
Analysing interactive devices based on information
resource constraints$

José Creissac Campos a,b, Gavin Doherty c, Michael D. Harrison d,e,n

a Departamento de Informática, Universidade do Minho, Braga , Portugal
b HASLab/INESC TEC, Braga, Portugal
c Lero@TCD, School of Computer Science and Statistics, Trinity College Dublin, Ireland
d School of Electrical Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
e School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom

a r t i c l e i n f o

Article history:
Received 13 February 2013
Received in revised form
1 August 2013
Accepted 2 October 2013
Communicated by Fabio Paterno
Available online 28 October 2013

Keywords:
Formal analysis
Task analysis
Distributed cognition
IV infusion pumps

a b s t r a c t

Analysis of the usability of an interactive system requires both an understanding of how the system is to
be used and a means of assessing the system against that understanding. Such analytic assessments are
particularly important in safety-critical systems as latent vulnerabilities may exist which have negative
consequences only in certain circumstances. Many existing approaches to assessment use tasks or
scenarios to provide explicit representation of their understanding of use. These normative user
behaviours have the advantage that they clarify assumptions about how the system will be used but
have the disadvantage that they may exclude many plausible deviations from these norms. Assessments
of how a design fails to support these user behaviours can be a matter of judgement based on individual
experience rather than evidence. We present a systematic formal method for analysing interactive
systems that is based on constraints rather than prescribed behaviour. These constraints capture precise
assumptions about what information resources are used to perform action. These resources may either
reside in the system itself or be external to the system. The approach is applied to two different medical
device designs, comparing two infusion pumps currently in common use in hospitals. Comparison of the
two devices is based on these resource assumptions to assess consistency of interaction within the design
of each device.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The process of assessing the usability of an interactive system is
often criticised, either because it is biased by the expertise and
judgement of the analyst or because it requires a sufficiently
developed system to be able to assess it through user trials, either
in the laboratory or in the “wild”. These issues are particularly
important when the system is safety or business critical. In such
circumstances evaluation could make it necessary to make sig-
nificant and potentially expensive changes late in the development
process. User testing, while valuable, is also unlikely to cover all
plausible user interactions with the system.

To explore usability, one starting point is to consider beha-
viours that achieve the intended goals of an activity (Butterworth
et al., 1998). The focus of concern must be with what people might
do with a device. This concern can be contrasted with a more
complete analysis of every behaviour that an interactive device is
capable of. Many of these behaviours, though undesirable, are
unlikely to be carried out by a real user. Focusing on more likely
user behaviour is often done by considering tasks or scenarios
because they provide typical or intended behaviours. The problem
is that what the designer intended or the scenario envisaged is not
always how the system is actually used. Unexpected uses of the
device can lead to entirely unforeseen usability issues. Our
approach is based on a more situated view of interaction. It is
assumed that interaction is shaped moment-by-moment by the
information and affordances provided by the device, or the
environment of the device. A typical interaction design issue that
illustrates the role of resources is the “keyhole problem” in which
users are distracted from achieving their primary goals by, for
example, accessing different screens within a hierarchical menu
structure in order to gather information that they require (Woods
et al., 1994). The cues that are required to maintain an awareness

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

1071-5819/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijhcs.2013.10.005

☆This paper has been recommended for acceptance by Fabio Paterno.
n Corresponding author at: School of Computing Science, Newcastle University,

Newcastle upon Tyne, NE1 7RU UK.
Fax: þ44 1912228232.

E-mail addresses: jose.campos@di.uminho.pt (J.C. Campos),
Gavin.Doherty@tcd.ie (G. Doherty), michael.harrison@eecs.qmul.ac.uk,
michael.harrison@ncl.ac.uk (M.D. Harrison).

Int. J. Human-Computer Studies 72 (2014) 284–297

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2013.10.005
http://dx.doi.org/10.1016/j.ijhcs.2013.10.005
http://dx.doi.org/10.1016/j.ijhcs.2013.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2013.10.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2013.10.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2013.10.005&domain=pdf
mailto:jose.campos@di.uminho.pt
mailto:Gavin.Doherty@tcd.ie
mailto:michael.harrison@eecs.qmul.ac.uk
mailto:michael.harrison@ncl.ac.uk
http://dx.doi.org/10.1016/j.ijhcs.2013.10.005


of the main goal and their progress towards it are lost as the user
navigates through the information space, viewing only a small
proportion of the available information at a time. This places
unreasonable demands on short-term memory and introduces
vulnerability to a range of errors. Thus information needs provide
constraints on user behaviour, and together with the resources
afforded by the system, act to shape the likely behaviours of the
end user. Users are therefore considered to behave by following
paths that are suggested or enabled by information resources. Using
them to drive analysis enables consideration of a broader class of
uses and user behaviours than could be achieved by restricting
analysis to the behaviours encoded in more prescriptive models.
This makes it possible to explore many more behaviours than
would be represented by, say, a task model (Kirwan and
Ainsworth, 1992; Mori et al., 2002), and in some cases to realise
that what the user might do is not consistent with what the
designer had intended.

The proposed method involves specifying assumptions about
information resources so that it is possible to check whether the
right information is provided to users at the right time in support
of activities. The designer must consider a range of issues when
deciding which information is relevant at a given stage in the
interaction: support for a range of user strategies, making the most
of available screen space, avoiding information overload, and
reconciling competing information requirements when the system
supports a number of different activities. Subsequently, a model
checker is used to find the more plausible behaviours within the
space of all possible interactions. Traces that are generated by the
analysis contain actions that are constrained by information
resource assumptions. The model checking tool simplifies the
process by automating the generation of these constrained beha-
viours. Each trace represents a scenario which is plausible with
respect to the information resources and possibilities for action
available to the user. Once these scenarios have been generated
they can be explored by domain, software engineering, and
human–computer interaction experts to consider their implica-
tions for design, and to decide whether remedial action needs to
be taken (such as changing the device design). Some traces might
be unexpected, perhaps bypassing some step which is important
from a safety perspective, they might be longer than expected (as
more efficient paths are insufficiently resourced), or there might
not exist any well-resourced path to achieving the user's goal. The
advantage of this approach is that it allows the analyst to focus on
a subset of possible scenarios, ignoring implausible behaviours. It
is always possible to model check the device without ignoring
implausible interactions but this is likely to generate too many
uninteresting behaviours, rendering this interdisciplinary analysis
impractical.

This technique is designed to complement the systematic
analysis of interactive devices using batteries of properties
proposed by Campos and Harrison (2008, 2009) and Harrison
et al. (2013). In the case of the systematic analysis no assump-
tions about use are made except insofar as they are captured in
the properties themselves. For example, a property might state
that a certain confirmation action is always performed, unless the
user cancels the interaction. The property says nothing about
whether the actions are sufficiently salient to be easy to use for
example.

The paper extends work published by Campos and Doherty (2006)
and Doherty et al. (2008). It compares two real systems that were
both developed to support IV (intravenous) infusion in a hospital
context. While the technique is intended to be generic to a range of
modelling approaches it is illustrated using the IVY tool. This tool was
initially developed to support the systematic analysis of interactive
systems. The paper demonstrates a scaleable method for analysing
interactive systems using constraints based on information resources,

and to demonstrate the analysis of consistency properties and
comparisons between different devices.

More specifically, the paper's contributions are:

� It demonstrates the use of resources as a modelling concept.
� It shows how resources can be used to focus analysis on

plausible sequences.
� It illustrates the technique by contrasting the resources

required in one real-world example with those in another both
designed to support the same activities.

� The method also captures a number of different precise notions
of task consistency and applies them.

The paper first discusses the background to this resource based
approach (Section 2). Section 3 explains how resources can be
used to support the analysis of systems in use. The manner in
which resources are specified and the way in which goals are used
in property formulation are discussed, along with the possibilities
for tool support. This section introduces the proposed method.
Models of the two infusion pumps are then briefly introduced in
Section 4. Section 5 describes the activity context for describing
the two devices before providing a discussion of the resource
constraints relevant to the example (Section 6). The penultimate
section uses the model of activities and description of the
resources to compare the two models of devices (Section 7).
Finally, discussion of the wider application of the method and of
further developments is to be found in Section 8.

2. Background

The use of behavioural models, focusing on the system and
supported by automated reasoning, to analyse human–computer
interaction has been the subject of previous research (Mori et al.,
2002; Campos and Harrison, 2001; Rushby, 2002; Loer, 2003). The
particular tool that underpins the analysis performed in this paper
is model checking (Clarke et al., 1999). Model checking is an
automated approach that verifies that a formal model of a system
satisfies a set of desired properties. It is a technique that is, in
principle, feasible for use by non-experts given appropriate packa-
ging of the mechanisms that are involved. One such mechanism is
the use of generic models to describe classes of system (see, Garlan
et al., 2003) that can be instantiated to particular examples. The
infusion devices described in this paper use a common generic
infusion pump specification that is used by the models of the
interfaces to the two device models (Harrison et al., 2013). This
eases the specification problem to some degree. The properties are
typically expressed in temporal logic using the variables that
describe the formal system to construct propositions. The method
of proof is algorithmic which means that it is more accessible to
non-experts than automated theorem proving. The appropriate
formulation of properties and diagnosis when a property fails is
not however a straightforward process. Property formulation can
be made easier by offering general property templates (see, for
example, Dwyer et al., 1999) that can be instantiated to the
particular requirements of the devices. Property templates and
the means of instantiation are offered by the IVY tool (Campos and
Harrison, 2008).

When a property fails the model checker generates sequences
of states (traces) in which the property being checked fails to hold.
Each trace can be seen as representing a scenario. The scenario can
be further explored by human factors or domain experts. However,
not all behaviours that satisfy or fail to satisfy a property are of
interest. Those that are of interest are the ones that are plausible
because the device or the user's training, or some other contextual
factor, lead to the particular behaviour. The problem is to ensure

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297 285



that the interface helps the user to reach the goal and to avoid
unsafe situations that might arise. While many features of human
behaviour are unpredictable it is possible to determine systematic
failures that are more likely to occur because of the way that the
interactive system is designed. These behaviours are shaped by the
users' goals and the system design, factors that are important if
automated analysis is to focus on how the system design influ-
ences human behaviour.

Methods of folding the user into the analysis of system
behaviour for realistic problems remains an issue. Existing
research falls into two categories.

� It is concerned with analysis based on tasks, systematically
exploring potential erroneous actions.

� It is concerned with forms of analysis that are based on a model
of cognition.

2.1. Analysis based on tasks

The most recent example of this type of approach is the work of
Bolton et al. (2012). Their work contains a good review of related
material. It uses the Enhanced Operator Function Model (EOFM) to
describe operator tasks. A task model is combined with a device
model as a basis for a model checking analysis using SAL (de
Moura, 2004). The analysis involves considering variants of the
task by inserting automatically “phenotypes of erroneous human
behaviour”. These variant models are checked against correctness
properties – that the combined model can reach specified goals.
Observable manifestations of erroneous behaviour are also expli-
citly modelled by Fields (2001) who also analyses error patterns
using model checking. Both approaches, however, whilst helpfully
identifying specific kinds of errors to explore in the form of the
mistake model, lack discrimination between random and systema-
tic errors. They also assume implicitly that there is a correct plan,
from which deviations are errors. A task based analysis technique,
that has some connection with the information resource based
approach described in this paper, analyses errors in terms of
mismatches between the resources required by a task description
and the resources provided by the device model, see for example
Bottoni and Levialdi (2005).

Tasks are typically described in terms of the goal hierarchies
and plans that are associated with intended or observed uses of
the device. Task performance however often changes over time in
practice. For internal or external reasons tasks may be performed
in ways that were not originally envisaged. This is a particular
problem when formal operating procedures based on tasks are
designed to improve the safety of a system, for example users
being expected to check that a particular value has been entered
correctly before moving onto the next stage of the task. As an
extreme example – consider a device in which no information at
all is provided to the end user. Such a device could be seen as
correct with respect to a task model (a user following the steps of
the task would in theory achieve their goal). Similarly, vital

information for performing a step in a task (e.g. displaying a drug
dose so that the operator can check that it has been entered
correctly) might not be provided by a device. Alternatively
operators in practice might make use of emergent features of
the device to perform tasks in ways not envisaged by the original
designer.

2.2. Analysis based on cognition

An approach that avoids some of the difficulties of task models
is to make assumptions about the cognitive behaviour of the user
using a cognitive engineering perspective. For example Cogtool
(Bellamy et al., 2011) uses ACTR to visualise the implications of
design decisions by animating aspects of the design. This tool is
primarily concerned with human performance given a specific
user behaviour and is valuable in exploring these. Ruksenas et al.
(2009) take a different approach. They explore the implications of
a set of cognitive assumptions on a given design. The assumptions
or principles are described formally in a generic user model
(GUM). The approach checks properties of the combination of
generic user model and device in order to generate paths that
demonstrate flawed characteristics of the design from the per-
spective of these assumptions.

The assumptions about user behaviour made within these
cognitive modelling approaches are stronger than those made
for a resource based analysis, and involve a finer level of specifica-
tion. The size of the generated models makes it difficult to explore
detailed features of the device design in the way that is possible in
our approach.

Taking inspiration fromwork on distributed cognition, a further
step is to explore the distributed environment in which the system
is situated which will in itself have a role in the cognitive tasks
which are carried out. In this case it is recognised that a broader
definition of resources beyond the device itself is required. A
resource could be for example a post-it note reminding the user of
a particular command that is useful in a particular situation. The
DiCOT analysis method (Blandford and Furniss, 2006) is based on
this view and has been formalised in Masci et al. (2012a) where
the focus is incident analysis.

3. Resource based analysis

Resource based analysis takes user actions as the basic units of
analysis. It combines these actions with resources that support
them to define plausible interactions with a device, while avoiding
the cost of developing a working user model. The process entails
four phases (see Fig. 1). The first two involve producing a model of
the device, and a model of the activities that the user will engage
in to achieve the purpose of the device. The third phase is to
describe the information resources that relate to the device's
actions in the context of these activities. The fourth phase is
concerned with analysis of the resulting models.

Fig. 1. Stages of the process.

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297286



3.1. Modelling the device

Interactive systems can be specified by defining the set of
actions, including user actions, that are possible with them. These
actions affect the state of the system and are determined by the
mode of the device. A model of the device is proposed, and will be
described in this paper, that focuses on interactive behaviour and
makes explicit the relevant information resources. The focus will
be on the types of analysis that can be performed and the nature of
the results rather than providing full details of the specification.
Further details of the modelling approach may be found in
Harrison et al. (2013) and Campos (2012).

Modal Action Logic (MAL) interactors (Campos and Harrison,
2001) are used to describe the interactive behaviour of the device.
Interactors enable the description of user interfaces as state
machines. They consist of a set of proposition rules that aim to
be more easily understood by designers and engineers, as dis-
cussed in Monk et al. (1991). Attributes are used to capture the
information present in the user interface and user actions (as well
as relevant internal state and actions – a distinction between both
is achieved by assigning modalities to the former, e.g. vis). MAL is
then used to write production rules that describe the effect of
actions in the state of the device. The language also expresses
when an action is allowed using permission axioms. MAL axioms
will be used to define the behaviour of interactors.

Specifically, in addition to the usual propositional operators
and actions the logic provides:

� a modal operator [_ ]_: [ac] expr is the value of expr after the
occurrence of action ac – the modal operator is used to define
the effect of actions;

� a special reference event []: [] expr is the value of expr in the initial
state(s) – the reference event is used to define the initial state(s);

� a deontic operator per: per(ac) meaning action ac is permitted
to happen next – the permission operator is used to control
when actions might happen;

� a deontic operator obl: obl(ac) meaning action ac is obliged to
happen some time in the future. Note that obl is not used in
this paper.

Hence, the following extract of the model for a pump declares two
boolean attributes (poweredon and infusingstate) and two actions (start
and pause). It describes the effect of the action pause as setting an
attribute infusingstate to false and leaving the attribute poweredon
unchanged (priming is used to identify the value of the attribute after
the action takes place), and restricts the pause action to only happen
when the system is infusing and powered on. The keep function
preserves the value of the attribute poweredon in the next state. If an
attribute is not explicitly modified or is not in the keep list then its
value in the next state is left unconstrained.

interactor pump
attributes
[vis] poweredon, infusingstate: boolean

actions
[vis] start pause

axioms
[pause] !infusingstate' 4 keepðpoweredonÞ
perðpauseÞ-infusingstate 4 poweredon

3.2. Modelling the activities

Assumptions about user activities are then added to the
models. These activities achieve sub-goals, for example entering
an infusion rate. Hence this part of the method involves breaking

down the activities and goals that the device is designed to
achieve. Information about the relevant activities can be obtained
using established requirements elicitation techniques.

In terms of modelling, goals and subgoals are represented by
(meta-)attributes in the model. These attributes do not correlate
directly to the device, rather they represent the goal that the user
is assumed to be pursuing in a given moment. This means that
axioms for relevant device actions must be updated to consider
which activities they support. Activities are represented by actions.
These actions will act on the attributes introduced to represent
goals, to model how activities achieve goals. The availability of
actions and their effects are constrained by the state of the device
(i.e. the attributes representing the device). Activities are related to
device actions through the (meta-)attributes, representing goals
that they manipulate. Hence in the example to be explored in later
sections the attribute phaserate takes a value depending on what
status the activity associated with entering the rate has reached.

3.3. Resourcing actions

The resourcing of each action is specified independently. The
resourcing process addresses the information needed by the user
to perform the action. Constraints (expressed as permission
axioms) are specified over the attributes of the device and activity
models. These constraints describe what information resources
should be available for the action to be taken.

Resourcing will depend on the user's expertise with the system
in a particular context. For example, if a mobile phone (the device)
has an action to save a number to the address book, and this is the
user's goal, then it is necessary that (1) action availability is
resourced (the “save” option is currently on the screen), (2) the
action is enabled (the device storage is not full), (3) action-effect
information is available if the user is not expert with the phone (is
the label “save to contacts” or just “save”?), and (4) required
information about the current state is available (is it saved
already?). Regardless of how a user accessed the number (is it in
a list of missed calls or the content of a text message), or higher
level user tasks and goals (which may be varied), the basic
resourcing for this action remains much the same.

Wright et al. (2000) note that, in typical interfaces, information
either in the device or in the environment can take specific forms:

� Status/visible information – perceivable information about the
state of the device, for example a display indicating that a
message is waiting, cues the user to perform an action to read
the message. This is distinct from the system being in a state
where reading a message is possible.

� Action possibility – indicating that an action is available, i.e. an
action exists (e.g. the resource lets the user know they can save
an unsent message for resending later, a feature they were
unaware of); an action is enabled (or not) in the current state –

perhaps the sender has no credit.
� Action effect information– indicating the likely effect of an

action, for example “press ok to save” conveys information
both on action possibility and on action effect.

� Plan information – that aids in the sequencing of user actions,
for example, “You are in step 3 of 5”.

� Goal information – helping the user to formulate and keep track
of multiple goals, for example, “there are new messages”.

These resources may be found in the physical context, in the
device itself or in the user's head. The aim of the model is to make
these resources generally explicit to understand how the design
supports the user or otherwise. In practice, in the analysis
described here, the information will be based on the device.

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297 287



3.4. Analysis

Enhancing the specification with information resources enables
a systematic consideration of the support they provide users. In
the process of thinking about and specifying the resources,
assumptions that are being made about the design will become
explicit.

The model can then be used for further exploration of the
device's behaviour. Typically this is achieved by attempting to
prove desirable properties of the system, and making sure that
undesirable properties do not hold. In the case of a resourced
model, however, it becomes particularly interesting to attempt to
prove that desirable properties will not hold (or that desirable
states cannot be reached – e.g. that same activity cannot be carried
out), as this will identify problems (if the property indeed does not
hold), or provide traces that illustrate how, under the resourcing
assumptions, the given property holds (the activity can be
carried out).

Paths generated as a result of failing to satisfy properties will be
paths that would have occurred if the user used the resources to
support their interactions. It is possible then to investigate these
paths and to construct scenarios around them or to explore
properties of the interactions within these paths. The analysis
then involves inspecting the generated traces that achieve the
goals of the activities, and exploring the consistency of the devices
in the context of these activities.

4. Modelling infusion pumps

Infusion pumps will be used to illustrate the approach. Because
of the safety critical nature of infusion a number of agencies have
produced sets of recommendations and safety requirements (US
Food and Drug Administration, 2010). A more formal approach to
analysis is likely to be more tolerable in this regulatory context.
Particularly interesting and relevant to this paper is the generic
infusion pump project underway within UPENN (Kim et al., 2011),
CHIþMED (Masci et al., 2013) and the FDA. This project includes
the definition of a number of safety requirements, including some
that relate to the user interface of the device, although the focus is
on device safety rather than user interface safety.

4.1. Infusion pumps

Infusion pumps are devices that are used mainly in hospitals to
administer medication intravenously. They can be found in a
variety of hospital contexts, including oncology and intensive care.
Ambulatory versions can be carried by patients or used at home
often for pain control. The users of these devices have varying
levels of experience and training in how to use them. The setting
up and running of an infusion requires the physical connection of
the “giving set” from the pump to the patient's vein as well as
programming the infusion device so that the correct volume will
be infused over the prescribed time or at the prescribed infusion
rate. This paper focuses on a particular activity that requires the
programming of the pumps in question since the focus of the
analysis is to explore the software design. Two pumps that provide
similar facilities but have quite different user interfaces will be
explored using information resource assumptions. For an
approach, with some commonalities, that uses theorem proving
combined with a distributed cognition based study of an oncology
ward see Masci et al. (2012b).

Programming infusion pumps is an error-prone activity (see
comments made in Ginsburg, 2005 for example) and therefore
justifies the present focus. The two devices used for analysis in the
paper have been modelled in detail and reflect a snapshot of two

systems that are undergoing continual evolution and improve-
ment. Infusion pumps support a wide range of facilities and
settings using the limited facilities of the keys and display by
using modes. The first analysis is based on a device A, which is
similar in detail to a version of the Alaris GP infusion pump
(Cardinal Health Inc, 2006) (see Fig. 2). The second device B is
similar to a version of the B. Braun Infusomat Space device (see
Fig. 3). The models are detailed models but may not represent the
current versions of the relevant marketed devices. These devices
are typical pumps but have different user interface characteristics.
These differences make them suitable for study and for compar-
ison. For reasons of space the device models are only sketched
here. Further details may be found in Harrison et al. (2013).1

4.2. Modelling the infusion pumps – the (basic) device model

Most infusion pumps have similar basic functions. They can be
switched on and off, and they can be used to infuse medication
intravenously using the pump. They can be used to program the
pump parameters. Infusion pumps are designed to infuse a volume
(vtbi – volume to be infused) of medication intravenously subject
to a prescribed infusion rate or over a prescribed time. The device
recognises a variety of potentially hazardous conditions and uses
alarms to alert the user. These conditions include the pump not
having been switched off when the programmed volume has been
infused, and the device having been left in hold mode without
user action for too long. When the device is holding (that is
paused), as opposed to infusing, the basic pump variables: infusion
rate, vtbi, time and volume infused, can be modified although in
some devices some of these variables can also be changed while
infusing. Both pumps provide facilities for changing units and
other parameters.

Fig. 2. The A pump (relevant attributes and actions).

Fig. 3. The B pump (relevant attributes and actions).

1 The MAL models can be found at http://hicspecs.di.uminho.pt.

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297288

http://hicspecs.di.uminho.pt


The basic underlying functionality is the same for most infusion
pumps, therefore devices A and B have a common specification
component that describes the pump's behaviour. The interface of
each of the pumps is specified in separate components. The
common component describes the behaviour of four actions on,
start, pause and tick. The first three of these actions are user
actions and turn the device on or off (on), start the infusion if the
device is holding (start) or pause the infusion if it is infusing
(pause). The tick action abstracts time and captures the infusion
process: a relation between vtbi, infusionrate, time and volumein-
fused as time evolves. When the device is infusing the vtbi is
reduced according to the infusion rate every tick and added to the
volume infused. tick computes the amount of time that has
elapsed since the last action if holding. tick is invoked regularly
and autonomously.

The pump interactor specifies attributes: poweredon (pump is
switched on when true), infusingstate (pump infusing when true and
holding when false), infusionrate (the rate of infusion), volumeinfused
(howmuch has already been infused), vtbi (the volume to be infused),
time (time to complete the infusion), elapsedtime (time since the
infusion was started), kvorate (the keep vein open rate, which is a
minimal rate that continues to be infused if the volume to be infused
is exhausted), kvoflag (whether the pump is in keep vein open mode)
and elapse (the time elapsed since the last key stroke when the device
is holding). It also specifies internal actions that are only used by the
main interactor to modify attributes. An example of such an action is
resetElapsed that can be invoked by other interactors in the specifica-
tion to set elapsedtime to zero.

4.3. The A interface model

Device A features a display and a number of buttons. Three
areas of the display can be distinguished (see Fig. 2). A line at
the top of the display presents status information, modelled by
the attribute topline. For example, topline¼holding indicates that
the top line of the device, see Fig. 2, shows “ON HOLD”. The middle
part of the display, modelled by a boolean array middisp, displays
the value of the pump variables and some other information. For
example, middisp[dvtbi] indicates if true that the current value of
vtbi is visible and the current value of middisp[dquery] indicates
whether the options menu is visible. Finally, in the bottom part of
the display, the labels over the three function keys are modelled by
attributes fndisp1, fndisp2 and fndisp3. Hence, fndisp2¼ fvtbi indi-
cates that the display associated with key 2 shows “VTBI”. The
attribute names topline and middisp are not intended to indicate
the spatial layout of the display. With hindsight it would have
been preferable to use similar identifiers to those used in the
BBraun model, that is displaymode and disp.

Other indicators are also defined. For example, onlight, runlight
and pauselight are boolean attributes associated with lights on the
device indicating whether the device is switched on, is running or
is paused. It is clear that there is some redundancy between these
displays and it is important to check that displays are consistent
with respect to each other. Properties of this kind are discussed in
Harrison et al. (2013).

The limited size of the display and number of buttons means
that interface modes are inevitable. These modes are described
using the state attribute entrymode that can take values:

� rmode – entry of the infusion rate via the chevron keys,
� bagmode – entry of vtbi by selecting from a menu of

infusion bags,
� tbagmode – entry of vtbi by selecting from a menu of infusion

bags when entering vtbi over time,
� qmode – selecting from a menu of options relating to a variety

of device features,

� vtmode – entry of vtbi via the chevron keys,
� vttmode – entry of vtbi via the chevron keys when entering

over time,
� ttmode – entry of time via the chevron keys,
� nullmode – variety of other situations when the chevron keys

have no effect,
� infusemode – when the device is infusing.

This is captured in the type emodes:

emodes¼ frmode; bagmode; tbagmode; qmode;
vmode; vttmode; ttmode;nullmode; infusemodeg

The A pump allows the user to move between modes using the
three function keys (key1, key2 and key3). The meaning of the keys
is indicated by the function key displays (as described above).

The pump supports number entry by using chevron buttons
(modelled by actions fup, sup, sdown, fdown). These buttons are used
to increase or decrease entered values incrementally according to
mode as described above. The user will recognise the different
meanings of the chevron key by using a variety of information.

� In infusing or holding mode when the top line is “OPTIONS” or
“VTBI” and entrymode is bagmode. In this case the keys move
the cursor up and down a menu.

� In holding mode when the top line is “ON HOLD”, or “VTBI ”or
“VTBI/TIME” and entrymode is rmode, vtmode, vttmode or
ttmode then the keys can change the value of infusion rate,
vtbi or time depending on the combination.

� In infusing mode when the top line is “INFUSING” then the keys
can change infusion rate.

4.4. The B interface layer

The B infusion pump differs in a number of ways from the A
pump. It is driven by its menu interface. Entries in the menu allow
changes to volume to be infused, infusion rate and time as well as
other modifications similar to those provided by the A device's
options menu. Number entry is achieved through a combination of
cursor movement (using left and right) and incrementing/decre-
menting the digit pointed at by the cursor (using up and down).

The current mode of the device is determined by two attribute
types: dispmode which indicates the displayed mode of the device
and emode which defines the effect of up, down, left and right. The
display modes:

dispmode¼ fdisprate; dispvtbi; disptime;mainmenu;
dispinfusing; dispalarm; dispalarmvol; optionsmenu;
statusmenu;dispblankg

indicate the state of the menu at which the device has reached. For
example mainmenu indicates that the device is showing the main
menu, while disptime indicates that the device is showing time
and is ready to enter a new value for time. The display modes are
coupled with entry modes:

emode¼ fdataentry; confirmmode; scalemode;nullmodeg
The entry modes determine the type of data entry. They have the
following effect:

� dataentry – determines that numbers are to be entered, for
example when coupled with a display mode of disptime then
time is being entered.

� confirmmode – determines that the action is to be a confirm
action, used in the case of an alarm display for example.

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297 289



� scalemode – determines that entry changes values such as the
volume of the alarm.

� nullmode – is a miscellaneous mode used when navigating
menus for example.

As in the case of the A device a Boolean array disp indicates
whether a pump variable is displayed.

5. Determining the activities

Understanding the particular role of a set of information
resources in supporting usability in a design first requires assump-
tions about the activity context. The work of IV infusion can be
described in terms of a collection of activities. These activities
achieve sub-goals of the work, for example programming the
infusion rate, confirming that the entered vtbi is correct or starting
the infusion process. In the current case, these activities were
elicited through analysis of operation manuals and interviews
with clinical staff (Furniss, 2013).

These activities are described as actions. Unlike the actions
described in the device model they describe how activity phases
are affected by the activities. Activity actions also use device
attributes, though they do not modify them. The device attributes
used by the activities should be perceivable to users as they carry
out their work. For example, the activity entertime is described by
an action using two axioms: the first axiom defines when the
action is permitted to occur and the second axiom describes the
effect of the action. In the case of activities, the most important
feature that indicates the constraints on the activity as a whole is
when they are permitted to occur.

The activity entertime can only occur when time (mtime is non-
zero) is specified as part of the prescription and when the vtbi,
which is always the other prescribed value, is not currently being
entered. The broader activity should be at a stage at which time is
ready to be entered. These three constraints are expressed as

mtime !¼ 0 & phasevtbi !¼ entering & phasetime¼ ready

Further constraints involve information that is afforded by the
device. They include assumptions about the information displayed
or otherwise provided by the device. This information is assumed
to be employed by the user when beginning the entertime activity.
These device resources may trigger the commencement of the
activity in the sense of an action possibility or may indicate to the
user the status information that suggests readiness to engage in
the activity.

In the case of the A device two features appear to provide
status resources. They do not trigger commencement, rather they
indicate that the activity may start. Indeed the user must perform
other actions to arrive at this state as will be seen in the analysis
(Section 7). The top line of the device (see Fig. 2) should show
“VTBI/TIME” and in addition there should be an indication that
time can be entered (this is indicated by an arrow which can only
be seen in a particular mode of the device). These resource
constraints are expressed by

topline¼ vtbitime & entrymode¼ ttmode

Pulling these resources together the permission axiom in MAL
is expressed as

perðentertimeÞ-ðmtime!¼ 0Þ & ðtopline¼ vtbitimeÞ
& ðentrymode¼ ttmodeÞ & ðphasevtbi!¼ enteringÞ
& ðphaserate!¼ enteringÞ & ðphasetime¼ readyÞ

In the case of device B the display provides status information
that is assumed to trigger the commencement of the activity. In
this case there are a set of clearly distinguishable displays. The one

that indicates that time can be entered is indicated in the B model
by displaymode¼disptime. The permission for entertime in the case
of the B model is

perðentertimeÞ-ðmtime!¼ 0Þ & ðdisplaymode¼ disptimeÞ &
ðphasevtbi!¼ enteringÞ & ðphaserate!¼ enteringÞ &
ðphasetime¼ readyÞ

Specifying what entertime does is independent of device
details. The action simply specifies that the relevant phase of the
activity (phasetime) becomes entering:

½entertime� phasetime′¼ entering 4keepð…Þ

6. Resourcing actions

The determination of activities involves a study of the work
concerned with use of the device. The next step in the process is to
consider the resources that are relevant to the device actions as
indicated in Section 3.3. This involves identifying the resources
and how they are combined to support this action. The resources
are constraints on the actions and will typically involve a combi-
nation of device and activity constraints. These constraints are
assumptions that describe the circumstances when an action is
assumed to occur. The analysis considers the implications of these
constraints, assuming that they are strict permissions. In this
particular analysis all the assumptions relate only to the device
itself or to meta-attributes relating to activities.. This process will
be illustrated using two types of actions: the first type is used to
enter data, the second type is used to change mode. The focus at
this stage of the activity is to identify the resources that will be
used to ensure that an action is carried out. The resourcing
associated with an action is also described as a permission. These
permissions further constrain behaviours that have already been
expressed in the model of interactive behaviour described in
Harrison et al. (2013). The permissions are added to capture
how resource assumptions will further affect these behaviours.
They then enable the exploration of the implications of these
constraints.

6.1. Number entry actions

6.1.1. Resourcing data entry in A
In device A number entry is achieved using chevron keys. These

have the effect of incrementing or decrementing the current value
for a particular attribute (including the cursor position within a
menu) either by a single unit (sup, sdown) or by a larger step (fup,
fdown). The resourcing of these actions depends on what value is
being entered (the activity that the user is engaged in) or which
menu is involved. To demonstrate the process the sup action is
considered. The key variables that can be entered using sup are
vtbi, infusion rate and time as well as using the keys to navigate
the options menu and a menu from which fluid bag volumes can
be selected. The different alternatives are now considered. Two
types of resource are important. The user's action is determined by
the activity that they are engaged in and also determined by
specific information communicated by the device.

6.1.2. Entering vtbi in A

Activity
phase

: phasevtbi should be entering (i.e. the user is enter-
ing vtbi). The operation sup is only relevant if the
value of vtbi that has already been programmed into
the device is less than the prescribed value of vtbi
(mvolume is greater than device.vtbi).

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297290



Device
resources

: vtbi can be entered in two situations: when the top
line of the A display shows “VTBI” and when it shows
“VTBI/TIME”. The user must realise a further piece of
information in the second case, namely that the
device entry mode (indicated by an arrow on the
display) is set to enter vtbi, not time (modelled by
entrymode¼vttmode).

The information resources that constrain the use of sup, when
entering vtbi, are described in the following specification frag-
ment:

perðsupÞ-ðphasevtbi¼ entering
& ððtopline¼ dispvtbiÞj
ðtopline¼ vtbitime & entrymode¼ vttmodeÞÞ
& ðmvolume4device:vtbiÞÞj…

The axiom is completed by considering the other values that can
be entered with the help of sup.

6.1.3. Entering time in A

Activity
phase

: In this situation the relevant phase attribute pha-
setime should be entering.

Device
resources

: The constraints in this case are similar to the vtbi
case when the top line is “VTBI/TIME” but an arrow
on the display indicates that the relevant mode
entrymode¼ttmode allows entry of time.

6.1.4. Entering infusion rate in A

Activity
phase

: In this situation the relevant activity phase phase-
rate should be entering.

Device
resources

: When the top line is “ON HOLD” the infusion rate
can be entered. While it is also possible to change
infusion rate when infusing, this option is not used as
a constraint because it does not relate to the activ-
ities that have been determined to be important in
this case.

6.1.5. Other situations when the chevron key is used in A
The chevron key may be used in relevant activities when either

time or vtbi is ready to be entered but the process has not been
started, or when entering vtbi and in the bags menu (vtbi can be
programmed by selecting from a menu of predefined fluid bag
volumes).

6.1.6. Resourcing data entry in B
In the case of device B, number entry is achieved by a

combination of cursor movement (to modify the magnitude of
the change) and incrementing or decrementing of the numeral at
the position indicated by the cursor. The information resources
associated with the B activities are derived in a similar way to the
A device. As an illustration, consider the resourcing of the up key
(the closest equivalent to sup in A) when entering vtbi (phasevt-
bi¼entering). To reduce the search space for the model checker
numeric values are modelled as binary numbers. The space
reduction had no effect on the properties of the devices relevant
to the analysis.

Whether up is appropriate for use in general depends on the
difference between the currently displayed value and the pre-
scribed value. Hence if the cursor is in position 3 (the least
significant position in which an up or down action will have

minimum effect) then the gap is required to be less than 2. In
position 2, the gap is required to be between 2 and 4, and in
position 1, between 4 and 8. A different approach is required than
the case of device A to explore the details of the number entry. In
this case the cursor, together with the value displayed and the
value to be entered, provides an affordance that indicates whether
the up action should be used.

In the case of entering vtbi, the value to be entered is mvolume
and the display mode must be dispvtbi. This is captured by

ðdisplaymode¼ dispvtbi & phasevtbi¼ entering
& ðentry¼ 3-mvolume�dispvalueo2Þ
& ðentry¼ 2-ððmvolume�dispvalue4 ¼ 2Þ &

ðmvolume�dispvalueo4ÞÞÞ
& ðentry¼ 1-ððmvolume�dispvalue4 ¼ 4Þ &

ðmvolume�dispvalueo8ÞÞÞÞ

In addition to this there are other device resource constraints
associated with whether the entry mode supports data entry. All
this is captured by (only the resourcing for vtbi is shown):

perðupÞ-
ðphaseinfuse!¼ entering
& ðentrymode¼ dataentry-
ððdisplaymode¼ dispvtbi & phasevtbi¼ entering
& ðentry¼ 3-mvolume�dispvalueo2Þ
& ðentry¼ 2-ðmvolume�dispvalue4 ¼ 2Þ &

ðmvolume�dispvalueo4ÞÞÞ
& ðentry¼ 1-ððmvolume�dispvalue4 ¼ 4Þ &

ðmvolume�dispvalueo8ÞÞÞÞ
j…ÞÞÞ

6.2. Mode change actions

This section considers actions in the two devices that cause the
mode of the device to change. It is more difficult to provide direct
comparisons between the two devices for these actions. However,
there are a number of cases for A and B devices where key1 and ok
act as confirmation keys. For this reason it is illustrative to provide
a comparison between the resources for the two actions.

6.2.1. key1 in A
The chief role of key1 in A, in the context of the described

activities, is to confirm the completion of the activity. The activity
resources, required for completion of the activity when key1
would be used, are when the current activity is entering vtbi
and when the vtbi set in the pump is equal to the prescribed
volume

phasevtbi¼ entering & device:vtbi¼mvolume

The device resources relevant to this situation are either when the
top line shows “VTBI/TIME” and the entry mode is appropriate,
that is the arrow points at the correct value, or alternatively when
top line is showing “VTBI”. key1 is relevant in two possible modes
in the latter case. The first is when the device value is the
prescribed value (device.vtbi¼mvolume) but the other is when
the device is showing a bags menu (middisp[dbags]) and the
selected menu entry shows the prescribed volume (bagsval
[bagscursor]¼mvolume). In each case the display associated with
key1 should be “OK” (fndisp1¼ fok). These characteristics can be
brought together in the following:

perðkey1Þ-ðfndisp1¼ fokÞ-
ððphasevtbi¼ enteringÞ-

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297 291



ðððdevice:vtbi¼mvolumeÞ
& ððtopline¼ dispvtbiÞ
jððtopline¼ vtbitimeÞ & ðentrymode¼ vttmodeÞÞÞÞ
jððbagsval½bagscursor� ¼mvolumeÞ & middisp½dbags�Þ
Þj…Þ

6.2.2. ok in B
ok is an action that has a similar effect for the device B. In this

case it is assumed that if entering a pump variable then ok will be
pressed if the value is the prescribed value. Likewise if the device
is in the main menu and the phase relevant to the position of the
cursor in the menu is entering and the relevant value is not equal
to the prescribed value then ok will be pressed so that the user can
start entering the value.

perðokÞ-ððphasevtbi¼ enteringÞ &
ðdisplaymode¼ dispvtbiÞ & ðdispinfvtbi¼mvolumeÞÞ
jððdisplaymode¼mainmenuÞ & ðmenucursor ¼ dvtbiÞ&
ðdevice:vtbi!¼mvolumeÞ & ðmvolume!¼ 0ÞÞ

j…

7. Analysis

The previous two sections were concerned with:

� identifying activities associated with the work in which the
infusion device is embedded;

� specifying resource assumptions associated with user actions
required to achieve the goals of the activities.

Formulating the resource assumptions is itself a valuable
activity. It can provide an understanding of the usability of the
device, providing a walkthrough technique, similar to usability
evaluation techniques such as cognitive walkthrough (Polson et al.,
1992). It encourages the analyst to consider what information a
user would need to help carry out each action. However the model
can also be explored using a model checker. The value of model
checking is that various forms of analysis can be performed. Two
particular examples are now demonstrated.

1. This form of analysis involves generating paths that achieve
activity goals consistent with the resource constraints. This
process can lead to unexpected results, indicating surprising
sequences that satisfy the resource assumptions but involve
steps that were not anticipated. Paths achieving the same goals
from the two devices provide an effective way of comparing
them, for example comparing how intuitive the paths are in
each case and whether there are actions that have no effective
resource support.

2. This involves analysing the consistency of actions, particularly
actions that cause activity or mode transitions.

Properties are presented for analysis using CTL (see Clarke
et al., 1999 for an introduction to model checking). CTL provides
two kinds of temporal operator, operators over paths and opera-
tors over states. Paths represent the possible future behaviours of
the system. When p is a property expressed over paths, A(p)
expresses that p holds for all paths and E(p) that p holds for at least
one path. Operators are also provided over states. When q and s
are properties over states, G(q) expresses that q holds for all the
states of the examined path; F(q) that q holds for some states over
the examined path; X(q) expresses that q holds for the next state
of the examined path; while [qUs] means that q holds until s holds

in the path. CTL allows a subset of the possible formulae that
might arise from the combination of these operators. AG(q) means
that q holds for all the states of all the paths; AF(q) means that q
holds for some states in all the paths; EF(q) means that q holds for
some states in some paths; EG(q) means that q holds for all states
in some paths; AX(q) means that q holds in the next state of all
paths; EX(q) means that q holds in the next state of some paths; A
[qUs] means that q holds until some other property s holds in all
paths; E[qUs] means there exists a path in which q holds until
some property s.

7.1. Exploring the constraints associated with traces

The goal of using an infusion pump is to complete the
prescribed infusion at a specified rate or within a specified time.
This is achieved when the pump variable volumeinfused reaches
the prescribed volume given that the rate and the time have been
set up as prescribed and are not changed by the user during
infusion. The clinician uses the pump to infuse the prescribed
volume (mvolume) at a prescribed infusion rate (mrate) or over a
prescribed time (mtime) to achieve the goal. Traces that capture
sequences of actions required to achieve the activity goal can be
determined by checking the property that this goal is never
reached. By checking the negation of the property a trace will be
produced that achieves the goal while at the same time satisfying
all the resource constraints that have been asserted in the model.

The trace that is produced is examined to identify whether the
paths are as anticipated, whether there are unanticipated actions that
can occur that are not constrained by activity or device resources.
Paths that achieve the activity goal can be explored using a CTL
property that specifies that there exists no path which contains a
state in which the volume infused is equal to the prescribed vtbi

AGðdevice:volumeinfused!¼mvolumeÞ
This property is checked for the two cases: where the infusion rate is
supplied in the prescription, and where time is supplied in the
prescription.

(i) mvolume¼6 and mrate¼1
(ii) mvolume¼6 and mtime¼3

These values are constants in the model that can be adjusted as
required. The first involves entering vtbi and rate, the second vtbi
and time. The values are tokens sufficient to reveal how the modes
of the device are used to achieve the activity goals. The values are
restricted because of the abstractions that have been used to
ensure that the models are tractable. They do not affect an analysis
of the mode structure of the two devices. The analysis explores the
property above for the two cases across the two devices, which we
denote as A(i) and A(ii) for device A and B(i) and B(ii) for device B.

The table described in the trace in Fig. 4 shows a failure of the
property A(i) subject to the resource assumptions. Columns pre-
sent the values of the attributes in consecutive states in the trace.
Lines correspond to attributes, except for device:action and
main:action which represent the action that has led to the state.
The figure also describes the same sequence using a message
sequence diagram. The IVY tool offers a number of alternative
representations of traces. The trace can be summarised as follows.

� The pump is switched on (see main:action in state 2).
� Using key2, bag mode is entered and the bag at the default

cursor position (a bag of size 5) selected (states 3-4). The user
exits bag mode with key1 and goes into vtbi entry mode
(state 5).

� The entervtbi activity is started (state 6). The sup key is used to
reach the target vtbi (state 7).

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297292



Fig. 4. (a) A state based representation of trace for A(i); (b) A tabular based representation for A(i).

J.C.Cam
pos

et
al./

Int.J.H
um

an-Com
puter

Studies
72

(2014)
284

–297
293



� The vtbi is then confirmed (state 9).
� The activity (enterrate) is started (state 10). While the infusion

rate phase is entering a single chevron up (sup) is used to set
the infusion rate to 1 (state 11).

� The options menu is selected (via the query button) (state 12).
key1 is pressed which locks the infusion rate (the first choice in
the menu is to lock the infusion rate state 13). key1 returns the
device to a top line of holding.

� The infusion rate is then confirmed (state 14).
� The startinfuse activity (state 15) leads to the run button being

pressed. Infusion then continues until the volume infused is 6
(state 17–22).

This is one example of how a path where the property fails to
hold illustrates, by negation, the goal being achieved. Before
moving on to compare it with any other path, a number of issues
should be noted. The shortest path to reaching the goal in this
particular case is to use the menu options (“bags mode”) to select a
bag of size 5 and then to return to “manual” number entry to
increment this bag size by 1. Because this particular path was not
anticipated as part of entervtbi it is not constrained by an activity
prior to entering vtbi as defined by the entervtbi activity. This will
raise issues about what the clinician is expected to do – to follow a
prescribed path or to be free to find the most efficient path.

The resources associated with selecting bags are relatively
weak and yet the model checker takes this path because it is the
shortest path. When thinking about the design of the device it
seems likely that it was intended that bag mode would be used to
select the exact bag sizes, rather than it being a quick way of
reaching a particular value.

The second condition A(ii) produces a similar trace that
describes the following path.

� query is invoked to access the menu entry for vtbi over time
(sdown, sdown, sdown, key1).

� Once vtbi/time is selected the enter vtbi activity begins (sup,
fup, fup, sup) and the value of vtbi is entered.

� key1 is pressed and has the effect of taking the device into
ttmode, it is then possible to enter time.

� The entry of vtbi is confirmed (as 6).
� Time is entered (sup, sup) as 3.
� Time is confirmed and key1 is pressed which takes the device

to a top line of holding.
� The infusion rate is locked (query, key1).
� Infusion is then commenced and the infusion completes.

Entering volume and time has a different mode structure than
volume and infusion rate. The user must select the appropriate
entry in the options menu and select vtbi and time as prompted by
the device. The sequence of activities is reinforced by the way that
the device works.

The difference between the mode structures of the two devices
is evident when considering the same activities in relation to
device B. Time, infusion rate and vtbi are all selected as modes
from the main menu. The pattern of actions for the two modes of
activity are very similar as can be seen in traces for B(i) and B(ii).

B(i) generates a trace indicating the following sequence of
actions.

� Switch the device on.
� The entry of vtbi is selected from the main menu (down, left).
� The entervtbi activity is begun.
� vtbi is entered while phasevtbi is entering (left, left, up, right, up,

ok).
� The confirmvtbi activity is completed.
� The enterrate activity is begun.

� While phaserate is entering the rate is entered (up, ok).
� The confirmrate activity is completed.
� The infusion process is started and completed.

An interesting feature of this device is that there are fewer
alternative modes for entering the same information. There are
therefore fewer ways to achieve the same goal. In the case of B(ii)
the trace indicates the following sequence of actions.

� The device is switched on.
� The entry of vtbi is selected from the main menu (down, left).
� The entervtbi activity is begun.
� vtbi is entered (left, left, up, right, up, ok).
� The confirmvtbi activity is completed.
� The entertime activity is begun.
� The time is entered (left, up, right, up, ok).
� The confirmtime activity is completed.
� The infusion process is started and completed.

The two pairs of traces highlight differences between device A
and B both in terms of number entry and their mode structure.
Since number entry aspects of the model have been abstracted we
focus on mode structure. All the traces considered satisfy the
resourcing assumptions discussed in previous sections. In both
cases A(i) and B(i) the move from the activity of entering vtbi to
entering rate is marked by a confirmation action (key1 in A(i) and
ok in B(i)). However although the same confirmation marks the
transition from entering rate to starting the infusion in B(i) (ok),
there is no such confirming action in A(i). Rather in A(i) there is an
additional stage in which the infusion rate is locked prior to
infusion (state 15). When the rate is entered in the A machine the
transition to infusion requires no action that could be considered
as a confirmation.

Furthermore in the case of A(ii) and B(ii) the differences
between the two traces are more marked. The vtbi/time transac-
tion is proceduralised in device A. The transition from entering
vtbi to entering time is achieved through a single confirming
action (key1). In the case of device B the entry of vtbi is confirmed
(ok) and the next item in the menu that allows entry of time is
selected by moving the cursor to the appropriate place. There is a
regularity in B that is missing in A. However A provides an
“accelerator” for the entry of vtbi over time.

Through this analysis of the sequence of steps it has become
clear how the structure of the interactions between device A and
device B differ for the particular instances of traces that achieve
the two goals (i) and (ii). In the case of A the structure of the
interaction reinforces the order in which the values should be
entered and “forces” the user into a procedure. It also makes clear
how the menu structure of B leads to a more straightforward
selection of the appropriate mode for entering the different pump
values.

7.2. Analysing properties

The previous section focussed on specific traces demonstrating
how goals of the activity were achieved subject to resource
constraints and other assumptions relating to the prescription
used by the clinician. Alternative paths also achieving the same
goals may also be considered by adding further constraints
that exclude the possibility of generating traces already analysed.
In this subsection more general analyses across all paths are
considered. The focussing question is whether specific actions
(or families of actions) consistently have a similar effect when
making transitions between phases of the activity. For example,
is the same action always used between ending one activity

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297294



and starting another when the user is constrained by resource
assumptions?

This can be expressed as

AGðphasevtbi¼ entering
-AXðdevice:vtbi¼mvolume
-!E½!confirmvtbiUðphasex ¼ enteringÞ�ÞÞ

It can be expressed either when phasex can be phasetime or
phaserate depending on the initial prescription. The property
requires that whatever path is taken after vtbi is entered then,
before the next entry of a value, there must be a confirmation of
the entry of vtbi. These properties relate to the generic activity of
confirmation. In the case of A key1 provides the confirmation. For
example,

AGðphasevtbi¼ entering
-AXðdevice:vtbi¼mvolume
-!E½!key1Uðphasex ¼ enteringÞ�ÞÞ

In the case of B, taking the example of entering time, prior to
infusing:

AGðphasetime¼ entering & entrymode¼ dataentry
-AXðdispinftime¼mtime
-!E½!okU ðphaseinfuse¼ enteringÞ�ÞÞ

For these properties to hold further constraints must be
imposed on the actions that the user can take. None of the
resource constraints specified so far prevents the user from taking
unnecessary “detours” to perform the activities. The resource
constraints do not prevent the user from taking some actions that
may be discounted. However the fact that the properties fail
provides valuable insights into unforeseen actions that could
possibly be taken by the user. Discounted detours for analysis of
confirmation actions include the following:

(a) While entering a variable, say vtbi, the user is assumed to
remain in the relevant mode until completing entry of the
value. This assumption is captured as a further constraint that
prevents the possibility that the user will flip in and out of
entering the relevant pump attribute. This constraint is
expressed in both A and B as a MAL invariant:
In the case of A:

ðphasevtbi¼ enteringÞ
-ðmiddisp½dvtbi� & ððtopline¼ dispvtbiÞj
ððtopline¼ vtbitimeÞ & entrymode¼ vttmodeÞÞÞ

In the case of device B:

ðphasevtbi¼ enteringÞ
-ðdisp½dvtbi� & ðdisplaymodein fdispvtbi;mainmenugÞÞ

The two assumptions reflect the different mode structures of
the two devices. In the case of B displaymode of mainmenu is
included because confirmation relates to the pump variable
and not the temporary attribute that is used in entrymode.

(b) It is assumed that once the pump variable (again using the
example vtbi) has been entered and confirmed the user will
not change it until the infusing process changes it. This is
captured in both A and B as

ðphasevtbi¼ confirmedÞ & ðphaseinfuse¼ readyÞ
-mvolume¼ device:vtbi

(c) When the user starts the infusion, they will not change vtbi or
any rate or time manually while the pump is achieving its goal.
This is captured in both A and B as

ðphaseinfuse¼ enteringÞ
-ððdevice:vtbiþdevice:volumeinfusedÞ ¼mvolumeÞ

How reasonable these additional constraints are is a matter for
the interdisciplinary analysis team to consider. Consideration of
such constraints identified through the analysis might influence
training, standard procedures, or further changes to the device
design, such as issuing warnings or requiring additional confirma-
tion actions from the user. The additional constraints are sufficient
for the proof of both the confirmation action properties that were
specified for device B. However it fails to be true in the case of
device A for:

AGðphaserate¼ entering
-AXðdevice:infusionrate¼mrate

-!E½!key1 U ðphaseinfuse¼ enteringÞ�Þ

This property fails to be true because it is not necessary to type
key1 to confirm entry of the infusion rate. It was noted in the trace
analysis of the previous section that the A pump allows the user to
move directly from entering infusion rate to commencing infusing
without any confirming action taking place.

When checking an earlier version of the model the property
relating to phasevtbi¼entering was also found to be false. The
generated trace indicated that the user might complete entering
vtbi and be interrupted so that the device timed out thereby
generating a warning. When clearing the alarm the device auto-
matically returns to a state in which the topline shows “ON HOLD”,
leaving the vtbi mode. This change of mode would violate the
property relating to the newly entered vtbi. Its preservation would
not depend on the usual confirming action before moving to the
next stage. Investigation of the behaviour of the physical device
indicated that the device does leave vtbi mode, but as a quit action
restoring the value of vtbi that the pump had on entry to vtbi
mode. This loses work but maintains the requirement for an
explicit confirmation action.

Resource constraints make explicit the conditions under which
the interaction between the user and the device exhibits the
desired behaviour using a similar approach to that described in
Campos and Harrison (2001) and Rushby (2002). In the approach
taken in this paper however the constraints are not encoded in the
model but are separable from it.

In terms of the devices, the analyses of these properties makes
clear the role of key1 with associated display ok in the case of
device A, and in the case of device B the role of the action ok.

8. Conclusions

The resilience (or dependability) of a system does not depend
only on the correctness of the system in terms of a set of pre-
defined functional requirements. Folding the user into the analysis
of a system's resilience will help to obtain a better understanding
of how the system might operate in practice.

A resource based approach can help identify potential usability
problems by exploring what should be available at the interface to
support users. It also provides a means of comparing devices
designed to support the same activities. The method can be
applied iteratively, making changes to the system design, and
exploring different activity assumptions. This paper has demon-
strated that the availability of tool support not only makes it

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297 295



possible to explore complex systems which are difficult to reason
about reliably “by hand”, but also allows the possibility of search-
ing through the many possible behaviours for those which are of
more interest to the analyst. The presence of resources introduces
a notion of plausibility and a more realistic conception of user
behaviour, which is based neither on rigid plan following nor
random behaviour. User behaviour is shaped, in sometimes subtle
ways, by system affordances and available resources, and by the
user's own goals and strategies. Hence the properties that are
analysed are concerned with the activities that the user carries out
and how well they are supported, rather than analysing potential
problems with the model. It is assumed that the model has also
been evaluated for integrity and against a set of system properties
as discussed in Harrison et al. (2013).

Other approaches fold human factors considerations into
model-based approaches to usability reasoning as discussed in
Section 2. The advantage of this approach over task related
analysis as used by Bolton et al. (2012) is that the precise
sequences are not specified. This allows the possibility of more
exhaustive analysis of the paths that are plausible. While task-
based analysis can be extremely valuable in design, consideration
of safety properties should consider a wider class of plausible
behaviours. The paper addresses difficulties relating to a task
modelling approach by instead imposing constraints on behaviour.
This narrows the analysis of interactive systems to plausible paths,
that would be taken if assumptions about information resource
constraints were valid, without limiting behaviour to specific
sequences as suggested by the task representation. The informa-
tion resource constraints will admit a greater number of paths
than typically provided by a task model. It can be seen as
consistent with Vicente's proposal in his critique of task modelling
(Vicente, 1999) making allowance for the fact that users do not
necessarily adhere to precise behaviours assumed by tasks. Users
often achieve goals in ways that were not envisaged by designers
when defining their task assumptions while at the same time
recognising some constraints that will affect users. Some actions
will be resourced effectively, others will not, leading to usability
problems. While the resourcing analysis is informative in itself, the
potential advantages of automated exploration of plausible beha-
viours are illustrated in Section 7.1, in which possible use of the
bag mode as an accelerator emerges from the analysis, and in
Section 7.2 in which attention is focussed on the impact of
automatic mode changes; consistency is maintained at the cost
of losing data entered by the user.

An alternative approach is to build an explicit model of the user.
This is the approach taken in PUMA (Butterworth et al., 1998) and
executable cognitive architectures (SOAR (Laird et al., 1987), EPIC
(Kieras andMeyer, 1997), etc.). While these may deliver more detail in
respect to cognitive and performance aspects, they are also more
complex to construct in a form that is automatable (Ruksenas et al.,
2009) and make stronger assumptions about how cognition works.
Another approach is to encode assumptions about the user directly
into the model (compare Rushby, 2002). In this case the separation
between device model and user assumptions is less clear potentially
and this can bias the user assumptions towards those that are needed
to make the systemwork. By working with assumptions at a resource
level, a clear separation is made between models and assumptions
about users as expressed in terms of resources. These models are also
relatively easy to build and the outputs are straightforward to work
with, providing a natural way for the HCI expert to contribute to a
more rigorous analysis.

The analysis presented complements a more unconstrained
style of analysis where all possible behaviours of the system are
analysed (which is useful when considering safety issues, for
example). However, unlike many safety-oriented analyses, this
approach is not about “proving” the system to be usable, but

rather identifying and investigating plausible and interesting
situations and behaviours to find and to fix usability problems
(e.g. situations where insufficient resources are available to the
user) and to investigate the effectiveness of different user strate-
gies for achieving goals.

The infusion pump examples have shown the feasibility of the
approach with realistically scaled devices. The analyses were run
on laptop computers with now relatively standard quad core
processors, and typically took a few minutes to complete. Devel-
opment of the approach is continuing in a number of directions,
including extending the approach to multiple users and making it
easier to use by designers.

Acknowledgements

José Campos was funded by ERDF – European Regional Develop-
ment Fund – through the COMPETE Programme (operational pro-
gramme for competitiveness) and by National Funds through the FCT
- Fundaçāo para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) – within the project FCOMP-01-0124-
FEDER-015095. Michael Harrisonwas partly funded by the CHIþMED
project: Multidisciplinary Computer Human Interaction Research for
the design and safe use of interactive medical devices project, UK
EPSRC Grant number EP/G059063/1. Gavin Doherty would like to
acknowledge the support of his research in part by Science Founda-
tion Ireland Grant 10/CE/I1855.

References

BBraun, B. Braun Infusomat Space: Instructions for Use (Technical Report). B. Braun
Melsungen AG. 〈www.bbraun.com〉.

Bellamy, R., John, B.E., Kogan, S., 2011. Deploying cogtool: integrating quantitative
usability assessment into real-world software development. In: Proceeding of
the 33rd International Conference on Software Engineering (ICSE '11), ACM
Press, pp. 691–700.

Blandford, A., Furniss, D., 2006. Dicot: a methodology for applying distributed
cognition to the design of team working systems. In: Gilroy, S.W., Harrison, M.
D. (Eds.), Proceedings DSVIS 2005, Springer Lecture Notes in Computer Science,
vol. 3941. Springer-Verlag, pp. 26–38.

Bolton, M.L., Bass, E.J., Sininiceanu, R.I., 2012. Generating phenotypical erroneous
human behavior to evaluate human-automation interaction using model
checking. Int. J. Hum.–Comput. Stud. 70, 888–906.

Bottoni, P., Levialdi, S., 2005. Resource-based models of visual interaction: under-
standing errors. In: IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 137–144.

Butterworth, R., Blandford, A., Duke, D., Young, R.M., 1998. Formal user models and
methods for reasoning about interactive behaviour. In: J. Siddiqi, C. Roast (Eds.),
Formal Aspects of the Human–Computer Interaction, SHU Press, pp. 176–192.

Campos, J.C., December 2012. Minho HCI Repository. 〈http://hcispecs.di.uminho.pt.
Campos, J., Doherty, G., 2006. Supporting resource-based analysis of task informa-

tion needs. In: Gilroy, S., Harrison, M. (Eds.), Interactive Systems: Design,
Specification and Verification 12th International Workshop, DSVIS 2005 New-
castle upon Tyne, UK, July 2005, Springer Lecture Notes in Computer Science,
vol. 3941. Springer-Verlag, pp. 188–200.

Campos, J.C., Harrison, M.D., 2001. Model checking interactor specifications. Autom.
Software Eng. 8, 275–310.

Campos, J.C., Harrison, M.D., 2008. Systematic analysis of control panel interfaces
using formal tools. In: N. Graham, P. Palanque (Eds.), Interactive Systems:
Design, Specification and Verification, DSVIS '08, Springer Lecture Notes in
Computer Science, vol. 5136. Springer-Verlag, 2008, pp. 72–85.

Campos, J.C., Harrison, M.D., 2009. Interaction engineering using the IVY tool. In:
Calvary, G., Graham, T., Gray, P. (Eds.), Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Systems. ACM Press,
pp. 35–44.

Cardinal Health Inc., 2006. Alaris GP Volumetric Pump: Directions for Use
(Technical Report). Cardinal Health, 1180 Rolle, Switzerland.

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. MIT Press.
de Moura, L., 2004. SAL: Tutorial (Technical Report). SRI International, Computer

Science Laboratory, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
Doherty, G., Campos, J.C., Harrison, M.D., 2008. Resources for situated actions. In:

Graham, N., Palanque, P. (Eds.), Interactive Systems: Design, Specification and
Verification, DSVIS '08, Springer Lecture Notes in Computer Science, vol. 5136.
Springer-Verlag, pp. 194–207.

Dwyer, M., Avrunin, G., Corbett, J., 1999. Patterns in property specifications for
finite-state verification. In: 21st International Conference on Software Engi-
neering, Los Angeles, California, pp. 411–420.

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297296

http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0005
www.bbraun.com
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0010
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0010
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0010
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0010
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref3
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref3
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref3
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref3
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref4
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref4
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref4
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0015
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0015
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0015
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0020
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0020
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0020
http://hcispecs.di.uminho.pt
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref8
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref8
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref8
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref8
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref8
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref9
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref9
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0030
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0030
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0030
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0030
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref11
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref11
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref11
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref11
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0035
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0035
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref13
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0040
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0040
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref15
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref15
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref15
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref15
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0045
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0045
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0045


Fields, R.E., 2001. Analysis of Erroneous Actions in the Design of Critical Systems
(Ph.D. thesis). Department of Computer Science, University of York, Heslington,
York, YO10 5DD.

Furniss, D., 2013. Experiences of a HCI fieldworker on an oncology ward. In: Paper
Presented at the Workshop on HCI Fieldwork in Healthcare. Creating a Guide-
book, at CHI-2013. New York: ACM, Paris, France.

Garlan, D., Khersonsky, S., Kim, J.S., 2003. Model checking publish-subscribe
systems. In: Proceedings of the 10th International SPIN Workshop on Model
Checking of Software (SPIN03), Portland, Oregon, pp. 166–180.

Ginsburg, G., 2005. Human factors engineering: a tool for medical device evaluation
in hospital procurement decision-making. J. Biomed. Inf. 38, 213–219.

Harrison, M., Campos, J., Masci, P., 2013. Reusing models and properties in the
analysis of similar interactive devices. Innovations Syst. Software Eng. doi:
http://dx.doi.org/10.1007/s11334-013-0201-3.

Kieras, D., Meyer, D., 1997. An overview of the epic architecture for cognition and
performance with application to human–computer interaction. Hum.–Comput.
Interact. 12, 391–438.

Kim, B., Ayoub, A., Sokolsky, O., Lee, I., Jones, P., Zhang, Y., Jetley, R., 2011. Safety-
assured development of the GPCA infusion pump software. In: Proceedings of
the 9th ACM International Conference on Embedded Software, EMSOFT '11,
ACM, New York, NY, USA, 2011, pp. 155–164. doi:http://dx.doi.org/10.1145/
2038642.2038667.

Kirwan, B., Ainsworth, L., 1992. A Guide to Task Analysis. Taylor and Francis.
Laird, J., Newell, A., Rosenbloom, P., 1987. SOAR: an architecture for general

intelligence. Artif. Intell. 33, 1–64.
Loer, K., 2003. Model-based Automated Analysis for Dependable Interactive

Systems (Ph.D. thesis). Department of Computer Science, University of York, UK.
Masci, P., Huang, H., Curzon, P., Harrison, M.D., 2012a. Using PVS to investigate incidents

through the lens of distributed cognition. In: Goodloe, A., Person, S. (Eds.), NASA
Formal Methods, Lecture Notes in Computer Science, vol. 7226. Springer, Berlin,
Heidelberg, pp. 273–278, http://dx.doi.org/10.1007/978-3-642-28891-3_27.

Masci, P., Furniss, D., Curzon, P., Harrison, M.D., Blandford, A., 2012b. Supporting
field investigators with PVS: a case study in the healthcare domain. In:

Avgeriou, P. (Ed.), Software Engineering for Resilient Systems, Lecture Notes
in Computer Science, vol. 7527. Springer, Berlin, Heidelberg, pp. 150–164
http://dx.doi.org/10.1007/978-3-642-33176-3_11.

Masci, P., Ayoub, A., Curzon, P., Harrison, M., Lee, I., Sokolsky, O., Thimbleby, H.,
2013. Verification of Interactive Software for Medical devices: PCA infusion
pumps and fda regulation as an example. In: Proceedings of the ACM
Symposium on Engineering Interactive Systems (EICS 2013, ACM Press,
pp. 81–90.

Monk, A., Curry, M., Wright, P., 1991. Why industry does not use the wonderful
notations we researchers have given them to reason about their designs. In:
Gilmore, D., Winder, R., Detienne, F. (Eds.), User-centred Requirements for
Software Engineering. Springer, pp. 185–189.

Mori, G., Paternò, F., Santoro, C., 2002. CTTE: support for developing and analyzing
task models for interactive system design. IEEE Trans. Software Eng. 28 (8),
797–813, http://dx.doi.org/10.1109/TSE.2002.1027801.

Polson, P.G., Lewis, C., Rieman, J., Wharton, C., 1992. Cognitive walkthroughs: a
method for theory-based evaluation of user interfaces. Int. J. Man–Mach. Stud.
36 (5), 741–773.

Ruksenas, R., Back, J., Curzon, P., Blandford, A., 2009. Verification-guided modelling
of salience and cognitive load. Formal Aspects Comput. 21, 541–569.

Rushby, J., 2002. Using model checking to help discover mode confusions and other
automation surprises. Reliab. Eng. Syst. Saf. 75 (2), 167–177.

US Food and Drug Administration, Infusion Pump Improvement Initiative (Techncal
Repoty). Center for Devices and Radiological Health (April 2010). 〈http://www.
fda.gov/MedicalDevices〉.

Vicente, K., 1999. Cognitive Work Analysis. Lawrence Erlbaum Associates.
Woods, D.D., Johannesen, L.J., Cook, R.I., Sarter, N.B., 1994. Behind Human eError:

Cognitive Systems, Computers, and Hindsight (Technical Report) SOAR 94-01.
Crew Systems Ergonomics Information and Analysis Center (CSERIAC), Wright-
Patterson Airforce Base, Ohio.

Wright, P., Fields, R., Harrison, M., 2000. Analyzing human–computer interaction as
distributed cognition: the resources model. Hum.–Comput. Interact. 15 (1), 1–42.

J.C. Campos et al. / Int. J. Human-Computer Studies 72 (2014) 284–297 297

http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0050
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0050
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0050
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0055
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0055
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0055
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0060
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0060
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0060
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref20
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref20
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0065
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0065
dx.doi.org/10.1007/s11334-013-0201-3
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref22
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref22
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref22
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0070
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0070
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0070
dx.doi.org/10.1145/2038642.2038667
dx.doi.org/10.1145/2038642.2038667
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref24
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref25
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref25
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0075
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0075
http://dx.doi.org/10.1007/978-3-642-28891-3_27
http://dx.doi.org/10.1007/978-3-642-28891-3_27
http://dx.doi.org/10.1007/978-3-642-28891-3_27
http://dx.doi.org/10.1007/978-3-642-33176-3_11
http://dx.doi.org/10.1007/978-3-642-33176-3_11
http://dx.doi.org/10.1007/978-3-642-33176-3_11
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0080
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0080
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0080
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0080
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0080
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref30
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref30
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref30
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref30
http://dx.doi.org/10.1109/TSE.2002.1027801
http://dx.doi.org/10.1109/TSE.2002.1027801
http://dx.doi.org/10.1109/TSE.2002.1027801
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref32
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref32
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref32
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref33
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref33
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref34
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref34
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0085
http://www.fda.gov/MedicalDevices
http://www.fda.gov/MedicalDevices
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref36
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0090
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0090
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0090
http://refhub.elsevier.com/S1071-5819(13)00140-7/othref0090
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref38
http://refhub.elsevier.com/S1071-5819(13)00140-7/sbref38

	Analysing interactive devices based on information resource constraints
	Introduction
	Background
	Analysis based on tasks
	Analysis based on cognition

	Resource based analysis
	Modelling the device
	Modelling the activities
	Resourcing actions
	Analysis

	Modelling infusion pumps
	Infusion pumps
	Modelling the infusion pumps – the (basic) device model
	The A interface model
	The B interface layer

	Determining the activities
	Resourcing actions
	Number entry actions
	Resourcing data entry in A
	Entering vtbi in A
	Entering time in A
	Entering infusion rate in A
	Other situations when the chevron key is used in A
	Resourcing data entry in B

	Mode change actions
	key1 in A
	ok in B


	Analysis
	Exploring the constraints associated with traces
	Analysing properties

	Conclusions
	Acknowledgements
	References




