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In this paper, we present a theoretical investigation of the energy transfer efficiency between a pair of quantum
emitters placed in proximity to a conducting graphene nanodisk. The energy transfer efficiency quantifies the
contribution of the energy transfer process to the relaxation of the donor quantum system, as compared to the spon-
taneous emission rate of the donor in the absence of the acceptor. We use in our calculations the Green’s tensor for-
malism in the electrostatic limit. This approximation works very well for the nanodisks considered here, for which
the radius is much smaller than the emission wavelength of the donor. The approximate analytical solutions ob-
tained are used to investigate the decay rate of a single quantum emitter and the energy transfer rate between quan-
tum emitters in the vicinity of the graphene nanodisk. We find that these rates are enhanced several orders of magni-
tude compared with their free-space values. We determine the resonance frequencies of the spontaneous emission
rate of a single quantum emitter to a graphene nanodisk, and the energy transfer rate between a pair of quantum
emitters in proximity to a graphene nanodisk. We identify the surface modes which give the largest contributions to
the energy transfer function. We connect the resonance frequency values and their surface plasmon wave numbers,
which depend on the radius of the graphene nanodisk, with the dispersion relation of an infinite graphene mono-
layer at the same chemical potential. Analyzing the distance dependence of these rates, we are able to fit the full
numerical results with a simple analytical expression which depends only on the geometrical characteristics of the
graphene nanodisk, i.e., its radius. We show that the interaction distance depends on the transition dipole moment
orientation and the different order resonance frequencies. The interaction distance between a pair of quantum emit-
ters increases from a free-space value of 20 nm to reach values of 120 nm in the presence of a graphene nanodisk.
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I. INTRODUCTION

Graphene is a material with exciting properties which may
be incorporated in the near future as a platform for all optical
devices due to its tunable material properties [1,2]. In partic-
ular, graphene plasmonics has emerged as a field of intense
experimental [3—11] and theoretical investigation [12-18]
over the last decade. Graphene has important advantages
compared with conventional plasmonic materials, such as
noble metals, where large material losses cannot be easily
avoided [15]. Some of the desirable properties of graphene
are better mechanical properties [19], the fact that graphene
does not require a substrate, its low losses [15], and, due to
its two-dimensional nature, huge optical enhancements when
interacting with quantum emitters in close proximity [12,20].

The spontaneous emission (SE) rate of quantum emitters
in proximity to a graphene sheet is enhanced several orders of
magnitude compared with its free-space value [21-23]. This
effect is due to the extreme confinement of light due to the
two-dimensional nature of the graphene sheet [20]. Further
confinement of light, by reducing the dimensionality, enhances
these interactions even more [12] and has motivated this study.
Another process of particular interest is the energy transfer
(ET) process between a pair of quantum emitters which, in
close proximity to a graphene sheet, can also be extended over
large distances due to the excitation of propagating surface
plasmon modes [23]. When the one-dimensional (1D) confine-
ment of light is considered, as in graphene nanoribbons [12,20]
and nanotubes [24,25], the propagation length of the surface
plasmon is increased and thus so is the interaction distance.
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For the case of a graphene nanodisk, the confinement of
light in all three dimensions [12,26,27] produces large field
enhancements which might be used in order to extend the
interaction between quantum emitters to larger distances.

Graphene nanodisk structures have been investigated in
depth over the last few years. Electrically gated patterned
graphene nanostructures [5,28], nanodisks and nanorings,
interact strongly with the incoming light and the confinement
parameter is large compared with the radius of these nanos-
tructures A3/ R? > 1. A patterned array of graphene nanodisks
has been predicted to provide 100% absorption [29]. Similar
predictions have been made concerning a photonic crystal
consisting of nanoholes patterned in a graphene substrate in
the near-infrared optical regime [30]. Furthermore, a graphene
sheet decorated with small metallic nanoparticles, with zero
chemical potential, can support strong absorption [31]. These
interactions have been predicted to be blue-shifted when
considering more layers of graphene nanodisks, instead of a
single nanodisk [32,33]. Edge states and an applied magnetic
potential can further influence the response of these nanostruc-
tures [34,35]. Further quantum effects have been considered
in the regime where nonlinear effects emerge in the coupled
quantum emitter-graphene nanodisk system [36,37].

The large spatial confinement of light gives rise to large field
enhancements compared to free space. For extended graphene
nanostructures interacting with quantum emitters (QEs), e.g.,
graphene monolayers and graphene ribbons, the large field
enhancements may be attributed to the strong confinement of
the propagating surface plasmons, leading to much larger field
values than in free space [20,38,39]. Large field enhancement
values are also observed when the interaction between QEs and
graphene disks is considered, due to the excitation of localized

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.93.035426

KARANIKOLAS, MAROCICO, AND BRADLEY

plasmon modes. However, a large field enhancement does not
necessarily mean that the absolute value of the field intensity
is large enough to facilitate efficient interactions.

To experimentally probe these interactions, one measures
the lifetime of the quantum emitter, whose inverse is the total
decay rate, given by an overlap integral of the form [40,41]

ks o / 2 fo0)Iminp - 8™ (rp,rp.w) -mpl, (1)
0

while the energy transfer rate between a pair of quantum
emitters can be written as [42]

 da
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For both these expressions, the quantity encapsulating the
response to the graphene nanodisk is the Green’s tensor
B(ra,rp,w). Classically, the Green’s tensor represents the
response of the geometry under consideration to excitation by
a pointlike dipole. Thus, we can see that rather than the field
enhancement, it is the field strength that is most important.
Furthermore, Eq. (2) shows that the ET rate is dependent on the
SE rate of the donor QE. This has been verified by modeling
experimental results concerning the ET efficiency between
quantum emitters in the presence of gold nanospheres [43].

When the transition dipole moment of the QEs is oriented
along z, a mode of particular importance can be excited,
the breathing mode. Upon excitation by an electron beam it
is found that it has the largest contribution to the electron
energy loss spectrum [44,45]. This mode is analyzed in this
paper and its connection with the graphene nanodisk radius is
demonstrated. It has been proposed that the breathing mode
of a graphene nanodisk can also be tuned through mechanical
vibrations created by acoustic waves [46].

In this contribution we investigate the SE of a single
quantum emitter and the ET function between a pair of
quantum emitters in the presence of a graphene nanodisk.
As quantum emitters, we consider two-level systems. Their
quantum nature is taken into account in the non-Hermitian
quantum electrodynamic description of light-matter interac-
tions and of the SE and ET rates, introduced in Ref. [40].
We use an electrostatic method developed in Ref. [47], used
recently in Ref. [18] and extended here, to calculate an
electrostatic approximation of the Green’s tensor. We will
see that this approximation works well for the near-field
distances considered in our calculations, provided that the
graphene nanodisk radius is large enough such that quantum
effects are unimportant [48], but small compared with the
emission wavelength of the QEs. Using this semianalytical
method we can examine the dependence of the SE and ET
rates and the ET efficiency on the separations between the
quantum emitters and the graphene nanodisk, which is of
significant importance when considering experiments such
as in Refs. [8,11] where the graphene layer doping and
distance dependence are considered for quantum emitters
at telecommunication wavelengths. Our findings show that
the interaction length between a pair of quantum emitters
in the presence of a graphene nanodisk is enhanced up to
one order of magnitude compared to the free-space value,
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FIG. 1. Schematic of the geometry under consideration, a QE in
the presence of a graphene nanodisk of radius R.

and a comparison with an infinite graphene monolayer is
also provided. Furthermore, our findings suggest that, due to
the electrostatic nature of the interaction, the main influence
comes from the geometrical characteristics of the graphene
nanodisk. We also identify the correlation of the resonance
frequencies and their surface plasmon wavelengths with
the dispersion relation of an infinite graphene monolayer.
The surface plasmon wavelengths are determined purely by
the radius of the graphene nanodisk and the radial mode
number. Our results are quite general and can be applied to any
two-dimensional material provided its conductivity is known
and the electrostatic regime applies.

II. THEORETICAL INTRODUCTION

In this section, we introduce the basic quantities used
throughout this paper to investigate the system sketched
in Fig. 1. We begin in Sec. I A by introducing the model
which describes the conductivity of the graphene nanodisk.
In Sec. IIB, we construct the electrostatic Green’s tensor
with the aid of which we will calculate the spontaneous
emission (SE) of a quantum emitter and the energy transfer
(ET) between a pair of quantum emitters in the presence of a
graphene nanodisk.

A. Graphene conductivity

We calculate the graphene in-plane conductivity o in the
random phase approximation [49,50]. This quantity is mainly
determined by electron-hole pair excitations, which can be
divided into intraband and interband transitions. It can be
expressed via the chemical potential w, the temperature T,
and the scattering energy E as

0 = Ointra + Ointer» (3)

where the intraband and interband contributions are [51]
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The intraband term oy, describes a Drude model response
corrected for scattering by impurities through a term contain-
ing 7, the relaxation time. Throughout this paper we consider
room temperature 7' = 300 K and a value of the relaxation
time of T = 1 ps and we vary the value of chemical potential
w [52].

B. Induced Green’s tensor in the electrostatic limit

The main quantity needed in order to calculate the SE rate
ksg of a single QE [Eq. (1)] and the ET rate kgt between
a pair of QEs [Eq. (2)] is the Green’s tensor. As discussed
earlier, the QEs are represented through two-level systems
and their quantum nature is fully taken into account. Further
details on the relationship between the SE and ET rates
and the Green’s tensor can be found in Refs. [40,42] where
the macroscopic non-Hermitian QED description of light-
matter interactions is presented. The emission wavelengths
of the donor QE considered in this paper are above 1 um,
while the graphene nanodisk radius is smaller than 40 nm and
the donor-acceptor QE separations are smaller than 100 nm.
We deal, therefore, with the near-field regime of the donor
QE and the electrostatic approximation used in this paper is
thus justified. We also verify this approximation by comparing
its results with those obtained from a full numerical solution
using the boundary element method (BEM) via the general
public license software MNPBEM [53,54].

In the Appendix we derive the induced electrostatic Green’s
tensor created by a point dipole excitation in the presence
of a graphene nanodisk with radius R. We consider a
free-standing graphene disk, thus, the host medium has a
dielectric permittivity ¢ = 1. We consider the case for which
the transition dipole moments of the donor and acceptor QEs
are along the x axis, with the donor QE placed at r’ = (0,0,7’).
Using Eq. (A24), the induced Green’s tensor has the expression

2
i c
&M (r,r,w) = — E cl (@, w)cos )
w
n=0

« / [o(pP) — Ja(pP)Jonsa(pe /R dp,
0
5)

where the acceptor position is given in cylindrical coordinates
asr = (r,0,z) and we have introduced 7 = r/R, while Ji(x) is
the k-order Bessel function of the first kind. When the acceptor
QE is also placed in the middle of the graphene nanodisk, r =
(0,0,z), the integral in Eq. (5) can be performed analytically,
leading to the full result

[V(z/R)?+1—z/R]"*?
J@/R?+1 '

2 o0
) c
&Nz w)=—— Z (@ w)
2w e
(6)

The zz component of the electrostatic induced Green’s
tensor corresponds to the case when the transition dipole
moments for both the donor and acceptor QEs are along the z
axis. When the donor QE is placed at r' = (0,0,z’) and the
acceptor at r = (r,0,z), the zz component is given by the
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expression
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where the minus (plus) signs holds for z > 0 (z < 0), 7 =
r/R, and Eq. (A24) is used. Again, when the acceptor QE is
placed at r = (0,0,z), the integral in Eq. (7) can be calculated
analytically, yielding

[v(z/R? + 1 —z/R]*"*!
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7
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The expansion coefficients c,ﬁ(z/,a)) are given as solutions
of the matrix equation (A14) and their values depend on the
position of donor QE, the angular eigenmode /, and the radial
eigenmode n. Furthermore, they also account for the resonance
behavior for specific values of the frequency, with more details
presented in Sec. III. When the transition dipole moments
are along the x axis, then [/ =1 [cf. Eq. (A19)], while for
z-oriented transition dipole moments, we have [ = 0. This is
due to the rotational symmetry and more details are given in the
Appendix. The integrals over the Bessel functions in Egs. (5)
and (7) are calculated following Ref. [55].

III. RESULTS AND DISCUSSION

A. Spontaneous emission

The spontaneous decay rate y is proportional to the strength
of the transition dipole moment and the electromagnetic field
strength acting on it. We introduce the normalized spontaneous
emission rate as

Y T mings - 60K - noel, (9)
Yo %
where the free-space spontaneous emission is given by
Yo(w) = a)3|p|2/37160hc3 and ngg is a unit vector along the
direction of the transition dipole moment of the quantum
emitter.

In Fig. 2, we present a contour plot of the SE rate as a
function of the emission frequency w of the quantum emitter
and the radius of the graphene nanodisk R, when the dipole
emitter is located at rp = (0,0,10 nm) and the value of the
chemical potential is fixed at © = 1 eV. In Fig. 2(a), the dipole
is oriented along the x axis, while in Fig. 2(b) it is along
the z axis. For both orientations, as we increase the radius of
the graphene nanodisk, more resonances emerge; this is due
to the fact that radial eigenmodes with a higher order n can
now contribute in Egs. (6) and (8). The values of the resonance
frequencies are found by setting the external excitation to zero
in Eq. (A14) and then numerically solving the equation

o(a),ll) 2iegR

Y]
where g“,ll are the geometric eigenmodes which can be
calculated through Eq. (A15), forming a unique set for

) (10)
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FIG. 2. Normalized spontaneous emission rate of a quantum emitter placed 10 nm above the center of a graphene nanodisk for a fixed
value of the chemical potential u = 1 eV, as a function of the emission energy and disk radius R for (a) x-oriented and (b) z-oriented transition
dipole moments of the emitter. The dashed lines represent numerical solutions of Eq. (10).

the disk geometry independent of radius, and ! are the
relevant eigenfrequencies for each radius R. Considering
only the intraband contribution to the surface conductivity
o(w) = 8imackpT In[2 cosh(i/2kgT)]/[7 (hw)], where « is
the fine-structure constant, ignoring the relaxation time t, and
noting that p/kgT > 1, for the chemical potential values
considered in this paper, we obtain the following expression
for the resonance frequencies:

;o dactlp
w, = ———.
" AR

This expression gives the approximate physical dependence
of the resonance frequencies on the geometric resonances ¢/,
the chemical potential p, and the graphene nanodisk radius R.
We observe in Eq. (11) that for [ = 1, x-oriented dipole, and
| = 0, z-oriented dipole, we excite different sets of resonance
frequencies. In addition, we can easily see that, as we increase
the radius, the resonance frequencies are red-shifted, following
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a /1/R dependence. The dashed lines in Fig. 2 represent
precise numerical solutions of Eq. (10) and it is clear that the
sharp resonance peaks in the SE rate follow the trend described
by Eq. (11) for the resonance frequencies. Moreover, in Figs. 2
and 3 we observe that the SE resonances, corresponding to
the higher-order modes from Eq. (10), are absent for energies
above the chemical potential value hwfl > w. Atthese energies,
the interband contribution of the surface conductivity [Eq. (3)]
dominates and coupling of the emitter to these modes of the
graphene nanodisk is dramatically reduced. Similar behavior
is subsequently observed in Figs. 5 and 6 when the energy
transfer function is discussed.

Equation (11) also easily accounts for the behavior of
the SE rate with varying chemical potential, following a
/It dependence, as seen in Fig. 3. Here, we present a
contour map of the SE rate of a quantum emitter placed
at rp = (0,0,10 nm), above a graphene nanodisk of radius
R = 15 nm, as a function of the emission frequency of the
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FIG. 3. Normalized spontaneous emission rate of a quantum emitter placed 10 nm above the center of a graphene nanodisk with a fixed
radius R = 15 nm, as a function of frequency and the chemical potential u for (a) x-oriented and (b) z-oriented transition dipole moments of
the quantum emitter. The dashed lines represent numerical solutions of Eq. (10).
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FIG. 4. The spontaneous emission of a quantum emitter as a function of its position rp = (0,0,z) above the graphene nanodisk for a
chemical potential, © = 1 eV and radii R = 10 and 25 nm, is presented. The points represent values extracted using Eq. (18). (a) Mode
expansion. The fits have m = 3.96 and 3.90 when the z-transition dipole moment of the QE is considered for R = 10 and 25 nm, respectively.
For the x-transition dipole moment of the QE, m = 6.0 fits for both values of the radius R. (b) Boundary element method. The fits have
m = 3.91 and 3.95 when the z-transition dipole moment of the QE is considered for R = 10 and 25 nm, respectively. For the x-transition
dipole moment of the QE, m = 5.9 fits for both values of the radius R.

quantum emitter and the chemical potential of the graphene
nanodisk. The emerging resonances are now blue-shifted with
increasing chemical potential. Thus, by changing the value of
the chemical potential, the graphene nanodisk resonances can
be tuned to selectively couple to specific quantum emitters.
As we increase the distance between the quantum emitter
and the graphene nanodisk, their interaction decreases, and
at large distances it reverts to its free-space behavior. The
orientation of the dipole moment of the quantum emitter has a
large influence on the distance dependence. The spontaneous
emission rate is given by the field induced by the dipole
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source, which can be found from Egs. (6) and (8). From these
expressions, the induced field can be written as &M ¥ w) =
resonance x geometrical dependence. The resonance term is
given by M = [-0G + Q(w)K]~! which is maximum at
the resonance frequencies calculated from Eq. (10). The
geometrical term is connected with the expansion coefficients
of the dipole source [see Eqgs. (A21) and (A23)].

Considering the distance dependence of the SE rate of a
quantum emitter placed at r’ = (0,0,z’) and with a transition
dipole moment oriented along the x axis, focusing only on the
n = 0 term, the induced electrostatic Green’s tensor then has
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FIG. 5. Normalized ET function between a pair of quantum emitters, when the donor is positioned at rp = (0,0,10 nm) and the acceptor is
positioned at ry = (0,0,—10 nm), for a fixed value of the chemical potential © = 1 eV, as a function of disk radius R, for two orientations: (a)
x orientation and (b) z orientation of the transition dipole moments of the donor and acceptor. The dashed lines represent numerical solutions

of Eq. (10).
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FIG. 6. Normalized ET function between a pair of quantum emitters, when the donor is positioned at rp = (0,0,10 nm) and the acceptor
is positioned at rp = (0,0,—10 nm), for a fixed radius of the graphene nanodisk R = 15 nm, as a function of the chemical potential u, for
two orientations: (a) x orientation and (b) z orientation of the transition dipole moments of the donor and acceptor. The dashed lines represent

numerical solutions of Eq. (10).

the form
ind A 1 1 [V (Z,/R)2 + 1 - Z//R]z
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From this, the distance dependence of the Green’s tensor
becomes
I [VZ2+ R =)

ind - _ o
&% a—o(r',r', @) = resonance term X g IR

(14)

If the transition dipole moment of the quantum emitter is

along the z axis, i.e., perpendicular to the graphene nanodisk,

the distance dependence of the Green’s tensor is somewhat

more complicated. Nevertheless, focusing on the n = 2 term,
the induced electrostatic Green’s tensor has the form

o [W@/R?+1—7/RP

ind

o w) = —c?_ (15)
e ’ @/R?+1
with
& = ;—a;o(a))M?ijjdg. (16)

After some algebraic manipulation, the distance dependence
is obtained as
1 [ /Z/Z ~|—R2 _Z/]()

&™ _(r',r,w) = resonance term x —
zz,n=2 st R4 Z/z + R2

a7

In order to examine these approximate forms of the depen-

dence of the SE rate on the distance away from the graphene

nanodisk, we present in Fig. 4 several examples where the full
calculations are fitted using an expression of the form

f(z,R) < (V22 + R> = 2)" /(> + R, (18)

with m being the fitting parameter. The choice of this
expression is suggested naturally by Eqgs. (14) and (17). We
find a good agreement of the fitting with the full numerical
calculation, which shows that the distance dependence follows
the analytical expressions introduced earlier. In particular, in
Fig. 4(a) we see that for the z-oriented dipole and radii R = 10
and 25 nm, the value of the fitting parameter m = 6 coincides
precisely with the value given by Eq. (17). For the x orientation
we find that m = 3.9 is very close to the analytical value
m = 4 given by Eq. (14). The general behavior is, of course,
more complicated than described by Eqgs. (17) and (14), since
different radial orders n contribute to each resonance. For the
case when we have a dipole source oriented along the z axis
and for the n = 2 order, we can see from Eq. (A25c¢) that there
are different values of m that we can use as a fitting parameter.
Nevertheless, the general distance dependence behavior can
be explained with the fitting expression.

In order to compare the electrostatic approximation with
full numerical results, we have used the boundary element
method open source code MNPBEM [53,54]. In MNPBEM the
graphene disk is modeled as a thin layer of thickness d =
0.5 nm with a dielectric permittivity described by [56]

) =1+ 41710(a))7
wd
where the surface conductivity is given by Eq. (3). Importantly,
the full numerical results in Fig. 4(b) give almost the same
fitting parameters m.

Thus, we see that the dependence of the SE rate of a quan-
tum emitter on its distance to a graphene nanodisk is primarily
given by the geometrical characteristics of the structure and
not by the material characteristics of the graphene nanodisk.
For comparison, we consider the distance dependence of a
quantum emitter above an infinite graphene sheet, which
behaves as exp(—z/dsp), where Jsp is the penetration depth
of the surface plasmon on an infinite graphene sheet, given by
8sp = Im(1/kSP) with k5P = vk* — kg, [23]. If we consider
an infinite graphene sheet with chemical potential © = 1 eV,

19)
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the penetration depth is §sp = 24 nm at hw = 0.35 eV and
dsp = 7 nm at iiw = 0.6 eV. Figure 4(a) shows, on the other
hand, that the QE can interact with the graphene nanodisk at
up to 80 nm for the z orientation and up to 200 nm for the x
orientation, distances considerably larger than the penetration
depth.

B. Energy transfer function

In this section, we present results for the enhancement of
the ET function between a pair of quantum emitters placed in
proximity to the graphene nanodisk. To do so we use the full
Green’s tensor which has the form

B(ra,rp,w) = 8™(rs,rp,) + &M (ra,rp,0),  (20)
where the induced part of the electrostatic Green’s tensor
is given by Eqs. (5) and (7) for the x- and z-oriented
transition dipole moments, respectively, and GoMr ¥ w) is

the electrostatic homogeneous Green’s tensor which is given
by the expression

2
47 w? R?

with R = rp — rp. The ET function is defined as

B (ra.Ip,w) = GRR;j—D. @D

0)2

2
['(ra,rp,w) = 5 (—

2
5 >|p-®<rA,rD,w)-p/|2, (22)
Cc°€&o

where p and p’ are the acceptor and donor transition dipole
moments, respectively.

We start by considering the donor placed at rp =
(0,0,10 nm) and the acceptor placed exactly on the opposite
side of a graphene nanodisk, ra = (0,0,—10 nm), and we
investigate the enhancement of the ET function between
them. First, in Fig. 5 we present a contour plot of the
logarithm of the normalized ET function f‘(rA,rD,a)) =
[(ra,rp,w)/ T (r s, rp,w) for a fixed value of the chemical
potential u = 1 eV, as a function of the radius of the graphene
disk R. Second, in Fig. 6 we show the normalized ET function
[(ra,rp,) for a fixed radius of the graphene nanodisk R =
15 nm, as a function of the chemical potential ;. Comparing
Figs. 5 and 6 with Figs. 2 and 3, we observe a behavior of
the ET function very similar to the behavior of the SE rate,
particularly the locations of the resonances.

In Fig. 7(a), we consider fixed positions for the donor rp =
(0,0,10 nm) and acceptor ra = (0,0,—10 nm) for a single
value of the chemical potential © = 1 eV for a disk radius
of R = 30 nm. Furthermore, we consider two different dipole
orientations x and z, and clearly see the different resonance
frequencies for the different orientations. We also observe that
the normalized ET function f‘(r A,I'p,w) follows an asymmetric
resonance of Fano type, and not a Lorentzian shape, as when
considering the normalized SE rate. The dashed lines in
Fig. 7(a) represent numerical simulations using MNPBEM and a
good agreement is obtained between the two methods. In this
regime, the electrostatic approach is expected to hold, when
the donor-acceptor separations are smaller than the emission
wavelength of the donor |ra — rp| < X.

Figures 7(b)-7(e) present contour plots of the normalized
ET function I'(rs,rp,w), when the donor is placed at a fixed
position rp = (0,0,10 nm) and the acceptor scans the xz
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plane rp = (x,0,z). Figures 7(b) and 7(c) show the case of
x component of the transition dipole moment of both the
donor and acceptor, while Figs. 7(d) and 7(e) show the case
of z component. The emission frequencies of the donor have
been chosen from the peak values in Fig. 7(a), in order to
have the largest response of the graphene nanodisks. Details
of the relevant parameters are found in the caption and
below the individual panels. The scale of the color maps of
Figs. 7(b)-7(e) is fixed to allow direct comparison.

We first observe that when both donor and acceptor
transition dipole moments are along the x axis, the largest ET
function enhancement occurs in the region of the circumfer-
ence. When both donor and acceptor transition dipole moments
are along the z axis, the normalized ET function is reduced
at points beyond the edge of the disk in the z = 0 plane.
Furthermore, as the emission frequency is increased, higher
radial n-order resonances are involved and, consequently,
the number of lobes increases, a general characteristic of
plasmonic finite structures when localized surface plasmons
are excited. As the number of lobes is increased, the field is
more tightly confined to the graphene nanodisk.

In order to investigate the spatial extent of the ET rate
presented in Fig. 7, we focus on the induced part of the Green’s
tensor given by Egs. (5) and (7), for the x- and z-transition
dipole moments of the donor and acceptor QEs. The different
orders of the induced part of the Green’s tensor are given by

2

in +cC / > = —
B (r.0) = 35l 0) [ o) aneaple .
0

(23)
forn =1,2,3,...and

2 00
seio) [ dn(pPsa(ple dp,
0

w

&M (r,r,w) =

(24)

where Jyp(r) = [Jo(r) — Jo(r)] cos(@), forn = 0,1,2.... The
induced Green’s tensor is given as a summation of the radial
eigenmodes n, each term having real and imaginary parts, as
well as positive and negative contributions. Thus, through their
summation, some terms may cancel. The spatial distribution is
predominantly given by a dominant term, connected with the
order of the resonance frequency o',. The absolute value of the
different orders presented in Fig. 8 is artificial since we cannot
physically separate the radial modes due to the fact that the near
field of the QE provides large wave numbers, thus being able
to couple with different strengths to the different radial modes.
Nevertheless, their spatial distribution can provide information
on how the different eigenmodes influence the induced part of
the Green’s tensor and can explain the extent of the field out
of the plane of the graphene nanodisk.

In Fig. 8, we present a contour plot in the x-z plane,
of separate modes of Eqgs. (23) and (24), for a disk radius
of R=30nm and a value of the chemical potential of
u = 1¢eV [57]. The induced Green’s tensor is connected with
the donor QE positioned atr = (0,0,10 nm). In Figs. 8(a)-8(d)
the breathing SP modes / = 0 are excited by a donor QE
with emission energy of hw = 0.74 eV, corresponding to
Fig. 7(e), where we presented the enhancement of the ET rate
for I = 0 and n = 2. As can be seen in Fig. 8, the first-order
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FIG. 7. Normalized ET function between a donor-acceptor pair, when the donor is positioned at rp = (0,0,10 nm) for a fixed radius
R =30 nm, and a fixed value of the chemical potential © = 1 eV. (a) Acceptor positioned at rp = (0,0,—10 nm) for two orientations, along
the x and z axes. For the peak frequencies labeled B-E we present contour plots of the spatial distribution in the xz plane of the normalized ET
function in panels (b)—(e). The transition dipole moment orientation in panels (b)—(e) is indicated by a green arrow.

breathing mode n = 1 has the out-of-plane distribution with graphene nanodisk. It can be seen that for Fig. 7(e) the largest
the largest spatial extent. For the higher-order radial modes field contribution comes from the mode n = 2. Moreover, we
n > 1, the induced part of the Green’s tensor [Eq. (23)] observe that the field distribution takes the smallest values at
has more lobes and the field is more tightly confined to the the z = 0 plane beyond the nanodisk edge.
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a graphene nanodisk radius of R = 30 nm and a value of the chemical potential u = 1 eV. The donor QE position is fixed at rp = (0,0,10 nm).
(a)—(d) The breathing mode / = 0 for different orders of the radial eigenvalue n = 1,2,3,4 for emission frequency of hw = 0.74 eV is presented.
The QE orientation is along z. (e)—(h) The dipolar mode / = 1 for different orders of the radial eigenvalue n = 0,1,2,3 for emission frequency
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of hw = 0.80 eV is presented. The QE orientation is along x. The plotted eigenmodes are given as (/,n) pairs in each subfigure caption.

In Figs. 8(e)-8(h), we show the different radial orders n =
0,1,2,3 of the induced part of the Green’s tensor [Eq. (24)]
corresponding to the SP dipolar mode / = 1. The emission
energy of the donor QE emitter is iw = 0.8 eV, corresponding
to Fig. 7(c) which shows the / = 1, n = 2 resonance peak,
labeled with C in Fig. 7(a). When considering the spatial extent
of the induced Green’s tensor, it can be observed that the
higher-order modes are more tightly confined to the graphene
nanodisk. The field distribution of the mode with n =2 in
Fig. 8(g) is seen to dominate the total induced Green’s tensor
shown in Fig. 7(c). The dipolar mode / = 1 for the radial
eigenvalues n = 0,1,2,3 has the largest values of the field
distribution close to the graphene nanodisk [Figs. 8(e)-8(h)].
The color map scales for each / mode are fixed allowing for
direct comparison.

We now investigate the available modes in more detail.
In Fig. 7(d) we present the enhancement of the ET function
at an emission frequency corresponding to the / =0, n =1
breathing mode, which is a dark mode that cannot be excited
by direct light illumination. Its properties have been analyzed
in Ref. [44] which considers the plasmon modes of a metallic
disk probed by electron energy loss spectroscopy. The response
of this mode has the highest contribution to the loss spectrum
of the electron beam. These modes can be described as
standing plasmon waves which are confined to the graphene
nanodisk and their surface plasmon wavelength is related to
the radius of the nanodisk via Asp = 2R/n, where n is the
radial eigenmode. In Fig. 9, we plot the dispersion relation
w(ksclivl) for a free-standing infinite graphene monolayer with
two different values of the chemical potential, u = 0.5 and
1 eV. Here, kg’}l“ is the in-plane surface plasmon wave vector
and AN = 27 /k$M is the surface plasmon wavelength of
the propagating plasmon along the graphene monolayer. The
surface plasmon wavelength )\gﬁ,w is the distance between
successive maxima or minima of the propagating surface
plasmon field. The graphene nanodisk geometry confines the
SP in all three dimensions and only specific surface charge
distributions are allowed, associated with the angular / and
radial n eigenmodes. The resonance eigenfrequencies w”

ne

which are solutions of Eq. (10), are presented in Fig. 9 as
points, for the relevant SP wave numbers ksp = 27 /Agp =
ny /R forradii R from 10 to 40 nm and two values of the chem-
ical potential © = 0.5 and 1 eV. For the breathing modes, with
| = 0, the resonance eigenfrequencies a)g, withn = 1,2,3, for
the different radii values R, overlap the dispersion branch of the
infinite monolayer, for both values of the chemical potential 1.

In addition to the breathing mode, the graphene nanodisk
supports dipolar / = 1 and higher-/-order modes. Due to the
fact that the position of the donor QE is at the center of the
graphene nanodisk, it does not couple to the higher-/-order

15— : ‘ : ,
I — Graphene monolayer, w(ksp), p=1eV
r — Graphene monolayer, w(ksp), p=0.5eV
; L
O
>
(@)]
—_
()
< L
s + 1=0,n=1,ksp=/R |
¢ 1=0, n=2, ksp=21/R
4 |=0, n=3, ksp=31/R
= |=1, n=0, ksp=1/R
0.5 1

Wave number ksp (nmM1)

FIG. 9. The surface plasmon dispersion w(ksp) relation of an
infinite, free-standing, graphene monolayer is given as continuous
lines for two values of the chemical potential £ = 0.5 and 1 eV.
The eigenfrequencies of the plasmon resonances o/, of a graphene
nanodisk are given for the different values of the resonance wave
number ksp = nm/R, for the [ = 0 with n = 1,2,3 resonances and
ksp = 1/R for the [ =1, n =0 mode. The same values of the
chemical potential, © = 1 and 0.5 eV, are considered and the disk
radius R is varied from 10 to 40 nm.
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FIG. 10. Contour plot of the real part of the surface charge density modes pﬁ,n in the x-y plane excited by a donor QE placed at
rp = (0,0,10 nm). The graphene nanodisk has a radius R = 30 nm and chemical potential 4 = 1 eV. (a)—(c) The transition dipole moment of
the QE is along z and its emission energy is fiw = 0.55 eV. The radial modes of orders n = 1,2,3 are presented. (d)—(f) The transition dipole
moment of the QE is along x and its emission energy is hw = 0.64 eV. The radial modes of order n = 0,1,2 are presented. The surface charge
density pj is normalized in the interval (—1,1) in all the panels and its eigenmodes are given as (/,n) pairs.

modes. These modes are highly confined at the edge of the
graphene nanodisk. Thus, the field intensity connected with the
dipolar mode with eigenfrequency !~} has a 1D profile due to
confinement at the edge of the nanodisk. The SP wave number
of this dipolar mode is given by ksp = 2 /Asp where now the
SP wavelength is given by Asp = 27 R [44]. The dispersion
relation of this dipolar mode overlaps the infinite graphene
monolayer dispersion a)(kSGII,VI). The SP wavelength Agp for the
dipolar mode is related with the distance between minima
along the periphery of the graphene nanodisk. More details
of this analysis can be found in Ref. [45]. The contribution
of these modes to the ET function can be seen in Figs. 7(b)
and 7(c).

In order to further investigate the spatial distributions of the
SP modes on the graphene nanodisk surface we consider now
the modes of the surface charge density pj(r), given by the
expression

pl.,(F) = ' cos(10)ch (2 . ) P01 — 27%),  (25)

where 7 = r/R, cf,(z/,a)) are expansion coefficients calculated
from the matrix (A14), and P9 (r) are the Jacobi polynomi-
als. The expansion coefficients ¢! (z',w) depend only on the
position 7z’ and the emission frequency o of the donor QE,
and have a constant value once they have been calculated at
the graphene nanodisk surface. In Fig. 10, an x-y contour
plot of the charge density distribution pﬁqn(r) is presented. We
focus on the case of a graphene nanodisk of radius R = 30 nm
and a chemical potential u = 1 eV. In Figs. 10(a)-10(c) we
present x-y contour plots of the charge density p;(r) created

by a QE for the case considered in Fig. 7(d). Due to the
dipole orientation, along z, only the breathing mode is excited,
!l =0, and the plots are shown for the three lower radial
eigenmodes n = 1,2,3. We observe that the distance from the
center to the first minimum is determined by the disk radius and
corresponds to the surface plasmon wavelength Asp = 2R /n.
In Figs. 10(d)-10(f), the surface charge distribution py(r) is
considered for the case shown in Fig. 7(b), where the QE is
oriented along x, thus the dipolar mode is excited. The first
three radial orders n = 0,1,2 are plotted. The SP wavelength
Asp of the dipolar mode / = 1 is confined at the edge, thus, its
connection with the radius is through the relation Asp = 27 R.
The form of the charge distribution /’|l|,n(r) remains valid for all
the different emission energies of the QE emitters, while only
its strength changes, thus, the color maps presented in Fig. 10
have been normalized to (—1,1). Through the distribution of
the surface charge density, we can also account for the number
of lobes appearing for the higher-order frequency resonances
a)ﬁl in Figs. 7(b)-7(e). In Fig. 10(b), the number of maxima and
minima determines the number of lobes in Fig. 8(b). The sur-
face charge density is only confined to the graphene nanodisk.

Now that we have explained in depth the connection
of the resonance eigenfrequencies and the surface plasmon
wavelengths of the nanodisk, we want to emphasize the
importance of Fig. 9. When one needs to construct graphene
nanodisks, for example, to enhance the interactions between
QEs with specific spectral characteristics, one can relate the
dispersion relation of the infinite graphene monolayer to
the desired eigenfrequency for the relevant SP wavelength.
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FIG. 11. Frequency and acceptor position dependence of the ET function for a donor placed at rp = (0,0,—10) nm for the case where both
donor and acceptor transition dipole moments are along the (a) x axis and (b) z axis. Donor-acceptor distance dependence of the ET function
for frequencies marked by vertical lines in (a) and (b) when both donor and acceptor transition dipole moments are along the x axis [cf. panel
(c)] and z axis [cf. panel (d)]. In all cases, the chemical potential is 4 = 1 eV and the graphene nanodisk radius is R = 20 nm.

Once the required surface plasmon wavelength Agp for the
nanodisk is known, the appropriate disk radius R can be
determined.

Figures 11(a) and 11(b) present a contour plot of the ET
function ['(ra,rp,®) o |&M(ra,rp,w) + B (ra,rp, )| as
a function of frequency and acceptor position for a fixed donor
position rp = (0,0,—10) nm, when the donor and acceptor
transition dipole moments are along the x axis [Fig. 11(a)]
and along the z axis [Fig. 11(b)]. The acceptor is positioned
atr = (0,0,z4). The chemical potential is © = 1 eV, and the
radius is R = 20 nm. We observe that for the x orientation,
the normalized ET function has larger values which extend
over larger distances compared with the z orientation. We also
observe that the higher-order resonances decay faster than the
main resonance, which is the n = 0 order for the x orientation
and the n = 1 order for the z orientation.

We will now focus on the resonance frequencies from
Figs. 11(a) and 11(b) and investigate the dependence of
the normalized ET function on the donor-acceptor distance.
The components of the induced Green’s tensor are given by

Egs. (6) and (8), where we again separate these expressions
in resonance and geometrical contributions. The situation
is somewhat simplified now because the donor position
is kept fixed. The xx component of the induced Green’s
tensor is

[V(E/R?*+1— z/R]2”+2
VE/R? +1 ’

1 N
&, ,(r.,r') = resonance term x

(26)

while the zz component reads as

[V(E/R?*+1— z/R]z’“rl
VE/R? 41 '

(’592 ,(r,r’) = resonance term x

@7

InFigs. 11(c) and 11(d), the data obtained from the simulations
are fitted with the function

f@) x (V22 + R? — 2)" /(z* + R?), (28)
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corresponding to the squares of the expressions in Egs. (26)
and (27). For the resonances with quantum number / = 1 and
n = 0, the fitting at large donor-acceptor distances gives a
value m = 4.7 which is close to the value m =4 for n =0
given by Eq. (26). The closer the donor is to the graphene nan-
odisk, however, the worse the fitting with the chosen function
is since this considers that only one resonance contributes to
the ET function. In addition, the direct interaction between
the donor and acceptor is appreciable when they are close to
each other, further leading to a mismatch. For higher-order
resonances, the behavior becomes more complex, and one can
even identify a minimum in the ET function for n =1 at a
distance of 50 nm. Similarly, considering the case when both
donor and acceptor are along the z axis, the fitting of the main
resonance gives a value of m = 6.8, again close to the value
m = 6forn = 1 given by Eq. (27). Furthermore, the minimum
in the next higher-order resonance occurs even closer to the
graphene nanodisk, at a donor-acceptor distance of 25 nm.
The appearance of a minimum can be seen at x = 0 below
the nanodisk in Fig. 7(e) where we considered the normalized
ET function (22) and it can be attributed to the nontrivial
contribution of each radial eigenmode in the induced part of
the Green’s tensor. The ET function I'(ra,rp,w) falls off more
rapidly for the higher-frequency resonances (similar behavior
is seen in Fig. 8). We consider the distance dependence further
in the next section.

C. Energy transfer efficiency

When the donor is excited, it generally has two ways of
relaxing to the ground state: by transferring its excitation
energy to the acceptor with an ET rate kgr, or by relaxing
with decay rate ksg. The decay rate ksg takes account
of photon emission into the far-field, intrinsic nonradiative
recombination paths and coupling to surface plasmon modes.
The SE and ET processes are, therefore, in competition with
each other and we introduce an energy transfer efficiency to
describe this competition. We will consider, in what follows,
donors with a quantum yield of one Yy = 1.0, which assumes
no intrinsic losses such as phonon relaxation, etc.

Using the expressions we have introduced in Egs. (1) and (2)
for the SE and ET rates of ensembles of emitters and donor-
acceptor pairs, we now define an energy transfer efficiency n
as [43]

ket

__fer (29)
ksg + ket

n

This quantity gives the relative contribution of the energy
transfer process to the total decay rate of the donor. If the
ET efficiency n has a value n > 50%, then the decay of the
excited state of the donor occurs mainly by energy transfer to
the acceptor, rather than relaxation into photon or SP modes.

When we consider real quantum emitters, the donor emis-
sion spectra fp(A) and acceptor absorption spectra oa(A) are
described by Gaussian distributions and not by the idealized
§ distribution. The donor emission and acceptor absorption
spectra are given by

Aq e~ =ha)?/BXG (30)
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where q = D represents the donor and q = A represents
the acceptor, Ay is a normalization constant, A, gives the
position of the spectral peak, and AAq is the half-width at
half-maximum (HWHM) of the spectrum. The normalization
constant of the donor emission spectrum is given as A T =
fooo drfp(X). The HWHM will be AAp =20 nm for the
donor-acceptor pairs, which corresponds to a typical spectrum
of a fluorescent dye, e.g., fluorescein [58—60]. The constant
for the acceptor absorption spectrum is Ax = 0.021 nm?,
while the HWHM is AAas = 50 nm [60]. In the following,
we are interested in quantum emitters that are on resonance
with the graphene nanodisk which means that the position
of the spectral peak Ay for the various arrangements is
given by Eq. (10) (cf. also the dashed lines from Figs. 2
and 3).

In Figs. 12(a) and 12(b), we present contour plots of the
ET efficiency as a function of the radius of the graphene
nanodisk R and the donor-acceptor distance rps, when
the donor position is kept fixed at rp = (0,0,10 nm) and the
position of the acceptor varies. The value of the chemical
potential is u = 1eV. For each panel in the figure, the
peak values of the donor emission and acceptor absorption
spectra [Eq. (30)] are taken to be the resonance wavelength,
calculated from Eq. (10). In Fig. 12(a), for which the donor
and acceptor transition dipole moments are oriented along the
x axis and the resonance wavelength corresponds to n = 0,
we see that the interaction distance increases with the disk
radius. The free-space 50% efficiency contour is given as the
dashed red line. It corresponds to the so-called Forster radius.
The interaction distance is considerably increased, reaching
values well above 100 nm for the larger disk radii considered.
In Fig. 12(b), for which the dipole moment orientation is
along the z axis and the resonance wavelength corresponds
to n = 1, we observe that the interaction distance is smaller
compared with the x orientation of the transition dipole,
while still being larger than the free-space value. This is
not surprising since the SE rate and the ET function follow
similar trends, and more insight is given by Egs. (A21)
and (A23) where the different distance dependencies, for
the different orientations of the transition dipole moment,
are apparent. Furthermore, we consider the next higher-
order resonances in Figs. 12(a) and 12(b) where we plot
the 50% distance for n = 1 and 2 resonances, respectively.
We observe that the interaction distance is smaller than for
the main resonances. This is a general characteristic for
structures supporting localized surface plasmons, such as
nanospheres, nanoboxes, etc. For these higher-order reso-
nances, the interaction distance is also larger than in free
space.

Figures 12(c) and 12(d) show the dependence of the ET
rate between a donor-acceptor pair on their separation, for
several disk radii from Figs. 12(a) and 12(b). The value of the
chemical potential is u = 1 eV. For the fitting we use Eq. (28),
the same expression as for the case of the ET function. For
the x-oriented transition dipole moments, the fitting returns
m = 4.4, for a radius of R = 40 nm, slightly different from
the value m = 4 obtained from the induced Green’s tensor
from Eq. (26) for n = 0. Interestingly, as the radius increases,
the fitting value approaches the theoretical value, due to the
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FIG. 12. (a), (b) Contour plot of the ET efficiency as a function of graphene nanodisk radius and donor-acceptor distance, for a fixed donor
position rp = (0,0,10 nm) and variable acceptor position r4, = (0,0,z,), and for different resonances calculated using Eq. (10). The solid
black line represents the 50% efficiency contour, while the dashed red line represents the same in free space. The gray line represents the 50%
efficiency for the n = 1 (a) and n = 2 (b) frequency mode resonances. (c), (d) ET rate as a function of donor-acceptor distance for the same
fixed position of the donor. The chemical potential is everywhere © = 1 eV.

fact that the contribution from the induced part of the Green’s
tensor [Eq. (20)] becomes dominant. When considering a z
orientation for the transition dipole moments, similar results
are obtained, with a fitting parameter m = 6.6, for radius of
R = 40 nm, compared with the theoretical value m = 6. This
discrepancy is attributed to the contribution of higher-order
modes. The main difference between the behavior of the ET
rate for x- and z-oriented donors and acceptors is the fact that
the absolute values of the ET rate decay faster with distance for
the z orientation, explaining the shorter distances over which
efficient ET can occur. Furthermore, we want to point out,
again, that the distance dependence of the energy transfer for
a donor-acceptor pair is fully characterized by the geometrical
dependence. This is one of the key results of this paper.
This is in contrast with the case considering the interaction
of a donor-acceptor pair in the presence of an infinite
graphene sheet, for which the perpendicular distance depen-
dence is characterized by the SP penetration depth §sp (see
Sec. IIT A) [23].

InFig. 13, we present a contour plot of the ET efficiency as a
function of the donor-acceptor distance and chemical potential,
for a fixed donor position rp = (0,0,10 nm) and a fixed value
of the graphene nanodisk radius R = 20 nm. We consider the x
and z orientations for the transition dipole moments of the
donor-acceptor QEs, Figs. 13(a) and 13(b), respectively. The
peak values of the donor emission and acceptor absorption
spectra are given by the resonance wavelengths from Eq. (10).

We observe that the ET efficiency varies slowly with the
chemical potential over a broad range of values of the chemical
potential. This further supports our claim that the ET efficiency
has a strong dependence on the geometrical parameters of the
structures and not on the material parameters. The interaction
distance is enhanced compared with the free-space value for
the same set of parameters. In Figs. 13(a) and 13(b), we also
show the 50% ET efficiency distance for the n = 1 and 2
resonances, respectively. The ET efficiency for the higher-
order resonances is not significantly influenced by varying the
value of the chemical potential .
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FIG. 13. (a), (b) Contour plot of the ET efficiency for varying the acceptor position ra = (0,0,z), with a fixed position of the donor
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mode resonance.

IV. CONCLUSIONS AND OUTLOOK

In this contribution, we investigated the SE of a single
quantum emitter and the ET function for a donor-acceptor
pair in the presence of a gated graphene nanodisk. While
investigating the SE and ET rates we saw that sharp resonances,
due to the excitation of localized surface plasmon modes, can
enhance these rates several orders of magnitude compared with
their free-space values.

Furthermore, due to the competition between the donor SE
rate and the ET rate from the donor to the acceptor, an energy
transfer efficiency 7 is introduced. In the case that the donor
and acceptor are placed in the middle of the graphene nanodisk,
and on opposite sides, the ET efficiency is enhanced compared
with its free-space value, even for the higher-order resonances
which are close to the telecommunication wavelengths.

Moreover, we investigated the distance dependence of
the SE and ET functions and the ET rate. Our findings
show that the distance dependence has a nontrivial behavior
which depends on the radius of the disk. The full numerical
results describing the interaction distance of a quantum
emitter-graphene nanodisk and of a pair of quantum emitters
in the presence of a graphene nanodisk are fitted with an
analytical expression which depends on the nanodisk radius.
In contrast, the perpendicular interaction between a pair of
QE:s in the presence of an infinite graphene sheet is dictated
by the SP penetration depth [23], which is influenced by
the value of the chemical potential and the emission energy
of the QE. The interaction distance between a pair of QEs
in the presence of a graphene nanodisk is increased, through
the interaction with the localized surface plasmon modes
of the disk. The interaction distance compared with the
free space is increased by one order of magnitude, for the
x-transition dipole orientation of the donor-acceptor QEs for
disk radii above 15 nm. Furthermore, when the orientation
of the transition dipole moments of the donor-acceptor QEs
is along x, the interaction distance is larger compared with
z-oriented transition dipole moments.

The eigenfrequencies of the breathing modes / = 0, and
their resonance wavelengths are connected with the dispersion
relation of an infinite graphene monolayer. The surface
plasmon wavelengths of the graphene nanodisk can be found
for each radial eigenmode n from the graphene nanodisk
radius. Similarly, we connected the dipolar mode / = 1 with
the dispersion relation of an infinite graphene layer. The
dipolar modes are confined to the edge of the graphene
nanodisk.

The knowledge of the distance dependence of the SE rate
of a single QE and of the ET rate between a pair of QEs
in the presence of a graphene nanodisk and the tunability of
the interaction between them, through the applied voltage, is
crucial for a plethora of applications. We also demonstrate a
simple way that one can extract from the dispersion relation
of an infinite graphene monolayer, the radius of a disk
which has the desired resonance frequencies. The gating
of an array of graphene nanodisks has been experimentally
demonstrated in Ref. [5] and the tunability of the SE rate of
the QEs interacting with a gated graphene sheet in Ref. [11].
Thus, the experimental investigation of the interaction of QEs
with graphene nanodisks described in this paper is feasible.
Possible applications such as tunable plasmonic rulers [7],
surface-enhanced Raman scattering [61,62], quantum infor-
mation [36], sensing devices [63,64], and light harvest-
ing [65] could benefit from tuning the interaction distance and
efficiency.

Finally, other two-dimensional materials have been consid-
ered in recent years due to the high demand for nanostructures
with emission in the visible spectral range. Materials belonging
to the family of dichalgonides [66], such as MoS,, fulfill
this requirement and the analysis presented above is general
enough to be applied to any two-dimensional material with
a known surface conductivity, in the electrostatic limit. Fur-
thermore, this formalism is also valid for metallic plasmonic
nanodisks, i.e., Au, Ag, or Cu, with small thickness and large
radius-to-thickness ratio [67].
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APPENDIX: EIGENFREQUENCIES AND
EIGENFUNCTIONS OF THE ELECTROSTATIC
POTENTIAL

In this appendix we provide more details for the calculation
of the induced part of the electrostatic Green’s tensor of a
gated graphene nanodisk. This method was first developed
in Ref. [47] and used recently in Ref. [18] to describe the
response of a graphene nanodisk to a plane-wave excitation.
Here, we extend this formalism to account for a point like
dipole excitation.

The electrostatic potential ¢(r) in the case of a graphene
nanodisk is given by the Poisson equation

Vi(r) = —

p(r), (AD)

goe(r)

where the charge density of the graphene nanodisk is given by
po(r) = 6(2)p(r,0)O(R — r), which vanishes for r > R, the
background dielectric permittivity is given by e(r) = €,60(z) +
e_0(—z), with ey =¢e_ = 1. We take advantage of the az-
imuthal symmetry of the problem under consideration to write
the electrostatic field in the form ¢(r) = ¢ (r)P,(z) exp(ilB),
with the condition ¢,(0) = 1. Similarly, the charge density has
the form py (r)) = p;(r) exp(il6). We start by considering only
modes with angular dependence [ # 0. Applying a Hankel
transform on Eq. (Al) for the /th order, when z # 0, the
electrostatic potential has the form

o(r) = /O pd(p,2)Ji(prie'dp. (A2)

Substituting Eq. (A2) into (Al), we obtain the following
differential equation:

(d—2 — 2>¢(p 2)=0
dz? ’ ’

A general solution of this equation reads as ¢(p,z) =
AL exp(F pz). Applying the relevant boundary conditions that
the potential ¢ is continuous and its normal derivative has a
discontinuity of the form

99(p.2) _, .2
0z |._o+ 02

(A3)

&y = pi(p)s (A4)

z=0"

we find the coefficients to have the form A, = ﬁ o p)%.

The total field is given by the inverse Hankel transform of
¢(p,z), which, when used in Eq. (A2) yields

R 1
H =5 / AP KFF o FF, (A3
€0 Jo

where 7 =r/R and K,(F,7)= [;° dp Ji(pF)Ji(pF'). From
now on, for simplicity we will make the change of variable
7 — r, unless otherwise specified.
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We continue by using Ohms law J = o(w)E and the
continuity equation iwp(r) = V - J to find the expression

. 1
$(r) = % /0 dr'Gy(r.r")p(r')r (A6)

where
19 8 P2 Ginpy — ST =1) A7
(Farrar — o=

subject to the boundary conditions that G;(0,7") is bounded
and 0, G(r,r")|,=1- = 0. The solution of Eq. (A7) is

l 1 "l r'< :
Gi(r,r') = 2—l<(rr) + (:) )

where r. = max(r,7’) and r. = min(r,r"), for [ # 0.
Using Egs. (A4) and (A6) and including the external
potential ¢**'(r,r"), we obtain the expression

(A8)

1
Q*(w) / dr' K, (r,r")py (r'r'
0

1
—w2[ dr'G(r,r)p(r'yr' = —¢='(r,r)), (A9)
0

where Q*(w) = —iwo(w)/2eoR. To solve Eq. (A9), we
expand the charge density using the Jacobi polynomials

pi(r) =r' Y " PO —2r?). (A10)
j=0

In order to calculate the integrals in Eq. (A9) and replace the
integral equation with matrix equations, we make use of the
orthogonality conditions of the Jacobi polynomials

1
/ dr })i(l,o)(l _ 2r2)P(1,0)(1 _ 2r2)r21+1 — 8’] ,
A J 2W+2j+1)

(Al1)

and the integral identities

1
1
f dr ' I (pr) PO = 2r%) = —Jaja(p)  (A12)
0 p

and

o0
/ P Jip2i41(P) 211 (p)dp
0

(_1)i7j+1
TG — A+ i 2A i+ j+3/2)
(A13)

Substituting the expansion of the charge density (A10) into
the integral equation (A9), using Eqgs. (A12) and (A13), we
obtain a matrix equation
iwo(w)

R2
When one neglects the external potential ¢=*'(r,r"), one is left
with an eigenvalue problem

I il
Kc, = ¢,Gc),,

[—0?G + QY (w)K]e = Dd. (A14)

(A15)
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where ¢! are geometric eigenmodes that are once and for all
calculated for the disk geometry and are independent of the
disk radius R, [ is the angular eigenmode, and # is the radial
eigenmode. Then, we can find the resonance frequencies from
the relation ¢! = Q2(!)/(w!)” [cf. Eq. (10)]. The matrices D,
G, and K have the form

. B (Al6a)
VT 21+2j+1)
I 8j0di0 dij
U8l + 1?2 Al 42 +2j+ DI +2j+2)
n dit1,j
8U+2j+ DI +2j+2) +2j+3)
8
+ : Tan . (Al6b)
8U+2j+ DI +2j+2)1+2j+3)
l (—1yi—H!
K = .
VT TG — - +i+ 120 +i+)+3/2)
(A16¢)

The above expressions are valid for [ # 0. When these
angular modes are considered, there is no net induced charge
density [see Figs. 10(d)-10(f)]. The situation for the breathing
mode / = 0 is different, as we need to modify the boundary
conditions at 7 = 1.

Equation (A8) is no longer valid for / = 0 and the boundary
condition is modified to read as 9, G(r,r")|,=1- = 1, in which
case the Green’s function has the form

G(r,r'y = —1In(r), (A17)

where x. = max(r,r’). For [ = 0 the expansion of the charge
density pj is still valid and the Jacobi polynomials become
the Legendre polynomials. Following similar considerations,
we find that the matrix equation (A14) is still valid. Also,
the matrices (A16) are correct except for the fact that i,j =
1,2,3.... More details can be found in Ref. [47].

The induced electrostatic potential can be written as

ind A R = Iy
¢ (I’,I‘)——2 E c,(r',w) cos(10)
€0
lLin

o0
X/ p—le—|Z\/RPJZ(pr)Jz+2n+l(p)dp’
0
(A18)

where forl =0,n =1,2,3...,andfor!/ > 1,n=0,1,2....
In Eq. (A18), r and r’ are the non-normalized vectors.

We consider as an external excitation in Eq. (16) the
potential produced by a point dipole source in order to
investigate the interactions between quantum emitters in the
presence of a doped graphene nanodisk. In the absence of the
graphene nanodisk, the potential at r created by a dipole source
positioned at r' = (0,0,z") and oriented along % is given by

Po lx — x|
deg [(x —x')2 +(y — ¥+ (2 = 2)P/2
po 1 +e )

" 8megR2 [P + (z — PP

¢6Xt(r’ r/) —

(A19)
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where pg is the dipole moment of the quantum emitter, and
the term 1/R? is due to the fact that we use normalized values
r — Rr.

We proceed by writing the dipole potential in terms of the
Jacobi polynomials, in the xy plane at z = 0, as

o0
¢p™ax)=r'Y d; PV (1 - 2r7). (A20)
j=0
Using Egs. (A19) and (A20), and the orthogonality condi-
tion (A11), we find that the expansion coefficients are given
by

d! =i +2)

1 3P~(1’0) 1=2 2
Po /r A2 o
dwegR? Jo (r? 4+ (2//R)*)*/?

where only the / = 1 terms survive in the expansion, due to
the orientation of the dipole source along x. The d! are then
the components of the vector d of Eq. (A14). Then, we can
easily compute the expansion coefficients cf of Eq. (A18).

Similarly, the electrostatic potential at r created by a dipole
source positioned at r’ = (0,0,z’) and oriented along Z is given
as

=7
[(0)? + () + (z — 2)*P2
1 |z — 2|
TR+ - P/RPR

(pext(r’r/) —

(A22)

Due to the orientation of the dipole source, along z, only the
| = 0 term in the expansion will survive and like Eq. (A21) we
have for the expansion coefficients the relation

7 [Pre®%1 -2

4 =20i+ = [ L)
P =20@0+ Dps y (217 /R

(A23)

where dl.0 are the coefficients of the vector d of the matrix
equation (A18), wherei = 1,2,3....

The induced electrostatic Green’s tensor is given by the
expression

&M(r,r,w) = goc? /(wpo) Vo™ (r,r) (A24)

[cf. Egs. (5) and (7)].

The integrals in Eqgs. (A21) and (A23) can be calculated
analytically for each order n, and in the following we provide
the expressions for a few values of n:

2 R+ 722 —2)?

=1 _
dl:O - R3 m ’ (A2sa)
s _6i<§\/R2 +22—z 2(\/R2 + 22 —z)2>
! R\z VR +22 RVR? + 22
(A25b)
s _loi<£\/R2 +272 -z —6WR2+Z2 —2)?
: R\ z JVRT+72 RVR> + 22
+ higher-order terms). (A25c¢)
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