACCAAA CGTGTCAACCACATCCATCTC 61 195
XM_416084 Mdm?2 AACTGGTGCCGTCCTAATCT TAATGTATGGTGGCTGGGTTG 59 148
XM_413867 Mfge8 GGAAGATGAGGCTGAGTGGTG GCTGTGATGGGAGGGTCAAA 62 208
NM_205032 IGF1r AAGTGCTCCGCTTTGTGATG GAGGCTTGTTCTCTTCGCTGT 61 204
- Axl Gene sequence not identified - - -
NM_214591 Galectin-3 CAGTTCCTCATTGTGCTTGG GGACAGGGATTTGGTGTTAGG 59 165
- Al Gene sequence not identified - - -

- Cdk4 Gene sequence not identified - - -
NM_001031045 Tef-p2 CGGAAGGAGGAGGAAGAGGA GAGGGAAGAAGTGATGGCAGA 62 325
NM_205264 p53 CGCTATGAGATGCTGAAGGAGA CGTGGCTGAAGGGAAATGG 62 237
NM_001031003 Dap1 CACCAGCAGATTCAGGACAAA TGCGTAAGGTAGGAACACATAGAG 61 345
XM_416222 Srebf2 GTGCCTCTCCTTCAACCCTTT ATCATCCAGCCAAACCATCC 62 246
NM_205439 Itg-aV TTGATTGTTGGAGCCTTTGGT CTTTCCTTTGCCATCTGCTTT 60 189
- DAXX Gene sequence not identified - - -
XM_001233734 Mcl-1 GAGGGCTTTGTTGACTTCTTCC TCCACTTTGCCTTTCTCTCCT 61 178
NM_001004384 IGF-1 GATGCTCTTCAGTTCGTATGTGG GCAGATTTAGGTGGCTTTATTGG 61 176
NM_204126 Srebf1 GCAGAAGAGCAAGTCCCTCAA GTCGGCATCTCCATCACCTC 63 105
XM_421205 Thrombospondin GGGTGAAGCAAGAGAAACCAA CGCAAAGCAGGGATTAGACA 60 250
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Fig. 1. Gene families expressed in p7 and/or p14 mouse lenses at above-background levels as determined using Panorama™ apoptosis arrays before normalisation was applied.
Genes have been grouped into gene families by Gene Ontology (Sigma-Genosys, UK). The mean background and standard deviation values were calculated for each spot repre-
senting a gene on the array. Spots were considered to be below background if their original intensity was lower than the mean background, plus 2 standard deviations of back-
ground and were therefore removed from the data set. For a complete list of genes at p7 and p14 surviving the filtering procedure, please see Supplementary Tables 2 and 3.

out using 10-15% gels using the Bio-Rad Mini-Protean® 3 cell system.
10ug of protein sample was added to each well; a molecular weight
marker was also loaded (Bio-Rad Precision Plus). Proteins were
subsequently transferred to nitrocellulose membrane (Hybond™-
ECL™, Amersham Biosciences, UK) using transfer conditions of 100 V,
350 mA for 45 min. Proteins were visualised on the membrane using
Ponceau S (Sigma, UK) and white light photography (UVP BioDoc-It™
System). Membranes were then washed with 1 x TBS/Tween to
remove the Ponceau S before the blocking (using 5% milk), washing
and antibody incubation. The following rabbit polyclonal primary
antibodies were all purchased from Santa Cruz Biotech and were
used here in Westerns for 2 h each at a dilution of 1:200: Mcl-1
(sc-819), axl (sc-20741), MdmX (sc-28222), and p53 (sc-6243). The
Mdm?2 antibody (ab38618) used in Westerns was obtained from
AbCam (Cambridge, UK) and was also used at 1:200. Goat anti-rabbit
IgG (Santa Cruz, sc-2004; 1:5000) was used as a secondary antibody
for each antibody above for 1 h. A goat polyclonal actin antibody
(Santa Cruz, sc-1616; 1:5000) was also used with a donkey-anti goat
IgG (Santa Cruz, sc-2020; 1:5000) as the secondary antibody. Anti-
bodies were diluted in 1% skimmed milk. Bands were detected on
film (Hyperfilm™, Amersham Biosciences, UK) using ECL Plus
Western blotting detection reagents (Amersham Biosciences, UK). A
number of different film exposure times ranging from 1 to 10 min
were used. Membranes were stripped using standard procedures
and reprobed using the actin antibody.

Autorads were scanned and images of Western blots saved as .tif
files. Images were imported to Scion Image (Scion Corporation) for
analysis of band intensities (measured as mean pixel intensity).
Measurements from Scion Image were imported into Microsoft®
Excel in which intensities were normalised by dividing by the mean
reading for all bands measured from a given sample set. Bands of an
above average intensity are therefore above 1 while those below
average are below 1 in value. This calculation also puts experimental
readings and readings from beta-actin hybridised Westerns from the
same samples on the same scale. Normalised sample readings were
then divided by the value for beta-actin intensity from the same
sample. Finally, means and standard deviations were calculated for
all repetitions (at least n=3 for each protein examined). Mean
values, thus obtained, were then graphed using Microsoft® Excel;

error bars represent plus and minus half a standard deviation. The
bar charts generated are provided as Supplementary Figs. 4, 6 and 7.

2.8. Tissue processing for immunocytochemistry

Chicken embryos (6 and 8 days, heads; 10-16 days, eyes) were
incubated to the appropriate stage, removed from the eggs and
placed in ice cold phosphate-buffered saline (PBS). Mouse embryos
were collected at E12.5, E14.5 and E16.5 post-coitum. Mouse
embryos were embedded whole. All tissues were washed with PBS.
Either whole chick embryo heads or eyes were fixed and embedded
depending on the stage. Eyes were removed from the embryo, cut
centrally with a razor blade and the posterior segments of the eyes
were discarded. Tissues were fixed for 24 h at 4°C in 4% para-
formaldehyde (PFA), then washed 2 x 30 min in PBS, dehydrated
through a graded series of ethanol and cleared in 50:50 etha-
nol:xylene, 30 min and then 100% xylene, 3 min. Tissues were then
infiltrated with paraffin wax and embedded in plastic moulds using
standard procedures. Tissues were subsequently sectioned at
7-8 um on a microtome (HM 325, Microm) and mounted on
microscope slides (Fisher, UK).

Table 3

The ten most-highly expressed genes at P7 and P1. For a complete list of all genes
printed on the array, see Supplementary Table 1. For a complete list of all genes
expressed above background, plus 2SDs of background at both p7 and p14, please
see Supplementary Tables 2 and 3.

Gene name  Accession Normalised Normalised Gene family

number band band

intensity P7 intensity P14

Clusterin NM_013492 75.36 63.25 Apoptosis-related factors
Gpx1 NM_008160 55.09 48.46 Apoptosis-related factors
Pin NM_019682 50.64 42.09 Apoptosis-related factors
14-3-3 eta NM_011738 47.45 28.95 Signal transduction
SARP-2/sfrp-1 NM_013834 39.34 56.28 Apoptosis-related factors
Dad-1 NM_010015 32.63 27.49 Apoptosis-related factors
Cyclin-G1 NM_009831 28.61 51.28 Cell cycle regulators
Myd118 NM_008655 28.61 20.37 Signal transduction
Mts-1 NM_011311 23.74 28.27 Apoptosis-related factors
Caspase-7 NM_007611 18.92 18.79 Caspases and regulators




1142 J.C. Geatrell et al. / Experimental Eye Research 88 (2009) 1137-1151

2.9. Immunocytochemistry

Mouse and chick slides were dewaxed in Xxylene, then re-
hydrated through a graded series of alcohol and washed 2 x 10 min
each in PBS. Antigen retrieval was then carried out using a citric
acid based antigen unmasking solution (Vector labs, UK) for 15 min
in a pressure cooker. The sections were allowed to cool, then
endogenous peroxidase activity was quenched with 5 ml Methanol
98%, 5ml Hydrogen Peroxide 30% and 40 ml ddH20O, 5 min.
Immunocytochemistry was carried out using the VECTASTAIN®
Elite Universal ABC kit (Vector labs, UK) according to the manu-
facturer’s protocol. Primary rabbit polyclonal antibodies Mdm?2
(H-221: sc-7918; Santa Cruz Biotech), MdmX (H-130: sc-28222;
Santa Cruz Biotech), and p53 (FL-393: sc-6243; Santa Cruz Biotech)
were incubated at a dilution of 1:50 in 1 x PBS, 4h at room
temperature. The sections were then stained for 4 min with Very
intensive Purple (VIP; Vector labs, UK). Slides were dehydrated in
a graded series of alcohol, cleared in xylene and then mounted in
mounting medium (DPX, Raymond Lamb Laboratories, UK). Slides
were coverslipped, allowed to dry and examined under bright field
using a Leica DMRA2 microscope with attached digital camera.

3. Results
3.1. Array analysis: highly expressed genes

We identified 161 apoptosis-related genes using the arrays,
which fell into several different gene ontology categories as
defined by the manufacturer of the arrays (Fig. 1). The top 10
most-highly expressed genes at p7 and p14 are presented in
Table 3.

The most abundant genes were those in the ‘apoptosis-related
factors’ category (p7, 46 genes; p14, 56), including, amongst the
most-highly expressed, clusterin, Gpx1, Pin, Sarp-2/sfrp-1, Dad-1 and
Mts-1 (Table 3). There were several ‘caspases and regulators’
expressed (p7, 3; p14, 11), including caspase-2, -3, -7 and -8 as well
as inhibitors of apoptosis (IAPs), such as Survivin and Xiap a genes
encoding caspase substrates, Parp and Parp-2. We have previously

Table 4

Differentially expressed genes, p7 and p14. Normalisation was carried out using the
housekeeping gene method (see text for details). This table lists the genes shown to
have a 2-fold or greater difference in expression between P7 and P14 and a t-test
p <0.05.

Gene name Accession Mean Mean Fold p-Value
number normalised normalised difference

expression  expression

P7 P14
P2rx1 NM_008771 2.05 18.05 8.81 1.60E—05
Hd NM_010414  2.97 21.96 7.34 4.50E-06
Icad/Dffa NM_010044 3.91 15.03 3.84 0.0002
Mdm2 NM_010786 4.78 16.8 3.51 4.60E-07
Mfge8 NM_008594 2.52 7.89 3.13 0.0004
IGF1r NM_010513  2.33 6.84 2.93 0.0001
Axl NM_009465 2.85 8.27 29 0.0017
Galectin-3 NM_010705 2.49 6.67 2.68 0.0002
Al NM_009742  2.46 6.53 2.66 0.0014
Cdk4 NM_009870 2.79 7.2 2.58 0.0005
Srebf2 XM_127995 4.62 11.86 2.57 0.0062
Tegfp2 NM_009367 3.83 9.32 243 2.50E-06
Integrin-aV NM_008402 6.56 14.61 223 0.0002
Dap1 NM_146057 756 16.85 2.23 0.0013
Trp53/p53 NM_011640 3.7 7.01 221 0.0101
Srebf1 NM_011480  2.49 5.43 218 0.007
IGF-1 NM_010512  3.52 7.65 217 0.035
Mcl-1 NM_008562 3.79 8.04 212 5.90E-06
Thrombospondin NM_0011580 2.99 6.04 2.02 0.003
Daxx NM_007829 2.14 4.32 2.01 0.024

shown by RT-PCR that Survivin is expressed in the lens and down-
regulated during cataract progression (Mansergh et al., 2004).

There were also genes categorised as ‘cell cycle regulators’ that
are also involved in apoptosis (p7, 13; p14, 22), such as cyclin-G1
(expressed at very high levels; Table 3) as well as Mdm2, p53 and
the gene encoding p53-binding protein 2 (53Bp2). ‘Mitochondrial
associated’ genes were identified (p7, 3; p14, 10) including cyto-
chome c and the Bcl-2 family members, bax, Bag-1, Bak, Bcl-2 and
Bcl-w. There were also significant numbers of ‘cytokines and
receptors’ (p7, 7; p14, 20), including Axl and TGF-83, and genes
involved in ‘signal transduction’ (p7, 10; p14, 26), including Akt,
Cradd, Fadd, and GSK3B. Two ‘telomerase related’ genes were also
identified (p7, 1; p14, 2), namely TP1/Tep1 and TR/TeRc and three
members of the ‘TNF superfamily’ (p7, 1; p14, 3), NGFR, FasL and
Tall1/Thank/Baff/TNFSF13B.

The complete set of expressed genes at p7 and p14 is presented
in Supplementary Tables 2 and 3 and the data are also available
through the Gene Expression Omnibus (GEO) database: http://
www.ncbi.nlm.nih.gov, GEO accession: GSE8731.

3.2. Array analysis: differentially expressed genes

Because lens development is proceeding rapidly at p7 and is
complete at p14 at eye opening, we identified 20 genes that,
according to the array analysis, were significantly differentially
expressed (P < 0.05) by at least 2-fold between p7 and p14. These
genes are listed in Table 4. We used semi-quantitative RT-PCR in
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Fig. 2. Semi-quantitative PCR results for differentially expressed genes identified using
the arrays. Results are arranged in order (top to bottom) of the fold differences
observed from the array results. Those genes (Hd, Mdm2, Dffa, galectin-3 and Mcl-1)
confirmed as up-regulated between p7 and p14 are labeled with an asterisk. Genes
labeled with # indicate those that, although up-regulated between p7 and p14
according to the array, did not change in expression by RT-PCR. The remaining (un-
labelled) genes, although up-regulated between p7 and p14 according to the array,
were actually down-regulated between these two stages by RT-PCR. Results are
representative of three repetitions for each gene examined.
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order to investigate the differential expression of these genes and,
given the reduced amount of RNA required for RT-PCR as opposed
to arrays, we also expanded the range of stages and looked at
expression in Nb mouse lenses and 4 wk old mouse lenses in
addition to p7 and p14 (Fig. 2). Differential expression was
confirmed if shown in all three separate biological repeats.
Confirmation rates were low (5/20; 25%), indicating that these
arrays are excellent with regard to indicating gene expression, but
less efficient at identifying differential expression. The genes
confirmed as up-regulated at p14 compared to p7 were Hd, Mdm?2,
Dffa, galectin-3 and Mcl-1. However, all genes except one expressed
at background + 2SD using the arrays were also expressed as
determined using RT-PCR (19/20, 95%; Fig. 2).

To determine consistency of expression, hence biological rele-
vance, by cross-species comparison, RT-PCR was used to examine
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Fig. 3. Semi-quantitative PCR results for the chicken homologues of selected apoptosis
genes (where appropriate homologues can be identified). A. Chick homologues of
genes with highest expression according to the mouse apoptosis arrays. B. Chick
homologues of genes showing differential expression according to the mouse arrays.
GAPDH was used as a loading control, no RT controls were included in the PCR reac-
tion. Caspase-7, Galectin-3, and Igf-1 were not expressed; a positive control (whole 5
day chick embryo cDNA) was used to confirm that primers for these genes were
working in the PCR reaction, confirming apparent lack of expression in the lens at the
cycle numbers used. Results are representative of three repetitions for each gene
examined.
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Fig. 4. Western blotting results for Axl and Mcl-1 in the mouse lens. (A) Axl expression
is observed at all stages examined at approximately 80 kDa. (B) Two bands for Mcl-1
are observed at all stages examined, a short form at approximately 32 kDa and a long
form at approximately 40 kDa. In each case, the membranes were stripped and
reprobed with an actin antibody to visualise loading of protein in each lane. Results are
representative of three repetitions. See Supplementary Fig. 4 for bar graphs of mean
normalised densitometry for these data.

the expression of the chick homologues of the most-highly
expressed and/or potentially differentially regulated genes identi-
fied above (Fig. 3). From EG6 to E16 (stages just prior to and just after
the beginning of the major period of lens fibre cell organelle loss in

2
[2]

e 2 5

3 & 2 g

o ~ I 3

z a o <
Mdm2 - <— 55kDa
. <4— 54 kDa
Mdma/X |esi sl S = | o o) \p,
A Tl <«— 53kDa

P53 '

Beta actin | s S ss——

Fig. 5. Western blots demonstrating expression of Mdm2, Mdm4/X and p53 in the
postnatal mouse lens at newborn (Nb), p7, p14 and 4 wk (wk). At the protein level,
expression of both Mdm2 and p53 is maximal at Nb-p7 and tails off thereafter. Mdm4/
X exhibits upper (54 kDa; stronger) and lower (52 kDa; fainter) doublet bands at all
stages examined. The 54 kDa band has a constant level of expression throughout the
stages examined, while expression of the 52kDa band peaks at p7-pl14. The
membranes were stripped and reprobed with an actin antibody to visualise loading of
protein in each lane. Results are representative of three repetitions for each protein
examined. See Supplementary Fig. 6 for bar graphs of mean normalised densitometry
for these data.



1144 J.C. Geatrell et al. / Experimental Eye Research 88 (2009) 1137-1151




J.C. Geatrell et al. / Experimental Eye Research 88 (2009) 1137-1151 1145

Fig. 6. Immunocytochemical examination of spatio-temporal pattern of expression of Mdm2, p53 and Mdm4/X during mouse lens development. (A-F) Mdm2 expression. (A, B)
E12.5 (higher and lower magnification), the lens did not express significant amounts of Mdmz2. (C, D) E14.5 (higher and lower magnification), immature lens fibres in the germinal
zone (GZ) and the lens epithelium (LE) showed strong Mdm2 expression. Staining was associated with nuclei. The retina (R) was also positive for Mdm2 immunoreactivity. (E, F)
E16.5 (higher and lower magnification), Mdm2 was expressed in the lens epithelium (LE) and in peripheral lens fibre cells (LFCs) associated with the germinal zone (GZ) and was
expressed in the nuclei of cortical lens fibre cells (LFCs). Mdm2 expression was lost as mature lens fiber cells (LFCs) differentiated. (G-L) p53 Expression. (G, H) E12.5 (lower and
higher magnification). Moderate staining was observed in the lens epithelium (LE) and the immature lens fiber cells (arrow). (I, J) E14.5 (lower and higher magnification). p53
immunoreactivity was seen in the lens epithelium (LE) and in immature lens fibre cells (LFCs) in the germinal zone (GZ) region. There was some staining associated with nuclei of
both the lens epithelial cells and lens fibre cells in a similar pattern as that seen for Mdm2 and in the retina (R). (K, L) E16.5 (lower and higher magnification), p53 expression was
maintained in the lens epithelium (LE) and the immature lens fibres in the germinal zone (GZ). However, unlike Mdm2, p53 staining was not primarily associated with nuclei of the
lens epithelial cells or fibre cells, but appeared to be primarily cytoplasmic. (M-0) Mdm4/X expression. Mdm4/X was not significantly expressed in the mouse lens at these stages of
development. There appeared to be above-background levels of expression in the retina (R) at E14.5. (P-R) Representative negative control sections using rabbit IgG and GFP at the
same concentration as the experimental primary antibodies showed negligible staining in the lens at E12.5, E14.5 and E16.5 confirming the specificity of the antibodies used. Scale

bars, 100 pm.

chick lens fibres at E12), 9 of the most-highly expressed genes were
also expressed in the chick embryo lens (Fig. 3A) as were 12 of the
potentially differentially regulated genes (Fig. 3B). Galectin-3 and
Igf-1 could not be amplified from any stage in the chick, despite
bands in whole embryo cDNA positive controls. Chick homologues
for the remaining genes could not be identified.

3.3. Protein expression studies: Western blotting and
immunocytochemistry

Western blotting was used to confirm expression at the protein
level of several genes identified using the mouse arrays in the
mouse lens. AxI at 80 kDa had a fairly constant level of expression
through Nb to 4 wk with slightly higher expression at Nb according
to the densitometry data (Fig. 4A; Supplementary Fig. 4A). The
short (pro-apoptotic) form of the blc-2 family member Mcl-1s had
highest expression at Nb and p7, with lower expression at p14 and
4 wk, while expression of the anti-apoptotic long Mcl-1; was low at
all stages examined, particularly at P14 and 4 wk by densitometry
(Fig. 4B; Supplementary Fig. 4B and C).

Given the primary relevance of the p53 pathway to apoptosis,
we elected to focus the remaining studies on Mdm2 and p53.
Mdm2 was differentially expressed; moreover expression of both
genes was confirmed in both mouse and chick by RT-PCR (see Figs.
2 and 3). The related gene MdmX/4 was not present on the array,
but expression was demonstrated when tested by RT-PCR, so this
gene was also examined further. Western blotting was used to
confirm expression of all three proteins (p53, Mdmz2, and Mdm4/X;
Fig. 5; Supplementary Fig. 6). Mdm2 expression at approximately
55 kDa was detected in the Nb lens, peaked at p7, was reduced in
expression at p14 and at 4 wk (Fig. 5; Supplementary Fig. 6A).
Mdm4/X was present as a doublet at all stages examined: an
intense upper band at approximately 54 kDa and a fainter lower
band at approximately 52 kDa. The 54 kDa band had a constant
level of expression throughout the stages examined, while
expression of the 52 kDa band peaked at p7-p14 using densitom-
etry (Fig. 5; Supplementary Fig. 6B and C). Expression levels of p53
were highest at Nb and p7, diminishing in intensity thereafter at
p14 and 4 wk (Fig. 5; Supplementary Fig. 6D).

Using RT-PCR, as well as confirming expression of Mdm2,
Mdm4/X and p53 at postnatal stages of mouse lens development
and in the adult lens, we also demonstrated expression of these
genes in the E12.5 mouse eye, the E14.5 lens and the E16.5 lens
(Supplementary Fig. 5). We therefore examined expression of
Mdmz2, p53 and Mdm4 in the developing mouse lens from E12.5 to
E16.5 using immunocytochemistry (Fig. 6). We also attempted to
examine expression of these proteins in sections of postnatal
mouse lenses at Nb, p7 and p14, but were unable to obtain signif-
icant staining (data not shown; the more sensitive Western blots do
demonstrate expression at these stages; Fig. 5).

Using immunocytochemistry, the lens did not express signifi-
cant amounts of Mdm2 at E12.5 (Fig. 6A and B), while at E14.5

(Fig. 6C and D), immature lens fibres in the germinal zone (in which
lens epithelial cells are differentiating into lens fibre cells) were
positive for Mdm2. The lens epithelium also exhibited strong
Mdm?2 expression. Staining was associated with nuclei in both the
lens epithelium and the lens fibre cells. The retina was also positive
for Mdm2 immunoreactivity at E14.5. At E16.5 (Fig. 6E and F),
Mdm2 was expressed in the lens epithelium and in peripheral lens
fibre cells associated with the germinal zone, and was expressed in
the nuclei of cortical lens fibre cells. Mdm2 expression was lost as
mature lens fibre cells differentiated. Moderately intense p53
staining was observed in the lens epithelium and the immature
lens fibre cells at E12.5 (Fig. 6G and H). At E14.5, p53 immunore-
activity was seen in the lens epithelium and in immature lens fibres
in the germinal zone (Fig. 61 and ]). There was also some staining at
this stage associated with nuclei of both the lens epithelial cells and
lens fibre cells in a similar pattern as that seen for Mdmz2 and in the
retina. At E16.5, p53 expression was maintained in the lens
epithelium and the immature lens fibres in the germinal zone
(Fig. 6K and L). However, unlike Mdm?2, p53 staining at this stage
was not primarily associated with nuclei of the lens epithelial cells
or fibre cells, but appeared to be primarily cytoplasmic. Mdm4/X
expression was not significantly expressed in the lens at these
stages of development (Fig. 6M-0). There appeared to be above-
background levels of Mdm4/X expression in the retina (R) at E14.5.
Negative controls (Fig. 6P-R) using GFP as primary antibody or
rabbit IgG at the same concentration as the experimental anti-
bodies showed no positive staining at E12.5, E14.5, and E16.5
confirming the specificity of the staining observed.

In order to check that cross-species expression was also occur-
ring at the protein level, we examined the chick embryo lens using
Western blotting and immunocytochemistry with the anti-mouse
Mdm2, Mdm4/X and p53 antibodies (Figs. 7-9; Supplementary
Fig. 7). Westerns revealed expression of an Mdm2-positive band at
55 kDa that was faint at E6-E8, peaked in intensity at EI0-E12 and
was reduced in expression from E14 to E16 (Fig. 7; Supplementary
Fig. 7A). Mdm4/X gave a positive band at 80 kDa, which had a fairly
constant expression throughout the stages examined (Fig. 7B;
Supplementary Fig. 7B). Using the antibodies to p53, expression of
a band at 53 kDa in the chick lens samples was low and relatively
unaltered across all the stages examined (Fig. 7; Supplementary
Fig. 7C), but we did detect expression of two bands at lower
molecular weight 40 and 32 kDa respectively (p53 short 1 and p53
short 2) representing short forms of chicken p53, which both
peaked in expression levels at E10 and E12 (Fig. 7 and Supple-
mentary Fig. 7C and D).

Using immunocytochemistry, Mdm?2 was expressed throughout
the lens at E6 (Fig. 8A). At E8, Mdm2 was expressed in the lens
nucleus and lens epithelium as well as in the germinal zone, but
was absent from a band of cortical lens fibre cells (Fig. 8B; asterisk).
At E10, Mdm2 expression was present throughout the lens fibre cell
mass, but expression was beginning to diminish in the lens
epithelium at this stage (Fig. 8C). At E12, Mdm2 expression was
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Fig. 7. Western blot demonstrating expression of Mdm2, p53 and Mdm4/X in the chick
lens at E6-E16. Expression of the 55 kDa Mdm2 band is faint at E6-E8, appears
prominently at E10 and then peaks at E12, reducing in expression at E14-E16. The
positive control lane for Mdm2 represents a Jurkat cell lysate provided with the
antibody as a positive control. Mdm4/X at 80 kDa exhibits a fairly constant level of
expression at all stages examined. Negligible levels of p53 at 53 kDa (p53 long) were
detected at all stages examined, whereas shorter forms of p53 at approximately 40 kDa
(p53 short 1) and 32 kDa (p53 short 2) were detected at highest levels from E10 to E12.
The membranes were stripped and reprobed with an actin antibody to visualise
loading of protein in each lane. Results are representative of three repetitions for each
protein examined. See Supplementary Fig. 6 for bar graphs of mean normalised
densitometry for these data.

present throughout the lens fibre cell compartment, but the
expression in the lens epithelium became fainter (Fig. 8D and E). At
E14, the cortical lens fibre cells showed strong Mdm2 expression
except for a small band close to and anterior to the organelle free
zone (OFZ; Fig. 8F and G; arrows). Furthermore, Mdm2 expression
was lost from the lens epithelium and the nuclear fibre cells,
coinciding with formation of the OFZ (Fig. 8F and G). At E16, Mdm2
was expressed in the outer cortical lens fibre cells, but was reduced
in intensity in the lens epithelium as well as the outermost cortical
fibre cells (Fig. 8H). The rabbit IgG control, used at the same
concentration as the anti-Mdmz2 antibody, was negative for stain-
ing (Fig. 8I).

Given that Western blotting also gave positive signals for
Mdm4/X and short forms of p53 in the chick embryo lens, immu-
nostaining for p53 and Mdm4/X was also carried out on the chick
embryo lens at E14 (Fig. 9) and compared to Mdm?2 staining at this
stage (Fig. 8F and G). The spatio-temporal pattern of expression of
p53 was similar to Mdm2 and Mdm4/X, but with two notable
differences; namely, that p53 staining was intense in the lens
epithelium and was absent from lens fibre cell nuclei in the cortex
of the lens (Fig. 9C; arrows). Mdm4/X had a similar pattern of
expression to Mdmz2, both being expressed at low levels in the lens
epithelium and being intensely expressed in the cortical lens fibre
cells (Fig. 9D-F; compare with Fig. 8F and G); IgG controls, at the
same concentration as the experimental antibodies used were
negative for staining, thereby confirming antibody specificity
(Fig. 9G-1I).

4. Discussion

In this study, we have carried out a thorough initial screen of
apoptosis gene expression in the postnatal mouse lens using
nylon arrays on which cDNAs representing 243 apoptosis genes
were printed. We investigated apoptosis gene expression at two
time points, p7 and p14, in order to determine which apoptosis
genes were expressed at above-background levels at either or

both stages and also to identify potentially differentially regulated
genes. In support of the suggestion that the apoptosis signalling
pathway has a significant role in lens development, 161 genes
were expressed above-background levels + 2SDs of background.
All genes expressed at p7 were also expressed at p14. Ninety five
percent of genes tested by RT-PCR were indeed expressed in the
lens. 5 genes were also identified correctly as being up-regulated
at p14. Furthermore, cross-species conservation of expression of
the majority of these genes was confirmed during chick lens
development. Finally, since a number of members of the p53
signalling pathways were identified, we decided to focus in
further experiments on the spatio-temporal pattern of expression
of p53 and Mdm2 and the related molecule Mdm4/X. This is the
first study to comprehensively investigate the spatio-temporal
pattern of expression of p53, Mdm2 and Mdm4/X during lens
development and, as such, implicates the p53 pathway in this
process.

4.1. Overview of function of a selection of the genes identified
from the array

Death-domain-associated protein (Daxx) was originally identi-
fied as a protein demonstrating specific binding to the death
domain of the transmembrane death receptor FAS and was thought
to be involved in the promotion of FAS-induced apoptosis (Yang
et al,, 1997). However, homozygous deletion of Daxx results in
embryonic lethality, with widespread apoptosis observed in Daxx-
deficient embryos (Michaelson et al., 1999). This suggests that Daxx
plays an important role in embryonic development. This protein
has also been shown to play a role in repression of transcriptional
target genes (Michaelson and Leder, 2003). In this study, RNAi was
used in various cell lines (HeLa, U20S and 293 cells) to prevent the
expression of Daxx and cells showed increased apoptosis, sug-
gesting an anti-apoptotic role for Daxx, while transcriptional
repression was also observed to decrease. Daxx is also involved in
the p53/Mdm2 pathway (see below). Downregulation of Daxx
decreases Mdm2 expression levels and Daxx enhances the E3
activity of Mdm?2 towards p53 (Tang et al., 2006).

The exact physiological function of the normal Huntington
disease (Hd) protein Huntingtin has yet to be elucidated. The
mutant form of the Huntingtin gene, containing a CAG expansion
region in the first exon, causes a progressive neurodegenerative
disorder (Reddy et al., 1999). Huntingtin interacts with a wide range
of proteins, including caspase-3, and it has been proposed to play
a role in both membrane trafficking and apoptosis (Harjes and
Wanker, 2003). Furthermore, there is recent evidence that
expression of a mutant Huntingtin fragment in the lens results in
protein aggregation and cataract formation (Muchowski et al.,
2008). As far as we are aware, the current study is the first to
demonstrate expression of the native Huntingtin gene in the lens
during development. In preliminary studies (Geatrell et al.,
unpublished results), we quantified the size of the OFZ in the p2
mouse lens in Huntington mutant mice (containing an extended
150 bp CAG repeat in exon 1 of the Huntingtin gene; provided by Dr
Leslie Jones, Cardiff University), compared to wild type and
heterozygous mice. We could discern no effects of the mutant gene
on the size of the OFZ in the lens. However, further studies are
required to investigate the potential roles of Huntingtin in the lens
during development and ageing. Indeed, the lens may be a partic-
ularly suitable and amenable model system in which to investigate
the physiological roles of Huntingtin.

DNA fragmentation factor (DFF) is a heterodimer composed of
40 kDa and 45 kDa subunits (Liu et al., 1997). Caspase-3 cleaves the
45 kDa subunit (DFFA) at two sites to generate an active factor,
resulting in DNA fragmentation without any further requirement
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Fig. 8. Immunocytochemical examination of spatio-temporal pattern of Mdm2 expression during chick lens development. (A) E6, Mdm2 was expressed throughout the lens. (B) E8,
Mdm2 was expressed in the lens nucleus and lens epithelium (LE) as well as in the germinal zone (GZ), but was absent from cortical lens fibre cells (asterisk). (C) E10, Mdm2
expression was present throughout the lens fibre cells, but expression was beginning to diminish in the lens epithelium (LE, arrow). (D, E) E12 (lower and higher magnification).
Mdm2 expression was present throughout the lens fibre cells (LFCs), but the expression in the lens epithelium was fainter. (F, G) E14 (lower and higher magnification). The outer
cortical lens fibre cells showed strong Mdm2 expression, but the Mdm2 expression was lost from the lens epithelium and the nuclear fibre cells, coinciding with formation of an
organelle free zone (OFZ). There was a small region close and anterior to the OFZ, which did not consistently stain significantly with the Mdm2 antibody (G; arrow). The lack of
staining in the lens epithelium (LE) is also highlighted. The area anterior and close to the OFZ is also highlighted (arrow). (H) E16. Mdm2 was expressed in the outer cortical lens
fiber cells, but was reduced in intensity in the lens epithelium as well as the outermost cortical fiber cells (arrow). (I) E14, rabbit IgG (IgG) control used at the same concentration as

the anti-Mdmz2 antibody. Magnification bars, 100 um.

for caspase-3 or other cytosolic proteases. We previously showed
that DFFA is cleaved in the chick lens during organelle degradation
(Wride et al., 1999), although this could be a caspase-independent
process, as cleavage still occurred in the presence of general caspase
inhibitor Boc-D-FMK.

Galectin-3 (gal-3) has been localised to the plasma membrane of
ovine lens fibre cells where an interaction with MP20, an intrinsic
membrane protein, was observed (Gonen et al., 2000). Expression
of gal-3 in the human, mouse and rat lens has since been identified
(Dahm et al., 2003). In human lenses, highest expression was
observed during embryonic stages of development, although it
continued to be expressed in adult lenses in both epithelial cells
and early differentiating fibre cells (Dahm et al., 2003). Its expres-
sion was seen to decrease with maturation of the lens fibre cells;
with no expression detected in mature lens fibres. The observations
of the spatio-temporal expression of gal-3 lead to the suggestion
that this molecule could play a role in cell-cell interactions and the
differentiation of fibre cells. Gal-3 is also thought to play an anti-
apoptotic role; a high level of both functional and structural simi-
larity between gal-3 and Bcl-2 has been observed and gal-3 has
been shown to prevent apoptosis induced by staurosporine in
a human cell line (Yang et al., 1996).

Axl, a receptor tyrosine kinase, is expressed in both the bovine and
rat lens epithelium (Valverde et al., 2004). Gas6 ligand was present in
the aqueous humor and had both mitogenic and anti-apoptotic roles.

It was proposed from this finding that the Gas6/Axl interaction could
play a role in regulating the normal growth of lens epithelial cells.

Myeloid cell leukaemia-1 (Mcl-1) is a member of the Bcl-2
family of proteins and is predominantly localised in the mito-
chondrial membrane (Yang et al., 1995). Two isoforms of Mcl-1
have been identified; a short isoform, containing only a BH3
domain, which is pro-apoptotic (Bae et al., 2000) and the originally
identified long form, containing Bcl-2 homology domains 1, 2 and 3,
shown to be anti-apoptotic (Kozopas et al., 1993). The long and
short isoforms are capable of forming heterodimers and the
balance between the two isoforms could determine the fate of the
cells expressing both proteins. The long isoform interacts with
other pro-apoptotic Bcl-2 family members, but not with anti-
apoptotic members (Bae et al., 2000).

Cyclin-dependent kinase 4 (cdk4) belongs to a family of serine/
threonine protein kinases which are essential for the progression of
the cell cycle (Sherr, 1993). The kinase activity of this protein is
regulated by a member of the cyclin family, cyclin D. Cdk4 has a role
in the regulation of the G1/S transition (Sherr, 1993). Both the
mRNA and protein for cdk4 have previously been identified in both
the epithelial and fibre cells of the rat lens during development
(E16 to p8), alongside other members of the same family (Gao et al.,
1999). Other members of the cyclin-dependent kinase family are
involved in the process of primary fibre cell denucleation in the
embryonic chick lens (He et al., 1998) so the detection of cdk4 here
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Mdm4/X

Fig. 9. Immunocytochemical localization of MdmX, and p53 in the chick E14 lens. (A-C) p53 Staining is localised to the lens epithelium cells and the lens fibres cells in the outer lens
cortex. More mature fibre cells deeper in the lens in the OFZ showed low to undetectable levels of p53 staining. p53 staining was absent from nuclei of the LFCs (arrowheads). (D-F)
MdmX was expressed at relatively low levels in the lens epithelium and in cortical lens fibre cells, but was absent from the OFZ. (G-I) Rabbit IgG control used at the same

concentration as the anti-p53 and anti-Mdm4/X antibodies. Magnification bars, 100 pm.

in both the mouse and chick embryo lens could suggest a role for
cdk4 in this process as well.

Death associated protein 1 (Dap1) is a small proline rich protein
shown to be located in the cytoplasm. Dap1 belongs to a family of 5
novel genes, shown to mediate cell death induced by interferon-y
(Levy-Strumpf and Kimchi, 1998). Dap1 interacts with the cyto-
plasmic death domain of TNF-R1 and overexpression of this protein
induces apoptosis (Liou and Liou, 1999).

4.2. Expression of members of the p53 pathway in the mouse
and chick lens

Since a number of members of the p53 signalling pathway were
identified using the arrays, we elected to carry out a spatio-
temporal analysis of expression of selected members of this family
during both mouse and chick lens development.

P53 is a well-characterised tumour suppressor gene, which plays
arole in a number of cellular processes including the response to DNA
damage (Kastan et al., 1991), apoptosis (Shaw et al,, 1992) and cell
cycle progression (Kuerbitz et al., 1992). In the lens of adult mice, p53
is expressed in the lens epithelial cells of central and pre-germinative
zones and in the lens fibre bow region (Pokroy et al.,2002). The role of
p53 in lens cells has previously been examined using transgenic mice
generated to express wild-type human p53. These mice developed
microphthalmia due to apoptosis induction in differentiating lens
fibre cells (Nakamura et al., 1995). Furthermore, it was also demon-
strated that both p53-dependent and independent mechanisms may
be active during lens development (Pan and Griep, 1995).

Mdm?2 is involved in regulation of the cell cycle, apoptosis and
tumourogenesis through its interactions with other proteins,
including p53 and retinoblastoma 1 (Momand et al., 2000). Mdmz2,

has intrinsic E3 ligase activity and is the main inhibitor of p53,
maintaining low levels of p53 expression in non-stressed cells by
increasing the degradation of p53 by the 26S proteasome (Michael
and Oren, 2003). Furthermore, p53 activity is altered by numerous
post-translational modifications (Lavin and Gueven, 2006; Kruse
and Gu, 2008); for example, acetylation is indispensable for p53
activation (Tang et al., 2008).

Here, we have provided an overview of the spatio-temporal
patterns of expression of Mdmz2, p53, and Mdm4/X during various
stages of mouse and chick lens development (Figs. 6 and 8). In order
to discuss similarities and differences in the pattern of expression
of Mdm?2 in the lens between the chick embryo and mouse embryo,
it is necessary to compare the stages of lens development in the two
species. In the mouse lens, organelle degradation begins in lens
fibre cells at approximately E18.5, while in the chick it begins at
approximately E12. Therefore, the mouse stages examined here
(E12.5, E14.5 and E16.5) are prior to the onset of organelle degra-
dation in the mouse and are the equivalent of approximately
E6-E10 in the chick. It is apparent that there are species-specific
differences in Mdm2 expression during lens development. In the
mouse embryo lens at E12.5-E16.5, expression of Mdm2 is confined
primarily to the lens epithelium, the germinal zone and nuclei of
cortical lens fibre cells. In the chick, Mdm2 appears to have a more
general pattern of expression, being expressed at E6 throughout the
lens fibre cells and lens epithelial cells. At E8 in the chick embryo
lens, expression of Mdm2 is localised to the lens epithelium and the
germinal zone and this is similar to the pattern of expression in the
mouse embryo (as described above). However, in the chick lens at
E8, the expression of Mdm2 is unusual. It is not only expressed in
the core lens fibre cells, but there is a lack of expression of Mdm?2 in
an intermediate band of cortical secondary fibre cells just outside
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the lens nucleus (Fig. 8B, asterisk). Since, at this stage, all lens fibre
cells still contain their nuclei, it is possible that they reactivate
expression of Mdm2 protein within this layer at E10 (at which
stage, Mdmz2 expression is throughout the fibre cell mass) and/or
Mdm2 transcripts or protein synthesized in the germinal zone
diffuse, or are transported, into the deeper cortical lens fibres.
Future studies will examine this is more detail through a wider
number of developmental stages and will also use in situ hybrid-
isation in order to correlate Mdm2 mRNA with Mdm2 protein
expression. It is also possible that Mdm2 protein is degraded
transiently in these fibre cells and that this is dependent upon
Mdm2 ubiquitination (by the ubiquitin ligase activity of Mdm2
itself or another ubiquitin ligase) and subsequent proteasomal
degradation (Michael and Oren, 2003), thus allowing activation of
p53 prior to the stages of lens fibre cell organelle loss. Intriguingly,
this band of reduced Mdm2 immunoreactivity in the deeper
cortical fibre cells also appears to be present in the anterior fibre
cells just outside the OFZ at E14 (Fig. 8F, G; arrows). This could
support the above suggestion of a transient loss of Mdm2 leading to
an activation of p53 just outside the OFZ, implying an involvement
of p53 in early events of lens fibre cell organelle loss. These possi-
bilities require more thorough detailed analysis in future studies.

In the chick, following the onset of organelle degradation at E12,
Mdm?2 expression is progressively lost from the lens epithelium
and becomes localised by E14-E16 to the cortical lens fibre cells
(Fig. 8). P53 is expressed in the mouse lens in a similar pattern to
Mdm?2 in the lens epithelium and germinal zone, whereas Mdm4/X
is not expressed significantly at comparable stages (Fig. 6). In the
chick lens, we carried out immunocytochemistry at E14 using anti-
mouse p53 and Mdm4/X antibodies and compared the pattern of
expression with the Mdm2 staining at the same stage (Figs. 8 and
9). Both p53 and Mdm4/X are also expressed during chick lens
development at this stage at which formation of the OFZ is
occurring.

Finally, we also carried out Western blotting for Mdm2, Mdm4/X
and p53 during both mouse and chick lens development (Figs. 5
and 7). Patterns of differential expression of these proteins were
observed during both postnatal mouse lens development and at the
comparable embryonic stages of chick lens development. Intrigu-
ingly, we identified two short forms of p53 at 40 kDa and 32 kDa
during chicken lens development and short forms of Mdm4/X at
approximately 54 kDa and 52 kDa respectively in the mouse lens.
The short forms of chicken p53 have been identified previously in
chicken lymphoblastoid cell lines and the 32 kDa form in particular
was shown to be pro-apoptotic in these lines (Takagi et al., 2006).
Regarding Mdm4/X, there is evidence for short forms of Mdm4/X,
which have biological activity by modulating p53 through differ-
ential splicing of p53-binding domains (Rallapalli et al., 1999;
Chandler et al., 2006). These splice variants have mostly been
identified in the cancer field and there appears to be little, if
anything in the literature about the roles of these potential splice
variants/cleavage products of Mdm4/X in embryonic development.
Furthermore, caspase-mediated cleavage of Mdm4/X resulted in
detection of a 54 kDa protein on Westerns (Gentiletti et al., 2002);
i.e. similar to the size of the proteins we detected here. Given the
known activity of caspases during lens differentiation, it is likely
that caspases are involved in regulating Mdm4/X activity and
therefore modulating p53 signalling during lens development.

As far as we are aware, our results represent the first demon-
stration of the potentially pro-apoptotic short forms of chicken p53
in any developmental system. It is particularly intriguing that the
short forms are particularly abundant at E10-E12 in the chick lens;
stages at which organelle loss is beginning to occur. We did not
identify comparable short forms of p53 in Western blots of the
mouse lenses or, conversely, conclusive evidence of the short forms

of Mdm4/X in the chick lens suggesting species-specific and/or
developmental timing-related differences. Further studies are
required to investigate the nature of such species differences and to
define the expression and function of p53 and Mdm4/X splice
variants/cleavage products in lens development.

It is also of interest that Mdm2 mRNA and protein levels do not
always follow the same temporal pattern of expression. For
example, in the mouse lens, when Western blotting experiments
are compared to the RT-PCR data, the Mdm2 transcripts appear to
be more abundant in the P14 lens than the P7 lens (Fig. 2). However,
the Western blot suggests that the Mdm?2 protein is more abundant
in the P7 lens (Fig. 5). This is most-likely due to the balance
between synthesis and degradation of Mdm?2 protein, since Mdm?2
protein can degrade itself through ubiquitin-mediated mechanisms
(Michael and Oren, 2003). In this case, it is possible that even
though more Mdm?2 transcripts are present at p14 than at p7,
Mdm2 protein degradation may be occurring to a greater extent at
p14 than at p7. It is also of note that mRNA and protein levels also
vary for p53 in which protein levels fall (Fig. 5; Supplementary
Fig. 6), while transcript levels do not (Fig. 2). These data highlight
the difficulties/complexities of correlating transcript levels with
protein levels with regard to genes involved in modulating p53
signalling.

Thus, the spatio-temporal patterns of expression of Mdmz2, p53,
and Mdm4/X in the developing lens in both mouse and chick (albeit
in subtly different patterns of expression at comparable stages)
suggest a role for these oncoproteins in lens development. Given
their spatio-temporal pattern of expression and known roles in
regulation of cell proliferation and apoptosis signalling, we suggest
that they have roles in lens fibre cell differentiation and this
possibility merits further examination in further expression and
functional studies in both species. In particular, it will be necessary
to correlate spatio-temporal patterns of p53, Mdm2 and Mdm4/X
expression in the developing lens with specific protein variants due
to alternative splicing (e.g. the pro-apoptotic short forms of chicken
p53 we have identified here), proteolytic cleavage (e.g. by caspases)
and post-translational modifications (e.g. acetylation).

4.3. Concluding comments

This study represents an initial analysis of apoptosis gene
expression in the postnatal mouse lens and provides an excellent
resource for the lens research community for further investigation
of the roles in the lens of the apoptosis genes identified. Further-
more, the results suggest a potential role for these apoptosis genes
in the processes of lens differentiation and organelle degradation
during lens development and/or in the regulation of classical
apoptosis during lens development or postnatal maturation, ageing
and possibly cataract.

Analysis of the spatio-temporal pattern of expression of these
genes is an essential prerequisite for future studies. Indeed,
building on the array studies, we have provided the first spatio-
temporal analysis of expression of p53 pathway molecules (p53,
Mdm2 and Mdm4/X) in both developing mouse and chick lenses.
The developing lens presents an excellent model system in which
a large number of fibre cells are maturing in a synchronised fashion.
Therefore, it provides an excellent opportunity with which to study
the normal function of members of the p53 signalling pathway in
development. Thus, the results presented here pave the way for
further studies investigating the functions of Mdm2, p53, and
Mdm4/X and additional members of this pathway in lens devel-
opment, physiology and potentially disease. Such studies will shed
light on both normal lens development and on the normal devel-
opmental roles of Mdm2, p53, and Mdm4/X.
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