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Executive Summary 

The adverse health effects of air pollution are well

established, but previous studies on this topic have

generally considered the average pollution

concentration in an area rather than the specific

concentration experienced by an individual. Variations

in the locations (both indoors and outdoors) occupied

by individuals and the activities in which they

participate lead to variations in their exposure to

pollution, in the uptake of air pollutants in their lungs,

and in consequent health effects. The development of

a methodology for modelling this variation in personal

exposure offers a valuable alternative to expensive

personal monitoring. The Personal Activity–Location

Model (PALM) project investigated methods for

modelling an individual’s personal exposure to air

pollution taking into account variations in their activity

and location. The project produced three different

models: 

1. A statistical model of the personal exposure of

individuals in Dublin; 

2. An improved version of the Indoor Air Pollutant

Passive Exposure Model (IAPPEM); and 

3. A set of dispersion models embedded in ArcGIS

for ambient air quality in the Dublin area (PALM-

GIS). 

All of these models are available for further use. 

The project included an intensive personal air quality

monitoring field study of the variation in exposure to

particulate matter experienced by Dublin residents

who work in office environments in the city centre. The

monitoring campaign collected continuous and

consistent information on the concentrations of

particulate matter to which subjects were exposed over

consecutive 24-h periods using a real-time particulate

matter sampling device, Global Positioning System

(GPS) tracking equipment, and a personal activity

diary. Particulate matter was chosen as the main

pollutant to be monitored due to its health significance,

its multi-source nature (indoor and outdoor

environments), and its suitability for real-time

monitoring. The results of this study were used to

develop statistical models of personal exposure

variation including Generalised Regression Neural

Network modelling and Monte Carlo simulation.

The state-of-the-art probabilistic model for indoor

exposure, IAPPEM, was developed to include a 1-min

time resolution, a variable airflow rate and a modified

PM10
1 deposition rate (which accounts for the

variability in PM2.5/PM10 ratios). This model’s ability to

perform a detailed analysis of overall particulate matter

contribution from multiple different emission sources in

a variety of interconnected internal locations in a

dwelling was demonstrated by comparing modelled

and measured concentrations. Emission source

location and internal household configuration were

found to have significant effects on pollutant transfer

throughout a dwelling. The IAPPEM was found to

accurately model the effect on PM2.5
2 concentrations

of interzonal airflow variations over 10 min or more,

with increasing accuracy for longer durations, whereas

the use of time-weighted average airflow rates led to

the under-prediction of concentrations by up to 28%.

Simulations with the IAPPEM found that modelling

indoor exposure based on time-averaged profiles is a

poor substitute for the use of time–activity profiles

which describe how individuals move through different

zones in a dwelling.

A geographic information system (GIS)-based air

quality modelling framework for the Dublin area was

created that integrates a set of air quality models and

generates input data to allow exposure modelling to be

extended to a wider range of individuals. The synthesis

of these modelling tools within a GIS platform provides

authorities with a tool to correlate exposure estimates

with other thematic layers, such as land use and

population density. The principal components of the

framework model urban background concentrations,

dispersion of road traffic emissions on different road

types, and dispersion of pollutants from point and area

1. PM10, particulate matter ≤10 µm.
2. PM2.5, particulate matter ≤2.5 µm.
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sources. The background model uses artificial neural

networks to model the non-linear relation between

PM10 data recorded at permanent air quality

monitoring stations and weather variables recorded at

meteorological stations. The integrated model was

validated by modelling the personal exposure to

particulate matter of the field study subjects while they

travelled to work in Dublin City Centre using different

routes and different transport modes. 

The project has identified the significance of indoor air

quality on the overall impact of air pollution on the

health of a typical office worker. Exposure and uptake

during indoor activities, such as working and cooking,

significantly outweighed those identified during

outdoor activities, such as commuting. Exposure to

and uptake of pollutants must both be considered

when comparing health impacts across different

activities; the use of concentration exposure alone can

result in significant misinterpretation of relative health

impacts. Differences between mean personal

exposure measurements and background air quality

data identified in previous air pollution exposure

assessments were confirmed in this study, which has

implications for current policy on air quality

management and for epidemiological modelling

investigations.
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1 Introduction 

The personal exposure of an individual to air pollution

and the associated health impacts are multifaceted

and vary with a range of factors. The impacts of

meteorological factors and traffic conditions on

personal exposure are well documented (Adams et al.,

2001), as are the exposure impacts of different

activities such as commuting (O’Donoghue et al.,

2007), and the health impacts of chronic and acute

exposure to particulate matter (PM) (Michaels et al.,

2000; Oberdörster, 2000). Since the developed world

population spends approximately 90% of its time

indoors, personal exposure in indoor environments is

especially important, and determinants of personal

exposure, such as smoking, have been shown to have

a large influence on the personal exposure

concentrations of an individual (Koistinen et al., 2001),

while the indoor activity of cooking is known to produce

an appreciable mass of airborne particles in the vicinity

of the cooker (Abdullahi et al., 2013). Previous

research has also indicated possible adverse health

effects such as cardiovascular disease associated with

occupational particulate exposures (Magari et al.,

2001; Fang et al., 2010). As such, it is clear that the

variety of activities carried out by individuals on a daily

basis has an important influence on their personal

exposure to air pollutants.

The uptake of pollutants in the lungs is also an

important element in the assessment of the health

impact of air pollution exposure and an area often

neglected by studies of personal exposure to air

pollutants. Investigations have shown that the

differences in the physiological state (breathing rate,

frequency, etc.) of population subgroups can result in

differing impacts of air pollutant exposure among such

groups. For example, investigations have shown that

while exposure of individuals to air pollutants in private

vehicles may be typically higher than for cyclists or

pedestrians in commuter transport, when breathing

parameters and duration of exposure are taken into

account, transport modes, such as cycling, often

exhibit a higher health impact from air pollution

(McNabola et al., 2008). 

The monitoring of personal exposure to air pollution

incurs considerable costs, in terms of expense, time

and resources (Hoek et al., 2002). As a cheaper and

more readily available alternative to personal exposure

measurements, background air quality measurements

are often used to represent the exposure of individuals

or groups. This approach has been the basis for a

significant body of epidemiological evidence of the

health impacts of air pollution (Dockery et al., 1993),

and has produced important results in the field of air

pollution science.

However, it is also often highlighted that the use of

ambient air quality data to represent the personal

exposure of individuals has drawbacks (Steinle et al.,

2013). Differences between background air quality

measurements and individual personal exposure may

represent a weakness in current epidemiological

models. To improve this situation, without the need for

expensive and resource-intensive personal exposure

monitoring, reliable and accurate models of personal

exposure are required.

1.1 Objectives

The Personal Activity and Location Model (PALM)

project aimed to develop a methodology for modelling

an individual’s personal exposure to air pollution. This

methodology should capture the important factors and

processes that influence an individual’s exposure; in

particular it should allow the variations in exposure

experienced by individuals performing different

activities and in different locations to be evaluated. The

resulting model outputs will facilitate individuals in

mitigating their personal exposure.

Specifically, the PALM project had the following

objectives:

• To experimentally investigate the activities and

locations that most contribute to the personal

exposure of a class of individual, namely

residents of the Greater Dublin Area (GDA) who

commute to work in offices in Dublin city centre;
1



PALM: a personal activity–location model of exposure to air pollution 
• To develop and evaluate statistical modelling

techniques for evaluating personal exposure

using field measurement data;

• To develop a model to calculate indoor personal

exposure that captures the short-term variations

experienced by individuals as they move

between compartments and engage in different

activities; and

• To develop a model to calculate ambient

concentrations at a variety of receptor types in

the urban environment of Dublin, taking into

account variations in meteorological conditions

and proximity to diverse sources of air pollutant

emissions.

1.2 Methodology

The PALM project was structured as a set of work

packages, each of which addressed one of the

objectives listed above. The initial phases of the

project designed and executed a field monitoring

campaign that collected continuous and consistent

information on the concentrations of PM to which a

group of individuals was exposed over a number of

days, and interrogated these data to identify the

activities and locations that make the largest

contribution to overall personal exposure. This

information was essential for the development of an

efficient and effective modelling methodology. Later

phases of the work developed independent models for

overall personal exposure, indoor personal exposure

and outdoor personal exposure, using statistical,

probabilistic and deterministic methods, respectively.

These methods are described in the following

chapters.
2
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2 Personal Exposure Monitoring and Modelling

2.1 Introduction

This part of the PALM project comprised an

experimental investigation of the personal exposure of

office workers over sequential continuous 24-h

periods. An individual’s exposure while carrying out

different activities in various micro-environments was

measured and the associated uptake of pollutants

determined. Exposure assessments were performed

for subjects distributed throughout the GDA. The

obtained results quantify the relative importance of

exposure to air pollution in different micro-

environments for overall health impact. Personal

exposure and pollutant uptake were analysed and

compared. The relative importance of activities such

as smoking and cooking on personal exposure was

highlighted, as was the dominant influence of indoor air

quality. A full description of this work is contained in

McCreddin (2013).

2.2 Exposure Assessment

2.2.1 Methodology
A 24-h personal exposure monitoring campaign was

undertaken over a period of 28 months, from February

2009 to June 2011. A total of 59 volunteer subjects

measured their personal exposure to PM10
1 over 255

24-h sampling periods. To reduce variation among the

sample population, the recruitment of subjects was

restricted to office workers living and working in the

GDA and samples were collected during weekdays

only. The study population was 57% male and 43%

female. Forty-eight per cent of the subjects were aged

26–35 years, with 27% in the 18–25 years category

and the remainder between 36 and 55. Approximately

12% of subjects declared themselves to be smokers of

some degree, or resided with a smoker. 

Sampling of personal exposure, activity and location of

subjects was carried out using a real-time PM (PM10)

sampling device (Met One Aerocet-531 particle

profiler), Global Positioning System (GPS) tracking

equipment (Garmin GPSMAP® 60CSx), and a

personal activity diary. PM was chosen as the main

pollutant to be monitored due to its health significance,

its multi-source nature (indoor and outdoor

environments), and the ability to record its

concentration using real-time monitors that are small

and mobile whilst maintaining sufficient resolution and

accuracy. 

The data set for all 24-h sampling periods collected by

the subjects was compiled using the statistical

software package SPSS (v16.0). Each sample in the

data set comprised the following variables: 

• Date;

• Time;

• PM10;

• Wind speed;

• Wind direction;

• Temperature;

• Precipitation;

• Sunshine hours;

• Pressure; and 

• Relative humidity. 

The concentrations of PM10 were represented both as

overall 24-h daily averages, and by the mean

concentrations encountered in each of the main micro-

environment/activity categories: 

• At work; 

• At home; 

• Sleeping; 

• Shopping; 

• Recreation/Sport; 

• Commuting;1.  PM10, particulate matter ≤10 µm.
3



PALM: a personal activity–location model of exposure to air pollution 
• Café/Restaurant; 

• Public house; 

• Cooking; 

• Other indoor; and 

• Other outdoor. 

The final two activity categories of ‘Other indoor’ and

‘Other outdoor’ are amalgamations of infrequent indoor

and outdoor activities, such as visiting a library or a

post office. The resulting matrix was subsequently

analysed for descriptive statistics and mean

comparison tests were carried out to investigate

statistically significant (or otherwise) relationships

within the data. 

The uptake of PM during various activities was

estimated in this study using an adaptation of the

International Commission on Radiological Protection

(ICRP), Human Respiratory Tract (HRT) Model. The

model, its adaptation and application are described in

full in McNabola et al. (2008) and in ICRP (1994). The

model was used to convert personal exposure

concentrations (µg/m3) in each micro-environment to

uptake (µg). This was carried out by assigning

respiratory rates to the different levels of physical

exertion along with information on the time spent in

particular micro-environments for each sampling

period. The model also took account of variations in

uptake according to the subject’s gender, age, height

and weight.

2.2.2 Results

2.2.2.1 Time–activity budgets

A large amount of activity data was gathered in

conjunction with PM10 exposure sampling. The activity

diary and GPS enabled different activities, as well as

micro-environments, to be identified and matched to

the data set values obtained from the Aerocet-531

instrument. During the sampling campaign, subjects

spent, on average, 92% of their time indoors per day,

with a further 3% spent in enclosed transit. The total

indoor time percentage can be broken down into four

major micro-environments of:

1. At home in a residence;

2. At work;

3. In a café/public house/restaurant; or 

4. Some other ‘Other indoor’ location. 

The largest amount of time was spent by subjects in a

residence, which represented 59% of their time. Of this

time spent at home, the average time spent sleeping

was found to be 494 min, while the subjects were

classified as ‘active’ in the home for the other 305 min.

Time spent cooking also comprised, on average, 49

min of the time the study population spent in a

residence. Outside the home, the sampling population

spent most time at work, which represented, on

average, 30% of a person’s day. Smaller amounts of

time were spent in other places such as a café, pub,

restaurant, commuting or other indoor locations. 

2.2.2.2 Personal exposure

The mean 24-h PM10 concentration for the study

population was found to be 32 µg/m3 (σ = 31 µg/m3).

The highest mean 24-h PM10 concentration for an

individual subject in the data set was recorded as 293

µg/m3; however, 75% of the daily average data

concentrations for subjects were under 36 µg/m3.

Figure 2.1 illustrates a typical 24-h PM10 personal

exposure time-series history collected during the

sampling campaign.

The highest mean PM10 concentration during a

discrete activity was found to occur during the activity

of cooking, for which a mean concentration of 146

µg/m3 was measured. Cooking events primarily

occurred during the evening in a subject’s home and

typical concentrations varied according to the type of

cooking, length of cooking and ventilation conditions in

the dwelling. This was followed by the category of

‘Other indoor’ which had a mean concentration of 67

µg/m3. However, this category included many activities

not repeated on a daily basis by the majority of the

subjects, i.e. activities seldom undertaken in

comparison with the other clearly defined micro-

environments such as at home or at work. 

2.2.2.3 Pollutant uptake

The mean 24-h PM10 uptake amongst subjects was

found to be 425 µg (σ = 347 µg). The uptake for the

study population was found to vary considerably
4
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across the different micro-environments and activities,

and the obtained results demonstrate why subjects

experienced higher uptakes in certain micro-

environments than in others (see Fig. 2.2). 

2.2.3 Discussion 

2.2.3.1 Overview of personal exposure and pollutant

uptake

Personal exposure studies of PM10 and PM2.5
2 in a

number of other cities have found much higher

personal concentrations (Branis and Kolomazníková,

2010; Borgini et al., 2011), but these studies were

conducted in regions with higher ambient

concentrations of PM generally. The average ambient

outdoor PM10 concentration measured at a fixed site

monitor in Dublin City during the sampling campaign

was just 13 µg/m3, which can be compared with the

mean 24-h concentration experienced by the study

population of 32 µg/m3. 

The largest uptake of PM10 among subjects was found

to be in the office working environment, which had a

mean uptake of 214.2 µg. This was followed by

recreation or sport (122.0 µg) and cooking (115.2 µg).

The mean uptake while active at home was 75.9 µg,

falling to 22.9 µg while sleeping. The commuting

modes of subjects were observed to have some of the

lowest mean uptake of all micro-environments. 2. PM2.5, particulate matter ≤2.5 µm.

Figure 2.1. Typical 24-h time series profile annotated with the activities carried out.

Figure 2.2. Comparison of mean daily uptake and personal PM10 concentrations by micro-environment.
5



PALM: a personal activity–location model of exposure to air pollution 
Exposure and uptake of pollutants in the workplace

were a common factor in all samples and clearly a key

area through which improvements in health impact

could be achieved using control measures. Sport and

recreation activities were less common among the

study population but were nonetheless notably

elevated in terms of both exposure and uptake,

especially when carried out indoors. 

While cooking activities were not universally performed

by subjects, with approximately 50% of sampling days

including one or more cooking event, as the third

highest source of pollutant uptake, it was a key

determinant in overall exposure and uptake of PM10. A

number of cooking events resulted in very high

measured concentrations, which were dependent on

the form and duration of cooking, as well as on

ventilation conditions. However, it was impractical to

accurately determine the ventilation parameters for

each cooking event during this study, and it was also

difficult to separate the impact of differing types of

cooking as these were often carried out concurrently

(e.g. boiling and frying together). Increased awareness

among the public of the health benefits of adequate

ventilation during cooking could reduce this

component of exposure. 

Subjects spent the majority of their time indoors,

predominantly in their residence, where two-thirds of

their time was spent sleeping, and one-third spent

active in the home. The activity of sleeping had a

relatively low mean personal exposure concentration

(10 µg/m3) due to the lack of activity in the residence at

those times. In contrast, the personal concentrations

measured when each subject was active at home were

far greater. In addition to the home micro-environment,

30% of each subject’s day was spent at work. Other

micro-environments such as commuting, shopping and

recreation accounted for only small portions of the

daily routine of the study population. As the mean

occupational personal exposure (39 µg/m3) of the

office workers in this study was found to be higher than

their overall 24-h mean personal exposure, this micro-

environment played a key role in the day-to-day

personal exposure concentrations of individuals.

These findings highlight the importance of indoor air

quality on the overall impact of air pollution on the

health of a typical office worker. Office workers in this

study lived predominantly outside of the city centre and

worked in offices located in the city centre. This was

reflected in the in-home concentrations being typically

lower than those at work. The control of air pollution in

the workplace in Ireland has seen some improvement

in recent years with the introduction of the ban on

smoking for example. This was evident in the elevated

in-home concentrations measured in the houses of

smokers (including during the activity of sleeping)

compared with their workplace exposure

concentrations. 

2.2.3.2 Transport micro-environments and commuting 

The highest PM10 concentrations were found while

travelling by bus (43 µg/m3), whereas travel by tram

displayed the lowest personal exposure (14 µg/m3).

Significant research efforts have focused on personal

exposure in the transport micro-environment,

particularly during commuting. However, in this study,

exposure during transport activities was found to be

insignificant in comparison with the contribution of

indoor air quality in the workplace and at home to

overall daily exposure. Michaels and Kleinman (2000)

highlighted the significance of brief excursions in

micro-environments with high 1-h peak concentrations

of PM on the health of humans. In this study, these

conditions were predominantly observed in the home

and were associated with cooking or smoking rather

than in outdoor transport micro-environments. 

This does not suggest that transport emissions in

Dublin had little impact on the environment or the

public, as previous investigations have shown that 50–

80% of particulate air pollution in buildings originated

from external sources (Hsu et al., 2012). Sources of

indoor particulate air pollution in Irish homes are

investigated in Chapter 3.

2.2.3.3 Comparison of personal exposure and uptake

The activity category of ‘Other indoor’ was found to

have a relatively high mean PM10 concentration

(67 µg/m3) during the measurement campaign.

However, due to the relatively infrequent and short

amount of time spent in some of these micro-

environments, the actual population uptake over 24 h

was low (27.8 µg). A similar situation was observed

with cafés and restaurants, and the impact of the
6
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highest exposure category, cooking, was reduced

when breathing rates and exposure duration were

considered.

The pollutant uptake by subjects at work and active at

home were, as expected, both large contributors to

total 24-h total uptake. However, higher activity levels

while at work (40% sitting and 60% light exercise) led

to this activity making by far the greater contribution.

The average uptake while at work (214.2 µg) was

nearly three times that in the home (75.9 µg) even

though there was only a 49% difference between the

mean exposure concentrations measured for the two

activities. 

2.3 Statistical Personal Exposure
Modelling

2.3.1 Introduction

There are a variety of approaches to the modelling of

personal exposure to air pollution. These include the

use of time-integrated activity modelling, where the

total 24-h personal exposure is modelled as the sum of

a series of values evaluated as the product of time

spent in a micro-environment and the corresponding

pollutant concentration in that micro-environment.

Statistical techniques, such as the use of Artificial

Neural Networks (ANNs), have also been used to

predict personal exposure based on the analysis of

historic data records. 

The PALM project investigated alternative methods of

personal exposure modelling that made direct use of

the measured personal exposure data described

above. The performances of three personal exposure

modelling techniques were compared: 

1. Time-integrated activity modelling;

2. Monte Carlo simulation; and 

3. Neural network modelling.

2.3.2 Methodology
The development and formulation of each investigated

model is described in full in McCreddin (2013). The

performances of the models were validated by dividing

the data set of personal exposure measurements into

model development and model validation data sets.

The model development data set consisted of 230 24-

h samples, which represented 90% of the overall data

set, while the validation data set consisted of the

remaining 10%. The validation data were chosen from

the main data set using a specially developed

algorithm implemented in MATLAB that randomly

chose and removed 25 sampling days from the main

data set and stored them in a separate file for later

model testing.

2.3.3 Results and discussion
Table 2.1 provides a summary comparison of the

performance of the different models. A more detailed

discussion of model performance and accuracy is

presented in McCreddin (2013). As a general

observation it is clear that all models displayed

reasonably good predictive performance, with the

Pearson’s correlation coefficients in the region of 0.55–

0.84 and the normalised mean bias (NMB) values

generally less than 10%. Some differences in

performance did exist and clearly Model 3 using the

Table 2.1. Comparison of model performance – Pearson’s correlation coefficient (r), root

mean square error (RMSE) and normalised mean bias (NMB) (McCreddin, 2013).

Model Model basis r RMSE 
(µg/m 3)

NMB 
(%)

1 Time weighted 0.55 10.2 9.3

2 Time weighted 0.55 11.7 10.2

3 Monte Carlo 0.59 9.8 6.6

4 FFNN 0.84 26.5 –17.2

5 GRNN 0.77 11.8 –6.6

FFNN, Feed Forward Neural Network; GRNN, Generalised Regression Neural Network
7



PALM: a personal activity–location model of exposure to air pollution 
Monte Carlo simulation of micro-environmental

exposure distributions resulted in the most accurate

predictions, considering all three performance criteria.

However, the differences in performance could be said

to be minor and perhaps a more important aspect of

the critical examination of the approaches is the utility

of each modelling approach as a means of evaluating

personal exposure for epidemiological investigations. 

Time-weighted activity models have been the subject

of numerous investigations but, of the five techniques

examined here, this approach produced some of the

poorest model performance statistics. Moreover, this

methodology has a lower utility than the other

approaches, in that it is heavily dependent on the

availability of measured data and is less readily

transferable to different locations or subject types as a

significant amount of measured personal exposure

data is required to develop a location/subject-specific

model. In comparison, the Monte Carlo simulation

technique offers a potentially higher degree of

transferability to other locations and subject types.

Model 3 was a variation on the time-weighted activity

approach and employed a format similar to that laid out

in the EXPOLIS study (Jantunen et al., 1999). The

potential higher utility of Model 3 in comparison with

the traditional time-weighted activity techniques lies in

the transfer of statistical distributions of micro-

environmental exposure concentrations from one

location to another. For example, it may be reasonable

to assume that as the personal exposure to PM10 in the

homes of 59 office workers in the GDA was observed

to follow a log–log distribution, this distribution also

applies to the homes of individuals in locations outside

of Dublin, and to the homes of other population groups.

While the mean concentrations in homes may vary by

location and socio-economic grouping, the question

highlighted in this research is whether a single

observed statistical distribution is applicable to a large

number of homes or home types? Confidence in the

statistical distribution of air pollution concentrations in

different micro-environments, together with a limited

amount of data on mean exposure concentration,

would facilitate the extension of this modelling

technique to numerous locations and sectors. A

probabilistic method of indoor air quality modelling that

employs such distributions is presented in Chapter 3.

Aside from its potential in transferability, Model 3 also

showed somewhat stronger predictive performance

than any of the other four modelling approaches. The

key difference in Models 1 to 3 lies in the selection of

concentrations to represent different mean micro-

environmental exposures. Model 1 was based on the

population average and is, as such, clearly a very static

model where predictions will change only as a result of

time–activity patterns. Model 2 was based on average

exposure of a specific subject in a particular micro-

environment which again results in a very static model

with limited transferability. The improved performance

of Model 3 clearly lies in the random variation of the

micro-environmental concentrations according to a

statistical distribution. Such variation results in a more

dynamic model, which caters for the variable nature of

personal air pollution exposure. 

The ANN modelling approach produced impressive

results when using a Generalised Regression Neural

Network (GRNN), but not when using a Feed Forward

Neural Network (FFNN). In comparison with the Monte

Carlo simulation approach, the GRNN model produced

a higher Pearson’s correlation coefficient, a lower root

mean square error (RMSE) and a very similar NMB.

However, this technique is heavily dependent on the

availability of a significant amount of training data to

develop the model, and is consequently not readily

transferable to other locations or other population sub-

groups.

2.3.4 Observations

The cost of personal exposure measurements

presents a barrier to their inclusion in air pollution

health impact assessment and thus readily available

background air quality data are often used in their

place. Personal exposure models, which themselves

also require a significant amount of measurement data

for their development and offer limited scope for

transferability to differing locations or differing

population groups, do not provide a solution to this

problem. However in addition to its strong ability to

predict personal exposure among office workers in this

study, it was concluded that the Monte Carlo

simulation technique offers potential scope for

improved transferability, with limited measurement

data requirements. However, the extent of this

transferability remains to be determined. 
8
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3 Indoor Air Quality Modelling

3.1 Background and Identification of
Knowledge Gap

The use of computational models in predicting

exposure to gaseous or particulate indoor air pollutants

has been well documented. It is often expensive or

impractical to obtain direct indoor measurements (or

personal exposure measurements) for large

population groups in epidemiological studies, and

computational models are a recognised substitute.

Computational modelling of indoor air quality has the

benefits of cheaply and easily evaluating population

exposure and potential mitigation through changes in

either building-design-related strategies or behavioural

strategies. Models are also effective tools for

separating the contributions from indoor and outdoor

air pollution sources, allowing effective exposure

reduction strategies to be devised. 

Prior to conducting the model development research

described below, a review of the literature was

conducted to establish the status of current technology

in indoor air quality modelling (McGrath, 2014).

CONTAM (NIST, Gaitherburg, MD, USA) is a multi-

zone, airflow and transport pollutant model considering

airflow paths, ventilation system and emission sources

(NIST, 2011). To date, CONTAM has been used in

over 54 published applications, making it the most

widely used indoor air pollutant model. Fabian et al.

(2012) used CONTAM to predict nitrogen dioxide

(NO2) and PM10 concentrations in low-income family

homes in Boston, for use in a health-based

intervention study, which highlighted the challenges

imposed on simulations due to the large variation in

emission strengths. Being a deterministic model,

CONTAM is unable to consider variations in modelling

parameters, limiting its use in complex indoor

environments as every input parameter has an

associated level of uncertainty. 

Due to the existence of large uncertainties surrounding

the parameterisation of exposure models, probabilistic

approaches such as that employed by the INDAIR

model (described below) are necessary, but this type

of model has had limited development to date.

Probabilistic models, by employing probability density

functions, simulate a range of possible values for each

input parameter, overcoming some of the uncertainties

in experimentally obtained data, but can also

encompass uncertainties in the selection of

appropriate modelling parameters between studies.

While current models have demonstrated the

capability to predict indoor PM10 and PM2.5

concentrations, the need still exists for a

comprehensive probabilistic model capable of

simulating more realistic representations of a home

environment. Such a model should encompass the full

range of possible emission sources located in different

room types and, simulated on a sufficiently short

timescale, capture details in peak and mean

concentrations and accurately determine the time

duration for emission concentrations to fully decay.

In this part of the PALM project, an existing

probabilistic model, INDAIR, was developed into a

state-of-the-art model, Indoor Air Pollutant Passive

Exposure Model (IAPPEM). The IAPPEM’s ability to

fully assess the distribution of particulate air pollutants

in dwellings is demonstrated through analysis of model

results from a wide range of simulations. 

3.2 Model Development

The INDAIR model provided an internationally

advanced probabilistic modelling tool to assess the

contribution of indoor and outdoor sources to pollutant

concentrations in the indoor environment. It could

simulate the upper percentiles of the population

exposure to air pollutants, or the proportion of the

population exposed to concentrations above critical

health thresholds. However, the INDAIR model still

possesses a number of limitations that prevent its full

application to representative indoor environments. The

review of the literature highlighted the large variation in

emission rates, deposition rates and air exchange

rates that are possible, and, while the probabilistic

approach accounts for these, the temporal and spatial

limit restrictions of INDAIR restrict its scope. The
9



PALM: a personal activity–location model of exposure to air pollution 
IAPPEM redresses these deficits by making a number

of significant adaptations to INDAIR; the benefits

offered by each adaptation in improving personal

exposure assessment are summarised below:

• In contrast to INDAIR, which employs a simplistic

three room layout of the home environment, the

PALM project developed the spatial model into 15

interconnecting rooms which can be combined to

represent different household layouts. This allows

the examination of the impact of source location

and household layout on indoor concentrations,

while predicting exposure for multiple individuals

present in the same dwelling. The model

determines the rooms containing the lowest

concentrations and this information can be used

to develop strategies to help reduce exposure.

• The temporal resolution of the model was

improved from 15 min to 1 min. It was found that

simulations carried out at this increased

resolution showed improved predictions of peak

PM concentrations. While no substantial

difference in 24-h mean concentrations was

observed, this was not the case for the 24-h

mean exposure. Short-term peaks in

concentrations can have a considerably greater

impact on mean exposure than on mean

concentrations; an individual moving through a

series of micro-environments can be exposed to

multiple peaks in different micro-environments,

although each peak might only occur once in

each micro-environment.

• An adapted PM10 deposition term was included

(Fig. 3.1), which is especially important when

multiple indoor emission sources are modelled.

PM2.5 to PM10 ratios vary for both outdoor PM

concentrations and indoor PM emission sources.

Failure to separate the PM2.5 and PM10

contributions results in the PM2.5 contribution

being assumed to decay at a rate calculated for

the PM10 deposition velocity, hence

overestimating PM10 decay. However, separating

PM2.5 from PM10 results in the prediction of

higher PM10 concentrations for longer durations.

In a simulation, this results in greater PM10

transfer throughout a dwelling and higher

exposure.

• The improved temporal resolution of the model

facilitates short-term variation of model

parameters. Simulations using a time-varying

airflow rather than a time-weighted average

airflow (Fig. 3.2) show that both the peak and the

mean concentrations in adjoining rooms are

potentially underestimated in the latter case,

especially when emission sources are present.

The greatest discrepancies occur in peak

concentrations, which has implications for

evaluations of an individual's personal exposure.

This is a significant finding, as short-term

Figure 3.1. Differences in PM10 concentrations estimated using the modified PM10 decay method, the

original PM10 decay method and the corresponding PM2.5 concentration during a smoking event in the

kitchen when doors are closed.
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fluctuations in concentrations can account for a

large exposure variation between population

groups. Simulations were based on a time-

weighted averaged airflow with a variable airflow,

simulating airflow variations by the opening and

closing of internal doors. The simulations are

validated based on an experimental comparison:

examining airflow variations at 1, 2, 5 10, 15 and

30-min intervals. 

• The inclusion of multiple emission sources

improves the ability of the model to simulate real-

life scenarios; in most households, multiple

emissions sources are present. Peak and mean

PM indoor concentrations vary depending upon

the emission source, emission duration and the

source's location.

• The INDAIR model had only three additional

micro-environments:

(i) Outdoors; 

(ii) Shop, restaurants; and 

(iii) Transport. 

Within these micro-environments, PM

concentrations were calculated based on

indoor/outdoor ratios. The IAPPEM can be used

to conduct simulations in a total of 10 micro-

environments (in addition to the home micro-

environment), with the full functionality of the

home environment. The micro-environments

included are the classroom, office, supermarket,

gym, car, tram, train, bus, outdoors, restaurant

and a pub. The model has a flexible format that

does not limit alternative parameterisation being

applied for the simulation of different micro-

environments. These additional micro-

environments, although not demonstrated in this

work, are required to evaluate individual exposure

over a 24-h profile. 

In summary, the adaptations to the original INDAIR

model from which the IAPPEM was developed include

an increase in temporal resolution to 1 min, the

incorporation of 12 simultaneously operating emission

sources, and up to 15 interconnecting rooms.

Additionally, the model, which originally calculated

airflow on a time-weighted average basis, was adapted

to include a variable airflow rate, and the results of

simulations demonstrate that, without this feature,

PM2.5 concentrations may be underestimated by up to

28%. Further, a modified PM10 deposition rate, which

accounts for variations in PM2.5 to PM10 ratios, was

incorporated into the IAPPEM, with simulations

showing that this led to predictions of mean

concentrations that were up to 58% higher than those

calculated using the unmodified model. Simulations

carried out with a 1-min time resolution compared with

a 15-min time resolution resulted in the estimation of

peak PM concentrations that were 20% higher. 

Figure 3.2. PM2.5 concentrations in the hall of a house for three different simulations, two with variation in

inter-zonal airflow at different time intervals and one using time-weighted average airflow.
11
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3.3 Demonstration Simulations

Simulations were performed to highlight the

contributions of outdoor PM concentrations and indoor

emission sources, as well as to demonstrate the

combination effect of multiple indoor emission sources

(Figs 3.3 and 3.4). Using the IAPPEM, a detailed

analysis of overall PM contribution from multiple

different emission sources, in a variety of different

internal locations in a dwelling, has been carried out for

the first time, and the effects of emission source

location, emission source timing (Fig. 3.5) and internal

household configuration on PM transfer throughout a

dwelling have been quantified.

The IAPPEM combines a time–activity model (which

describes how individuals move through different

zones in a dwelling) with the physical pollutant model,

to create a personal air pollutant exposure model. The

results of the simulations conducted with this

combined model (Fig. 3.6) found that calculations of

exposure based on time-averaged profiles are inferior

to calculations of exposure based on time–activity

profiles. In each simulated scenario, the time-averaged

Figure 3.3. Modelled temporal variation of indoor PM10 concentrations due to separate discrete emission

events from five different source types.

Figure 3.4. Box plot showing the range of modelled peak PM10 concentrations (µg/m 3) in the kitchen (with

doors closed) for five indoor emission sources.
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approach underpredicted mean exposure, in some

cases by up to 75%. Additionally, the time-averaged

approach failed to provide any information on peak

exposure, whereas the time–activity profile approach

provided key information on this aspect.

3.4 Validations 

A number of experimental validations were carried out

by monitoring simultaneous indoor and outdoor

concentrations of PM10 and PM2.5, using a SidePak

Personal Aerosol Monitor Model AM510 (TSI Inc.,

Shoreview, MN, USA). Experimental validations were

gathered from a range of different households,

examining external and inter-zonal airflow, solid-fuel-

fire burning events and indoor emission sources. The

validation studies are detailed in pages 118–136 of

McGrath (2014). Figures 3.7–3.9 compare the

variations in experimental and modelled

concentrations during three different emission

scenarios. 

Table 3.1, taken from McGrath et al. (2014a), presents

a comparison of experimental and simulated

concentrations for a range of emission source types.

The experimental uncertainty on the measured data

represents ±1 µg/m3. Table 3.2, taken from McGrath et

al. (2014b), presents a statistical comparison of

modelled and measured concentrations in the hall of a

Figure 3.5. PM10 concentrations in the living room. The time axis has been scaled to focus on the emission

period. The y-bars represent one standard deviation at each time step, highlighting the probabilistic nature

of the model. Each of the five peak concentrations refers to the end of a smoking event.

Figure 3.6. Comparison of the personal exposure to PM10 of two individuals as they move through different

rooms in a dwelling with open internal doors; the probabilistic nature of the model, which defines a value

range for each parameter value, is demonstrated.
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Figure 3.7. Simulation of burning an incense stick for 6 h, to examine the decay period. Predicted PM2.5

concentrations are compared with indoor PM2.5 concentrations.

Figure 3.8. A simulation examining multiple smoking events. A cigarette was smoked every 30 min.

Predicted PM2.5 concentrations are compared with measured PM2.5 concentrations.

Figure 3.9. Observed comparison between modelled and experimental concentrations in the sitting room

when the door is closed; PM concentration decay occurs due to deposition and external airflow.
14
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domestic dwelling. Close agreement is observed

between the measured and modelled parameters.

3.4 Summary

A state-of-the-art probabilistic indoor air pollution

modelling tool has been developed that is superior to

others in respect of its capability for considering

multiple emission sources in multiple rooms of a

dwelling at a greater time resolution than was

previously possible. Both air pollution concentration

and air pollution exposure values can be calculated,

the former directly from the physical model, and the

latter by combining the physical model with a time–

activity model. Validation and demonstrations have

been carried out for PM in the domestic environment

but, with appropriate parameterisation, the model can

easily be adapted to consider air pollution

concentrations of both a particulate and gaseous

nature (and additionally, air pollution exposure), in

other environments such as workplaces, vehicles and

schools. 

Table 3.1: Measured and modelled PM2.5 concentrations for a range of source types

(McGrath et al., 2014a).

Emission scenario PM2.5 concentrations

Measured 
(µg/m 3)

Modelled 
(µg/m 3)

Peak concentrations

A single cigarette 181 167 ± 14

A frying event 418 398 ± 62

Incense stick 593 633 ± 70

Mean concentrations

No emission source (2-h mean) 7.3 6.5 ± 1.8

Smoking six cigarettes (4-h mean) 296 294 ± 14

A frying event (2-h mean) 289 276 ± 43

Incense stick (6-h mean) 326 331 ± 41

Table 3.2. Statistical comparisons of experimental and predicted concentrations in

the hall of a domestic dwelling (McGrath et al., 2014b).

Scenario Linear regression R2 Experimental peak 
(µg/m 3)

Predicted peak 
(µg/m 3)

1 min 1.72 0.65 262 149

2 min 0.72 0.41 166 183

5 min 1.11 0.75 159 214

10 min 1.07 0.95 317 280

15 min 1.05 0.64 240 230

30 min 1.02 0.94 489 473
15



PALM: a personal activity–location model of exposure to air pollution 
4 Urban Air Quality Modelling

4.1 Introduction

The use of mathematical models to assess ambient air

quality in cities is attractive because of the inherent

difficulties and costs involved in monitoring air pollution

on numerous streets within an urban area. Such

models have been widely adopted by local authorities

to assess and quantify population exposure to air

pollutants and compliance with regulations

(Vardoulakis et al., 2005), and they are, de facto, an

essential tool to assess the possible impact of planned

developments (Manning et al., 2000). However,

modelling the dispersion of air pollutants in cities is not

a trivial task as urban areas are not homogeneous

entities; the highest levels of pollution often occur in

street canyons where pollutant dilution is limited by the

presence of buildings flanking the street (Berkowicz et

al., 1997). 

Epidemiological studies (Vardoulakis et al., 2002) of

urban populations have raised concerns over the

adverse effects on human health of airborne traffic-

related PM, and compelled various agencies to

propose more stringent air quality standards (e.g.

European Union Council Directive 1999/30/EC;

Harrison et al., 2001). Exposure assessment is an

integrated part of health risk assessment and

management at national, regional and local scales but

currently no Irish exposure models exist to support

such assessments. 

Living or attending school near major roadways has

been associated with numerous health outcomes in

recent years, including asthma exacerbation (Gordian

et al., 2005) and other respiratory illnesses (Brauer

et al., 2002). While this growing observational

literature has been interpretable and robust, with

relative risks that indicate a large public health

impact, simulation studies (Baxter et al., 2009) have

shown significant exposure misclassification

associated with the use of proximity measures

relative to ‘gold standard’ air pollution exposure

estimates. While these studies and related work

have provided insight about exposure patterns and

health effects, and can also characterise air

pollution hot spots for public health interventions,

significant limitations remain. The above-mentioned

studies leveraged temporally rich and spatially

dense monitoring data, yet lacked sufficient spatial

resolution to capture micro-scale concentration

patterns.

The aim of the urban air quality modelling research

performed in the PALM project was to obtain a spatio-

temporally detailed estimation of air quality in Dublin

and of the city inhabitants’ individual air pollution

exposure through high-resolution modelling. The

specific goal was to create a set of integrated GIS-

based exposure assessment tools using monitoring

data, spatial analysis, stochastic modelling and

deterministic modelling to account for the impact of

different emission sources and weather conditions on

total PM10 concentrations. The synthesis of these

techniques represents a valuable resource for the

assessment of health impacts, and in the development

of wider exposure reduction strategies. The presented

work also seeks to establish a methodology to support

air pollution exposure-response assessments in

Ireland. It is also designed to lead to improved air

quality action plans, leading to improved

environmental awareness amongst the general public

and local authorities alike. Furthermore, the research

yielded a reliable framework within which

epidemiological studies may be performed in the

future; thus the impact of the proposed research may

extend beyond air pollution in the assessment of other

environmental pollutants.

Geographic Information Systems (Wong and Wu,

1996) were identified as an ideal platform for this study

because they are extensively used by governments,

research centres, environmental agencies and

conservation organisations, amongst others. In

particular, the Economic and Social Research Institute

(ESRI) ArcGIS selected for this work is widely used

and comprises a suitable collection of tools that

capture, store, analyse, manage, and present data that

are linked to geographical locations (Bhat et al., 2011).
16
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Within the PALM project, air quality models of PM

concentrations at various scales, and models of

personal exposure to PM are integrated within the

ESRI ArcGIS. A conceptual diagram of the resulting

PALM-GIS exposure model is presented in Fig. 4.1.

4.2 Model Definition

The sparse permanent air quality monitoring stations

around the Dublin area (Fig. 4.2) are not believed to be

able to produce a sufficient spatial resolution for the

Figure 4.1. PALM-GIS personal exposure model flow chart.
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Figure 4.2. Air quality monitoring stations, Dublin area.
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pollutant levels: the data collected by these monitoring

stations are not representative of the variety of

pollutant concentrations existing at individual street

level. This detail is crucial when accurate information

on the exposure of individuals is required as scientific

studies on the health impacts of air quality need to pair

estimates of individual exposure to air pollution with

the assessment of individual health outcomes. This

section describes the creation of an air quality model

for the GDA.

A graphic representation of the spatial variation of the

different air pollution components that contribute to

pollutant concentrations at street level is presented in

Fig. 4.3(b). The final street level concentration results

from the sum of the following elements:

• Urban background concentrations, sum of the

regional background and the urban increment;

• Contribution from important point and area

sources; and

• Contribution from traffic.

These three elements are modelled separately and

then the corresponding concentrations summed to

obtain the total pollutant concentration at street level

(Fig. 4.3(b)). For the personal air pollution exposure

model developed within the PALM project, the sum

presented in Fig. 4.3(b) is performed and displayed

using ArcGIS by assigning each component to a

different layer. All the tools (developed, freeware and

proprietary) are compatible with a GIS platform (tested

on ArcGIS 10.1) and available for use. The modelling

process for each component is briefly described in the

following sections.

4.2.1 Urban background concentrations

The urban background air pollution concentrations are

constituted by the sum of the background

concentrations and the distributed contributions from

the city itself. The background model is generated

using data mining techniques using historical PM10

data measured by permanent air quality monitoring

stations in the GDA and a set of weather variables

recorded at Met Éireann weather stations. The air

quality stations categorised as ‘urban background’

using the criteria proposed by the European

Environment Agency (Van Dingenen et al., 2004) are

employed for this task. A neural network modelling

approach is adopted, which is able to recognise

patterns between historical air pollution data and

causative weather data; the developed relation is then

used in combination with forecasted weather data to

model and predict the required urban background

concentration levels. These results are imported into

ArcGIS for visualisation (Fig. 4.4) and combination with

the other components of street-level pollution. 

4.2.2 Contribution from important point and area

sources

Power stations and industrial plants in the GDA are

identified along with their emission rates and

Figure 4.3. (a) Spatial variation of urban air pollution components, and (b) urban air quality modelling. 
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Figure 4.4. Visualisation of urban PM10 modelling in ArcGIS. 

(a) Urban background component

(b) Residential heating emissions

(c) Street traffic component

(d) Model layers
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incorporated into the urban model. The dispersion of

pollutants from sources belonging to these categories

is modelled by using the Gaussian plume model with

the Briggs Method (Briggs, 1973) for the lateral and

vertical dispersion coefficients. The model is

implemented in Python to be used as a tool in ArcGIS.

In contrast to these large point sources, the availability

of information on which to base an emissions inventory

for the domestic sector is limited. Emissions from the

domestic sector were derived for the Dublin urban area

based on data on the “Private dwellings in permanent

housing units in each Province, County and City, with

or without central heating” for each Electoral District

obtained from the National Population Census 2006

and 2011, combined with data on average natural gas

usage for each household obtained from the

Commission for Energy Regulation through Bord Gáis. 

4.2.3 Contribution from traffic

The calculated background concentrations are a

necessary input for the urban street model, along with

weather conditions, traffic volumes and emission rates.

One of the most important inputs is the street

geometry: a relatively narrow street between buildings

that line up continuously along both sides is called an

urban street canyon and a stable circulatory vortex

may be established within the street canyon if specific

wind and geometry conditions are met. The

combination of vehicle emissions and reduced

dispersion in these circumstances can lead to high

levels of pollution (Buckland and Middleton, 1999). The

model selected for this task is the Operational Street

Pollution Model (OSPM), developed by the National

Environmental Research Institute, Denmark (Fig. 4.5),

and validated in earlier modelling of air quality in Dublin

city centre. The model was further validated for daily

averages against measurements obtained at two

separate locations, one in the city centre and one in the

suburbs, for the month of March 2010. The results

correlate well with the observed PM10 concentrations.

The OSPM is designed to calculate the dispersion of

pollutants within urban street canyons, thus it is not

appropriate for most roads in the GDA, where the city

geometry is characterised by relatively wide roads

flanked by trees and sparse low-rise buildings with

gardens. The General Finite Line Source Model is

chosen for modelling suburban traffic-related PM10

concentration levels. This model has also been

validated in previous air quality modelling studies in

Dublin (Ganguly et al., 2009), and for the PALM project

is implemented using Python to work as a tool in

ArcGIS (Fig. 4.4(d)).

4.3 Overall Pollutant Concentration at
Street Level

The primary modelling scenario considered by the

urban air quality modelling component of the PALM

project was to create a GIS model for personal

exposure to PM experienced by individuals in Dublin

while commuting to work. The modelled concentration

levels resulting from the modelling procedures

Figure 4.5. Traffic contribution in street canyons model, logic scheme. TPT, traffic-produced turbulence.
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described above are imported into ArcGIS and

combined to obtain total concentrations of PM10

throughout the GDA. A visualisation of such a

calculation is presented in Fig. 4.4(d). The exposure of

a set of individuals while commuting to work on

different routes with various transport modes was

modelled using this approach and tested against the

measurements obtained in the personal exposure

monitoring campaign described in Chapter 2. The

correlation between the modelled and measured PM10

concentrations was determined for different test cases:

the correlation was found to be high for the bus, bicycle

and walking modes, but low for the train mode. 

A solution for making the modelling tools and results

available to the general public for self-assessment of

personal exposure and for disseminating air quality

modelling results was identified: ArcGIS online is

suggested as an ideal tool for achieving this goal.

Furthermore, the use of advanced technology

emerging at the time of this study, such as cloud

computing, is proposed and examined in the context of

the employed GIS platform.

4.4 Urban Air Quality Modelling Results

The following section compares the results obtained

from the PALM-GIS model with selected

measurements of personal exposure to PM obtained

within the measurement campaign described in

Chapter 2 (Pilla and Broderick, 2015). A total of 2,424

PM10 measurements were used to test and validate

the model, focusing on personal exposure during

commuting trips at both peak and off-peak times using

a range of transport modes (walk, bus, bicycle, and

train). The measured and modelled data are compared

in Fig. 4.6 and analysed in the model summary

statistics and ANOVA presented in Tables 4.1 and 4.2,

respectively. The identified coefficient of determination

of 70.3% indicates that the PALM-GIS model is able to

predict with good accuracy the exposure to PM10 of

commuters during the trips used as test cases.

Figure 4.7 shows a plot of the modelled daily average

PM10 levels for one of the scenarios (30 September

2010) used in the validation of the PALM-GIS model.

The PM10 levels are modelled for all the road links with

traffic volumes higher than 200 units per day (low traffic

links are excluded for the presented simulation). The

minimum modelled PM10 level is below 20 µg/m3 (19.4

µg/m3) while the maximum level is above 28 µg/m3

(28.2 µg/m3). The model is able to reproduce the

spatial variation of the pollutant in an urban

environment, where the overall pollution levels are

affected by a wide range of sources. The modelled

peaks in pollution levels are mostly due to high traffic

volumes and city geometry (urban street canyons),

while the contribution from regional sources accounts

for almost 60% of the modelled levels (the predicted

background levels for the scenario in Fig. 4.7 range

between 16 and 19 µg/m3). The influence of area and

point sources on the total daily average modelled PM10

levels for the presented scenario is negligible.

Figure 4.6. PALM-GIS: correlation between measured and modelled data (Pilla, 2013).
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Separate analyses of the data sets of commuter

exposure used to test the PALM-GIS model were

performed for each transport mode to obtain better

insight into the model performance and limits in

different situations. The five models considered were: 

1. Static (72 measurements); 

2. Walk (1,086 measurements); 

3. Bus (943 measurements); 

4. Bicycle (195 measurements); and 

5. Train (128 measurements). 

The set of 72 measurements obtained while subjects

were standing without moving (for example at bus

stops) was used as a baseline to test model

performance in the absence of variability related to

movement or transport mode micro-environment. The

relevant summary statistics and ANOVA results for

each model are presented in Tables 4.3 and 4.4,

respectively.

Table 4.2. Analysis of variance (ANOVA) between measured and PALM-GIS modelled data.

Model Sum of squares df Mean square F Significance

Regression 51,344.673 1 51,344.673 5,726.511 0.000

Residual 21,715.979 2,422 8.966

Total 73,060.652 2,423

Table 4.1. Summary statistics for the PALM-GIS model.

R R2 Adjusted R2 Standard error of the estimate

.838 0.703 0.703 2.994

Figure 4.7. Spatial variability of the modelled PM10 levels.
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Table 4.3. Summary statistics for the PALM-GIS model.

R R2 Adjusted R2 Standard error of the 
estimate

Static mode 0.939 0.881 0.880 1.407

Walk mode 0.838 0.702 0.702 3.038

Bus mode 0.823 0.677 0.677 3.091

Bicycle mode 0.880 0.775 0.773 1.407

Train mode 0.168 0.028 0.021 1.655

Table 4.4. Analysis of variance (ANOVA) between measured and modelled data.

Model Sum of squares df Mean square F Significance

Static Regression 1,028 1 1,028 519 0.000

Residual 139 70 1.98

Total 1,166 71

Walk Regression 23,591 1 23,591 2,555 0.000

Residual 10,007 1,084 9.23

Total 33,598 1,085

Bus Regression 18,880 1 18,880 1,975 0.000

Residual 8,992 941 9.56

Total 27,872 942

Bicycle Regression 1,312 1 1,312 663 0.000

Residual 382 193 1.98

Total 1,694 194

Train Regression 10.0 1 10.0 3.66 0.058

Residual 345 126 2.74

Total 355 127
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5 Conclusions

5.1 Summary of Research 

The PALM project investigated methods for modelling

an individual’s personal exposure to air pollution,

taking into account their activities and locations

throughout a typical day. The project produced three

different models: 

1. A statistical model of the personal exposure of

individuals in Dublin; 

2. An improved version of the IAPPEM indoor air

quality model; and 

3. A set of dispersion models embedded in ArcGIS

for ambient air quality in the GDA (PALM-GIS). 

All of these models are available for further use. 

The project included an intensive personal air quality

monitoring field study focusing on the variation in

exposure to PM experienced by residents of the GDA

who work in office environments in the city centre. The

results of this study were used to guide the

development of the statistical capturing of this variation

and deterministic models that allow these results to be

extended to a wider range of individuals. These

deterministic models have been integrated into a GIS

platform for compatibility with city-wide and national

environmental management activities. The indoor air

quality modelling results were also validated using

monitoring data obtained in targeted experimental

measurement programmes.

5.2 Main Findings 

5.2.1 Personal exposure monitoring data

collection and analysis

The following findings arise from the results of the

personal exposure monitoring campaign:

• The importance of indoor air quality on the overall

impacts of air pollution on the health of a typical

office worker has been highlighted. Exposure and

uptake during indoor activities, such as working,

cooking or at home, significantly outweighed

those identified during outdoor activities, such as

commuting.

• The extension of indoor air pollution control policy

to the monitoring of air quality in the workplace

and the enforcement of air quality standards

indoors could bring about significant

improvements in population health.

• The importance of considering both exposure

and uptake of pollutants when comparing the

health impacts of air pollution across differing

activities has been highlighted. Using exposure

alone as a measure of air pollution health impacts

can result in significant misinterpretation of

relative health impacts.

• The personal exposure measurement results

indicate that there are often considerable

differences between spatially representative

ambient air quality measurements and the actual

personal exposure concentrations experienced

by individuals. This has implications for current

ambient air policy, which relies heavily on

representative ambient air quality measurements

to ensure the protection of human health in urban

areas.

5.2.2 Statistical/Stochastic exposure modelling

• The differences between mean personal

exposure measurements and background air

quality data identified in previous air pollution

exposure assessments were confirmed in this

study, which has implications for epidemiological

modelling investigations.

• With a view to improving the strength of

epidemiological modelling, a number of

statistical/ stochastic methodologies for the

prediction of personal exposure to PM10 were

assessed. While the predictive performance of all

techniques examined was reasonably good, the

GRNN model and the Monte Carlo simulation

approach produced the most reliable estimates of

personal exposure.
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• In addition to its strong ability to predict personal

exposure among office workers, this study

concludes that the Monte Carlo simulation

technique also offers potential scope for

improved transferability, with limited additional

measurement data requirements. However, the

extent of this transferability remains to be

determined. 

5.2.3 Indoor air quality modelling
• The state-of-the-art probabilistic model, IAPPEM,

was developed to include a 1-min time resolution,

a variable airflow rate, a modified PM10

deposition rate (which accounts for the variability

in PM2.5/PM10 ratios), the incorporation of 12

simultaneously operating emission sources, and

up to 15 interconnecting rooms.

• The ability of the IAPPEM to perform a detailed

analysis of overall PM contribution from multiple

different emission sources in a variety of different

internal locations in a dwelling has been

demonstrated. Additionally, the effect that both

emission source location and internal household

configuration have on PM transfer throughout a

dwelling has been quantified.

• The IAPPEM was used to examine the potential

accuracy of modelling inter-zonal airflow

variations. An experimental validation concluded

that a variable airflow can accurately predict

PM2.5 concentrations for inter-zonal airflow

variations for durations of 10 min or greater, with

increasing accuracy for longer durations.

Additionally, a comparison between a time-

weighted average airflow rate and a variable

airflow rate reported that underprediction of

PM2.5 concentrations by up to 28% occurs using

the time-weighted average airflow rate.

• The IAPPEM combines a time–activity model

(which describes how individuals move through

different zones in a dwelling) with the physical

pollutant model, to create an overall air pollutant

exposure model. The results of the simulations

conducted in this study found that calculating

exposure based on time-averaged profiles is a

poor substitute for calculating exposure based on

time–activity profiles.

5.2.4 Urban air quality modelling

• The project created a GIS-based air quality

model for the GDA. This was achieved by

integrating existing and self-implemented air

quality models within a conventional GIS

platform, and by generating input data for the

models to allow the estimation of air quality at

any location in the GDA. These steps were

achieved by implementing various modelling

tools: 

R A method to calculate urban background

concentration levels; 

R A method to model the dispersion of

pollutants from road traffic in urban street

canyons; 

R A method to model the dispersion of

pollutants from road traffic in general

conditions; and 

R A method to calculate the dispersion of

pollutants from point and area sources. 

• As part of this work, the performances of various

air quality models were assessed and the most

suitable tools for modelling the dispersion of PM

for different scales and locations selected. This

was done in the context of the main objective –

the assessment of the personal exposure of

subjects moving between different locations in

the urban area. This objective implies that a

highly accurate solution at single locations is not

valuable if it is combined with less accurate

predictions for other locations. 

• A new model for predicting PM10 background

concentration levels in the GDA was created

using machine learning algorithms. The

background model uses ANNs to model the non-

linear relation between historical PM10 data

recorded at permanent air quality monitoring

stations and the set of weather variables

recorded at Met Éireann meteorological stations.

• The GIS model was validated by modelling the

personal exposure to PM of commuters travelling

to and from work in Dublin city centre using

different routes and different transport modes and
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comparing the modelled data with measured data

sets obtained with mobile sensors and GPS units.

The synthesis of the modelling tools described

above into this GIS platform can provide local

authorities with a tool to calculate pollutant

concentrations and to correlate these with other

thematic layers, such as land use and population

density, allowing localised peaks in air pollutants

to be linked with particular activities. 

5.3 Recommendations for Further
Research

• The personal exposure monitoring campaign

completed in this project identified the importance

of indoor locations and specific indoor activities

(such as cooking) for overall exposure.

Considerable scope remains to continue this

research through targeted monitoring

programmes aimed at evaluating the contribution

of exposure in the key indoor environments, such

as homes, workplaces and schools. 

• This project mainly focused on PM, and it can be

readily extended to consider other pollutants. An

assessment of the relative influence of outdoor

and indoor concentrations on overall exposure to

these pollutants and a comparison with the

patterns identified for PM in this study would be

valuable.

• The transferability of the statistical air pollution

models developed in this project to other activity–

location scenarios should be evaluated against

an independent data set of measurements.

• The assignment of input parameter values

obtained from the literature imposed a limitation

on the IAPPEM indoor air quality model. A

detailed experimental study, in which the primary

aim is to determine air pollutant emission and

deposition rates for the purposes of

parameterising the computational model, is

merited.

• The further development of the IAPPEM into a

sub-zonal model would allow detailed

examination of within-room variations in PM

concentrations. Sub-zonal modelling would

support the representation of the vertical and

horizontal locations of emission sources, thus

allowing investigation of the variation in an

individual’s exposure with distance from emission

sources.

• The modelling methods developed in this project

can be employed as an integrated research tool

to assess links between individual health effects

and personal exposure to air pollution. Similar

previous epidemiological studies suffer from the

combination of the need to compare temporally

and/or spatially averaged air pollution data with

individual-specific health information.

• The conceptual framework established in this

project to model personal exposure to PM within

a GIS platform can be extended to other

environmental pollutants, such as other air

pollutants and noise.
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Acronyms and Annotations

ANN Artificial Neural Network

ESRI Economic and Social Research Institute

FFNN Feed Forward Neural Network

GDA Greater Dublin Area

GPS Global Positioning System

GRNN Generalised Regression Neural Network

HRT Human Respiratory Tract 

IAPPEM Indoor Air Pollutant Passive Exposure Model

ICRP International Commission on Radiological Protection

NMB Normalised mean bias

NO2 Nitrogen dioxide

OSPM Operational Street Pollution Model 

PALM Personal Activity and Location Model 

PM Particulate matter

PM10 PM10, particulate matter ≤10 µm

PM2.5 PM2.5, particulate matter ≤2.5 µm

RMSE Root mean square error

TPT Traffic-produced turbulence
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The PALM project invesgated methods for modelling an individual’s personal exposure to air polluon taking into 
account variaons in their acvity and locaon. The project produced three different models: a stascal model of the 
personal exposure of individuals in Dublin; an improved version of the IAPPEM indoor air quality model and a set of 
dispersion models embedded in ArcGIS for ambient AQ in the Dublin area (PALM-GIS). These models can be employed to 
develop strategies for the minimisaon of individual exposure through lifestyle choices, and to provide subject-specific 
environmental data for air quality health studies.

The adverse health effects of air polluon are well established, but previous studies on this topic have generally 
considered the average polluon concentraon in an area rather than the specific concentraon experienced by an 
individual. Variaons in the locaons (both indoors and outdoors) occupied by individuals and the acvies in which 
they parcipate lead to variaons in their exposure to polluon, in the uptake of air pollutants in their lungs, and in 
consequent health effects.

A principal aim of the EU Clean Air for Europe programme (CAFE) is to develop long-term, strategic and integrated 
policy advice to protect against significant negave effects of air polluon on human health. The PALM project 
addresses this aim by evaluang the influence of different locaons and acvies on the air quality exposure of 
individuals in Dublin, Ireland. This informaon can be used to develop effecve air quality management policies.

The PALM project invesgated methods for modelling an individual’s personal exposure to air polluon taking into 
account their acvies and locaons throughout a typical day. This invesgaon and the developed exposure 
models employed high frequency personal air quality sampling.
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