
i

Automatic Web Publishing

Òscar Sànchez i Vilar

A dissertation submitted to the University of Dublin,
in partial fulfillment of the requirements for the degree of
Master of Science in Networks and Distributed Systems

September 2000

ii

Declaration

I declare that the work described in this dissertation is, except where
otherwise stated, entirely my own work and has not been submitted as
an exercise for a degree at this or any other university.

 Signed:

 Òscar Sànchez i Vilar
 September 2000

iii

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation
upon request.

 Signed:

 Òscar Sànchez i Vilar
 September 2000

iv

Acknowledgments

En anglès…

I would like to express my heart felt gratitude to those that gave me the
opportunity to undertake this M.Sc. at Trinity College. In particular:

To my mother and my grandmother, because they deserve it.
To my supervisors, Dr. Pádraig Cunningham and Dr. Vinny Cahill, and the other
lecturers at Trinity, for their support through the whole year.
To the Barcelona School of Informatics, for their financial support.
To Eircom, for the project.
To Catherine and Danny, for their help and for all we have shared this year in
Dublin.

And in catalan…

M’agradaria expressar el meu més sentit agraïment a aquells que m’han
brindat l’oportunitat de realitzar aquest màster al Trinity College. En
particular:

A la meva mare i la meva àvia, perquè ho mereixen.
Als meus supervisors, Dr. Pádraig Cunningham and Dr. Vinny Cahill, i la
resta de proferssors al Trinity, pel seu suport durant tot l’any
A la Facultat d’Informàtica de Barcelona, pel seu ajut econòmic
A Eircom, pel projecte
A Catherine i Danny, pel seu ajut i per tot el que hem compartir aquest any a
Dublin.

v

Abstract

Research and Development departments of most important companies

are currently producing technical documents and papers as a result of their

own investigation projects. This type of documents normally develop concepts

and ideas that often lead to a contribution to knowledge (or possibly to simple

information) that may be interesting for other research projects in the

department or for further investigation. In that kind of environments, a system

for publishing and sharing information become a requirement for the success

of the department.

 Although many approaches to solve this problem have already been

considered, such as shared system files and mailing lists, all of them offer to

the user limited services and require extra input information to know which

documents are of interest to each user. Besides, the growing demand for web

based interactive solutions and for personalization has made them become

obsolete.

This project will investigate the design of an automated system for the

publication of technical documents on the World Wide Web. Using a simple

interface, its distributed users will be able to publish the results of their

research, and, automatically, the system will make the new document

available for the rest of the users (once reviewed if necessary) by linking it

from appropriate document collections, by building searching indices to allow

to look for the document using keywords. The publication of a new document

will be announced to potentially interested readers by emailing a notification

to them; to decide who might be interested in a new document, the system will

keep information about interests and past interactions with the system for

each authorized user. Other features that the system will provide (if

necessary) are the possibility of feedbacking information to report authors and

publishing the same document in different formats.

vi

1. INTRODUCTION 2

1.1 THE PROJECT ..2
1.2 THE STRUCTURE OF THE DOCUMENT ..3

2. DIGITAL LIBRARIES 5

2.1 INTRODUCTION ...5
2.2 BENEFITS..8
2.3 DISADVANTAGES ..10
2.4 RESEARCH AREAS ...11
2.5 EIRCOM’S R&D DIGITAL LIBRARY ..12

3. TECHNOLOGIES.. 14

3.1 DYNAMICALLY GENERATED WEB PAGES ..14
3.1.1 CGI and Fast CGI ..15
3.1.2 Server Side Includes...16
3.1.3 Proprietary server extensions...17
3.1.4 Server-side JavaScript ..18
3.1.5 Java TM Servlets..18
3.1.6 JavaServer Pages TM ...21

3.1.6.1 Java Beans..24
3.1.6.2 HttpSessions...25

3.1.7 Active Server Pages..26
3.1.8 PHP ... 27

3.2 WEB SERVER JSP CONTAINER... 27
3.3 WEB APPLICATION AND WEB APPLICATION ARCHIVE (WAR)28
3.4 PRESENTATION ...29

3.4.1 Cascading Style Sheets...29
3.4.2 Dynamic HTML..30

3.5 INFORMATION STORAGE ..31
3.5.1 Cookies (client-side storage) ..31
3.5.2 Database (server-side storage) ...33

4. SYSTEM REQUIREMENTS.. 36

4.1 THE PROBLEM ...36
4.2 PROJECT PROPOSAL ...37
4.3 EXISTING SYSTEM ...37
4.4 ADDITIONAL REQUIREMENTS...38

5. ANALYSIS.. 40

5.1 USE CASE DIAGRAM ..40
5.2 OBJECT MODEL ...41

6. DESIGN 42

6.1 SYSTEM ARCHITECTURE ..42
6.1.1 The mg system..43
6.1.2 Greenstone system..46

vii

6.1.2.1 Search and browsing facilities ..47
6.1.2.2 Building collections..48

6.1.3 Eircom R&D system...52
6.1.3.1 User Profil ing...54

6.2 DATABASE DESIGN ...55

7. IMPLEMENTATION 57

7.1 MG AND GREENSTONE MODULES..57
7.2 R&D MODULE ..58

7.2.1 Distributed users ..58
7.2.2 Publication of documents ... 59
7.2.3 Addition and deletion of categories...61
7.2.4 Change profile..64
7.2.5 Librarian’s extra functions...66

8. EVALUATION 68

8.1 FURTHER WORK ..69

9. REFERENCES 72

APPENDIX A 76

A.1 WEB APPLICATION DESCRIPTOR (WEB.XML) ..76
A.2 DHTML CODE FOR LOGIN PAGE...76
A.3 GREENSTONE HOME PAGE CONFIGURATION FILE ...78

1

FIGURE 3—1: JSP DESIGN MODEL 1...22
(from Professional JSP, Wrox Press)

FIGURE 3—2: JSP DESIGN MODEL 2...23
(from Professional JSP, Wrox Press)

FIGURE 3—3: JAVABEAN EXAMPLE ..24

FIGURE 3—4: USEBEAN EXAMPLE ..25

FIGURE 3—5: CSS EXAMPLE..30

FIGURE 3—6: DATABASE CONNECTION POOL ...34

FIGURE 5—1: USE CASE DIAGRAM ..40

FIGURE 5—2: OBJECT MODEL DIAGRAM ..41

FIGURE 6—1: SYSTEM ARCHITECTURE..43

FIGURE 6—2: INTERNAL MG STRUCTURE...44

FIGURE 6—3: GREENSTONE SEARCH INTERFACE..47

FIGURE 6—4: GREENSTONE COLLECTION STRUCTURE ...48

FIGURE 6—6: GREENSTONE INDEX.TXT CONFIGURATION FILE....................................51

FIGURE 6—7: GREENSTONE SUB.TXT CONFIGURATION FILE51

FIGURE 6—8: DATABASE SCHEMA..56

FIGURE 7—1: UPLOADING A DOCUMENT ...60

FIGURE 7—2: CATEGORIES...61

FIGURE 7—3: JAVASCRIPT CODE EXAMPLE ...62

FIGURE 7—4: JAVASCRIPT CODE TO GENERATE THE HIERARCHY OF CATEGORIES63

FIGURE 7—5: ADDCATUSER.JSP...65

FIGURE 7—6: CHANGE PROFILE..66

FIGURE 7—7: LIBRARIAN'S HOME PAGE ...67

2

1. Introdu ction

1.1 The project

This project was proposed by Eircom’s Research and Development

Division. Its final aim is to investigate and implement a system to address

some of the problems that often arise in environments in which scientific

investigation is carried out.

Effective dissemination of information throughout a group of

researchers is a key issue for the success of any research body. This is a

significant issue since different projects can be related to each other, or

results of an investigation might be relevant for the direction of other

projects. Even old investigations may be of interest, so a repository of such

documents becomes a real need for such groups. The web (Intranet for

private corporation domains) has proved to be an appropriate media for this

purpose due to its distinctive characteristics (available to most of the users

within the organisation, capacity of storage, aptitude to manage different

electronic formats, etc). Browsing facilities have proved to be essential in

this context. Documents can be linked with appropriate collections (indexed

by author, topic, date, etc), consequently making it easier to search a given

document. Another helpful facility to help the collaboration between different

investigations is the ability to search for words and or phrases that occur in

any document included in the knowledge repository. This greatly reduces

the effort spent locating relevant documents for a researcher.

Nevertheless, just providing researches with a means to publish and

to search for information fails to take full advantage of this media

possibilities’: as the publication of documents grows, it becomes

increasingly harder for the researcher to keep up to date with new relevant

3

published work. Thus, some guidance to potentially interesting

documents is desirable to keep researchers from spending a great deal of

time and effort looking for information.

This document presents a solution to these problems: a web-enabled

networked digital library with support for multiple distributed users.

1.2 The structure of the document

Chapter 1: Introduction briefly introduces the project and the how this

report is structured in different chapters.

Chapter 2: Digital li braries investigates what is a digital library, its benefits

and disadvantages, the state of the art and examines the similarities and

differences with the solution proposed in the document.

Chapter 3: Technolog ies explores the technologies available to develop a

web application with the required attributes and analyses their pros and

cons, explaining the choice made. As we will see, the main criteria have

been the grade of scalability the technology permits, its portability, its market

support and perspectives.

Chapter 4: System requirements establishes the requirements of the

system, based on the project proposal and the meetings with Eircom that

have been held during the course of the project. The existing system is

outlined and the advantages of proposed solution are made evident.

Chapter 5: Analysis presents two of the diagrams that are created in the

analysis phase of an Object Oriented development methodology. These

4

diagrams, elaborated in UML notation, are the use case view and the object

model of the system.

Chapter 6: Design explains how the system is organized and the design

decision that have been taken. It presents each of the subsystems that the

solution makes use of, and describes in detail the implications of their use in

the overall system. Section 6.1.3,Eircom R&D system is examined in depth

since it implements most of the requirements stated in Chapter 4, System

Requirements.

Chapter 7: Implementation describes how the designed system has finally

been implemented, the decisions made at this stage of the development

process, and gives a short overview of the system interface.

Chapter 8: Evaluation gives a brief discussion of the performance issues of

the system, assessing its strengths and weaknesses, and finally suggests

further work that could be carried out as an extension to this project.

Appendix A includes some examples and code referenced from the

discussion

5

2. Digital li braries

2.1 Introdu ction

There are many different definitions of the digital library, and other

terms can be found in the literature to describe the notion of a digital library,

such as “electronic library” or “virtual library”. Research has been done to

try to abstract common elements from different definitions of a digital library

in order to create a universally accepted standard definition for digital library,

without success. In defining the digital libraries, Drabenstott [Drabenstott]

offers 14 definitions, published between 1987 and 1993. His summary

definition is oriented to the point of view of library users, although he

introduces some common aspects such as the distribution of the library or

the fact that “digital libraries are not limited to document surrogates; they

extend to digital artifacts that cannot be represented or distributed in printed

formats.” Another report [Saffady] cites 30 definitions of the digital library,

published between 1991 and 1994, to propose a new definition based in the

common aspects of all definitions: "Broadly defined, a digital library is a

collection of computer-processible information or a repository for such

information… a digital library is a library that maintains all, or a substantial

part, of its collection in computer-processible form as an alternative,

supplement, or complement to the conventional printed and microfilm

materials that currently dominate library collections". Other contributions can

be found in [Borgman], [British Library] and [Duguid], each of them

considering different aspects. Nevertheless, the definition that has gained

most acceptance is the one proposed by the US Digital Library Federation

[DLFed]: "Digital libraries are organizations that provide the resources,

including the specialized staff, to select, structure, offer intellectual access

to, interpret, distribute, preserve the integrity of, and ensure the persistence

over time of collections of digital works so that they are readily and

6

economically available for use by a defined community or set of

communities."

This definition gives an idea about the breath of the concept and

partially explains why the terminology in the field is so confused, since the

term “digital library” is commonly used to simply refer to the notion of

“collection,” without reference to its organization, intellectual accessibility, or

service attributes. A significant example of this extent is the simplistic

definition by Peter J. Nürnberg [Nurnberg, et al]:” A physical library deals

primarily with physical data, whereas a digital library deals primarily with

digital data”.

Much of the confusion is no doubt attributable to differences of

perspective. Digital libraries bring together facets of many disciplines, and

therefore experts with different background are involved, including computer

scientists, database vendors, commercial document suppliers, publishers,

etc.

It’s noteworthy that, although “electronic library” is an accepted

synonym for digital library, this is not similarly accepted for “virtual library”.

Collier defines a “virtual library” as “an electronic library in which the users

and the holdings are totally distributed, yet still managed as a coherent

whole” [Collier]. Therefore, a virtual library can be considered as an

extension to the digital library since it has no defined location (i.e. virtual).

From the early stages, the fundamental motivation for research and

investment in digital libraries was the belief that they could provide a better

way to deliver information to the user. Back in 1945, Bush introduced the

idea of using technology to gather, store, find and retrieve information to

contribute to science evolution [Bush V.]. At that time, the technology

available hindered any plan to implement Bush’s ideas, but he established

the bases for a new field: the digital library. This field was better defined in

1965, with the publication of the book “Libraries of the Future”, where

7

Licklider described the research and development needed to build a truly

usable digital library. The book introduces the first notion of collections of

documents using digital technologies. It is difficult to determine exactly when

the first digital library came into being, mainly because of the lack of

unanimous agreement about what can be considered a digital library. The

development of automated libraries (libraries that manage their resources

with computer technology) experienced real progress in the 1970’s and

matured in the 1980’s, but it wasn’t until the beginning of the 1990’s when

the first real digital libraries started to be functional. This is because a series

of technical developments took place that removed the technological

impediments to creating digital libraries.

Several technical report searching and indexing system have been

developed in the past. Early in the 1990’s, the physics e-print [Ginsparg]

allows scientist to submit documents by email in TeX format, along with

bibliographic information to index the documents. Developed in 1994, the

HARVEST system in Computer Science extracts indexing information from

documents and indexes them. Other examples of such systems can be

found in [Ian].

One of the pioneer projects to create a digital library was the Mercury

Electronic Library project, back in 1989, at Carnegie Mellon University

(CMU). One of the project's aims was to build a retrieval system that could

deliver full-text documents to the desktop, based on the existing high

performance network; it went live with a dozen textual databases and a

small number of page images of journal articles in computer science. From

then on, uncountable projects on digital libraries have been carried out, and

a lot of investment has been done in order to provide a better paradigm of

information delivery. The most relevant ones are analysed in further

sections.

8

2.2 Benefits

As introduced in the previous section, the motivation to build digital

libraries was, from the beginning, to improve the paradigm of information

delivered by physical libraries. This section outlines some of the benefits of

digital libraries.

• Finding o f information

One of the greatest advantages introduced by digital library is the ability

to search the full content of the documents stored in it. While traditional

libraries narrow this ability to search to a small number of metadata fields

associated with the document (the fundamental tool for representing catalog

records in computers is the MARC format [MARC]), readers of a digital

library can be endowed with a means to search for word or phrases in the

whole collection of electronic documents. Although older material is often

available only in image format, since essentially all modern material is now

printed via computers, it can generally be provided in text form and be

searched. This solves the difficulties of searching in printed material.

• Availabili ty of information

Information in digital libraries is always accessible to the users. As

discussed by William Y. Arms [William], “a recent study at a British university

found that about half the use of a digital library’s digital collections was at

hours when the library buildings were closed”. Furthermore, since what is

delivered to the user is a copy, which is not returned to the library,

information is always available and never checked out to other readers, lost

9

or mis-shelved. This implies that documents can be used by simultaneous

users (assuming copyright permission is available).

• Access to information

The use of digital libraries allows that a single electronic copy can be

accessed from a great many locations; since libraries contain much

information that is unique, researchers that want to consult a document

have to physically move to the documents’ location. With the use of digital

libraries, these documents are delivered with electronic speed to the user’s

desk.

• Preservation

The question of preserving or archiving digital information is not a

new one and has been explored at a variety of levels over the last five

decades, but there is as yet no viable long-term strategy to ensure that

digital information will be readable in the future. Preservation of digital

documents is a completely different task from preservation of physical

documents, since the later depends on having a permanent object and

keeping it under guard. This is not an issue for digital material, since

multiple copies of the document can be made to ensure that at least one will

stay alive. Nevertheless, other problems arise, such as the longevity of the

physical media on which the information is stored [Waters], a.k.a.

technological obsolescence. Although different approaches to overcome this

issue have been considered (such as “refreshing” digital information by

copying it onto new media or migrating the material by transferring it from

one hardware/software configuration to another, or from one generation of

computer technology to a subsequent generation), Rothenberg suggests

that the best solution is “to run the original software under emulation on

10

future computers. This is the only reliable way to recreate a digital

documents original functionality, look, and feel” [Rothenberg],

• Updates of information

Updating a digital library is much easier than updating a physical

library, since the only thing to do is to store the new document in the

collection and, possibly, add some information to the library’s indexes.

Better yet, some libraries projects, such as the New Zealand Digital Library

project, “gathers material from public repositories without any participation

by authors or their institutions “ and therefore it automates the task of

updating the library [Ian].

• Format of the information

Printed documents used in traditional libraries have limitations when

working with them, for instance, with statistical data. The digital library can

provide information in any format (graphics, databases, video, etc) and they

can even be locally modified when permitted by copyright. Furthermore,

information delivered to users can be customised or adapted to user’s

needs, for instance, in larger type size for those with limited sight, in

different formats according with the user’s software, etc.

2.3 Disadvantages

Some authors have explored the disadvantages digital libraries can

pose. Among them, Walt Crawford [Crawford] highlights that there are

“enormous economic and ecological disadvantages to the all digital library”.

It has been estimated that people tends to print documents larger than 500

11

words, an therefore, a typical digital library would use at least fifty times as

much paper as at present. Another issue for digital libraries is the copyright

law, since the copyright holder can loose control of his published material:

there is an obvious need for a unified schema to lend copyrighted material

via a digital library (different countries have different copyright laws). The

current system is not valid either for authors or for publishers: if libraries

acquire a copy of the document and then each user can have its own copy,

authors would only get paid for one copy, and publishers and editors would

disappear. Another problem is the digitalisation of existing material. In

addition to the resources that need to be utilised in order to digitalise the

vast amount of existing printed material, libraries continue to acquire new

print materials, and some of them, such as the Library Congress, do it faster

than it digitalises old material.

2.4 Research areas

Nowadays, digital libraries are no longer experimental projects with

short-term funding to get them started; the initiative that established digital

libraries as a distinct field of research came in 1994, when the National

Science Foundation (NSF), the Defense Advance Research Projects

Agency (DARPA) and the National Aeronautic and Space Agency (NASA)

created the Digital Libraries Initiative (DLI). This initiative provided funds

worth $24 million for six four-year research projects to be carried out at six

universities: The University of California at Berkeley, the University of

California at Santa Barbara, Carnegie Mellon University, the University of

Illinois, the University of Michigan and Stanford University. Currently (from

1998), this initiative is called Digital Libraries Initiative Phase 2, “a

multiagency initiative which seeks to provide leadership in research

fundamental to the development of the next generation of digital libraries, to

advance the use and usability of globally distributed, networked information

resources, and to encourage existing and new communities to focus on

12

innovative applications areas”. New partners have joint the initiative, namely

the National Library of Medicine (NLM), the Library of Congress (LOC), the

National Endowment for the Humanities (NEH) and the Federal Bureau of

Investigation (FBI) [DLI2]. There are countless other initiatives on digital

libraries. The most significant ones are the Digital Library Federation (DLF),

“a consortium of research libraries that are transforming themselves and

their institutional roles by exploiting network and digital technologies”, and

the IEEE Digital Library Task Force, whose focus “is to promote research in

the theory and practice of all aspects of digital libraries”. The research

carried out by these bodies, as well as by private corporations and

universities encompass a range of interrelated technical, social and political

issues. Currently, the main threads of research on digital libraries are: the

object model (the structural relationship among components of the library

and the user’s view of these components); the user interfaces and human-

computer interaction, since it is understood that major advances in usability

will come from innovation in the interfaces and not the underlying databases

or processing engines; information discovery (strategies and methods on

finding information, as introduced in [Ian]); preservation of digital material to

address technology obsolescence; format of the digital material and

digitalisation of the existed printed material (a hot area of research is the

support for searches in non-textual material, such as audio tracks and

images); natural language processing, to provide better paradigms to

search; and interoperability, exploring how to get different digital libraries to

work together; a further investigation in these research areas has been

carried out by Williams Y. Arms [Williams].

2.5 Eircom’s R&D Digital li brary

The aim of this project is not to do research in any of the areas

introduced in the previous chapter, since it would be too ambitious for the

time and resources available; this project will try to investigate the best

13

solution to solve a problem that arises in many research bodies: the

effective dissemination of information throughout the group. In addition, a

fully operative application is expected to be implemented to address this

issue in a concrete environment: the Eircom’s Research and Development

Division. Most of the requirements identified for the application are in close

relation with the forces that motivate digital library research and that define

digital libraries, such as full-text indexing of documents, search facilities, etc.

In addition, other functionalites not covered by common digital libraries are

needed. The system should provide the users with an automated tool to add

documents to the library (in a “traditional” digital library this action is

performed by a librarian or a team of librarians, but not by the library readers

or users). In addition, a mechanism to recommend documents of potential to

users is to be explored and implemented.

To sum up, Eircom’s Research and Development Division digital

library is an application that inherits most of the requirements of a digital

library and adds on top some extra functionality. The proposed application is

analysed in depth in the following chapters.

14

3. Techno log ies

This chapter analyses and assesses the technologies that are available

to implement the proposed solution; since the application is to be used in an

intranet environment, all the technologies examined here are web

technologies.

3.1 Dynamically Generated Web Pages

 In a web application with the characteristics defined in this document,

the information provided to the user is not static, but changes with user

interaction (after a user adds a new document to the library, subsequent

pages that plot the library contents must show this new document). Two

alternatives could be considered to keep the system up to date, although

one of them turns out to be unpractical: either a web programmer manually

changes the affected pages each time a modification to the system is done

or pages are created dynamically using information stored in the server

(database, macro files, XML documents, etc.). The second approach is the

only valid one when dealing with non-trivial projects and will be discussed

below. Dynamically created pages enable the project team to program the

system behaviour and the application flow and to customise the system

based on user preferences (internationalisation, presentation issues, etc).

Depending on the technology used to generate these content-tailored

pages, web programmers can access business logic and business

processes, other web applications or legacy systems.

15

 There are numerous ways to construct server-side dynamic

applications. In this section, different technologies that can be used to

construct this type of system are investigated and assessed.

3.1.1 CGI and Fast CGI

[CGI RFC Project] In 1993, the U.S. National Centre for

Supercomputing Applications (NCSA) developed a standard for server side

executable support called Common Gateway Interface (CGI). CGI permits

interactivity between a client and a host operating system through the web

via the Hyper Text Transfer Protocol (HTTP). It's a standard for external

gateway programs to interface with information servers, such as a web

server. A gateway is a program that handles information requests and

returns the appropriate document or generates a document on the fly.

Gateways conforming to this specification can be written in any language

that produces an executable file. Some of the more popular languages to

use include: VBScript, C, Perl, shells, and many others. Regardless the

programming language it is written in, permission and resources to run it on

the web server are required. When a URL that points to a CGI program is

requested by a user, the web server uses the CGI protocol to invoke the

program and to send/receive data from it. Nevertheless, the use of CGI

poses several drawbacks: each time a CGI script is spawned, it creates an

additional process on the server machine, slowing the server's response

time (if the server is heavily accessed CGI is not applicable) and therefore

compromising scalability. Also, if the CGI script is not set up correctly,

security holes can occur on the server, making the application vulnerable.

Another problem is that it is difficult to maintain state — that is, to preserve

information about the client from one HTTP request to the next -- since

HTTP is a stateless protocol.

16

FastCGI is a language independent, scalable, open extension to CGI

that provides better performance without the limitations of server specific

APIs [FastCGI]. Like CGI, FastCGI applications run in separate, isolated

processes (so a buggy FastCGI application cannot crash or corrupt the core

server or other applications). FastCGI is conceptually very similar to CGI,

with a major difference: FastCGI processes are persistent; they need to be

started prior to serving any requests, and after finishing one, they wait for a

new request instead of exiting. If it dies, a FastCGI manager automatically

restarts the process. To control all processes created by FastCGI, a process

manager is needed. This process manager works with heuristics to estimate

when new instances of applications need to be created. This makes

FastCGI applications difficult to develop, because special directives need to

be included in the web server configuration files.

3.1.2 Server Side Includes

Server Side Includes are directives which one can place into HTML

documents to execute other programs or output data such as environment

variables and file statistics.

While Server Side Includes technically are not really CGI (see 3.1.1

CGI and Fast CGI), they can be an important tool for incorporating CGI-like

information, as well as output from CGI programs, into documents on the

Web. An SSI is a command or directive placed in an HTML file through the

use of a comment line. Basically with SSI one can execute shell or CGI

scripts. When a client requests a document that includes SSI directives, the

server parses the document looking for SSI directives to execute them. As a

way of building dynamic pages, SSI isn't very efficient. It's particularly bad if

you use more than one directive per page, because each directive is a

separate process. Each SSI program you include on the page at least

17

doubles the server load for every viewing of that page. SSI creates a

security risk because SSI directives can execute system programs.

3.1.3 Proprietary server extensions

 Most web servers offer a native API (Application Programming

interface) to allow the developer to access performance-enhancing features

by embedding non-HTML commands within their HTML files. These

commands are then processed when the file is requested and generate a

combination of HTTP headers and HTML that is sent to the client, in a

similar manner to the way SSI works.

The biggest advantage of API-based web server access is speed.

Instead of a new process being required for each instance of an application

called by the web server, a single multi-threaded application can handle all

the traffic. This arrangement can drastically improve the performance of web

applications. Not only performance is increased, but it also allows more

sophisticated security since the application accessed through the server API

runs as if it actually is the server. There are some drawbacks, nonetheless:

first, each web server has a different API and any application must be

customized for a given API, thus lacking of portability; since the applications

run in the server's address space, buggy applications can corrupt the core

server (or each other). A malicious or buggy application can compromise

server security, and bugs in the core server can corrupt applications. The

most used proprietary server extensions are Netscape Server API [NSAPI],

Apache Modules [Apache API] and Microsoft® Internet Server API [ISAPI].

18

3.1.4 Server-side JavaScript

As with SSI, JavaScript can also be embedded in HTML files at the

server side. These directives provide the developer with a means to connect

to different relational databases, to share information at an application level

and to access the file system on the server. Since HTML pages with server-

side JavaScript eventually produce an HTML document to be sent to the

client, they can include client-side JavaScript, as every HTML document

does.

HTML pages that use server-side JavaScript are compiled into

bytecode executable files. A web server that contains the JavaScript runtime

engine runs these application executables. Development of JavaScript

applications is comprised of two stages. In the first one, HTML pages (which

can contain both client-side and server-side JavaScript statements) and

JavaScript files are created and compiled into a single executable. In the

second step, and once the page is requested by the user, the runtime

engine executes any server-side statements to dynamically generate the

HTML page to return to the client.

There are several drawbacks to server-side JavaScript, such as the

intrinsic limitations of the language (object model, data types) and the need

to have a web server that contains the JavaScript runtime engine.

3.1.5 Java TM Servlets

The Servlet API was developed to boost the advantages of the Java

platform to solve the issues of CGI and proprietary APIs. Servlets are

protocol and platform-independent server side components, written in Java

19

and compiled to an architecture independent bytecode, designed to

enhance web servers’ functionality.

A Servlet is a Java class and therefore needs to be executed in a

Java VM by a service we call a Servlet engine. When a Servlet is requested,

the class is dynamically loaded and stays in memory until it is unloaded or

the Servlet engine is stopped, thus potentially handling more than one

request without having to reload it. This request-response model is based

on the behaviour of the HTTP protocol. Currently, almost all web servers

are Servlet-enabled: some of them, like Sun's Java Web Server (JWS) and

W3C's Jigsaw, which are completely written in Java, have a build-in engine;

others, like Netscape's Enterprise Server, Microsoft's Internet Information

Server (IIS) and Apache, require a Servlet engine add-on module, which

has to be configured to intercept Servlet requests, serve them and send the

response via the web server. The Servlet interface is the central abstraction

of the Servlet API. All servlets implement this interface either directly, or

more commonly, by extending a class that implements the interface. The

two classes in the API that implement the Servlet interface are

GenericServlet and HttpServlet. For most purposes, developers will typically

extend HttpServlet to implement their servlets [ServletAPI]. These classes

implement methods that express the lifecycle of the servlet: init, service and

destroy. The servlet container is responsible for loading and instantiating a

servlet (either on “start-up” or when the servlet is first accessed by a client);

once the servlet is instantiated, the container must initialise it before it can

handle the first request. This is done by calling the init method passing a

unique object implementing the ServletConfig interface (through which the

servlet gets initialisation parameters and a ServletContext describing the

runtime environment where the servlet runs). Then, the servlet is ready to

handle user requests. Each request, which is represented by an object of

type Servlet request, generates a call to the service method, passing the

request object. Further requests to the servlet generate new calls to the

service method with new request objects representing the new requests,

skipping so the loading, instantiation and initialisation process. It's not

20

loaded again until the servlet changes, and a modified servlet can be re-

loaded without restarting the server. These requests may be concurrent, i.e.

more than one can occur at the same time. By default, there must be only

one instance of a servlet class per servlet definition in a container.

Consequently, it could imply concurrency problem among requests if

accessing shared data; this is solved by using the SingleThreadModel

interface, that guarantees that one thread at a time will execute through a

given servlet instance’s service method by serializing requests or by

maintaining a pool of servlet instances. The servlet instance is kept in

memory at the container’s discretion. When the container decides that a

servlet should be unload (the policy differs among implementations), it must

allow the servlet to release any resources it is using and save its state. It is

done by calling the servlet’s destroy method, but it’s not allowed to call it

until all threads in the service method finish or time out. The servlet’s class

may then become eligible for garbage collection.

Even more, the servlet API has interfaces that easy programmer’s

difficulties to deal with sessions (it is necessary to associate series of

different requests from a particular user) over a stateless protocol such us

HTTP. One of these interfaces is the HttpSession, which allows the servlet

container to track user sessions, without requiring the developer to do it.

Another interface, called ServletContext, defines a servlet’s view of the web

application, and allows a servlet to access resources available to it; there is

one instance of this interface associated with each web application.

 In functionality, servlets lie somewhere between Common Gateway

Interface (CGI) programs and proprietary server extensions such as the

Netscape Server API (NSAPI) or Apache Modules. Servlets have the

following advantages over other server extension mechanisms:

• they are generally much faster than CGI scripts and FastCGI scripts

because a different process model is used. Instead of creating a new

21

process for each request, the threads model is used, thus requiring

only lightweight context switches among requests.

• they use a standard API that is supported by virtually all web

servers.

• they have all the advantages of the Java programming language,

including ease of development, strong type-check and security, and

platform independence.

• they provide facilities to deal with session and security issues

• they can access the large set of APIs available for the Java

platform.

3.1.6 JavaServer Pages TM

JavaServer Pages™ technology is the Java™ platform technology for

building web applications [JSPSpec]. JavaServer Pages TM are part of the

Java 2 Enterprise Edition (J2EE). From an architectural point of view, JSP

can be seen as a high-level abstraction of servlets that is implemented as

an extension of the Servlet API (the first time a JSP is invoked, a servlet is

generated by the container). They can be used in a cooperative and

complementary manner, as we will see later on this section � The use of JSP

implies a change in the way web applications are developed: instead of

generating HTML code from a program, the actual program is embedded in

the HTML document. Thus, a JSP document is a text-based file that

intermixes template data (HTML tags) with dynamic actions to generate a

response to a request from a client.

JSP add a basic feature to the advantages introduced by servlets: the

separation of dynamic and static content. While in servlets each line of the

dynamically generated document has to be created with an

out.println(“dynamic code”) instruction (an onerous and time consuming task

for long HTML pages), making it difficult to separate the role of a HTML

22

designer from a software developer. JSP allow page creators to make

changes to the HTML document without serious risk of breaking the Java

code. Nevertheless, this approach, called page-centric, in which the request

invocations are made directly to the JSP page, is not ideal, since software

developers and graphics designers have to share the same text file.

Nevertheless it is suited for small projects with only one or two developers.

Figure 3—1: JSP Design Model 1

Indiscriminate use of this architecture usually leads to a significant

amount of Java code embedded in the page; the use of JavaBeans (helper

or worker beans) allows us to remove part of this Java code by

encapsulating data access and business logic, as shown in Figure 3—1:

JSP Design Model 1.

 Web developers soon realised that the best paradigm would be that

in which presentation and content aspects could easily be split according

with the responsibilities defined in the development team. Consequently, a

new design pattern was considered, the so-called Model2. This

methodology follows the Model-View-Controller (MVC) paradigm. In this

23

approach, JSPs are used to generate the presentation layer, and either

JSPs or Servlets to implement programming tasks. The front-end

component acts as the controller performing all the computation and setting

all data and objects that the view (JSP), with only presentation

responsibilities, will retrieve later on to generate the dynamic content.

Figure 3—2: JSP Design Model 2

This is the approach that, when possible, has been followed in this

project since it results in the cleanest separation of presentation from

content, leading to clear separation of responsibilities of the developers and

page designers in a team (in this case I was the only developer, but this is

the pattern that should be followed regardless). In terms of presentation,

JSP pages are the only choice, while for control proposes servlets can also

be used. It is also possible use template engines for presentation but they

haven’t been chosen for this project because there is no standard

specification of such engines and because of my lack of expertise in using

them.

24

3.1.6.1 Java Beans

The JavaServer Pages (JSP) component model is centred on Java

software components called Beans, which must adhere to the JavaBeans

API. A Java Bean is nothing more than a java class that has been

programmed following a set of intuitive conventions dictated by the

JavaBeans specification. Figure 3—3: JavaBean example shows a simple

JavaBean used in this project.

Figure 3—3: JavaBean example

Instances of Bean classes are simply Java objects, so they can be

referenced from Java code, but a Bean container can only manipulate it

through its properties; this is because JSP containers interact with Bean

objects through a process called introspection, using reflection (mechanism

that allows the Bean container to examine any class at run time to

determine its set of properties). As suggested earlier in this chapter, the use

of JavaBeans enables the programmer to migrate the Java code

representing the business logic and data storage from the JSP to the

25

JavaBean worker. This refactoring leaves a much cleaner JSP with less

code, and then a better separation between presentation and content.

Figure 3—4: UseBean example shows how to use a simple bean from a

JSP. Another advantage that arises from the use of JavaBeans is that they

are reusable software components, since they can be called from different

JSPs.

Figure 3—4: UseBean example

3.1.6.2 HttpSessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol.

Nevertheless, in most web applications, as the one described in this

document, there is a need to associate series of different requests from a

particular user with each other. Although it can be programmed by using

different tracking strategies (URL rewriting or cookies), the Servlet API v2.2

offers an easy to use interface called HttpSession . This interface enables

the programmer to store and retrieve objects from the HttpSession . The

JSP Specification defines a default object, called session that can be

accessed at any time and that is transparently mapped on the

HttpSession defined in Servlets.

26

3.1.7 Active Server Pages

Active Server Pages is an open, compile-free application environment

in which you can combine HTML, scripts, and reusable ActiveX server

components to create dynamic and powerful Web-based business solutions.

Active Server Pages enables server side scripting for IIS with native support

for both VBScript and Jscript. [ASP]

Active Server Pages (ASP) technology is similar in concept to

Netscape's server-side JavaScript, but is implemented as an ISAPI

application integrated into Microsoft’s Internet Information Server, which

implies that ASP technology is basically restricted to Microsoft Windows-

based platforms (although ASP technology is available on other platforms

through third-party porting products).

Java Server Pages are the counterpart from Sun to Microsoft’s ASP.

These technologies, similar in concept, have many differences that led me

to choose JSP as the server-side technology used in the application

discussed here. Some of these differences include:

� JSP are platform and server Independent
� JSP technology uses the Java language for scripting, while ASP pages

use Microsoft VBScript or Jscript, thus allowing the user to access a wide

collection of Java API’s and all the J2EE services (besides other

advantages, such strong-type check mechanism, security, protection

against system crashes, etc)
� Maintenance is easier with JSP, due to the lack of scalability of ASP’s

scripting languages.

27

3.1.8 PHP

“PHP: Hypertext Pre-processor” (PHP) is an open-source, server-side

scripting language for creating dynamic Web pages. Its syntax is C-like, but

is a distinct scripting language that works with many web servers. PHP code

appears in the HTML pages embedded within simple delimiters, in a similar

way to SSI, JSP and ASP do. Although it has support for many databases,

and for interfacing to other services using protocols such as IMAP, SNMP,

NNTP, POP3, HTTP, scripts to control the application logic have to be

written within the HTML document, requiring a developer to create the

dynamic pages. As considered in section 3.1.6 JavaServer Pages TM, this

prevents a proper definition of roles within the web development team,

compromising the application maintenance.

3.2 Web server and JSP Container

A web server is a program that, using the client/server model and the

World Wide Web's Hypertext Transfer Protocol (Hypertext Transfer

Protocol), serves web components to users via a web browser. It can be

used for serving pages over an intranet or over the Internet. Apache Web

Sever version 1.3.12 for Win32 (created by Apache Software Foundation)

has been used in the development of this project, basically because it can

be used free of charge, it has been shown to be substantially faster than

many other free servers, and because of my expertise on the server. The

application resulting from this project is to be deployed in a web site using

Microsoft’s Internet Information Server running in a Microsoft’s Windows NT

4.0 machine. Therefore, no proprietary API can be used in the solution,

otherwise the system would not be portable to the deployment environment.

28

A servlet container is a runtime shell that manages and invokes

servlets on behalf of users. Jakarta-Tomcat, developed by Apache Software

Foundation, is a servlet container with a JSP environment, compliant with

Java Servlet 2.2 API and Java Server Pages 1.1 specification. As a servlet

container, it manages and contains servlets through their lifecycle and

provides the network services (along with a web server) to set requests and

responses. As a JSP environment, it delivers requests from clients to the

requested JSP page and requests from the JSP page to the client. There

are basically two types of servlet containers: stand-alone servlet containers

(integral part of a Java-based web server) and servlet containers that need

to be installed as and add-on component to a web server via that server’s

native extension API. Within this second option, containers can be classified

into in-process or out-of-process, depending on whether the process

executing the Java Virtual Machine that runs the container is opened inside

the web server's address space or not. While in-process containers provide

good performance but are limited in scalability, out-of-process containers

have worse response time but better scalability. Jakarta-tomcat can operate

in either of the three modes; for this project, bearing in mind that Apache

Web Server is not a Java-based web server, the decision to be made was

between the defined add-on modes; since the difference in performance is

not significant for the project requirements, the out-of-process mode has

been used.

3.3 Web application and Web Application Archive (WAR)

A web application is a collection of servlets, Java Server Pages, HTML

documents, and other web resources that might include image files,

compressed archives, and other data. It also includes a web application

deployment descriptor. A web application may be packaged into an archive

or exist in an open directory structure. All compatible servlet containers must

accept a web application and perform a deployment of its contents into their

29

runtime. [ServletAPI]. This archive file is created by using standard JAR

tools. The standard extension used for web application archives is .war.

The web application deployment descriptor (DD) conveys the elements

and configuration information of a web application between Developers,

Assemblers, and Deployers. These descriptors are XML files specified by a

Document Type Definition (DTD). This DDT can be found at [ServletAPI].

The web application deployment descriptor created for this project can be

found in Appendix A.1 Web application descriptor (web.xml)

3.4 Presentation

One of the requirements of the system is to integrate its interface with

the Eircom’s Research and Development Intranet; one additional

requirement posed by the use of the subsystems described in chapter 6

Design is the interface integration between them; therefore, great effort has

to be put in the presentation of the application. Two technologies have been

used to achieve this goal, Cascading Style Sheets and Dynamic HTML.

3.4.1 Cascading Style Sheets

CSS is a W3C recommendation to separate presentation from

content in web documents. Currently there are two recommendations

(CCS1, CSS2) and a third one is being developed (CSS3). Style sheets

provide a means for authors to specify how they wish documents written in a

mark-up language such as XML or HTML to be formatted. These languages

are designed to structure documents, not to format how the documents are

to be displayed (it depends on the client). By using CSS, one the developer

can separate content from formatting (it leaves a much cleaner HTML

30

document, in a similar way JSP Model2 does), he has more control over

formatting than using HTML, and can ensure a uniform appearance across

an application. By integrating existing CSS in the site, the seamless

integration of the application has been achieved. The only problems are that

not all browsers support CSS properly; one on every 20 users have

browsers that don’t support style sheets.

A style sheet is simply a text file, with the .css extension, which is

written according to the grammar defined in the various recommendations.

This grammar defines rules that allow the developer to assign presentation

attributes to HTML tags or to define classes of attributes that can be

assigned to HTML objects [CSS].

Figure 3—5: CSS Example

3.4.2 Dynamic HTML

DHTML has been used to create some dynamic effects in the pages of

the application, as well as to generate the windows that allow the user to

navigate across different hierarchies (see chapter 7 Implementation).

DHTML is the combination of several built-in browser features in fourth

generation browsers that enable a web page to be more dynamic. It uses

Cascading Style Sheets (CSS), HTML and JavaScript as underlying

31

technologies and therefore is an entirely client-side technology that doesn’t

require any plugin in the web browser to create these effects. The basic

drawback to this technology is that the main browsers (Microsoft Internet

Explorer and Netscape Navigator) haven’t implemented DHTML the same

way, making it difficult to develop effects that work in the same manner in

both browsers. An example of DHTML, used in the login page, can be found

in A.2 DHTML code for login page.

3.5 Information storage

As mentioned in chapter 4 System Requirements, information about

users must be stored in order to implement a recommendation system. Two

approaches to keep such information can be followed: use client-side

technologies such as cookies or maintain a database in the server. The next

subsections examine these approaches.

3.5.1 Cookies (client-side storage)

Cookies are a general mechanism which server side connections can

use, to both store and retrieve information on the client side of the

connection. When a server sends and HTTP object to a client, it can also

attach a piece of information in text format, containing, among others, a

description of the range of URLs for which that information is valid. By

setting that range of URL’s to be a superset of all the URL’s used by the

application, this information will be sent back to the server each time the

client requests an HTTP object that is part of the application. If this

information were defined to be all the information the application needs to

know about the client, no database would be needed on the server-side.

32

A cookie is introduced to the client by including a Set-Cookie header

as part of the HTTP response; typically this will be generated by server-side

technologies such as the ones discussed in the previous sections (3.1

Dynamically Generated Web Pages). The syntax for this header is:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure

Where:

• NAME is the name of the cookie,
• VALUE is the value associated to the cookie,
• DATE defines the valid life-time of the cookie,
• DOMAIN_NAME and PATH define to which URL’s the cookie must be sent back,
• SECURE marks the cookie to only be transmitted if the communications channel with
the host is a secure one.

(For more information on these fields, see [Cookies])

Table 3-1: Cookie syntax header

But, if information about other users is needed when a given user

interacts with the system (as in this application, when a new document is

added by a user to the library all potentially interested users must be notified

by the system) it implies that all users need to store information about the

rest of the users, which may compromise privacy and make it difficult to

update such replicated information. Another possible downside to be

considered is that the number and size of cookies is limited: a client can

store up to a total of 300 cookies, narrowing this number to a maximum of

20 cookies per server or domain, with a maximum size of 4 kilobytes per

cookie. Depending on how the application is designed, these limitations

could be an issue. But the principal factor why it is unwise to rely on cookies

to store important information just in the client-side is that the user has the

ability to reject cookies. To sum up, cookies are an inadequate mechanism

due to the application requirements. Therefore, a server-side mechanism is

needed; in order to ease the design, a database will be used.

33

3.5.2 Database (server-side storage)

Microsoft Access has been chosen as the relational database

management system to store application information since it was the only

one accessible from the web site where the application was to be installed.

Details about database design are discussed in section 6.2 Database

Design. To act on the database, the Java Database Connectivity (JDBCTM)

2.0 API has been used, since it provides access to “virtually any tabular data

source” from programs written in Java, facilitating portability. To use the

JDBC API with a particular database management system, a JDBC

technology-based driver is needed. Nevertheless, a JDBC-ODBC Bridge

driver can also be used, making most Open Database Connectivity (ODBC)

drivers available to programmers using the JDBC API and thus enabling the

programmer to access any ODBC data source from Java. The Bridge is

implemented as the sun.jdbc.odbc Java package and contains a native

library used to access ODBC. Whenever possible, Sun recommends the

use of a pure Java JDBC driver instead of the Bridge and an ODBC driver,

since this configuration completely eliminates the client configuration

required by ODBC, as well as eliminating the potential that the JVM could

be crashed by errors in the native code.

To be able to use the database, the first thing is to load the mentioned

driver and register it with the DriverManager , a class in the java.sql

package. Then you need to open a connection to the database, resulting in

a java.sql.Connection object. A Connection object represents a native

database connection and provides methods for executing SQL statements.

To do so, the getConnection method has to be invoked in the

DriverManager , asking it to locate a suitable driver from amongst those

loaded. Once a Connection is established, a Statement is used for

executing a static SQL statement and obtaining the results produced by it, if

any. This Statement object provides methods to execute both Data

Definition and Data Manipulation operations defined in the ANSI SQL-2

standard, via its methods exe cute() , executeUpdate() and

34

executeBatch() . For those Statement s that return data from the data

source (“select” commands), a ResultSet interface is provided to

implement typical methods to move along the ResultSet, to retrieve

columns from it, etc. [Java 2 API]

To improve database access time, a connection pool mechanism has

been used. A connection pool is a cache of open connections that can be

used and reused, thus cutting down on the overhead of creating and

destroying database connections. This overhead is considerable, since an

application can easily spend several seconds every time it needs to

establish a connection. For short database transactions, more system

resources may be consumed connecting to the database than executing the

actual transaction. Figure 3—6: Database Connection Pool shows a scheme

of this mechanism.

Figure 3—6: Database Conn ection Poo l

The database connection pool [ConnectionPool] consists of manager

class that provides an interface to multiple connection pool objects. Each

pool manages a set of JDBC Connection objects that are shared throughout

the application. The DBConnectionManager class is implemented

according to the Singleton design pattern, ensuring this way that only one

35

instance of this class will exist at a time. Other objects can obtain a

reference to this instance through a static method (class method). The

DBConnectionPoo l class represents a pool of connections to one

database, identified with a JDBC URL; in this case: jdbc:odbc:EirDL, where

jdbc is the protocol identifier, odbc is the driver identifier (JDBC-ODBC

Bridge) and EirDL is an ODBC System Data Source.

36

4. System Requirements

According to Merlin Dorfman and Richard H. Thayer, a software

requirement can be defined as: “ A software capability needed by the user

to solve a problem or achieve an objective or a software capability that must

be met or possessed by a system or system component to satisfy a

contract, specification, standard, or other formally imposed documentation."

This section analyses the different requirements this project has to

meet, by examining different sources of information to determine them.

4.1 The problem

One of key objectives in Eircom´s Research and Development Division

is to disseminate its investigation results effectively throughout the group.

This project was proposed to improve the extent to which this is currently

done. In a research group, where the outcome of a research project may be

significant for other ongoing investigations or to establish the scope of future

projects, a mechanism for the diffusion of such information throughout the

group is a key issue for the success of the research body. Another concern

to improve the collaboration among the group is to ensure that its members

are up to date with published work produced by other researchers on

relevant topics for their investigation. Finally, another problem to be solved

is the difficulties for the researchers to publish the reports generated since

this task is often done by hand, which is time-consuming and makes

maintenance difficult.

37

4.2 Project propo sal

The main functionality expected from this project was established from

the following project proposal:

 This project will investigate the design of an automated system for the
publication of technical documents on the World Wide Web. The system will allow
its distributed users to commit documents for publication on the web and will then
take care of all aspects of making the document available via the web including
automatic forwarding of the documents for review prior to publication (if required),
linking the document from appropriate document collections, building search
indices to allow documents to be retrieved based on content or keywords, possibly
publishing the document in different formats, etc. The web interface to the system
should be designed to guide readers to documents of potential interest based on
their past use of the system and stated interests and might provide features such
as automatic generation of reports of new documents that become available, email
notifications of new documents to potential readers, etc.

 This proposal has been refined during the course of the project.

Some aspects have been discarded after analysing the problem in depth,

such as the publication of the document in different formats: there is no real

need to do that, bearing in mind that the researcher can download the

document and convert it to the format he is interested in using available

converter tools. Having different versions of the same document in the

server complicate the maintenance of the system without any advantage on

the other hand. New functions have been required as well. The most

significant is that the user must have a means to search for words or

phrases within the whole collection of documents in order to ease his search

for relevant documents to his research.

4.3 Existing sys tem

The existing system currently being used at the Research and

Development Division to address the problem defined in the previous

38

section is far from optimal and doesn’t address all the aspects mentioned

above. The only means a researcher has to obtain information about other’s

research is to browse through a set of individually managed pages and

follow the existing links. Each time a new document is to be published, first

of all the researcher has to launch an ftp client to store the file/s in an

appropriate directory in the web server. Then, he has to edit by hand the

HTML page where the document is to be placed; no further action is taken.

Therefore, potentially interested readers are not notified about the presence

of the new document, nor is the document linked to a proper collection to

ease the search for the document. The rest of the researchers have no

means to search for words or phrases within the document. Another

drawback of this is the lack of a uniform interface, since each user is

responsible for the maintenance of their own page.

4.4 Additional requirements

 Some non-functional requirements were deduced in the early

meetings held at Eircom’s premises.

� The system was to be deployed in the Research and Development

Division’s Intranet site. Therefore, in addition to having to be a web-

enabled application, its interface must integrate with the existing

interface of the site.
� The application must operate in a Microsoft’s Internet Information

System 4.0 running on Microsoft’s Window’s NT 4.0.
� The mail system for the notifications function is cc:Mail.

Other requirements imposed on the system which have been especially

considered are:

39

� Portabili ty: a commonly accepted definition for a portable application is:

“An application is portable across a class of environments to the degree that

the effort required to transport and adapt it to a new environment in the class is

less than the effort of redevelopment”.

All design decisions have been taken bearing in mind that the initial

environment for which the application was developed might change in the

future, and trying to minimise the effort needed to migrate to a new

environment. Thus, whenever possible, standards (a commonly accepted

specification for a procedure or for required characteristics of an object)

have been followed.

� Scalabili ty: An application is considered to be scalable if, unchanged, it

can handle increasingly complex problems. Often scaling yields

problems such as reduced efficiency. Since the number of documents in

the system is expected to eventually grow, it has to be prepared to deal

with a high load of documents without compromising response times.

40

5. Analysis

Once the requirements of the system have been examined, the system

analysis phase may be undertaken. There are two basic steps to be covered

when following an Object Oriented approach: to create a set of use case

diagrams and to decide the data model of the system. These steps are

covered in the following sections.

5.1 Use case diagram

During the first stage in the OO analysis the requirements are refined

into a set of use case diagrams. The following figure (Figure 5—1: Use case

diagram) shows the use-cases established for Eircom’s R&D Digital Library:

Figure 5—1: Use case diagram

41

A use case diagram describes who are the external components in the

system (mostly live persons or other applications) and what activities they

perform using it. Two external components (a.k.a. actors) have been

identified: the librarian and users. These actors define roles that may be

mapped to users (for instance, a single user can be granted both roles). As

shown in Figure 5—1: Use case diagram, librarians can perform all the

operations plain users can, plus management of users (addition, deletion or

update) as well as collection management (creating new collections,

building collections or deleting collections).

5.2 Object model

Another task to be performed in the analysis stage of the development

process is to model the domain of the application, i.e. to represent a static

structure of the system. The object model, a.k.a. class diagram, shows the

existence of classes and their relationships in the logical view of the system.

A class in the diagram is a collection of objects with common structure,

common behaviour, common relationships and common semantics.

Figure 5—2: Object model diagram

42

6. Design

As stated in section 4 System Requirements it is expected that the

system will provide the user with a means to perform searches for words

that appear in any part of the document within the whole collection of

documents. Two approaches to implement this functionality must be

considered. One is to operate directly on the source files with a pattern

matcher like grep or it is possible to create data structures with information

extracted from the source documents (indexes, trees, etc) to ease the

retrieval task. Both have pros and cons: grep is simple to use and does not

require any programming effort, but it does not scale well with the size of the

collection; on the other hand, processing the collection to create the

mentioned data structures is a scalable solution as long as the data

structures are scalable, but this implies developing a complex system. One

example of a retrieval mechanism that makes use of a fast exhaustive

searching is the GLIMPSE (GLobal IMPlicit Search) system [GLIMPSE],

which scans the entire text for each query within a reasonable search time.

Nevertheless, this system is intended to search for files in a UNIX file

system. Hence, it cannot be considered for the proposes of this project.

 As we will see in this chapter, the proposed solution uses a public

domain system, mg, to perform this task. The provision of this functionality

to the system and the use of the mg software have turned out to be

determinant to the rest of the system design.

6.1 System architecture

Figure 6—1: System architecture shows the modules that make up the

proposed solution, their auxiliary components and the existing relationships

43

among them. Each of these modules is thoroughly examined in the following

subsections.

Figure 6—1: System architecture

The system requirement to allow the user to perform full-text

searches of all the documents determined the overall architecture of the

system; it demanded to use an indexing tool (mg, section 6.1.1), and this

tool in turn demanded to use the greenstone software to provide a web

interface to it. Finally, the use of this software determined how the top-level

module was to be developed.

6.1.1 The mg system

The MG (Managing Gigabytes) system is a public domain collection

of programs that comprise a full-text retrieval system [MG] that gives access

to a collection of documents, every single word of which is indexed in the

system. Mg is written in C, initially for Unix machines (although a Windows

version is currently available) and is made up of two subsystems: the first

44

one is used to compress and index a collection of documents (creating a

database out of them) and the second is an interactive query tool (this query

tool operates only on the indexes to do the searching, so the original

collection of documents is no longer needed, thus requiring far less storage

space).

 The text compression and index construction process is carried out

by the command mg- build collection-name. This script uses some

others, basically, mg_get, mg_passes and mg- query .

Figure 6—2: Internal mg structure

45

At the text compression stage, the mg_get script provides raw

documents to the mg_build command. It accepts as a parameter the

name of a collection and outputs all the documents to be stored, adding a

^B at the end of each document. The user has to implement a new version

of this command to deal with different types of documents. After it,

mg_passes is invoked several times with different parameters to create

different structures. This script compresses the text using a “Huffman coder

for text compression” (Huffman coding calculates the output representation

of a symbol, based on a probability distribution, assigning short codewords

for likely symbols and long ones for rare ones) and a “zero-order word-

based semi-static model for ASCII text” (which first creates a lexicon with all

the words and then compresses the text using the parameters accumulated

in the first phase).

Once the text and images have been compressed, they have to be

indexed; the mg system uses the inversion method, which creates different

inverted files during the process and merges them. Then, the index is

compressed, even if this is not a very important step for the final result since

the size of the index is typically around 0.1 times the size of the original

collection.

Finally, the command mgquery allows the user to query all

documents in the system, through its command-line interface. The system

supports four type of queries:

� Boolean queries: The user can type terms to search for linked with

Boolean connectors.
� Ranked queries: The system searches for several terms without

connectors, and then returns an ordered list of documents by

closest matches with a similarity score.
� Approximated ranked queries: The same as before, but less

accurate in order to decrease response time.

46

� Number of document: The user can ask the system for a certain

document, giving its number, since all documents in the collection

are classified with one.

Nevertheless, and despite being a very useful tool, the mg system

has several drawbacks. Firstly, it has a simple command-line interface, as

it’s intended to be a retrieval engine. Secondly, the system can only handle

a single interactive session at a time so it doesn’t allow concurrent users.

Finally, it only works with a static document collection: the whole collection

of documents has to be indexed before any search on the documents can

be done, and once a collection is built, no updates to the collection can be

done; to add a new document, the entire collection has to be rebuild, which

can be time-consuming for large collections. To solve some of these

limitations, another system, the greenstone software, has been developed

on top of it. The next section explores this software, analysing its

functionality and limitations.

6.1.2 Greenstone system

 Greenstone is a GPL Digital Library Software package for building

multimedia collections and making them available via a browser and uses

mg as its kernel. It is the result of an ongoing research project in the

Computer Science Department at Waikako University in New Zealand,

started in 1995, and it is publicly available through the Internet [Greenstone].

The aim of the project is “not to run a new library but to develop the

underlying technology and make it available so that others can use it to

create their own collections”.

 Information in a library using this software is stored in collections of

documents (group of related documents). Metadata (descriptive information

47

about the documents) can be associated to documents. Source documents

can be in any format from which ASCII text can be extracted in order to

index them.

6.1.2.1 Search and browsing facilities

The system provides browsing and powerful search facilities to find

information in a collection. It automatically organises documents according

to metadata associated with them; thus, no links have to be inserted by

hand. Searching is full-text (making the entire text of all documents available

for searching), and depending on the metadata fields associated to

documents in a collection, the user can choose between indexes to be

search (title, author, etc). Figure 6—3: Greenstone search interface shows

these facilities for a demonstration collection. The metadata defined for this

collection is shown in the navigation bar: subject, title and organisation.

Users can type several search words in the search box and search for some

or all of them, depending on what they select from the “list box” above the

search box. In case the user chooses to search for some of the words that

are likely to appear in the document he is looking for, the list of documents

that the system return is ordered according to how many search words it

contains, considering rare words more relevant than common ones.

Quotation marks must be used when looking for phrases within documents.

Figure 6—3: Greenstone search interface

48

The greenstone software also allows advanced users to configure the

system, create new collections, update them, add metadata to documents,

etc. This is the trickiest part of the system, since most of this operations

must be carried out dealing with configuration files and command-line

instructions. Section 6.1.3 Eircom R&D system, describes a system that

provides a web interface to this mechanism, and automates most of the

processes that would have to be carried out manually if working with this

software.

6.1.2.2 Building collections

To be able to build a collection, the user needs to know how the

greenstone software is structured in the file system and where he can locate

the configuration files used by the system. Figure 6—4: Greenstone

collection structure shows this.

Figure 6—4: Greenstone collection structure

� The archives directory stores documents in GML format
� The building directory stores the indexes during the building process
� The etc directory stores configuration files about the collection
� The images directory stores images used in the collection
� The import directory stores the source files for the collection
� The index directory stores the indexes that are publicly available to

search the collection.

49

This is a two stages process. First, source documents have to be

converted to a format that can be indexed, i.e. text has to be extract from

the document. This step, called import, takes every file stored in the import

directory and converts it to a GML file (Greenstone Markup Language),

which is basically a text file with metadata associated, and stores it in the

archives directory. Once the new material has been imported, the collection

should be rebuilt. This step, carried out by the command buildcol, creates

the indexes for both searching and browsing. The MG software is used to do

the searching. The buildcol process invokes the MG module mgbuild (see

6.1.1 The mg system) to create the set of indexes on associated metadata

and to compress the information contained in the GML files.

 Every collection in the library must have a configuration file

(etc/collect.cfg) that defines which metadata is defined for the documents in

the collection and therefore which indexes must be created for the

collection. It has also to be specified the types of the source documents that

the collection will comprise, so that an appropriated “plugin” (Perl module) to

convert the raw material to GML documents.

The most important commands that can be used in the configuration

file are shown in the following table:

Creator
 the creator of the collection

indexes document:Title document:text
the indexes defined on the collection. This collection defines an index on the
Title of the document and another one on the text of the documents.
Therefore, users will be able to search for words or phrases that appear
either on the title or in the text.

plugin IndexPlug
plugin HTMLPlug

List of plugins to control the import process. IndexPlugin mission is to
associate metadata to documents, while HTMLplugin converts documents
form HTML to GML format.

classify Hierarchy hfile=sub.txt metadata=Subject
sort=Title

describes which files define metadata about the documents. This command
specifies that the file named sub.txt contains the subject associated with the
documents. The structure of this file is analysed at the end of this chapter.

Table 6-1: Collection configuration commands

50

As introduced in Table 6-1: Collection configuration commands,

IndexPlug associates metadata to files. This is done by manually writing a

file defining which metadata values are to be associated to each file in the

collection; every single file to be added to the collection must appear in this

file, called index.txt, with its metadata, otherwise it won’t be included in the

collection (see Figure 6—6: Greenstone index.txt configuration file) Other

configuration files that have to be updated manually are sub.txt and org.txt,

stored in the etc directory. The first one is used to maintain a hierarchy of

categories upon which a document can be classified and therefore linked

into appropriated collections. The second one, with identical structure, is

used to maintain the organisational structure of the division.

The following figure (Figure 6—5: R&D Collection configuration file) shows

the configuration file used for the default collection in Eircom R&D Division.

Figure 6—5: R&D Collection configuration file

Figure 6—6: Greenstone index.txt configuration file shows the structure of

the index.txt file. It is a sequential file with an entry for each document in the

library. Only documents included in this configuration file are recognised by

the greenstone software. A document in the library is described with three

fields: key, subject and organisation. The first one tells the greenstone

software where in the file system it can find the document. The second one,

51

subject, is and identifier for the category of document that has been

associated with the document. This field must match with an entry in the

sub.txt configuration file. Finally, the same pattern applies for the third field

in the file, organization, which is used to classify documents upon the

company’s organisation chart based on the author of the document.

Figure 6—6: Greenstone index.txt configuration file

 Figure 6—7: Greenstone sub.txt configuration file plots the structure

of this file. The identifier used in the index.txt file to classify documents

depending on their category (or subject) is duplicated in this file, as each

entry in the file must specify this value in its two firsts fields (this is required

by the design of the greenstone software). Finally, a description for that

code must be provided. Note that the structure of the org.txt is identical to

this one.

Figure 6—7: Greenstone sub.txt configuration file

The greenstone software is widely used as a technology to run digital

libraries. The fact that it is available at no charge under the terms of the

GNU (General Public License) and that it offers a full range of facilities, has

encouraged universities (Middlesex University, Rutgers University), United

Nation agencies (such as the United Nations University) and government

organisations to adopted it. Nevertheless, the requirements of this project

were beyond the capabilities of the system; the greenstone software is

52

conceived to be mono-user: a “librarian” has to store the source files in the

directories afore mentioned, then he has to create the configuration files

manually and then build the collection; there are no mechanisms available

to add files to a collection through a web interface; since it is mono-user,

there is no concept of users in the system and therefore no recommendation

schema can be defined. The next section (6.1.3 Eircom R&D system)

describes a system designed to address these drawbacks.

6.1.3 Eircom R&D system

This module, built on the greenstone software, has been conceived in

order to address the problems and limitations discussed above, so that the

application fulfils the system requirements. The functionality this system is

responsible of is:

• To introduce the concept of users. The system keeps track of

authorised users by storing a record in the database for each of

them. Users must log onto the system to be authenticated and to

have access to the library. Once the user has logged in, the system,

using HttpSessions, maintains this information during the course of

the session. Users can be managed by a librarian.

• To automate the publication of documents: users are provided

with a means to upload a file to the collection. A pop-up window

allows the user to choose which file from their hard disk they want to

upload. Once the document has been chosen, the user must declare

the topic of the document (category). To do so, another pop-up

window will show the hierarchy of categories available. Once a

category has been selected, the file will be transparently stored in an

adequate directory in the web server and added to the appropriated

53

configuration files in the greenstone software (i.e. index.txt), as

described in Section 6.1.2.2.

• To allow users to change their profile: As mentioned before, once

the user has logged in, information about him or her is maintained by

the system. This information (first name, last name, email,

department, if they have librarian rights or not, and the stated user

interests in categories of documents) is available for updating at any

moment. If the user selects to update its profile, his or her details are

shown on the screen, along with a list of categories to which he or

she is subscribed and with a list of all available categories to which

the user might like to subscribe. Through this screen, the user can

update his or her interests, which are automatically updated for

further interactions with the system.

• To add and delete categories of documents in a distributed way.

Users can update at any moment the categories of documents

defined in the system, by adding new categories at any level of the

hierarchy or by deleting them. These changes transparently update

the configuration files of the greenstone software, which turns out to

be an onerous task when it has to be maintained manually.

• To send notifications about new documents to potentially interested

users. When a user adds a document to the collection, an email is

sent to all the uses that might be interested in that documents. A user

is supposed to be interested in a category of documents if that

category is registered in his or her profile, as well as if he or she has

uploaded documents classified upon that category. The notification

informs the user about the file that has been uploaded, its author, and

the category it has been classified in.

54

6.1.3.1 User Profiling

Users of the digital library are in need of a recommendation service

that permits them to be up to date with relevant documents available in the

library. If the system implements such mechanism, it has to keep track of its

users interests by means of a method called user profiling. The

recommendations are then done based on this profile. Two approaches to

this method must be considered: content-based, in which the system tries to

recommend items similar to those a given user has liked in the past, and

collaborative, in which the system identifies users whose tastes are similar

to those of the given user and then recommends items they have liked. This

second approach has been discarded for this solution, because of its

shortcomings: firstly, when a new document appears in the collection, no

information about this document is available (no other users have read it, so

the system doesn’t know whether other users are interested in the

document or not, and if they are, to what extend); secondly, it is difficult to

deal with users who have unusual interests compared to the rest of the

users.

A third approach to this problem can be taken: a combination of both

methods, trying to incorporate the advantages of content-based and

collaborative recommendation whilst inheriting the disadvantages of neither.

This approach has been successfully applied in [Fab], but unfortunately is

not suitable for the system described here. The main reason to discard any

collaborative approach is that the expected number of researches is not big

enough for the results of this method to be accurate. Since the researchers

are organised in groups and subgroups in a hierarchical manner, and each

group is specialised in a certain area, collaboration would be restricted to

research groups, where generally, all researchers are interested in all

documents generated by the group.

55

 Therefore, a content-based recommendation schema has been

followed, as introduced in this section. Users are provided with a mechanism

whereby they can manipulate their profile stating the categories of

documents they are interested in. In addition, users are automatically

considered to be interested in a category of documents when they add a

document on that category to the library.

6.2 Database Design

The database, stored in the server-side, has been created to

automatically generate the configuration files used by the greenstone

software and to implement the functionally assigned to the Eircom R&D

system. A brief description of its tables is noteworthy.

Categories: describes the categories of the documents that have

been defined in the system. Since categories are structured hierarchically,

two fields are needed: the name of the category (Category) and which

category the category subcategory of (SubCatOf). Top-level categories

(those without parent) leave this second field as null. A third field (IndexCod)

is used to generate the configuration file about categories.

Departments: same structure as Categories, but about departments.

Users: information about users is needed in order to: let users log onto

the system (username/password); inform other users via email that a new

document has been added to the collection by a specific user (first name

and last name); determine which operations a given user is allowed to

perform (IsLibrarian); send others notifications about new documents that

might be of interest of them (email); link a specific user’s documents to

appropriated collections (department).

56

 Interests: information about users interests in certain categories of

documents must be stored in order to send them notifications when a new

document of a category they are interested in is added to the library. Since

the cardinality of the relationship is N:N (a user can be interested in multiple

categories and a category may be of interest of multiple users), this

information cannot be stored in either of the tables in a normalised form and

therefore the use of this table is justified.

Figure 6—8: Database Schema shows the database design introduced in

the previous paragraphs

Figure 6—8: Database Schema

57

7. Implementation

This chapter describes how the system presented over the previous

chapters has been implemented, focusing in the top-level module of the

system. The description of this module covers how the functionality

assigned to this module in the design chapter has been transformed into a

working solution.

7.1 mg and g reenstone modu les

While the mg system has been used as is, without any modification,

the greenstone software has been adapted in different ways in order to

allow seamless integration with the top-level module, the R&D system.

Although it offers a set of files to customise its interface, these files only deal

with the interface for the functionality offered by the software, which is to be

expected. Therefore, these files have had to be restructured to plug the

functionality added by the new module. These configuration files are stored

in the gsdl/macros directory in the application tree; their extension is .dm

and are organised as a set of macros used by the system to generate the

html files. A macro associates a value to a label with the following pattern:

namemacro{content}. Macros can appear as well as content for other

macros. An example of these files is included in appendix A.3 Greenstone

home page configuration file. This file defines the content for the home page

of the library.

 This part of the implementation process turned out to be one of the

trickiest parts of the entire project. The fact that no documentation is

provided with the software about which macros are defined in which file, and

58

that these files are structured in packages with macros that overwrite other

macros defined in other packages, made this task last longer than planned.

7.2 R&D modu le

A detailed description about this system and how it interacts with the

user has been covered in 6.1.3 Eircom R&D system. The following pages

cover the programming decisions taken to implement each of the functions

previously analysed.

7.2.1 Distributed users

The system stores a row in the table Users in the database for each

of the users registered in the system. Before having access to any of the

functions of the system, the user must log on, using a common

username/password form. When the user fills these fields, the information

provided is checked against the database via a servlet called CheckP.java.

If the data introduced allows the authentication of the user, access is

granted to the system. The servlet retrieves all the user information from the

table (first name, last name, email, etc), creates a bean of type User and

stores it in the HttpSession . The first thing the rest of the pages do is to

retrieve the bean from the HttpSession . If the reference is valid, it implies

that the user has successfully logged into the system, and therefore is

allowed to visit that page. If not, the user is redirected to the login page to

log into the system (the same approach is taken when the user introduces a

wrong combination of username and password). As an aside, an extra task

performed by this servlet is worthy to mention. In its init() method, which

is called when the servlet is loaded in the servlet container, it creates an

59

instance of the DBConnectionManager class, which is used to create and

manage the pool of Connection s introduced in section 3.5.2 Database

(server-side storage). This servlet is configured to be loaded on Tomcat’s

start-up; this way, the servlet (and therefore the DBConnectionManager)

is loaded before any interaction with the system is carried out.

7.2.2 Publication o f documents

When a user chooses the option to upload a new file to the collection,

and after checking that they have successfully logged in, a form is

presented to the user. In this form he or she has to select the file containing

the document from his hard disk; this can be done by pressing the Browse

button in the form, which pops up a window to navigate the file system. This

behaviour is achieved by defining the “input type” HTML tag of this field as

FILE. Figure 7—1: Uploading a document shows a screenshot for this

action. The form data is sent as multipart/form - data as described in

RFC 1867 [RFC1867]. Since multiple types of information can be included in

the same HTTP request after the submission of the form, this data is sent

with headers that specify the type of information that is being sent and the

boundaries of the stream. These delimiters are the only means the web

server has to split the sent data into the different fields. The web server

needs to parse the stream to obtain these fields. There are several java

classes available on the Internet to perform this task and to free the

programmer from having to deal with the mentioned delimiters. The

com.oreilly.servlet package is one of the most complete solutions. One of

the classes in the package, called MulipartRequest , is the utility class to

handle multipart/form - data . While it cannot handle nested data

(multipart content within multipart content) or internationalised content (such

as non Latin-1 filenames), it can receive arbitrarily large files, which is the

only feature required by this application. All the constructors of this class

have as a parameter the HttpRequest object. Once the

60

MulipartRequest object has been created, methods are provided to

getFile(), getParameter(), readAndSaveFile(),…

Figure 7—1: Uploading a document

 After having indicated the name of the file and the collection to which

the file is to be uploaded, the user must specify the category of the

document. To do so, a new window pops-up to show the available

categories in the system. This is shown in the next section, 7.2.3 Addition

and deletion of categories. Once all the information regarding the new file

has been gathered, the UploadLast JSP writes the file to the appropriate

directory in the file system, updates the file index.txt (it appends a new line

at the end of the file) to let the greenstone software know about the new file,

and sends email notification to researchers that might be interested in the

newly updated document. In order to actually send the emails, it uses a java

61

class as a bean, MailBean.java. It loops over the users that have been

selected from the database and for each of them, it sets the bean’s

properties (recipient, body, subject, etc) to customise the email sent to each

user.

7.2.3 Addition and deletion o f categories

Several functions of the system need to present the hierarchy of

categories currently available in the system to the user. Some of them, such

as “Add Category” and “Delete Category”, also allow the user to modify

these categories of documents. In order not to replicate the code in different

pages, a JSP (Categories.jsp) and a servlet (CatsRec.java) have been

implemented in such a way that they can customise their output depending

on the operation the user wants to perform. Figure 7—2: Categories shows

this customisation depending on the action being executed.

Figure 7—2: Categories

62

 The use of two components (the JSP and the servlet) is justified since

HTML (in fact, JavaScript code) output has to be generated (by the jsp) and

also some business logic has to be programmed (by the servlet), as

discussed in 3.1.6 JavaServer Pages TM. The JSP obtains the information

from the servlet and then it displays it. The servlet has to create a

hierarchical structure from a relational table from the database. The

interface that it exposes to the JSP returns a String with the JavaScript that

the JSP generates in the response object and that is returned to the user.

This JavaScript code is responsible for popping a window with the hierarchy

that allows the user to expand or contract nodes dynamically without having

to regenerate the structure. Figure 7—3: JavaScript code example

introduces the pattern to create dynamic trees showing how to create a tree

with two children, one of them being a tree itself with one child, and Figure

7—4: JavaScript code to generate the hierarchy of categories shows the

code to generate the tree shown in Figure 7—2: Categories. This solution

proves to be very efficient, since no unnecessary reloads or queries to the

database are carried out.

<SCRIPT LANGUAGE="JavaScript1.2">
 <!--
 var mySubTree = new Tree();
 mySubTree.addTreeItem("subTree item a");

 var myTree = new Tree();
 myTree.addTreeItem(mySubTree);
 myTree.addTreeItem("my tree item A");

 //-->
</SCRIPT>

Figure 7—3: JavaScript code example

The following is an explanation on how the servlet creates the String

representing the whole structure: is worthy to understand how it works: it is

done by recursively calling a method in the servlet getSubCatsRec. This

method gets an array of Category (see Figure 3—3: JavaBean example)

created with all the rows in the Categories table in the database, and parses

it, detecting which nodes have to be added to the String. For instance, while

63

dealing with the top-level categories it searches the array looking those that

have no parent (its SubCatOf property is null). Then, for each top-level

category, it calls the method again trying to find its children, i.e. those

categories that have its SubCatOf property set to that top-level category,

and so on. The leaves are identified when no category references them as

parent category.

<SCRIPT LANGUAGE="JavaScript1.2">
 window.onload = loadTrees;
 // load Tree component
if (document.layers) {
 document.writeln('<SCRIPT SRC="tree_n4.js"><\/SCRIPT>');
} else if (document.all) {
 document.writeln('<SCRIPT SRC="tree.js"><\/SCRIPT>');
}

// load my trees
function loadTrees() {
 window.cat0 = new Tree("cat0");
 cat0.addTreeItem("General","opener.location.href='/EirRDDigLib/AddCat2.jsp?Actio
n=Add&Cat=General';close();");
 cat0.addTreeItem("Research","opener.location.href='/EirRDDigLib/AddCat2.jsp?Act
ion=Add&Cat=Research';close();");
 window.cat3=new Tree("News");
 null
 cat3.addTreeItem("International","opener.location.href='/EirRDDigLib/AddCat2.jsp?
Action=Add&Cat=International';close();");
 cat3.addTreeItem("Local","opener.location.href='/EirRDDigLib/AddCat2.jsp?Action=
Add&Cat=Local';close();");
 window.cat3.addTreeItem("--
>New","opener.location.href='/EirRDDigLib/AddCat2.jsp?Action=Add&Cat=News';close();");
 cat0.addTreeItem(cat3);
 cat0.addTreeItem("Conferences","opener.location.href='/EirRDDigLib/AddCat2.jsp?
Action=Add&Cat=Conferences';close();");
 cat0.addTreeItem("--
>New","opener.location.href='/EirRDDigLib/AddCat2.jsp?Cat=&Action=Add';close();");
 showTree(window.cat0,5,35);
}
</SCRIPT>

Figure 7—4: JavaScript code to generate the hierarchy of categories

Comparing these two figures, the reader can observe that in the

second one an extra parameter is used when adding an element to a tree.

This parameter specifies the JavaScript action to be taken if the user clicks

on that entry and is generated dynamically by the servlet. So, for instance,

the action

64

"opener.location.href='/EirRDDigLib/AddCat2.jsp?Action=Add&Cat=General';close();"

calls the JSP called AddCat2.jsp with the query string

Action=Add&Cat=General (a presentation view without programming code

responsibilities that asks for the name of the category to be added). This

JSP is displayed in the application’s main window, as instructed by

opener.location.href. Finally, it closes the window where the categories were

displayed. This action is also customised for each of the system’s functions

that use the categories tree. For example, when subscribing to a category

as described in 7.2.4 Change profile, this action would be

opener.location.href='/EirRDDigLib/AddCatUser.jsp?Action=Subscribe&Cat=Local';close();"

which calls another JSP with another query string to perform another action.

Whatever is the action to be performed, if it changes the existing hierarchy

of categories, these changes are made both to the table of Categories and

the file sub.txt, since this is regenerated using the new data in the table.

7.2.4 Change profile

User’s can change their profile at any time by clicking on this option at

the top of the page. This selection calls a JSP called ChangeProfile.jsp

which displays the data about the user stored in the User bean associated

with the current session, the categories to which the user is supposed to

have an interest in, and a pop-up window with the whole hierarchy of

categories to allow him to subscribe to any of them (see Figure 7—6:

Change Profile). The action in this case is to call a JSP controller

(AddCatUser.jsp) that interacts with the database to store a new row in the

interests table. Finally, if everything work successfully the user is redirected

to the ChangeProfile.jsp, where the newly updated information is shown to

the user, who can do further changes in the profile. Figure 7—5:

AddCatUser.jsp shows the code of this JSP.

65

<%-- AddCatUser.jsp (Controller), changes DB and includes other jsp --%>
<%-- Page directives: use sessions and import the --%>
<%@ page session = "true" %>
<%@ page import ="java.sql.*" %>
<%@ page import ="java.io.*" %>

<%-- Use the single instance of the DBConnectionManager with application scope --

%>
<jsp:useBean id="connMgr" scope="application" class="DBConnectionManager"/>
<%-- Use the single instance of the DBConnectionManager with application scope --

%>
<jsp:useBean id="userSession" scope="session" class="User" />
<% String strError = "/errorPage.jsp"; %>
//Check if the user has successfully logged in

<% if((session.isNew() == true) ||(((session.isNew() == false) &&

(session.getAttribute("userSession") == null))||((session.getAttribute("userSession") !=
null)&& (((User)session.getAttribute("userSession")).getUsername().equals(""))))){

 request.setAttribute("error",(String)"NotLogged");
%>
<%-- if not logged,forward the user to the error page --%>

<jsp:forward page="<%=strError%>" />
<% } else {

<%--Retrieve parameters from the query string --%>
String strAction = request.getParameter("Action");
String strCat = request.getParameter("Cat");

User theUser = (User) session.getAttribute("userSession");
Connection con = connMgr.getConnection("EirDLConns");

 Statement stmt = null;

 String strSQL = null;
 if (strAction.equals("Subscribe"))

 strSQL="INSERT INTO Interests(Username,Category) VALUES('"+
 theUser.getUsername() +"','" +strCat +"')";

 else
 strSQL="DELETE FROM Interests WHERE Username='"+

theUser.getUsername()
 + "' AND Category='"+strCat +"'";
 try{
 stmt = con.createStatement();
 int dummy = stmt.executeUpdate(strSQL);
 stmt.close();
 // Free the connection. It goes to the pool to be taken later
 // if needed
 connMgr.freeConnection("EirDLConns",con);
 }
 catch (SQLException e){
 response.sendRedirect("../error3.html");
 }
} %>

 <jsp:include page="ChangeProfile.jsp" flush="true" />

Figure 7—5: AddCatUser.jsp

66

Figure 7—6: Change Profile

7.2.5 Librarian’s extra functions

Finally, a short description about the librarian extra functionality

introduced in previous chapters is worthy. The librarian can, in addition to all

the functions discussed so far, manage collections of documents, users of

the library and the organisational structure of the division.

The options to manage collections (build or create them) are mainly

provided by the greenstone software, and therefore, out of the scope of this

chapter. Nevertheless, an extra function has been added by this module

relating to the management of collections. This is the publication of newly

built collections, an action that has to be performed by hand in the

67

greenstone software (moving the new indexes to the index directory under

the greenstone root directory).

Regarding the management of users, new functions to add, update,

delete and list users have been added. All of them use the table of Users as

a source of information.

 Finally, the maintenance of the organisation of the departments is

done in the same way as for the categories, but using the table of

Departments and the file org.txt instead of the table Categories and the file

sub.txt (see Addition and deletion of categories for details).

Figure 7—7: Librarian's Home Page

68

8. Evaluation

This project had two distinct objectives: the investigation of the best

solution for the problem proposed and the implementation of a finished

product to be deployed in a working environment.

 The analysis of the functionality expected from the system turn out to

have many similarities with the characteristics of a digital library, and

therefore research was focused on this topic and the technologies that are

available to implement a digital library. As discussed in this document,

digital libraries are complex systems with many different areas of expertise

involved and many social and economic implications. From this research, a

better understanding of the scope and limitations of digital libraries was

achieved, and new features were considered for the application to be built,

such as the full-text indexing of the documents. All the literature on digital

libraries agrees that the ability to search in all the documents stored in the

library is one of the most important benefits introduced by digital libraries.

The software to implement the tools to index documents and perform the

searches on them is highly specialised and requires deep knowledge of its

fundaments, and to try to implement would be an ambitious project itself. As

introduced in this document, this is one of the active research areas in

digital library. Thus, an investigation on the available tools to implement

point out the mg system to be the most adequate for the proposes of this

project. The use of this system had significant implications in the overall

design of the solution due to its implementation as explained in the design

chapter. To provide a web interface to the system, the greenstone software

was used; finally, the extra functionality required was built on top of this

software.

Regarding to the application delivered, it uses the best distributed

paradigm available for this type of projects and a set of standard

technologies backed by important companies. To ease maintenance, design

69

patterns such the Model-View-Controller pattern have been followed, as well

as coding conventions. Scalability has been regarded as an important

aspect for the system. The connection pool to the database and the

indexing of documents are to solutions in this direction as well as two

improvements to the performance of the system.

In conclusion, the objectives for this project have been achieved, and

the outcome is a fully operative application that meets the requirements

defined in Chapter 3 Requirements, a user manual and this report.

Nevertheless, and due to the scope of the field, some extensions or

modifications to provide new functionality could be considered, as

introduced in the next section.

8.1 Further work

The solution described in this document has been designed and

implemented following patterns to ease possible further work in this project.

From the early stages in the development process, portability has been

considered as a fundamental requirement in order not to tie the system to its

initially intended environment and therefore to encourage its use. This

increases the possibilities for the system to be extended or modified to

provide extra functionality. As discussed in this document, digital libraries

are a very dynamic field, with a lot of research being carried out. Not all the

areas being explored are meaningful for this project; for instance,

interoperability between digital libraries is not an issue, since this library has

been created to facilitate the dissemination of information within the division.

Others, in the other hand, are relevant for this work, such as preservation of

digital material, organisation of the library, natural language processing and

the format of the information.

70

The system is not equipped with any facility to deal with preservation

of the material kept by the library and therefore backups need to be done by

hand, as well as any refreshing or any migration of the information has.

Since formats in which information is stored are frequently replace by new

versions, future readers will need to be able to recognise the formats to

display the information successfully.

Regarding to organisation of the library, it is noteworthy that in this

system it is imposed by the greenstone software. Information has to be

stored in collections or documents, and an important issue is how to

organise it for storage and retrieval. This software considers all documents

in the library as single objects; if a more complex model is needed, a best

solution needs to be explored.

Although powerful search facilities are implemented in the system that

allow the user to search for words or phrases in any part of the document,

as well as coping with ranked searches, searching of text can be greatly

enhanced if the search tool understands some of the structure of language,

and therefore queries can be submitted using natural language; a further

project in artificial intelligence could investigate how to add this feature to

this system.

Another topic that can suggest further work is the format of the

information stored in the library. This implementation only deals with

documents in HTML and text, since the whole document is indexed and

hence textual information is needed. As a consequence of this, if a

researcher wants to add a document in another format, this document must

be converted to an appropriated format before being added to the collection.

If the system is required to deal with another format of information, a plugin

has to be written to extract textual information from it, as discussed earlier in

the document. More advanced features can be explored, such as speech

recognition, to enable the user to search within audio tracks, or even image

71

recognition (automatic extraction of features from pictures), although this

would be a very ambitious project.

Finally, if the system is to be used in other environments that the one it

was intended for, the user profiling and recommendation mechanism

designed in this application might not be the optimal one, depending on

different factors, such as the number of users, the organisation of them, the

number of documents that the library will store, among others. In this case,

other solutions should be explored in order to improve the system.

72

9. References

[Apache API] Apache API
 http://www.apache.org/docs/misc/API.html

[ASP] Microsoft Active Server Pages
 http://msdn.microsoft.com/workshop/server/asp/aspover.asp

[Borgman] Borgman, Christine L. (1999). What are digital libraries, who is
building them, and why? In T. Aparac (Ed.), Digital libraries: Interdisciplinary
concepts, challenges and opportunities (pp. 29). Zagreb: Benja.

[British Library] British Library, Digital Library Programme Team. (1999,
June 7). The British Library Digital Library Programme: Towards the digital
library.
http://www.bl.uk/services/ric/diglib/digilib.html

[Bush V.] Vannevar Bush. “As we may think”, The Atlantic Monthly, 176 pp.
101-108 (July 1945).
http://www.theatlantic.com/unbound/flashbks/computer/bushf.htm

[Collier], Collier Mel. (1997) Towards a General Theory of the Digital Library.
In Proceedings of the International Symposium on Research, Development
and Practice in Digital Libraries.
http://www.DL.ulis.ac.jp/ISDL97/proceedings/collier.html.

[ConnectionPool] Database Connection Pooling
http://webdevelopersjournal.com/columns/connection_pool.html

[Crawford] W. Crawford, PaperPersists: Why physical library collections still
matter, Online, Jan. 1998.
http://www.onlineinc.com/onlinemag/OL1998/crawford1.html

[CSS] Cascading Stylle Sheets. W3C.
http://www.w3.org/Style/CSS/

[DLFed] Digital Library Federation. A working definition of the Digital Library
http://www.clir.org/diglib/dldefinition.htm

73

[Drabenstott] Drabenstott, Karen M. (1994) Analytical review of the library of
the future, Washington,
DC: Council Library Resources.

[Duguid] Duguid, Paul, & Atkins, Daniel E. (Eds.) (1997, September 20).
Report of the Santa Fe planning workshop on distributed knowledge work
environments: Digital libraries.
http://www.si.umich.edu/SantaFe/

[Fab] Balabanovic, M., and Shoham, Y. 1997. Fab: Contentbased,
collaborative recommendation. Communications of the Association for
Computing Machinery 40(3):66--72.

[FastCGI] FastCGI Project
http://www.fastcgi.com

[Ginsparg] Ginsparg, P. (1994). First steps towards electronic research
communication, Computers in Physics 8(4), 390-40

[GLIMPSE] Manber, U., and S. Wu. 1994. GLIMPSE: A tool to search
through the entire file systems. In Proc. Of the USENIX Winter 1994
Technical Conference, pages 23-32, San Francisco CA.
http://www.webglimpse.org/

[Greenstone] http://www.nzdl.org

[Ian] Witten I.H., Nevill-Manning C.G. and Cunningham S.J. (1996)
ProcWebnet '96, San Francisco, October (invited paper); also available as
Working Paper96/14, Department of Computer Science, University of
Waikato.
http://www.cs.waikato.ac.nz/~nzdl/publications/1996/IHW-SJC-MDA-
Project96.pdf

[ISAPI] Internet Information Server API
http://www.microsoft.com/Mind/0197/ISAPI.htm

[Java 2 API] Java TM 2 Platform Std. Ed. v1.3

[JSPSpec] JavaServer Pages TM Specification, Version 1.1

74

[Nurnberg, et al] Nürnberg, Peter J., Furuta, Richard, Leggett, John J.,
Marshall, Catherine C., & Shipman, Frank M., III. (1995, June). Digital
libraries: Issues and architectures. In Digital Libraries '95: The second
annual conference on the theory and practice of digital libraries, June 11-13,
1995 - Austin, Texas, USA.
http://csdl.tamu.edu/DL95/papers/nuernberg/nuernberg.html

[MARC] MARC Documentation Overview
Network Development and MARC Standards Office
Library of Congress
http://lcweb.loc.gov/marc/status.html

[MG] Ian H. Witten, Alistair Moffat, and Timothy C. Bell,
Managing Gigabytes: Compressing and Indexing Documents and Images
Second edition, Morgan Kaufmann Publishing, 1999

[NSAPI] Netscape API
http://developer.netscape.com/docs/manuals/enterprise/nsapi/contents.htm

[RFC1867] Network Working Group.
Request for comments 1867
Form-based File Upload in HTML
E. Nebel, L. Masinter
Xerox Corporation, November 1995
http://www.cis.ohaio-state.edu/htbin/rfc/rfc1867.html

[Rothenberg]. Jeff Rothenberg. Avoiding technological quicksand: Finding a
viable technical foundation for digital preservation. Technical report, Council
on Library and Information
Resources(CLIR), Washington DC, 1999.

[Saffady] Saffady, William (1995). Digital library concepts and technologies
for the management of library collections: An analysis of methods and costs.
Library Technology Reports, 31223-224.

[ServletAPI] Java TM Servlet Specification, v2.2 Final Release

[Waters] Waters, Donald, and John Garret. 1996. Preserving Digital
Information.
Report of the Task Force on Archiving of Digital Information. Commissioned
by the Commission on Preservation and Access and the Research Libraries
Group, Inc. (May 1).

75

[William] Arms, William Y. Digital Libraries. Cambridge, Mass: London: MIT,
2000

76

Appendix A

A.1 Web application d escriptor (web.xml)

<!DOCTYPE web- app PUBLIC " - //Sun Microsystems , Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web - app_2_2.dtd">

<web- app>
 <display - name>Eircom's RD Digital Libray</display - name>
 <description> Web application usr servlets/jsp to implement a
 Digital Librar y for Eircom's RD Dep as a Msc.
 in Networks and Distributed systems project.
 </description>
 <context - param>
 <param - name>librarian</param - name>
 <param - value>sanchezo@tcd.ie</param - value>
 <description>The EMA IL address of the administrator
 to whom questions and comments about
 this application should be addressed
 </description>
 </context - param>
 <context - param>
 <param - name>mailserver</param - name>
 <param - value>mail.tcd.ie</param - value>
 <description>Mail server through which email notifications
 are sent to the users
 </description>
 </context - param>
 <context - param>
 <param - name>emailbody</param - name>
 <param - value>This email is to let you know that a new

 document that might be of your interest has
 been uploaded to the digital library

 </param - value>
 <description>Body of the notification ema il
 </description>
 </context - param>
 <session - config>
 <session - timeout>30</session - timeout> <! -- 30 minutes -- >
 </session - config>
 <servlet>
 <servlet - name> CheckP </servlet - name>
 <servlet - class>CheckP</servl et - class>
 <! -- It has to be loaded on startup of the application
 so that ChangeProfile.jsp can use it -- >
 <load - on- startup> - 1</load - on- startup>
 </servlet>
 <servlet - mapping>
 <servlet - name> CheckP </servlet - name>
 <url - pat tern> /CheckP </url - pattern>
 </servlet - mapping>

</web - app>

A.2 DHTML code for login page

 //-JavaScript File included by the JSP-----------------------

 function init(){
 if (ns4) {
 pass = document.layers["passDiv"]
 pass.left = 770

77

 pass.top = 390
 pass.xpos = parseInt(pass.left)
 pass.ypos = parseInt(pass.top)

 }
 else if (ie4){
 pass = passDiv.style
 pass.offsetX = 770
 pass.offsetY = 390
 pass.xpos = parseInt(pass.offsetX)
 pass.ypos = parseInt(pass.offsetY)
 }
 }

//- The body of the JSP--

<body bgcolor="#ffffff" text="#000000" link="#006666" alink="#cc9900" vlink="#666633"
marginwidth="0" marginheight="0" leftmargin="0" topmargin="0" on load=" init();
movePassByToAt(-20,-10,350,150,2);">

 <DIV ID="passDiv">
 <TABLE CELLSPACING=0 CELLPADDING=3 BORDER=0 width="80%">
 <TR>
 <TD BGCOLOR=#305073>Enter the library</TD>
 </TR>
 <TR>
 <TD BGCOLOR="#305073">
 <TABLE CELLSPACING=0 CELLPADDING=3 BORDER=0 WIDTH="100%">
 <TR>
 <TD BGCOLOR="#B8C8E0" >
 You must enter your

 username and password
 <FORM NAME="FormP" ACTION="<%=strServChec%>" METHOD="POST">

 <TABLE>
 <TR> <TD ALIGN ="RIGHT">Username: </TD><TD> <INPUT TYPE="TEXT"
 NAME="Username" VALUE="user1" SIZE=8 MAXLENGTH=8> </TD>
 </TR>
 <TR> <TD ALIGN ="RIGHT">Password: </TD><TD> <INPUT

TYPE="PASSWORD" NAME="Password" VALUE="passwd1" SIZE=8 >
</TD>

 </TR>
 <TR> <TD COLSPAN = "2" ALIGN="CENTER"> <INPUT TYPE="SUBMIT"

 VALUE = "Log in"> </TD>
 </TR>
 </TABLE>
 </FORM>
 </TD>
 </TR>
 </TABLE>
 </TD>
 </TR>
 </TABLE>
 </DIV>

78

A.3 Greenstone home page configuration file

package home

java images/scripts

the _javalinks_ macros are the flashy image links at the top right of
the page. this is overridden here as we don't want 'home'
links on this page

javalinks {}
javalinks [v=1] {}

icons

icongbull {}
iconpdf {}
iconselectcollection {<img src="_httpiconselcolgr_" width=_widthselcolgr_
height=_heightselcolgr_ alt=_altselcolgr_>}

http macros
These contain the url without any quotes

httpicongbull {_httpimg_/gbull.gif}
httpiconpdf {_httpimg_/pdf.gif}
httpicontmusic {_httpimg_/meldexsm.gif}

page content

pagetitle {_textpagetitle_}
imagethispage {}
imagecollection { }

content {
<center>
<p><table border=0 cellspacing=0 width="100%" bgcolor="#FF6600">
<tr>
 <td>
 Available collections
 </td>
</tr>
</table>
<p>_homeextra_
</center>
<center>
<p>_iconblankbar_
</center>
<p><center><h2>
textprojhead</h2></center>
}

