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Automatically exploiting short vector instructions sets (SSE, AVX, NEON) is a critically important task
for optimizing compilers. Vector instructions typically work best on data that is contiguous in memory,
and operating on non-contiguous data requires additional work to gather and scatter the data. There are
several varieties of non-contiguous access, including interleaved data access. An existing approach used
by GCC generates extremely efficient code for loops with power-of-two interleaving factors (strides). In
this paper we propose a generalization of this approach that produces similar code for any compile-time
constant interleaving factor. In addition, we propose several novel program transformations which were
made possible by our generalized representation of the problem. Experiments show that our approach
achieves significant speedups for both power-of-two and non-power-of-two interleaving factors. Our vec-
torization approach results in mean speedups over scalar code of 1.77x on Intel SSE and 2.53x on In-
tel AVX2 in real-world benchmarking on a selection of BLAS Level 1 routines. On the same benchmark
programs, GCC 5.0 achieves mean improvements of 1.43x on Intel SSE and 1.30x on Intel AVX2. In syn-
thetic benchmarking on Intel SSE, our maximum improvement on data movement is over 4x for gath-
ering operations and over 6x for scattering operations versus scalar code.
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1. INTRODUCTION

Since the introduction of MAX-1 vector instructions into the PA-RISC processor fam-
ily [Lee 1995], hardware support for short vector parallelism has become widespread.
General-purpose processors (e.g. Intel SSE and AVX), embedded processors (ARM
NEON, Movidius Myriad) and accelerators (Intel Xeon Phi) all provide significant
short vector compute resources. Vector instruction execution offers parallel speedups
without the complexity of executing multiple separate instructions in parallel, and is
therefore usually efficient in the use of hardware resources and energy.

Ideally a compiler will automatically discover and exploit opportunities to use the
vector units. However, automatic vectorization presents many problems in dependence
analysis, code restructuring and data access patterns [Wolfe 1996]. A common data
access pattern is where data items that are processed in different ways are inter-
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leaved together in memory. Unlike traditional vector processors which provided rich
data access instructions for gather, scatter and strided memory operations, modern
processors with vector extensions provide poor support for non-consecutive memory
access!. On encountering interleaved memory access, the compiler must generate fast
instruction sequences to pack and unpack non-consecutive data to and from vector
registers for vectorization to be successful. Investigations of bottlenecks in SIMD pro-
grams have identified non-unit-stride memory access patterns as a particular con-
cern [Talla et al. 2003; Maleki et al. 2011; Schaub et al. 2015].

Nuzman et al. [2006] proposed an auto-vectorization algorithm for interleaved
data access patterns where the stride is a power-of-two. Given a loop with such
an access pattern, the algorithm generates extremely efficient vectorized code by
directly exploiting the structure of the access pattern. This approach is highly
successful in practice, and is the technique of choice for loops with interleaved
data access in the GCC compiler.

In this article we generalize this approach to handle arbitrary constant strides.
Non-power-of-two strides are common in many real-world programs, so being able
to deal with any compile-time constant stride allows the approach to be applied to
a much wider class of loops. We first create a simple canonical vectorization of loops
with interleaved access using vector permutation and blending (Section 2). Our al-
gorithm then applies novel optimizations to reduce the number of permutation oper-
ations and merge blend instructions where possible (Section 3). Finally, we present
an experimental evaluation of our approach for generated code with various strides
and data types, and for loop kernels from real-world applications (Section 4.4). Sev-
eral vectorization approaches have previously been proposed that can deal with spe-
cific cases of interleaved access by accident or design. In Section 5 we briefly dis-
cuss these approaches, and present the case for our approach which generates highly
efficient vector code for loops with arbitrary constant interleaving patterns. Algo-
rithms referred to in the text are collected in Appendix A.

2. TECHNIQUE

Strided memory accesses can be represented by a function which translates a loop
iteration variable so that it selects elements of an array.

DEFINITION 1 (ACCESS). We represent a strided access with iteration variable i as
a function a of the form

a(i) = b+ u* (stride x i + offset)

where b is the base address of the array in bytes, and u the unit size in bytes of an array
element. The access is consecutive when |stride| is 1, and nonconsecutive otherwise.
Note that the sign of the stride or offset may be negative.

Our approach to vectorizing such accesses follows a simple, general scheme: we
cover the memory range accessed with non-overlapping vector loads or stores, and
map individual accessed elements to loaded or stored lanes. The problem of vec-
torizing a strided access then becomes the problem of composing an ordered sub-
set of loaded or stored lanes to or from a single vector register. In this article, we
develop our approach by first showing how to create a vectorized code sequence
in a simple, canonical form, and by application of successive optimizations, refine
it into the final form which will be emitted.

1Note that Intel’s AVX2 vector instruction set includes gather instructions for non-contiguous data loading.
However, we found that the performance of these instructions was poor on our experimental platform.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



Automatic Vectorization of Interleaved Data Revisited A:3

While our approach does not require aligned access, it may be desirable for per-
formance reasons. Any implementation may apply a wide variety of possible tech-
niques to ensure aligned access [Eichenberger et al. 2004; Fireman et al. 2007]. One
approach is to load extra lanes and discard those unused, treating the vector reg-
ister file as a compiler-controlled cache [Shin et al. 2002]. However, this tactic has
some corner cases: when the base address of the array is misaligned or the array
does not contain enough data, an implementation using this tactic may have to ap-
ply array padding, or rely on masked vector loads or stores. Similarly, when loop
trip counts are not a multiple of the vectorization factor (VF), extra iterations may
need to be peeled and performed as scalar iterations.

2.1. Notation and Presentation

We specify our code generation in terms of the following abstract instruction set.
There are several motivations for this choice of instructions. Many architectures pro-
vide a large number of distinct specialized data reorganization instructions. Were
we to state our code generation in terms of specialized instructions, it would re-
strict the applicability of our techniques to architectures with support for those
instructions. The choice of a simple, generic form of permute and blend instruc-
tions ensures our approach is more widely applicable.

Second, the program transformations we propose in this article are quite suc-
cinct when expressed in terms of these simple instructions. Including many spe-
cialized data reorganization instructions would significantly complicate the pre-
sentation of our techniques.

Finally, it is important to note that on architectures which do have highly specialized
data reorganization instructions, they do not go unused. Many multimedia architec-
tures such as Intel SSE, AVX, AVX2, and ARM NEON provide such instructions in ad-
dition to instructions corresponding to those we include. However, many of the highly
specialized native instructions for data reorganization can be expressed in terms of a
short sequence of more generic permutes and blends. In this scenario, traditional tree-
parsing instruction selection techniques [Aho et al. 1989] are very effective at selecting
highly-specialized native instructions to cover the sequences of simplified operations
which we generate. We detail our approach to native code generation in Section 4.3.

Instruction Arguments

load (Vector target, Pointer source)

store (Vector source, Pointer target)

permute (Vector source, Vector mask, Vector target)

blend (Vector left, Vector right, Vector mask, Vector target)

Fig. 1: The target intermediate representation for code generation.

We assume the following informal semantics for instructions. load and store are
packed vector load and store instructions. permute and blend are masked permuta-
tion and blending instructions. permute moves the ith lane of the source to the lane
of the target given in the ith lane of the mask. blend selects the ith lane of the target
from the left source if the ith mask lane is L, or from the right source if it is R.

Presentation. We write mask literals as a list of lane values enclosed in angled brack-
ets. Lanes containing the special x mask element indicate a don’t-care output in the
lane. For example, the instruction permute a, (x,0,%,1), b moves lanes 0 and 1 of vec-
tor a to lanes 1 and 3 of vector b, and leaves lanes 0 and 2 in an undefined state.
In addition to the * element, masks for the blend instruction may contain only the
two special values L and R, indicating left and right source register, respectively. In
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graphical figures where data movement is indicated with arrows, an arrow with a
solid line represents data movement using the permute instruction, and an arrow with
a dashed line represents data movement using the blend instruction.

2.2. Enabling Interleaved Access: Automatically Vectorizing a Single Strided Access

We vectorize a nonconsecutive read by first mapping the memory range accessed
end-to-end into vector registers (the load-mapped register set). By permuting and
blending this register set together, we can extract any subset of up to VF lanes
into a single packed vector register. We vectorize nonconsecutive writes similarly,
by first mapping a store-mapped register set to the memory region being written. A
non-consecutive write of data in a packed vector register is performed by expand-
ing the register into a register set with items at the correct locations, and then
combining this register set into the store-mapped register set using the blend in-
struction. It is important to stress that these registers are only logically mapped
to memory — a mapped register will result in the generation of a memory opera-
tion only if one or more lanes in the register are active.

Any vectorized strided access may touch elements in the range of (stride * VF) con-
secutive memory locations in one vectorized loop iteration. Since this memory region
is mapped by registers of length VF elements, it follows that a maximum of stride
mapped registers are required for a single vectorized access. Figures 2a and 2b show
graphically the action of this simple canonical technique, and Algorithms 1 and 2 con-
tain the logic required to generate the depicted instruction sequences.
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(a) Algorithm 1. Nonconsecutive read of
the form a4 x i] with VF = 4. First we
permute the load-mapped register set so
that selected lanes do not collide un-
der vertical composition with blend. We
then blend the permuted registers to-
gether to form the packed vector corre-
sponding to the access.

(b) Algorithm 2. Nonconsecutive write of
the form a[4 * i] with VF = 4. We expand
the register to be stored into a register
set which shadows the array region to be
written. This store-mapped register set
is then written over the shadowed array
region with predicated writes, or using a
read-modify-write sequence.

Fig. 2: Vectorizing interleaved access using mapped register sets.

Our approach has two phases: one phase permutes the mapped register set to
eliminate lane collision when interleaving or deinterleaving, and the other phase
takes a collision-free register set and combines registers using the blend instruc-
tion to form a packed result. To see why lane collision is a problem, consider
Figure 2a: we cannot directly blend the initial mapped registers together, be-
cause multiple elements occupy the same lane in their respective registers, and
collide when using the blend instruction.

2.3. Exploiting Spatial Locality: Grouping Multiple Interleaved Accesses

Multiple accesses to the same source or destination array can require overlapping
vector loads or stores in a vectorized loop iteration if they share the same stride
of access (shared-stride accesses). When this is the case, the accesses often exhibit
spatial locality which can be exploited to reduce the number of memory operations
in the vectorized program. Using the simple canonical approach from Section 2.2,
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we might generate loads and stores of the same data more than once. Similar to
Nuzman et al. [2006], we exploit this spatial locality by allowing multiple accesses
to share mapped register sets when interleaving/deinterleaving, reducing the num-
ber of memory operations in the vectorized loop.

The degree of spatial locality present between any two shared-stride read or write
accesses to the same array in vectorized loop iteration (i/VF) depends on the dis-
tance between accessed array elements in scalar loop iteration i, that is, the abso-
lute difference between the offset of the two access functions. For any two shared-
stride accesses with distinct offsets, three scenarios are possible.

(1) No locality — When the distance between offsets is greater than or equal to
(stride * VF), the accesses do not overlap vector loads or stores in a vectorized
loop iteration.

(2) Partial locality — When the distance is strictly less than (stride % VF) and greater
than or equal to stride, there is partial reuse — some elements of the first access
will map to the same loaded or stored registers as elements of the second.

(3) Full locality — When the distance is strictly less than stride, there is full reuse in
a vectorized loop iteration — all VF elements of each access map to the same set of
vector loads or stores.

Note that our definition does not take into account temporal locality found along
the backedge of the vectorized loop. Rather, we focus exclusively on exploiting spa-
tial locality within VF iterations of the original loop.
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(a) Algorithm 1. Two nonconsecutive
reads of the form a[4 * i] (dark dots) and
a4 x i + 1] (light dots) with VF = 4, with
shared spatial locality can be serviced
from the same load-mapped register set
using permute and blend sequences.

(b) Algorithm 2. Two nonconsecutive
writes of the form af4 x1i] (dark dots)
and a4 x i1 + 1] (light dots) with VF =4
are composed into a single store-mapped
register set, reducing the number of
stores required.

Fig. 3: Using shared load-mapped/store-mapped register sets to exploit spatial locality.

Consider the pair of shared-stride memory accesses a4 * i] and a[4 * i + 1], from Fig-
ure 3a or 3b. This pair of accesses require the same vector memory operations in
every vectorized loop iteration — the grouping exhibits full locality as we have de-
fined it. However, when we include an access a[4 i + 5], it will require an extra
memory operation in every vectorized loop iteration, because the underlying mem-
ory regions do not completely overlap (partial locality). Including another access,
a[4 « i + 7], that access would exhibit full locality with access a[4 % i+ 5], but only
partial locality with accesses a[4+1i] and a[4*i + 1].

In order to minimize the number of vector memory operations for any number of
shared-stride accesses, it is sufficient to consider only groups of maximal size, and
load or store each resulting mapped register exactly once. However, minimizing the
number of memory operations does not guarantee the generation of optimal vector-
ized code for a loop containing such accesses, which is a difficult optimization problem.
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Considerations include not only repeated memory operations, but also vector register
spills and reloads due to register pressure and the scheduling of the instructions which
perform the interleaving/deinterleaving, which can exhibit significant instruction-level
parallelism with the computation present in the loop. Barik et al. [2010] demonstrate
that good solutions to such problems require tight integration between vectorization,
register allocation, and instruction scheduling during compilation.

We do not attempt to solve this optimization problem, but use the same simple,
practical grouping heuristic for accesses with locality as Nuzman et al. [2006] —
group only those accesses which exhibit full locality as we have defined it. This ap-
proach yields significant speedup in practice, and does not require much engineer-
ing effort on the part of the compiler implementor.

In order to decide at compile time which shared-stride accesses can be serviced from
a shared mapped register set, we introduce the analytic concept of an access group,
which generalizes the similar concept of Nuzman et al. [2006].

DEFINITION 2 (ACCESS GROUP).

Accesses to the same array with the same direction (read or write) and a shared stride,
may be grouped by mapping each access offset to some interval [k, k + (stride — 1)), for
k € N, where k = 0 mod stride. Each such interval, for any particular stride, defines
a distinct access group at that stride. The size of an access group (written n) is bounded
above by the shared stride of access of the group.

Let us assume we are considering two accesses ag(i) = by + ug * (strideg * i +
offsetg) and a1(i) = by + uy * (stride; * i + offset;). These accesses can share
the same load or store mapped register set iff

stridey = stride;
Upg = Uz
[ (by + ug * of fsetp)/ug * strideg| = [(by + u1 * offsety)/uy * stride |

This formulation groups accesses where stride of access and unit size are equal, and
the accesses are relatively aligned within stride elements of the shared unit size of
access. These criteria are sufficient to ensure that grouped accesses exhibit full lo-
cality. To vectorize such an access group, we repeatedly apply Algorithm 1 or 2 but
use only a single, shared mapped register set. Composing reads and writes into a
shared mapped register set reduces the number of memory operations required for
any group of n accesses. Since n is bounded above by the stride of access, and the
number of mapped registers is exactly equal to the stride of access (Section 3.2), this
sharing represents a reduction from worst-case O(n?) memory operations considering
individual accesses to O(n) operations considering the access group.

2.3.1. Dealing with Store-Side Gaps. The work of Nuzman et al. [2006] specifically ex-
cludes interleaved access patterns with store-side gaps. A gap is any unread or un-
written area of memory between elements of an interleaved access. Figure 3 dis-
plays two scenarios with gaps. In both examples in the figure, only two of the
four lanes in each loaded or stored vector are used. While unused loaded lanes
can simply be discarded, unused lanes in stores require the implementation to pre-
serve the contents of memory in those lanes. As indicated in Figure 2, this may
be achieved using predicated writes, or using a read-modify-write sequence. On
both of our experimental platforms, predicated writes have very poor performance,
while read-modify-write has excellent performance.

While predicated writes typically have the same semantics as the original scalar
writes, any implementation using read-modify-write sequences may encounter race
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conditions due to the fact that a read-modify-write sequence modifies memory ele-
ments which were not modified by the scalar code. If the contents of memory corre-
sponding to unused lanes changes between the read and write step of a sequence,
data races and memory corruption can result. Broadly, there are three scenarios
for such races: races between accesses in the same access group, races between dif-
ferent access groups, and thread-level races between multiple instances of the vec-
torized code operating on the same memory region.

Our approach avoids races between accesses in the same access group by com-
posing all the resulting writes into a single store-mapped register set. Since there
is only one read-modify-write sequence, and all writes are required to be non-
overlapping, races between the accesses in any one group are avoided by this ap-
proach. To avoid inter-access group races, implementations which cannot use pred-
icated writes may place read-modify-write sequences resulting from different ac-
cess groups into atomic sections or use memory fences to ensure exclusive access
to contested memory regions. The same approach may be used to avoid thread-
level races. Where the hardware does not provide a way to ensure atomic execu-
tion of a group of instructions, or to create memory barriers, read-modify-write can-
not always be used safely in a multithreaded context.

3. OPTIMIZATION

There is significant scope for optimization of the instruction sequences generated by
the approach outlined in Section 2. In this section, we present four optimizations which
transform the permute/blend sequence programs generated by our technique.

These optimizations can be broken down into two categories: either reducing the
number of permutations in a program, or reducing the number of blends. The opti-
mizations concerning permutation follow from the realization that we typically per-
mute a register for one of two reasons: either we need to eliminate a lane colli-
sion for blending, or we need to enforce matching element order in two vector reg-
isters to ensure a legal vectorization. In both of these scenarios, we can eliminate
permute instructions under some conditions. Concerning blends, we state a prop-
erty of blend instructions assuming the informal semantics in Section 2 which al-
lows us to merge multiple blend instructions into a single blend instruction. We
also introduce a reassociation of blend instruction sequences to increase the count
of mergeable instructions under this property.

0 1 2 3 9

3.1. Eliminating Permutations I: Executing Original Loop Iterations Out-Of-Order
([T, [Tl [Cle[T]

N . .
N N . .
N < .
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] * 2 1

e 3 2 1
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0 ! 72 3
* el il ./ (b) Algorithm 3. Performing the deinter-
|‘: | :'I | i F>1 : | : | :’[ i F>1 : | : | : | :’l leaving step without first permuting the

load-mapped register set to eliminate

(a) Algorithm 1. Memory access of the
form a[3xi] with VF =4. % denotes a
don’t-care element in an output register.
Elements are labelled with their index
in original program order.

lane collision under vertical composition
with the blend instruction. Memory ac-
cess of the form a[3 * i] with VF = 4. El-
ements are labelled with their index in
original program order.

Fig. 4: Effect of reordering original loop iterations to match data layout.

The lane-collision removing permutation stage of Algorithms 1 and 2 is unneccesary
when the data layout in a mapped register set is already free of lane-collisions. When
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the data layout is collision-free, we can obtain a large savings on data reorganization
by skipping the permutation stage and directly blending mapped registers together
(Figure 4). However, this approach can cause packed results to be produced with el-
ements out of order with respect to the original loop (Figure 4b). If each iteration of
the original loop was independent, then it is permissible to reorder operations within
a SIMD instruction. To obtain a legal vectorization of the original program, care must
be taken to maintain matching orders of operations within the SIMD instructions in
the vectorized loop. To ensure a legal vectorization, we must introduce a permutation
whenever the order of elements in different operands of the same SIMD instruction
do not match. We refer the reader to Figure 5a for a detailed example.

Determining the order of execution of scalar loop iterations within a vectorized loop
iteration to minimize the overall number of permutations is an optimization prob-
lem which appears hard. The number of possible iteration orderings is the factorial
of the vectorization factor, and each ordering implies a (possibly identity) permuta-
tion of every register which is the target of a gather or the source of a scatter. We
do not attempt to solve the problem in this article. Instead, to keep the number of
permutations reintroduced small, we apply a simple, practical heuristic. We exam-
ine the data flow graph of the vectorized program, and choose the most commonly
observed element order of deinterleaved data elements as the order in which to exe-
cute the loop iterations. We verify that this heuristic is sufficient to achieve significant
speedup in practice (Section 4.4). Having chosen this shared order, we apply Algo-
rithms 3 and 4 to generate vectorized interleaving or deinterleaving code for each ac-
cess, then scan the vectorized program, reintroducing permutations where necessary
to enforce the chosen order of operation and ensure a legal vectorization.

3.2. Eliminating Permutations II: Simultaneously Resolving Collisions for Multiple Accesses

When the data layout in a mapped register set is not free of collisions, we can-
not apply the optimization detailed in Section 3.1 to skip the lane-collision remov-
ing permutation stage of Algorithms 1 and 2. However, if we must perform some
permutations to remove lane collisions, we can avoid permuting the entire regis-
ter set for each access, as in Algorithms 1 and 2.

The goal is to choose, for each colliding access, a unique lane number in the range
of VF lanes for each of the VF elements of the access. Let us say that two registers
collide if any access occupies the same lane in both registers. In order to remove all
collisions between the two registers, we can logically rotate one register by increments
until our unique lane numbering condition is achieved for every contained access. If
we extend this transformation to the full register set, so that element-wise vertical
collision between each register and all registers with a lower index is removed, we have
eliminated lane collision for all accesses in the contained access group with only one
rotation of each register. As long as the group contains fewer than or exactly stride
accesses, each vector lane holds at most one accessed element, which ensures that
the transformation is possible. This property is ensured by our definition of an access
group from Section 2 which sets the upper bound on the number of grouped accesses to
exactly stride. Logical rotation is achieved using the permute instruction with a mask
which arranges elements in rotated order. Since the transformation ensures that the
mapped register set is free of lane collisions, it is always possible to apply Algorithms 3
and 4 immediately afterwards. Algorithms 5 and 6 state this combined approach.

Figure 5a shows graphically the action of Algorithms 5 and 6. If the accesses are
reads, then we can simply rotate each load-mapped register immediately after it has
been loaded. However, for writes, the transformation is a little more subtle. For writes,
rather than simply transforming a register set from one order to another, we are cre-
ating a register set in transformed order by combining registers with the blend in-
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struction. To interleave a register resulting from computation into the store-mapped
register set, we blend it with each store-mapped register in turn, with each blend
forming a new store-mapped register by inserting one or more elements of the com-
pute register. Since we are composing registers with the blend instruction, we must
ensure that the access does not have lane collisions, which would require multiple
stored elements to map to single lanes of the compute register.

Our approach runs as follows. We first compute what rotation of each store-mapped
register is required so that each element of every access occupies a unique lane in the
store-mapped register set. This gives us the rotated store order we must produce. Next,
for each access to be interleaved, we take the lane number in our rotated store order of
each element of that access. This gives us the required order of elements in the source
register so that it can be blended into the store-mapped register set without collision.

Finally, each register resulting from computation is permuted into the required or-
der before applying the blend sequence which combines it with each store-mapped reg-
ister. Figure 5b shows this graphically. Intuitively, blending together these permuted
registers results in the generation of a rotated image of the store-mapped register set.
We then perform an inverse rotation of each store-mapped register before storing to
achieve the target store order. This scheme guarantees the introduction of at most one
permutation per mapped register, plus at most one permutation per compute register
to be stored, as opposed to the naive approach presented in Algorithms 1 and 2, which
permutes every mapped register at least once for every access which shares it.
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(a) Algorithm 5. Our transformation enables ~ (P) ~ Algorithm 6 Accesses a4 1 + 2]
vertical composition with the blend instruc- (11ght. dots), a[4 *i] (patterped dots), and
tion of colliding memory accesses with a sin- a[4 x i + 1] (black dots). Desired store order

gle transformation of the mapped register
set. One access is out-of-order under verti-
cal composition with blend after data lay-
out transformation (left side). However, the
vectorization can be legalized with a single
permute as shown, to ensure the order of ele-
ments in each register is the same.

at top with rotated store order underneath.
Required permutation of each access to
obtain rotated store order indicated with
permute masks. Heavy arrows at bottom
show the evolution of the store-mapped
register set as each access is interleaved
in. Final store-mapped register set before
inverse rotation is shown at bottom right.

Fig. 5: Simultaneously resolving lane collisions for an entire vectorized access group. The access
group shown in 5a is a read group, with a write access group shown in 5b.
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Statically Determining Lane Collisions. The presence or absence of lane collisions can
be statically determined. To see why this is the case, consider any scalar access
a(i): the memory region touched by the vectorized access is divided by our ap-
proach into buckets of VF consecutive elements. The extent of the memory region
is (stride * VF) scalar elements, and the index within the region of element i of
the scalar access is given by (stride x i + offset). The corresponding vector lane
number of the element is found by floor division of this index by VF. It follows that
the elements of any access will repeat vector lane numbers, and collide when com-
posed with the blend instruction, after lem(VF,stride) scalar elements. Lane colli-
sion occurs when the length of the memory region touched by the vectorized access
is larger than this quantity, i.e. when (stride % VF) > lcm(VF,stride). By defini-
tion, the condition is false when stride and VF are coprime.

3.3. Reassociation of Blend Instructions

Formally, our blend instruction can be represented as a binary operator @®,,, denoting
the result of blending left and right operands with the mask m. Under this definition,
the expression (((a @, b) B ¢) Dpyr d) with initial masks m, m’, m”, is equivalent to the
reassociated expression ((a®,b)®, (c®,~d)) for some reassociated masks n,n’,n”. Re-
association causes blend masks to change because the operands of the individual blend
instructions are exchanged. Figure 6 states the formal rewrite rule for blend instruc-
tions in the vectorized code, with computation of reassociated blend masks n,n’, n”.

(((a ®Bm b) B €) B d)
n < m, n" <« {(i, L) | (i, x) € rights(m')} U{(, R) | (i, z) € rights(m’")}
n' < {(i, L) | (¢, ) € active(n)} U{(i, R)| (i, ) € active(n”)}
((a ®n b) Bps (cBpr d))

Fig. 6: Rewrite rule for reassociation of blend instruction sequences. The logical operation
rights(m) for some mask m selects all mask lanes which contain the R selector. The logical
operation active(m) selects all mask lanes which contain either L or R selectors.

Reassociation of a blend reduction sequence transforms dependence structure.
The sequences initially produced by our approach use a single register as an ac-
cumulator, blending in lanes from one register at a time to form a packed result.
This approach results in low register pressure, requiring only a single live regis-
ter to accomodate intermediate results, but requires sequential execution even when
blend instructions can be independent. Fully reassociated blend sequences contain
the same number of instructions, but perform the work as a parallel binary re-
duction. This approach has a high degree of instruction level parallelism, but in-
creased register pressure versus the sequential reduction.

3.4. Eliminating Blends: Merging Multiple Blend Instructions

This section presents a novel optimization for blend reduction sequences of the sort
generated by our technique. The key observation is that one vector register may hold
the result of two different blend instructions if certain conditions are met. This allows
us to merge multiple blend instructions into a single blend instruction, resulting in
faster generated code with reduced register pressure. Intuitively, two blend instruc-
tions with identical left and right sources may be merged into a single blend instruc-
tion if the set of active output lanes of the two instructions are disjoint. The resultant
register simultaneously carries the definition of both results of the initial pair of blend
instructions. The resultant merged blend instruction may itself be merged with other
blend instructions, and this merging may continue until all output lanes of the instruc-
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(b) Algorithm 5 plus blend reassocia-
tion, after merging blends: 4 blend in-
structions, 2 temporary registers

Fig. 7: Graphical depiction of data flow before and after merging blend instructions. Two reads
of the form a[4 x i] (dark dots) and a[4 * i + 2] (light dots). The load-mapped register set (top line
of diagrams) is rotated as indicated to remove lane collisions (second line of diagrams). Masks
for blend instructions are indicated below each result.

tion are active. The merging can be defined as the result of a simple algebraic rewrite
rule which may be applied repeatedly to the program to merge blend instructions.

When stating program transformations as rewrite rules, the top line represents the
initial program fragment, which is the pattern that must be matched to trigger the
rule. The remaining lines represent necessary conditions which must hold for the rule
to be applied. The final line represents the modified program fragment after the ap-
plication of the rewrite rule. We represent masks in rewrite rules as indexed sets
of mask elements. We say that two blend masks are disjoint iff everywhere there is
an active lane in one, there is a corresponding don’t-care lane in the other. Figure 7
shows graphically the action of this blend-merging rewrite rule.

blend r0, r1, maskl, r2 blend r0, r1, mask2, r3
{i| G, z) emaskl Ax £ *x}N{j|(J, v) € mask2 Az # x} =10
mask3 < ({(¢, mask2[i]) | (i, *) € mask1} U{(i, maskl[i]) | (i, *) € mask2})
blend r0, r1, mask3, rNew
Fig. 8: Rewrite rule for merging blend instruction pairs.

4. EVALUATION
4.1. Time Complexity of Generated Code

In Sections 2 and 3 we have presented three approaches for vectorization of in-
terleaved memory reads and writes with arbitrary constant strides. Each approach
results in the generation of a fixed number of permute and blend instructions. In
order to facilitate compile-time decision making about which approach to use, we
present an analysis of the time complexity of generated code in terms of the num-
ber of instructions generated by each of these techniques.

Simple Canonical Technique (Algorithms 1 and 2)

As described in Section 2.2, the size of the mapped register set for any access is at
most stride vector registers. When stride >= VF, at most VF registers are required
to be combined to vectorize any one access. In this case, each active mapped register
contains only a single data lane required by the vectorized access. Proceeding accord-
ing to Algorithms 1 and 2, each vectorized access requires VF permutations (one per
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active mapped register). After reassociation, each packed register resulting from inter-
leaving or deinterleaving is at the root of a full binary tree of blend operations with VF
leaves. However, reassociation does not change the number of blend operations, which
remains at VF — 1 blends per access. The number of generated instructions for a single
interleaved access is therefore 2VF — 1 operations using this approach.

Out-of-Order Technique (Algorithms 3 and 4)

When a strided access satisfies the alignment criterion of being collision free at VF
(Section 3.1) we may apply Algorithms 3 and 4 to vectorize it. We exploit the indepen-
dence of original loop iterations to change the scalar iteration order within a single
vectorized loop iteration. This tactic allows us to choose an iteration order which re-
duces the overhead of data layout transformation. Following Algorithms 3 and 4, for
any one strided access we generate the tree of VF — 1 blend operations to combine the
elements of the access into a single register. We then inspect each packed register and
determine the most common iteration order implied by the results. In the worst case,
we reintroduce a permutation for every packed result to legalize the vectorization.
The number of generated instructions is VF for each vectorized access.

Collision Resolving Technique (Algorithms 5 and 6)

Although the asymptotic complexities of the simple canonical approach and the out-
of-order approach are both of order O(VF) for a single access, the number of generated
permutes and blends for the out-of-order technique is approximately half that of the
canonical technique (VF versus 2VF — 1). To reduce the number of generated instruc-
tions, the compiler should attempt to apply the out-of-order technique if it is applicable.
Algorithms 5 and 6 introduce a method for applying the out-of-order technique for any
access conforming to Definition 1. As detailed in Section 3.2, the cost of the transfor-
mation is amortized when an access group contains more than one access. The total
count of operations using Algorithms 5 and 6 for a group of n shared-stride accesses
is stride permute operations to resolve lane collisions followed by VF operations per
access to perform vectorization, for a total of (n x VF) 4 stride operations to vector-
ize n shared-stride accesses. We summarize our analysis in Table I.

Technique | Instructions Generated Order

Algorithms 1 and 2 n* (2VF — 1) O(n * VF)
Algorithms 3 and 4 n * VF O(n * VF)
Algorithms 5 and 6 (n*VF) + stride O(n * VF)

Table I: Time complexity (number of generated instructions) of SIMD interleaving and deinter-
leaving code generated by the proposed techniques, for a group of n accesses at a shared stride
of stride elements.

Table I omits the effect of our blend merging transformation from Section 3.4. Arith-
metic properties of the stride and offset of each access, and VF determine the con-
tents of masks in the tree of blend instructions generated by our approach. Because
of this, the effect of blend merging is highly dependent on the input program. How-
ever, accesses vectorized using our approach will often result in trees of blend in-
structions with a high degree of compatibility. These trees exhibit the property that
blend instructions at corresponding locations in two trees are pairwise mergeable.
In such cases, the original pair of trees can be merged up to the root instructions,
which cannot be merged because they each produce a full output register after merg-
ing their subtrees. Figure 7 shows one of these programs. The original pair of trees
have a combined count of (2VF — 2) instructions before merging, and the merged tree
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contains VF instructions. Real-world benchmark program cxdotp — 2D (Figure 12) ex-
hibits this property, and blend merging has a pronounced effect.

It is not possible to state the effect of blend merging on time complexity for a single
access, because blend merging amortizes the total cost of blending over a group of ac-
cesses. We can characterize the effect of the transformation on an access group with an
extra assumption. When an access group is full, by definition, accesses with all n dis-
tinct offsets are present. When n is even, each tree of blend instructions can be merged
with exactly one other tree, and n/2 blend sequences result from blend merging. When
n is odd, one instruction tree cannot be paired, and n/2 + 1 sequences result. The num-
ber of blend instructions required to interleave or deinterleave the entire group of n
accesses, for n > 1, is thus (n/2) = VF for even n, and (n/2 + 1) x VF for odd n. Blend
merging does not change the asymptotic complexity, which remains of order O(n * VF).

4.2. Comparison with Nuzman et al.

The technique of Nuzman et al. [2006] generates extremely efficient code for inter-
leaved access with power-of-two strides. However, the approach can only handle pow-
ers of two — when the stride is not a power of two, the technique of Nuzman et al. is not
applicable. We generalize the approach of Nuzman et al. to arbitrary constant strides.
Nuzman et al. use an intermediate representation with a small number of primitives,
shown in Figure 9. These primitives precisely express interleaving/deinterleaving
where the stride is a power of two. Our representation uses more generic primitives,
which can express interleaving/deinterleaving at any constant stride, but require a
constant factor more operations for power-of-two stride. This constant factor is demon-
strated by the direct correspondence between each of the primitives of Nuzman et al.
and a short, fixed sequence in our representation. The sequence corresponding to each
Nuzman primitive is indicated in Figure 9, for VF = 4. This correspondence between
representations often leads to identical native code after instruction selection when the
stride is a power of two, because the native instructions implementing the primitives of
Nuzman et al. are also selectable for the corresponding sequence in our representation.

permute b <3,0,1,2> b permute b <1,2,3,0> b

blend a b <L,R,L,R> c fof: [2]3] [a]s[e]7] blend a b <R,L,R,L> c

permute ¢ <0,2,1,3> ¢ permute c <1,3,2,0> c
extract_even extract odd

02|46 113(5]|7
permute a <0,*,1,*> b | interleave_high interleave low permute a <*,0,*,1> b
permute a <2,*,3,*> c permute a <*,2,%,3> ¢
blend x b <L,R,L,R> x 0123 41516 |7 blend x b <L,R,L,R> x
blend y ¢ <L,R,L,R>y blend y ¢ <L,R,L,R>y

Fig. 9: Primitive operations of Nuzman et al. extract_even and extract_odd extract in-order
even or odd indexed lanes from two source registers. interleave high and interleave_low per-
form the inverse data movements. Corresponding operations in our representation shown to the
left and right of the diagram, for VF = 4.

The number of generated instructions in vectorized code from the technique of Nuz-
man et al. for power-of-two strided accesses is of the same order as our proposed
techniques. As detailed in Nuzman et al. [2006], their technique generates a per-
fect, complete binary tree of instructions of logs(d) levels for a vectorized interleaved
memory access, where ¢ is the stride of access. The trees generated are perfect and
complete because the technique only considers programs where ¢ is a power of two,
and each level is formed by combining pairs of adjacent inputs from previous lev-
els [Rosen 2011]. The 0 — 1 generated instructions correspond to the reassociated
tree of blend operations produced by our approach. However, for any one vectorized
access, the number of vector registers which must be combined is bounded above
by VF, by the same argument as for our approach (Section 4.1). The maximal in-
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struction count is thus VF — 1, making the asymptotic complexity of extraction of a
group of n accesses order O(n * VF) using either technique.

4.3. Native Code Generation

In this article we address the problem of vectorizing interleaved access, and propose
an approach which can generate vectorized code for accesses with arbitrary constant
strides. However, generating correct vectorized programs is only of use if vectorization
improves the overall performance of the program. An important step in realizing a
performance gain in practice is the generation of fast native code.

In our implementation, we use a modified version of the “Bottom-Up Tree Pattern
Matching” approach [Aho et al. 1989; Balachandran et al. 1990], with a simplified
cost heuristic. For a subset of the available native data reorganization instructions
on our two experimental platforms, we derived a table mapping each native instruc-
tion to the corresponding tree of abstract operations in our IR. Driven by this table,
we perform the tree rewrite by greedily selecting the native instruction which covers
the largest available subtree of our abstract operations at each step. It is possible to
improve on this approach to instruction selection [Fraser et al. 1992], particularly for
vector instructions [Barik et al. 2010], but we found that even this simple approach
was sufficient to realize a practical speedup from our techniques in experimental eval-
uation. Native instruction selection is a large topic, and is not the focus of this article,
but future work could involve the use of an optimal instruction selection scheme to
increase the performance of code generated by our approach. Possibilities in this di-
rection are discussed in Section 5.3. In particular, GCC’s instruction selection for the
primitives of Nuzman et al. is very efficient, as can be seen by looking at the pow-
ers of two strides in Figures 10a and 10b. However, our simple scheme sometimes
makes a better selection even for powers of two (Figure 10b, stride=4).

4.4. Experimental Evaluation

Our benchmarking was carried out on two experimental platforms: we used an Intel
Core i5-2500 (Sandy Bridge) system with 16GB of RAM as our 128-bit “SSE” platform,
and an Intel Core 15-4570 (Haswell) system with 32GB of RAM as our 256-bit “AVX2”
platform. Experiments were run on Linux (kernel version 4.1). We followed the guide-
lines outlined in Paoloni [2010] for benchmarking short programs on our experimental
architecture. Our baseline scalar code was generated by running GCC 5.0 on plain C
code, with optimization level -O3 and vectorization disabled. GCC implements Nuz-
man’s algorithm for vectorization of interleaved access. For comparison with Nuzman,
we generated vectorized code using GCC -O3 with vectorization enabled. We inspected
the generated assembly and verified that GCC applied Nuzman’s algorithm where the
stride is a power of two. We implemented our vectorization techniques in a simple com-
piler that generates vector intrinsics, and compiled the resulting code with GCC -O3.

Figures 10 and 11 present the results of synthetic benchmarking of programs per-
forming data movement on SSE. We generated programs which performed either a
gathering operation (Figure 10) or a scattering operation (Figure 11). We present
the speedup achieved by our simple, canonical approach using Algorithms 1 and 2
and our reordering approach using Algorithms 3, 4, 5 or 6 as appropriate. In all
cases, the stride of access was swept through the range [2,16] — this choice was
influenced by the experimental architecture (SSE), which has 16-byte vector regis-
ters. Where the stride of any individual gathering or scattering operation exceeds
16 bytes, it must perform at least as many vector memory operations as there were
scalar memory operations in the original loop. On our SSE experimental platform,
regardless of the technique employed, we would expect the performance of vector-
ized memory access to degrade as stride length increases.
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Fig. 10: Speedup over scalar code for a single strided read (gather).

Discussion of Results

Performance Limits. Performance degradation with increasing stride is visible in Fig-
ure 11, but only up to the length of an architectural vector register. Note that the stride
of access in each graph is given in units of the word size, so a stride of 16 bytes is ex-
ceeded very quickly for wider types. In each case, when the stride exceeds 16 bytes,
the performance of vectorized memory access is reduced to parity or near-parity with
the scalar code, but does not further degrade with increasing stride, up to a stride of
128 bytes (the largest experimental value). Further, the experiments show that in gen-
eral, large speedups are possible for single strided accesses where the stride is shorter
than a vector register. The performance drop at strides longer than a vector register is
significantly less pronounced for gathering operations than for scattering operations.
For example, our approach achieves 1.66x speedup versus scalar code performing a
64-bit stride 7 gather operation (Figure 10d). The stride of this operation is 56 bytes,
much longer than a 16-byte vector register on our SSE experimental platform. The
strategy of tiling a memory region with vector loads and composing required elements
into results with SIMD instructions appears particularly effective on SSE. For 8-bit
stride 3 gather operations (Figure 10a) our approach results in more than 4x speedup
over scalar code, but GCC cannot vectorize the program (the approach of Nuzman et
al. is not applicable). This case of data movement is ubiquitous in image and video
processing applications, where formats using packed 8-bit triples are common.

Effect of Reordering. The most pronounced difference between gathering (Figure 10)
and scattering (Figure 11) results is in the effect of reordering loop iterations to re-
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Fig. 11: Speedup over scalar code for a single strided write (scatter).

duce permutation overhead of interleaved access. When scalar data elements are po-
sitioned so that there is no lane collision while blending, we can apply Algorithms 3
and 4 and forego the permutation phase which removes lane collisions, resulting in
a shorter program. Although analytically the reduction in number of generated in-
structions is equivalent for both Algorithm 3 and 4, a key semantic difference is
that vector loads with unused lanes do not require different treatment from loads
without, whereas vector stores with unused lanes must preserve the contents of
memory between stored elements. We implemented such stores using a read-modify-
write sequence, using our load, blend and store instructions. For stores, the rela-
tively long latency of read-modify-write memory access acts to smooth the speedup
obtained from improvements in data reorganization.

Relation of Speedup to Stride. When performing vectorized interleaved memory op-
erations, there is often a pronounced difference between our simple canonical ap-
proach and reordered approach at neighbouring strides. At any fixed vectorization
factor, accesses at a given stride will either exhibit lane collision or will not, deter-
mining whether permutations must be introduced to resolve these lane collisions.
The presence of lane collisions can be statically determined — lane collisions are
not present when stride and VF are coprime (Section 3.2). On our SSE experi-
mental platform, the natural vectorization factors for the four machine types with
distinct bit-width are powers of two (VF 16 for 8-bit data, VF 4 for 32-bit
data, and so on), meaning that lane collisions are generally present at even but not
odd strides, once stride exceeds VF. This pattern is observed in the simple oscil-
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lation of speedup across neighbouring strides in our synthetic benchmarks, though
smoothed in the case of stores as previously noted.

Variability of Scalar Code. We would expect to see the oscillation previously mentioned
throughout synthetic benchmarking, but it is often obscured by variability in the scalar
code. The performance of the scalar code produced by GCC at any two neighbouring
strides can be significantly different. In particular, GCC does very well when optimiz-
ing gathering operations for locality, and incorporates several patterns which produce
fast code for common or idiomatic memory access patterns. In our synthetic bench-
marking, GCC sometimes produces code which is faster than the best vectorized code
produced from our approach. We investigated the performance difference and found
that GCC chose to vectorize the data movement using Nuzman’s algorithm. However,
post-pass instruction selection emits scalar code for the abstract operations of Nuz-
man et al. Performing this devectorization step requires a very detailed cost model,
and we did not attempt to replicate it in our experimental compiler. Apart from these
cases, the performance of the best vectorized code produced by our approach matched
or exceeded the performance of code generated by GCC at optimization level -O3. In
Figure 10, for some power-of-two strides, the speedups achieved by GCC and our ap-
proach are identical. In these cases, both our technique and the technique of Nuz-
man et al. result in identical native code after instruction selection.

Real-World Benchmarking (SSE)

6
GCC -083 -ffast-math === Real-World Benchmarks (SSE)
Canonical E====

St Reordered mmmm -
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Fig. 12: SSE: BLAS Level 1 operations exhibiting interleaved memory access optimized by GCC
and using our approaches. Mean speedup over 10,000 runs of each program is plotted, with error
bars showing a variance of one standard error about the mean. geomean is the geometric mean
speedup of each approach over all benchmarks.

Our real-world benchmarking uses a selection of BLAS Level 1 [Lawson et al.
1979] routines with varying access patterns. Figure 12 presents the results on
our SSE experimental platform. We display speedup over scalar C code obtained
by GCC using optimization level -O3, and also using each of the techniques we
propose. Details of each benchmark program are listed in Table II. We vector-
ize computation by simple scalar expansion.

Of the 10 programs, 5 can be vectorized using the technique of Nuzman et al., and
GCC applies it in 4 of 5 cases. In the case of caxpy, GCC uses a combination of classical
optimizations to transform the program so that memory access becomes consecutive,
and vectorizes using scalar expansion. This results in extremely compact code, which
achieves a speedup of over 2x versus scalar code. Applying the techniques we have
described results in a speedup of 1.8x using reassociation and reordering.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 A. Anderson et al.

BLAS L1 Routine Benchmark Instantiation
| Loads Stores | GCC Applies
Type Name Dim. | Stride # | Stride # | C Type | SIMD Nuzman

cx axpy 1D 2 4 2 2 | float Yes No
cx mul 1D 2 4 2 2 | float Yes Yes
cx dotp 2D 4 8 2 2 | float Yes Yes
cx dotp 3D 6 12 2 2 | float No N/A
s dotp 2D 2 4 1 1| float Yes Yes

s dotp 3D 3 6 1 1| float No N/A

s dotp 5D 5 10 1 1| float No N/A
s norm 2D 2 2 1 1| float Yes Yes

s norm 3D 3 3 1 1| float No N/A

s mnorm 5D 5 5 1 1| float No N/A

Table II: Summary of dimensions, strides, underlying C types, and vectorization realized for each
instantiation of the BLAS Level 1 routines used in benchmarking in Figure 12. For example,
cxdotp-3D is the dot-product of 3-dimensional vectors of complex numbers. The memory access
pattern consists of 12 stride 6 loads, and 2 stride 2 stores, and the underlying C type is float.
GCC does not vectorize this program, and the approach of Nuzman et al. is not applicable.

The additional effect of applying reordering, reassociation, and blend merging
is visible in many of the benchmarks, particularly cxdotp — 2D. Generally speak-
ing, our simple canonical approach produces code that performs slightly worse than
scalar code. However, for benchmarks dominated by computation, such as the vnorm
programs, the overall speedup from vectorization is large, despite suboptimal data
movement. For vnorm — 3D and vnorm — 5D, applying our simple canonical approach
results in a program which is more than 2.5x faster than scalar code.? Apply-
ing our optimization techniques improves the speedup factor on data movement,
bringing the overall speedup to more than 3x. In the vnorm programs, the inter-
leaved access pattern is the principal impediment to vectorization. Once it is re-
moved, significant performance gain is possible.

In each of the 4 cases where GCC applies the technique of Nuzman et al. —
cxmul, cxdotp — 2D, vdotp — 2D, and vnorm — 2D — we generate programs which run
faster on our SSE experimental platform, with the exception of vnorm — 2D where
the error bars overlap. This gain is primarily due to our optimization techniques,
particularly reordering, which can eliminate permutation instructions from the pro-
gram. The effect of merging blends is particularly visible in cxdotp — 2D. The pro-
gram contains 16 mergeable blend operations, each of which has two inactive lanes.
Blend merging reduces this to 8 blend operations where every lane is active. Even
though blend merging does not change the asymptotic complexity of the generated
code, it can lead to significant speedups in practice.

Real-World Benchmarking (AVX2)

Figure 13 presents the results of real-world benchmarking on our AVX2 experimen-
tal platform. The figure demonstrates that our approach yields portable performance
improvements across these two platforms. For most of the benchmarks, doubling the

2GCC requires the -ffast-math option to vectorize the computation in the vnorm benchmarks, which contains
a floating point square root operation. GCC generates a reciprocal square root operation followed by some
iterations of the Newton-Raphson method for approximation of square roots. In order to fairly represent the
effect of our techniques, we precisely duplicated this instruction selection.
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Fig. 13: AVX2: BLAS Level 1 operations exhibiting interleaved memory access optimized by
GCC and using our approaches. Plot parameters are the same as for the SSE graph (Figure 12).

vectorization factor by moving from 128-bit to 256-bit vectorization yields a signifi-
cant performance improvement. However, the benchmark caxpy is an exception. Our
cost heuristic for instruction selection (Section 4.3) does not take into account fine-
grained microarchitectural differences between the Haswell and Sandy Bridge plat-
forms. Several 256-bit AVX2 versions of 128-bit SSE data reorganization instructions
have either longer latency or require exclusive access to functional units where the
SSE instruction does not. In addition, AVX2 instructions which reorganize data across
the 128-bit boundary in a 256-bit register are subject to performance penalties rel-
ative to instructions which do not. In order to account for these differences, a de-
tailed cost model would be required for instruction selection. However, for 9 out of
10 benchmarks, our technique results in efficient native AVX2 code. The caxpy bench-
mark exhibits a performance decrease relative to SSE in part because the instruc-
tion count is small, magnifying the effect of architectural differences.

Another significant difference from the SSE results is that the performance of
the code generated by GCC is typically worse — GCC’s code generation for AVX2
is not as mature as for SSE. On our SSE experimental platform, GCC achieves a
geometric mean speedup of 1.43x over scalar code on this set of benchmark pro-
grams, but on AVX2 this is reduced to 1.30x. However, our approach achieves very
good performance portability, represented by an increase in geometric mean speedup
from a maximum of 1.77x on SSE to 2.53x on AVX2.

Comparison with Hand-Tuned and Reference BLAS

We performed some benchmarking of our generated code versus an open source ref-
erence BLAS implementation and Intel’'s MKL. The results are presented in Fig-
ure 14. For small problem sizes (in the range of 1K to 64K data elements) which
exhibit dense interleaved data access, the code generated by our approach signifi-
cantly outperforms both BLAS implementations experimented with. Single-core ex-
ecution was used throughout. The performance gap begins to close only when the
working set size grows so large that cache and memory effects come into play, i.e. at
sizes which are ill-suited for single-core SIMD execution. Our approach could be used
to produce optimized vector code for the individual single-core portions of a larger
multi-core BLAS operation when the data access is interleaved.

Typically, BLAS implementations are tuned to take advantage of multicore paral-
lelism and the memory hierarchy to achieve good performance when dealing with
large amounts of data [Wang et al. 2014]. While BLAS implementations deal with
both sparse and dense data representations, non-stride-1 (interleaved) dense data ac-
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Fig. 14: SSE: BLAS Level 1 operations axpy and scal with interleaved memory access. The
number in x-axis labels indicates the value of the increment parameter in the BLAS operation.
Problem size in the graph title indicates the length of arrays. BLAS operation type is complex.

cess is difficult to optimize in a library context. It would be possible to provide a small
number of hand-tuned kernels specialized for common strides, but doing so for ev-
ery possible stride is implausible. Automated tuning systems such as ATLAS [Wha-
ley et al. 2001] perform install-time code generation to automatically create an op-
timized library for the target platform. To avoid the need to generate an optimized
kernel for every possible stride, a complementary compile-time specialization of op-
erations using an approach similar to SPIRAL [Franchetti and Puschel 1993] could
be used. This seems like a promising direction for future work.

5. RELATED WORK
5.1. SPIRAL

The initial version of the SPIRAL system [Franchetti and Puschel 1993] vectorized
certain classes of interleaved memory access by translation to C macros. A set of
handwritten implementations of these macros using SIMD intrinsics was included
for each target platform. However, the class of interleaved access vectorized by SPI-
RAL is distinct from that vectorized by our approach, which is specifically targeted
at affine interleaving (Definition 1). Subsequently the authors proposed an approach
to automatic generation of vectorized code for their class of interleaved memory ac-
cess [Franchetti and Piischel 2008], but their approach differs from ours in two key
respects. The authors show that for the class of data permutations they consider,
their technique produces a locally optimal code sequence for any one data permu-
tation. However, locally optimal treatment of each individual permutation does not
guarantee a global optimum for multiple permutations. In fact, both our work and
the work of Nuzman et al. [2006] have shown that optimizing multiple simultaneous
permutations with spatial locality as a group allows further optimization and shar-
ing of overheads. Furthermore, the approach proposed [Franchetti and Piischel 2008]
considers only shuffling operations. A key innovation of our approach is the decom-
position of the problem of vectorizing interleaved access into separate permutation
and blending phases. We have shown in Section 3 that this leads to the amortiza-
tion of overhead across multiple interleaved accesses, and exposes fine-grained op-
portunities for optimizations like our blend merging technique (Section 3.4) which
uses a single instruction stream to perform multiple interleaving operations in a par-
allel, shared-register fashion. In addition, the use of blending operations can lead
to the elimination of permutations entirely (Section 3.1).
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5.2. SLP

Vectorization techniques based on superword-level parallelism (SLP) [Larsen and
Amarasinghe 2000] incorporate a tactic which can handle a restricted case of in-
terleaved memory access. SLP attempts to transform programs so that interleaved
memory accesses become consecutive, by searching for an unrolling factor for scalar
loops which results in a dense memory access pattern in the vectorized loop. Such
an unrolling factor can only be found if the scalar loop touches every element
of each accessed array region within a fixed number of loop iterations, that is,
if the access pattern of the loop has no gaps.

Previous work on SLP [Shin et al. 2005] has incorporated blending operations. The
work extends SLP to enable it to vectorize control flow by converting conditional ex-
pressions in the scalar loop into predicated vector expressions (if-conversion), making
use of blending operations to represent predicated results. However, we apply blending
operations in a very different way, using them to perform interleaving/deinterleaving.

An recent extension to SLP [Liu et al. 2012] uses the polyhedral model [Cohen et al.
2004] to generate a non-SIMD data movement phase which gathers nonconsecutive
memory elements in compact temporary arrays in the prologue of the vectorized loop,
allowing computations within the loop to access them as though they were consecutive
in memory. This approach sidesteps the need to generate vectorized code to perform
data movement, and is sufficient to achieve speedup over scalar code for some pro-
grams. However, the approach assumes read-only array references, does not attempt
to deal with interleaved writes, and requires accessed data to be copied to a temporary
array before every loop iteration. Our approach synthesizes vectorized code to perform
interleaved reads and writes in the vectorized loop, where instruction-level parallelism
between data movement and computation can offset the overhead of memory access.

5.3. Loop, Function, and Whole-Program Vectorization

A key difference with much existing work is that we do not take a fixed permutation
and try to generate fewest instructions to perform it. Rather, our techniques synthesize
SIMD instruction sequences to perform interleaved memory access, which may contain
permutations. The most closely related work, that of Nuzman et al. [2006] is discussed
in depth in Section 4.2. Kudriavtsev and Kogge [2005] propose to reorder operations
within SIMD instructions to minimize the number of permutations in the program.
Using their vectorization approach, permutations can occur when multiple scalar op-
erations read a common subexpression, or as a result of permutation in the source pro-
gram. While the aim of minimizing permutations is similar to the aim of our reorder-
ing approach (Section 3.1) the key difference is that Kudriavtsev and Kogge require
memory access to be consecutive, and reorder operations to minimize permutations re-
sulting from computation. We reorder operations specifically to minimize permutations
resulting from interleaving/deinterleaving. Future work could consider a combined ap-
proach, but the resulting multi-objective optimization problem appears hard.

Ren et al. [2006] optimize straight-line code by merging, propagating, and decompos-
ing permutations within a basic block. Although their work does not address vector-
ization of interleaved memory access, they note that it often introduces permutations,
using a power-of-two stride example which can be vectorized by Nuzman et al. [2006].
They further note that producing optimal code (that is, with fewest permutations) for
an arbitrary basic block maps to the NP-hard multiterminal cut problem, and pro-
pose a practical heuristic solution. The approach of Ren et al. could be applied to
further optimize the permutations in our synthesized programs.

Karrenberg and Hack [2011] propose a holistic approach to vectorization of whole
functions, encompassing control and data flow. However, their approach assumes con-
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secutive memory access. If combined with the approach to vectorizing interleaved ac-
cess which we propose, that restriction would be lifted for programs where the stride
of access is known at compile time, enabling broader application of their approach.

Park et al. [2012] propose a “SIMD Defragmentation” approach which tries to
extract parallelism at the level of subgraphs of operations within the program,
similar to SLP. Where vectorization using their approach results in interleaved
memory accesses, our techniques could be applied to synthesize optimized SIMD
code sequences to perform the access.

Barik et al. [2010] propose an approach for efficient selection of vector instruc-
tions for straight-line code sections, which is tightly integrated with register alloca-
tion and instruction scheduling. Although their cost model formulation includes pa-
rameters for the cost of packing or unpacking data in vector registers, they do not
propose a technique for generating the code which performs interleaved access. Their
experimental evaluation compares their approach to a prototype of SLP [Larsen and
Amarasinghe 2000] using benchmark programs with restricted memory access pat-
terns of the type discussed in Section 5.2. However, our techniques and their op-
timization approach are synergistic — if both were available in the compiler, their
cost model could be extended to incorporate the costs of interleaved access vector-
ized using our approach. Similar to the work of Karrenberg and Hack [2011], this
would enable broader application of both techniques.

Eichenberger et al. [2004], propose an approach to solve alignment issues while
vectorizing. However, the focus of that work is reducing the cost of misaligned vec-
tor accesses resulting from unit-stride code. The operation of the initial permu-
tation phase in our approach is similar to realignment using the dominant shift
policy of Eichenberger et al., but our objective is not to reduce the cost of re-
alignment, but of interleaving/deinterleaving. Our approach locally misaligns ac-
cesses within a set of vector registers acting as a compiler-controlled cache, re-
ducing the number of instructions required for interleaving/deinterleaving. How-
ever, because accessed data is cached in vector registers, the misalignment does
not translate into misaligned memory accesses.

6. CONCLUSION AND FUTURE WORK

We revisited the problem of automatic vectorization of interleaved memory access.
Our generalized approach builds on the approach of Nuzman et al. to achieve sig-
nificant speedup on programs which previously have been considered to require spe-
cialized, irregular, or hand-tailored solutions. Our approach vectorizes interleaved
access patterns with arbitrary compile-time constant strides and gaps, two com-
mon impediments to automatic vectorization with existing techniques. In combina-
tion with the novel program transformations we propose, our vectorization approach
results in mean speedups over scalar code of 1.77x (SSE) and 2.53x (AVX2) in real-
world benchmarking on a selection of BLAS Level 1 routines, versus improvements
of 1.43x (SSE) and 1.30x (AVX2) attained by GCC 5.0.

Possible extensions to the presented approach include relaxing the constraint on
equivalent unit sizes in an access group (Section 2). This would enable our approach
when dealing with complex array-of-structures memory layouts where adjacent struc-
ture fields are of different widths. Analysis and code generation for this use case ap-
pears significantly more involved, but it seems plausible that performance gain in this
scenario is possible. Future work could also involve generalizing the optimizations
presented to enable them to be applied as standalone utilities in other contexts. In ad-
dition, compile-time or run-time specialization of BLAS Level 1 operations exhibiting
interleaved access seems like a promising direction for future work.
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A. ALGORITHMS

ALGORITHM 1: Generate code to vectorize a read access (canonical)

Input: A strided access a, load-mapped register set p
Output: s[VF — 1] contains VF packed consecutive elements of a
s < allocate VF temporary registers;
fori =0t VF —1do
mask < (VF X x);
mask[i] «+ ((stride x i) + offset) mod VF;
r < p[(stride *)/VF];
generate: permute r, mask, s[il;
nd
for j=1toVF—1do
left < j, right < VF — j;
mask < ((left x L) + (right x R));
generate: blend s[j — 1], s[j], mask, s[j];
end

[¢]

ALGORITHM 2: Generate code to vectorize a write access (canonical)

Input: VF consecutive elements of a strided access a packed in register r
Output: Store-mapped register set p contains the VF elements of a in store order
pmask < (VF X x);
bmask «+ (VF x L);
pmasks < stride copies of pmask;
bmasks < stride copies of bmask;
s + allocate stride temporary registers;
fori=0t0 VF — 1 do

register « (stride xi)/VF;

lane < (stride i) mod VF;

pmasks[register|[lane] «+ i;

bmasks[register]|[lane] < R;

generate: permute r, pmasks[register|, s[register];

generate: blend p[register], s[register], bmasks[register]|, p[register];
end

ALGORITHM 3: Generate code to deinterleave a strided read without permutation

Input: A strided access a, load-mapped register set p, a collision free at VF
Output: Register s contains VF packed consecutive elements of a (out-of-order)
mask < (VF x L);
masks < stride copies of mask;
fori=0to VF — 1do
maskIdx < ((stride * i) + offset) mod VF,
laneldx < ((stride % i) 4+ offset) / VF;
masks[maskIdx][laneldx| « R;
end
for j=1toVF—1do
| generate: blend s, p[j — 1], masks[j — 1], s;
end
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ALGORITHM 4: Generate code to interleave a strided write without permutation

Input: VF consecutive elements of a strided access a packed in register r, a collision free at VF
Output: Store-mapped register set p contains the VF elements of a (in store order)
mask + (VF x L);
masks < stride copies of mask;
fori =0t VF —1do
maskIdx < ((stride *i) + offset) mod VF;
laneIdx < ((stride x¢) + offset) / VF;
masks[maskIdx]|[laneldx| < R;
end
for j=1¢0VF—1do
| generate:blend p[j — 1], r, masks[j — 1], p[j — 1];
end

ALGORITHM 5: Generate code to vectorize a group of shared-stride reads with lane collisions

Input: Load-mapped register set p, rotations for each mapped register.
Output: Compute register set c produced, with some registers out-of-order
span < stride * VF;
lanes < VF;
vectors < span/lanes;
for i = 0to vectors — 1 do
mask < {(z + rotations[i]) mod lanes | z < [0..(lanes — 1)]};
generate: permute p[i], mask, p[il;
end
foreach a in accesses do
Ca < Po;
for j =1to lanes — 1 do
left < j, right < lanes — j;
mask < rotate(rotations[j], ((left X L) + (right X R)));
generate: blend c., p[j], mask, ca;
end
end

ALGORITHM 6: Generate code to vectorize a group of shared-stride writes with lane collisions

Input: Register set ¢ with n packed shared-stride accesses, with a common SIMD lane order
Output: Store-mapped register set p contains all accesses in rotated store order
span < stride * VF;
lanes < VF;
vectors < span/lanes;
foreach a in accesses do
for i = 0to vectors — 1 do
mask <— (lanes X L);
mask[(offset, + 1) mod lanes] < R;
generate: blend p[i], ca., mask, p[i];
end
end
fori=0ton—1do
mask < {(z + (lanes — ¢)) mod lanes | z < [0..(lanes — 1)]};
generate: permute p[i], mask, p[il;
end
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