Context Slices:

Lightweight discovery of behavioral adaptations

Nicolas Cardozo, Siobhan Clarke

Future Cities, DSG, Trinity College Dublin - College Green 2, Dublin 2, Ireland
{cardozon, siobhan.clarke}@scss.tcd.ie

ABSTRACT

Context-Oriented Programming languages enable the defi-
nition of systems that can adapt their behavior according to
specific situations in their surrounding environment. Cur-
rent approaches require developers to have prior knowledge
about such situations and the adaptations applicable in each
one. Such approach hinders the use of Context-Oriented
Programming in modern open systems, in which the total-
ity of the system may be unknown beforehand. We pro-
pose context slices which allow the autonomous discovery
and composition of adaptations gathered from systems’ sur-
rounding environment. Context slices use zero configuration
networking services to advertise and discover adaptations in
the network, and an ontology structure to manage them.
We show the applicability of context slices for cyber physi-
cal systems by means of an ambient assisted living scenario.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems— Distributed applications; D.3.3 [Programming
Languages|: Language Constructs and Features—Data types
and structures, modules

Keywords

Context-oriented programming, Context discovery, Internet
of things

1. INTRODUCTION

The Context-Oriented Programming (COP) paradigm en-
ables dynamic behavior adaptation of software systems with
respect to their surrounding execution environment from a
programming language perspective [7]. The vision of COP
systems follows a reference architecture [4] consisting of
four modules, context discovery, context management, active
context, and application behavior. The main focus in the de-
velopment of COP languages has been on the latter three

Preprint version.
COP Workshop co-located with ECOOP’ 15

to: (1) propose language abstractions allowing the defini-
tion of behavioral adaptations and their associated contexts,
corresponding to situations in the system’s surrounding ex-
ecution environment, (2) study scoping mechanisms to dic-
tate how and when behavioral adaptations are dynamically
composed into, or withdrawn from the system. For exam-
ple, proposing activation strategies to dynamically compose
adaptations based on information gathered from the sys-
tems’ surrounding execution environment, and (3) offer the
most appropriate behavior of the system.

COP has proved relevant in the mobile computing do-
main by enabling dynamic behavior adaptations according
to information gathered from the sensors available in mo-
bile devices [4]. Using this model, developers are required
to know beforehand all sensors from which the system can
gather information. Contexts and behavioral adaptations
are defined using such knowledge, making explicit which ob-
jects to adapt, when and where to enact adaptations, and
the expected system behavior in all possible situations in the
surrounding execution environment. This approach is unfea-
sible for the development of Cyber Physical Systems (CPSs)
and the Internet of Things (IoT) as objects, sensors, or ser-
vices are made available and unavailable unannounced in
these environments. Therefore, it is not possible to define
specialized behavior to adapt to such entities beforehand.

Furthermore, this approach requires the explicit definition
of context objects for each new application. For example,
in a domotics environment with a noise level sensor, a room
environment application could define a Meeting context to
detect noisy situations and increase the stereo’s volume ac-
cordingly. This is shown in the following snippet using Con-
text Traits (3], in which: contexts are defined as first-class
objects using the new construct (Line, behavioral adapta-
tions are defined as traits enclosing all behavior specializa-
tions (Lines [2| - , finally, behavioral adaptations and the
objects they adapt are associated with a context using the
adapt construct in Line [f]
1Meeting = new cop.Context({name:
oNoisyMeeting = Trait ({

3 adjustVolumeLevel: function() {
A volume = T70%;

LI DI
sMeeting .adapt (Stereo,

"Meeting"});

NoisyMeeting) ;

Similarly, a user personalization application, could define
a Meeting context to set the advertising mode of a mobile
phone to vibrate whenever the user is detected to be on a
meeting, as shown in the code snippet below.

Context slices are put forward in COP languages as a
means to enable the run time introduction of, and interac-

1Meeting = new cop.Context({name: "Meeting"});
2SilentPhone = Trait ({

3 advertise: function (num) {

4 console.log("Vibrating - call from" + num);
5 3 3

cMeeting.adapt (Phone, SilentPhone);

tion with unknown adaptations as new sensing devices or
services spontaneously appear on systems’ surrounding exe-
cution environment. Doing so shifts adaptations’ definition
to sensors, thus avoiding the (re)definition of contexts for
each new application.

Context slices consist of an ontology-based structure to
manage contexts and their associated behavioral adapta-
tions (Sections and . Additionally, contexts’ struc-
tured names are used to advertise/discover adaptations fol-
lowing a zero configuration networking protocol as the mul-
ticast Domain Name System (mDNS) (Section[2.2)). In order
to use context slices, we extended Context Traits to enable
the definition, discovery, and communication of unknown
contexts at the language level (Section . Context slices
are shown applicable to CPS environments by means of an
Ambient Assisted Living (AAL) in Section [4}

2. CONTEXT SLICES

Context slices are introduced as a lightweight discovery
module for COP systems with the purpose of facilitating the
integration of new services enriching software systems’ be-
havior with respect to their environment. To meet this goal,
the proposed discovery module builds on the ideas of zero
configuration networking protocols for host name resolution,
mDNSEI and ontology slices [5] as management structure.

The purpose of context slices is twofold. On the one hand,
it provides a structure to advertise and discover contexts,
avoiding their replication. On the other hand, it allows the
system to restrict the discovery of contexts, such that only
adaptations relevant to the system are discovered. The fol-
lowing presents how context slices enable autonomous dis-
covery and composition of unknown adaptations.

2.1 Organizing Context Objects

Context slices consists of a lattice-like hierarchical struc-
ture for the categorization and management of contexts.
In this structure contexts are grouped according to their
common semantic purpose (e.g., information source or type
of gathered information), similar to contexts groupings in
namespaces |3, or service grouping in semantic ontologies.

Context slices’ lattices structure contexts similar to the
way objects are hierarchically ordered through delegation
relations (—). Given the root c of a lattice L, L consists of
all discovered contexts [, such that | —* ¢, where —* denotes
the transitive closure of the delegation relation. Using this
construction of the lattice L, a slice S rooted at c is defined
as S := (¢,L). As an example suppose a COP system is
defined to discover adaptations from five context domains,
namely resources, programming, environment, user, and
services. Figure|l|shows the five corresponding slices with
all discovered contexts specializing each of them.

Contexts to be discovered by an application are deter-
mined by its developers according to the context domains
that are semantically meaningful for systems’ execution. The

"http://tools.ietf.org/html/rfc6762

root of the five slices in Figure [1| provide examples of con-
texts domains that could be used in a COP system to orga-
nize adaptations. As part of the design of context slices, we
propose a set of abstract context definitions capturing the
domains and sensors to which a system could adapt taking
into account the specific situations of its surrounding exe-
cution environment. Based on these, specific contexts can
be defined further, providing behavioral adaptations with
respect to concrete, vendor, or specialization contexts, as
shown in the example of Figure [l Note, however, that ab-
stract context definitions are only suggested and are not
readily provided as part of the context slices discovery mod-
ule. Other domains and sensors could be defined by devel-
opers as new domains and sensing devices are introduced.
Context slices’ lattices are generated upon context discov-
ery (cf. Section [2.2)). Whenever a context is discovered it is
added to the lattice following its structured name from the
root of the lattice. In the example of Figure [I|suppose there
is no context discovered as part of the user domain and the
interview context is discovered. This context is advertised
with structured name user.activity.meeting.interview.
The system will then create a slice (user, interview —»
meeting — activity — user). If other context specializ-
ing the user domain is discovered, say presentation, all
contexts part of its structured name not yet in the lattice
are added to it. In this case, the presentation context is
the only context added to the lattice, resulting in the slice
(user, (presentation — meeting, interview — meeting —»
activity — user)). Note that context definitions are not
replicated on the slice. Similar to uniqueness of objects in
namespaces, contexts with the same structured name are
assumed equal in context slices. That is, given three con-
texts ¢, c1,ce, if ¢4 — c and c2 — ¢ then ¢1 # c2. As an
example, take the two definitions of the high contexts in
Figure These definitions of the same context object are
allowed as they do not specialize the same context. One
context specializes context memory and the other specializes
context battery. In contrast, all immediate specializations
of either memory or battery must define different contexts.

2.2 Context Discovery and Advertising

CPSs consist of sensors, services, and physical entities that
may be unknown to systems’ developers beforehand. This
is due to the scattered nature of the components in the sys-
tem, or by the introduction of new sensors or services to the
environment (e.g., in IoT environments). Unknown entities
may introduce new adaptations to the system. As a con-
sequence, discovery of adaptations is vital to maintain the
most appropriate behavior of a system with respect to its
surrounding environment.

Context slices use the structured naming conventions de-
fined by the mDNS protocol to autonomously advertise and
discover contexts as part of the cop protocol (cf. Line [3] in
Snippet [1| and Line [2| in Snippet . Structured names are
paths defined by following the delegation links of the con-
text until a root context definition is reached (i.e., a context
domain as in Figure . As contexts appear in a network
their structured name is advertised. For example, the struc-
tured name to advertise the meeting context in Figure [1]is
user.activity.meeting.

Contexts are advertised together with their associated be-
havioral adaptations. Whenever defined in external devices,
adaptations are registered to the context manager by means

http://tools.ietf.org/html/rfc6762

Domain resources programming environment user services
/ \ / \ / \ / \ T ¥
= O
2.2
Sensors| | memory battery deployment testing acoustlcs luminosity activity preferences translation g &
FAS A A
II // \\ I
) o)
Concrete| | low high hlgh faults pollution meeting mode spanish %
traffi AN N 2
Vendor apple raftic presentation interview kids private &
/V\ 3.
Specialization ipad iphone presenter defense conference %

Figure 1: Lattice structure for five discovered slices in the system.

of the registerAdaptation(ctx, adaptation) construct.
Registered adaptations are advertised upon network con-
nection. For example, the Meeting adaptation is advertised
with its context and associated behavioral adaptation as
registerAdaptation(Meeting, NoisyMeeting).

As adaptations dynamically appear in the surrounding en-
vironment of the system, their contexts are added to the
context slices’ lattice. New contexts are discovered if their
structured name contains one of the slices browsed by the
system. Contexts’ browsing is defined in context manager
using the browse(slice) construct. For example, browsing
for the user.activity slice, results in the discovery of all
(and only the) contexts in bold in Figure[T} If a context dis-
appears from the surrounding environment (e.g., due to a
faulty sensor), it is removed from the lattice and its adapta-
tions discarded. As with existing COP languages, removing
behavioral adaptations while they are running leads to an
error in the system, since the behavior is no longer defined.
Contexts reappearing are treated as new contexts.

2.3 Scoping Adaptations

Systems do not have any prior knowledge about adapta-
tions’ implementation.Therefore, all system defined objects
can be adapted by all discovered behavioral adaptations.

For every object o in the system, composition of all be-
havioral adaptations T4, ..., Ty, associated to a discovered
context ¢, results in the adapted object o after the acti-
vation of context ¢ —that is, o’ = o - T, - Th,. In the
example of Section[] the discovery of the meeting context as
part of the user.activity slice introduces the NoisyMeet-
ing and SilentPhone adaptations to all objects in the sys-
tem (i.e., Stereo and Phone). However, it may be desir-
able to restrict the contexts (and thus behavioral adapta-
tions) that adapt an object in the system. To restrict adap-
tation composition to specific objects the browse(slice,
obj) construct is used. The behavior provided by this con-
struct is to compose the behavioral adaptations associated
to the contexts specified by the slice, exclusively with the
specified object, obj.

3. CONTEXT SLICES IMPLEMENTATION

Context slices focus on the autonomous discovery and
composition of contexts in COP systems. Contexts slices’
implementation consists of an ontology-based lattice struc-
ture and the network communication libraries to respectively
manage, and advertise and discover contexts. However, de-
velopers do not directly interact with these functionalities.

All interaction takes place through the context manager’s
API using the advertising and browsing constructs intro-
duced in Section Context Traits, a COP extension of
JavaScript, is used as a concrete implementation artifact for
context slices. Nonetheless, context slices could be intro-
duced in a similar way as part of other COP languages.

3.1 Context-Oriented Programming

The core abstractions of COP languages are preserved
with the introduction of context slices. Definition of be-
havioral adaptations, and context activation and deactiva-
tion remain as defined in Context Traits, respectively using
traits, and the activate and deactivate constructs. Con-
texts’ definition is extended to introduce the slice property
used to advertise the context, as follows.

var Meeting = new cop.Context ({
name: "Meeting"
slice: "user.activity"

3

3.2 Advertising, Discovery, and Communica-
tion
Context slices’ implementation enables all COP systems
to both advertise and discover contexts. For simplicity, here-
inafter we refer to external devices to advertise contexts, and
the system to discover them.

Advertising.

Adaptations are made available for discovery by register-
ing their contexts and associated behavioral adaptations in
the context manager. As shown in Snippet [1} adaptations
advertisement consists of two steps. (1) Context’s behav-
ioral adaptations are stored in an exportable adaptations
map (Line [2[in Snippet ') Adaptations in the ex-
portable map are advertised autonornously upon connec-
tion of devices to a network. Adaptations are passed to the
system via a fixed socket.io connection whenever they are
discovered by the system. For each adaptation, all its par-
tial methods are transmitted to the system as a plain JSON
object (json), as shown in Lines [0 through [I6] in Snippet

Discovery.

The slices to discover contexts in the surrounding envi-
ronment are defined as part of the system specification via
the browse method. Contexts are discovered autonomously
if an advertised context structured name contains the slices
specified by the system. As adaptations are discovered, the
context slices’ lattice is updated (Linein Snippet7 keep-
ing track of contexts and their associated behavioral adap-

iregisterAdaptation(ctx, adap) {

> Discovery.exportable[ctx.name].push(adap);

3 var ad = mdns.createAdvertisement (mdns.tcp(’
cop’), port, {name: ctx.slicel});

1 ad.start ();

s socket.on("conn", function(socket) {

7 socket .emit ("context", ctx);

8 partialFunctions[ctx] = [];

9 _.each(adap, function(method) {

10 _.each(method, function(fun) {

11 if (typeof(fun.value) === ’function’)

12 partialFuns [ctx].push(getNames (fun));
13 »;

14 3

15 json = {name: ctx.name, funs: partialFuns};
16 socket.emit ("adaptation", json);

17}

1(\}

Snippet 1: Adaptations’ advertising.

tations. Whenever a device defining adaptations disappears
from the network, the context objects and their associated
behavioral adaptations are removed from the lattice (Line

of Snippet [2).

ibrowse (slice) {

2> browser=mdns.createBrowser (mdns.tcp(’cop’));

3 browser.on(’serviceUp’, function(service) {

] socket.emit ("conn", "connected");

5 this.connect (slice);

6 1)

7}

sfunction connect(slice) {

9 socket.on("context", function(data) {

10 lattice.append (new cop.Context({name:
data.namel}));

11 B

12 socket .on("adaptation",

13 var obj = {};

14 _.each(json, function(pb) {

obj[pb]l = function() {

16 socket.emit ("remote", [pb,

arguments], callback);

function (json) {

17 };

18 »;

19 var proxy = new Trait(obj);
20 lattice.addAdaptation(name, proxy);

21 B

22 socket.on("disconnect", function(name) {
3 lattice.remove (name) ;

1

B

Snippet 2: Adaptations’ discovery.

Note that behavioral adaptations are not passed to the
system as is. Given that behavioral adaptations are defined
by third parties, their behavior is unknown to the system,
presenting a potential threat to the system’s integrity. To
avoid harmful behavior to be deployed in the system, in-
coming behavioral adaptations are enacted by system cre-
ated proxy objects, proxy in Line [19| of Snippet @ Proxies
provide the functional API of discovered behavioral adapta-
tions, without incurring in the risks of copying their func-
tionality into the system. Proxies creation is shown in Lines
through of Snippet Where a new trait object (proxy)
is created from the json object passed to the system. The
functional API of the trait is given by the behavioral adap-
tations pb passed in the json object.

Communication.

Message exchanges between the system and external de-
vices take place via fixed socket connections, established by
the system upon discovery of contexts (Lines |3| through [5]in
Snippet . In particular, method calls to behavioral adap-
tations are forwarded to external devices as specified by the
proxy object, shown in Line[I6| of Snippet [2] Figure[2]shows
the interaction between the system (SysEnwvi) and two ex-
ternal devices (CtzEnvy, CtzEnvs). Whenever an adapta-
tion is active (i.e., its behavioral adaptations are composed
in the system), all calls to the partial methods defined in the
proxy object are forwarded to the external device using the
object reference socket connection. Results of method calls
are retrieved to the system via callbacks (Line [16] in Snip-
pet . Furthermore, Figure [2| shows that multiple defined
contexts in different external devices are not replicated in
the system; a fixed connection is created for only one of the
discovered context definitions.

The current communication model of context slices does
not allow the communication of functions from external de-
vices to the system. This is due to the limited support for
communicating functions using sockets. Partial behavior in
the external devices is not passed to the proxy object. These
functions are called from proxies without knowing the inter-
nals of their specification. Therefore, proceed calls in the
external device would be lost, as external devices do not have
information about other available contexts. Generation of a
smarter proxy API harnessing the power of callbacks to deal

with proceed calls is part of our future work.

o ——

_— -~
- ~ _CtxEnv: - ~ {)thnv‘
Y
exporting behavior exporting behavior
N\ / AN

TSilentPhone

= 1]
i

TSilentPhone

advertise .

/ o

2, 1
\ / 2 [
\ / ¢\ ! /
\ / = AN | /7
AN e g N I £
~ - 8 ~ |~
~ - N g
p— /
- /
4 Context Discovery /
/7 slicer P 7
/ IV ATAYAYAN _ < Object reference
slices)\ NN I
/ A RN -
/ -
X
! |
Phone T e
\\ adverise [-> 1 [y
[i
. 7
/
N /
N
~ _ ~ SysEnv:

~———

Figure 2: Communication scheme for the discovery
module in context traits.

3.3 Behavior Composition

Composition of behavioral adaptations in the system is
driven by the (de)activation of contexts with respect to the
information gathered about the system’s surrounding execu-
tion environment from external devices. Along side adapta-
tion’s definition, external devices also define the logic to acti-
vate and deactivate their respective contexts based on sensor
information. Context activation and deactivation are imple-
mented, for example, using expert systems which send a re-
mote message to (de)activate a context in the system. These
messages are then received by the system, and the associated

context is (de)activated as shown in Snippet Once con-

texts are activated/deactivated, the proxy representations

of their associated behavioral adaptations are composed in-

to/withdrawn from the system as specified in COP systems.

//(de)activation messages sent from sensors

socket.emit ("activate", ctx.name);

socket.emit ("deactivate", ctx.name);

//System context activation and deactivation

socket.on("activate", function(ctx) {
lattice.activate(ctx);

B

socket.on("deactivate", function(ctx) {
lattice.deactivate (ctx);

B

Snippet 3: Context (de)activation interaction.

4. CONTEXT SLICES IN ACTION

Interaction between a system and its possible adaptations
as proposed in the context slices discovery module matches
the vision of CPSs and the IoT. These systems are composed
of multiple distributed entities (e.g., sensors, robots, agents)
interacting to provide a specific service. A key characteris-
tic of such systems is that they are plug & play —that is,
entities may appear or disappear unannounced, seamlessly
integrating new behavior, or accommodating to disappear-
ing behavior. We developed a simple prototype AAL appli-
cation as representative of such systems.

AAL systems consist of people interacting with differ-
ent monitoring sensors (e.g., cameras, motion sensors), and
body area networks to monitor their activities and health.
Gathered user information can be linked to a mobile device
and displayed to users; alternatively measurements can be
sent directly to caregivers or attending doctors to report
users’ status. As a particular example, consider a wellness
program composed of sensors for measuring pulse rates and
motion activity of a user. Such information is used by the
system to propose a series of activities the user should follow
as part of the program. Suppose the initial behavior of the
application is to suggest the user to run for 20 minutes every
day, as shown below.

activity = function() {

alert (’Use treadmill for 20 mins’);

}

As part of the wellness program the system is open to all
services declared within the program by allowing the dis-
covery of adaptations in the services.wellness program,
browsing for such slice. Additionally, the system enables
the discovery of user defined adaptations by browsing for a
user slice. These slices are declared on the system by calling
the context manager’s browse method are as shown below.
Using browse the system actively listens for new advertised
entities corresponding the specified slices.

cop.manager. browse ("services.wellness") ;

cop.manager.browse ("user") ;

We test two behavioral adaptation scenarios appropriate
for the discovery of adaptations using context slices: discov-
ery of previously advertised contexts, and introduction of
new contexts to running systems.

Suppose that in addition to treadmills, the AAL envi-
ronment is equipped with a static bike offering alternative
training for users who suffer from jumpers knee. Such con-
dition can be detected via a body sensor gathering knees’

strain information. Whenever strained knee conditions are
detected, the application should propose warm-up and cool-
down activities in addition to alternative exercise activities
(e.g., using the static bike). The KneeStrain context is read-
ily available and advertised as part of the wellness program.
KneeStrain = new cop.Context ({
name = "KneeStrain",
slice = "services.wellness"
)M
StrainedKnee = Trait ({
warmup: function() { ... },
activity: function() {
warmup () ;
alert (’Use static bike for 20 mins’);
cooldown () ;

},
cooldown: function() { ... }
b

registerAdaptation (KneeStrain, StrainedKnee);

The context and its associated behavioral adaptations are
defined by the developers of the body area network devices.
The context is advertised as specified by its slice property
—that is with slice services.wellness.KneeStrain. The
context will be discovered by the system as it is browsing
for all contexts containing the slice services.wellness.

Suppose now that during the training period the user de-
cides to run a marathon. An external personal trainer appli-
cation can interact seamlessly with the wellness program if
this advertises its services, for example, using the user slice.
The marathon training intensifies the workout of users as
time passes by, according to their preferences, as shown in
the code bellow.

Marathon = new cop.Context ({
name: "Marathon',
slice: "user.activity"

1

Training = trait ({

activity: function() {
alert (’Use treadmill for 10km’);
}
B

registerAdaptation(Marathon, Training);

Whenever the Marathon context is discovered, the slice
user.activity.Marathon is added to the system’s lattice.
The Training behavioral adaptation associated with the
context is composed into the system, modifying the activity
in the wellness program. When the marathon passes the de-
fault preferences are reinstated, removing the slice from the
system and reverting to the original application behavior.

In both scenarios we observed adaptations are autonomously
discovered using context slices, effectively modifying the lat-
tice structure. Moreover, behavioral adaptations are suc-
cessfully composed in the system whenever contexts are sig-
naled for activation, without the system or external devices
requiring previous knowledge about each other.

S. RELATED WORK

This section presents approaches related to the context
slices proposal classified in two categories according to the
features they provide, that is, context clustering, and ad hoc
discovery and service composition.

Context clustering in COP languages.
As previously mentioned, COP languages do not currently
support autonomous discovery of unknown contexts. How-

ever, existing languages provide constructs to scope behav-
ioral adaptations based on defined groupings of contexts.

Context slices’ definition is inspired by context clustering
using namespaces, already provided in Context Traits [3].
Namespaces and contexts belonging to them need to be ex-
plicitly specified beforehand by Context Traits developers.

In Flute [1] behavioral adaptations (modes) are grouped
into modals. Modals are used by the run-time environment
to ensure that the execution of modes entirely takes place
under the correct context conditions. Similar to context
slices, developers are not required to know all modes be-
longing to a modal beforehand, but modes can be added
dynamically to modals. Nonetheless, Flute does not provide
the discovery of modes or modals, both need to be defined
by developers in advance.

Lambic [8] introduces futurized generic functions to ad-
here to the ambient-oriented paradigm. Via futurized generic
functions, objects in the system are advertised and discov-
ered using tags. In Lambic contexts are defined as predicates
associated with the functions they intend to adapt, there-
fore, advertisement and discovery of objects and their meth-
ods implies context advertisement and discovery. Lambic
additionally defines group gemeric functions. These func-
tions are used to orchestrate the distributed and adaptive
behavior of objects sharing similar functionality. The dis-
covery model in Lambic is closely related to that of context
slices, providing discovery of unknown adaptations via tags,
and grouping related objects by means of group behavior.

Service discovery and composition.

In mobile ad hoc environments, network connectivity is
volatile and objects may appear and disappear from the
network unannounced. typetags and remote references are
proposed to enable discovery and interaction between dis-
tributed event-loops [9]. Typetags are used to discover spe-
cific objects or services broadcasted to the network. Far
references keep a casual connection between system entities
to enable their communication. This communication model
is similar to the advertise/discover one used in context slices.

Service composition mechanisms [2| 6] use ontologies to
generate links between services. Such links are characterized
by the semantic similarity between services. If the function-
ality provided by two services is semantically related, then a
link between the two is generated. Semantic links are main-
tained on a (centralized) graph structure where services are
represented as graph’s nodes. Links are generated between
nodes as new services appear in the network. Context slices
are inspired on the semantic ontology graphs of service com-
position. Context slices take the ontology graph idea from
service composition to manage discovered services, coupling
it with ad hoc network discovery. We extend the ontology
graph model with scoped discovery of available services, this
enables us to focus on those services relevant for the system
rather than on whole services graphs.

6. CONCLUSION

This paper introduces lightweight discovery of contexts
in COP by means of context slices. Context slices use the
mDNS protocol to enable the discovery of ad hoc adapta-
tions advertised by external devices and sensors. Such de-
vices gather information from the system’s execution envi-
ronment and define specific situations in which the behavior
of the system can be adapted, according to defined adapta-

tions (i.e., context objects and their associated behavioral
adaptations). As adaptations appear and disappear in the
network, a lattice is used in context slices to manage the sys-
tem’s adaptations coming form external devices. The work
on context slices is of significant value for CPSs and IoT
environments, where new devices and services may appear
after the system has been deployed. Context slices are the
first step to fully realize the vision of such systems. In this
paper we showed the applicability of context slices to CPSs
by means of an AAL application prototype.

Contexts slices currently enable the discovery of adapta-
tions corresponding to the slices specified by developers. An
extension of the model would enable the discovery of all
possible adaptations in the network without incorporating
them in the system. Users then will choose those adapta-
tions that are relevant to their surrounding environment.
As mentioned previously, another avenue of future work for
contexts slices is to manage proceed calls from the proxy
objects created upon discovery of adaptations.

Acknowledgements

This work was supported by Science Foundation Ireland
grant 10/CE/I1855 to Lero - the Irish Software Engineering
Research Center (www.lero.ie|). We thank the reviewers for
their comments on earlier versions of this paper.

References

[1] E. Bainomugisha, J. Vallejos, C. De Roover, A. Lombide
Carreton, and W. De Meuter. Interruptible Context-
dependent Executions: A Fresh Look at Programming
Context-aware Applications. Symp. on New Ideas and
Reflections on Software. ACM, 2012.

[2] D. Bianchini, V. D. Antonellis, and M. Melchiori. P2P-
SDSD: on-the-Fly Service-Based Collaboration in Dis-
tributed Systems. Journal Metadata Semantic Ontolo-
gies 5.3 (2010).

[3] S. Gonzilez, K. Mens, M. Colacioiu, and W. Cazzola.
Context Traits: Dynamic Behaviour Adaptation Through
Run-Time Trait Recomposition. Intl. Conf. on Aspect-
oriented software development. 12. ACM, 2013.

[4] S. Gonzdlez et al. Subjective-C: Bringing Context to
Mobile Platform Programming. Intl. Conf. on Software
Language Engineering. Springer-Verlag, 2011.

[5] L. Jin and L. Liu. An Ontology Slicing Method Based
on Ontology Definition Metamodel*. Business Informa-
tion Systems. Springer-Verlag, 2007.

[6] S. Montanelli et al. The ESTEEM platform: enabling
P2P semantic collaboration through emerging collective
knowledge. Journal of Intelligent Information Systems
36.2 (2011).

[7] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-
oriented Programming: A Software Engineering Per-
spective. Journal of Systems and Software 85.8 (2012).

[8] J. Vallejos. Modularising Context Dependency and Group
Behaviour in Ambient-oriented Programming. PhD the-
sis. Vrije Universiteit Brussel, 2011.

[9] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J.
Dedeker, and W. De Meuter. AmbintTalk: Object-oriented,
Event-driven Programming In Mobile Ad-hoc Networks.
European Conf. in Object-Oriented Programming. 2007.

www.lero.ie

	Introduction
	Context Slices
	Organizing Context Objects
	Context Discovery and Advertising
	Scoping Adaptations

	Context Slices Implementation
	Context-Oriented Programming
	Advertising, Discovery, and Communication
	Behavior Composition

	Context Slices in Action
	Related Work
	Conclusion

