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European Energy market liberalization has entailed the restructuring of electricity power markets
through the unbundling of electricity generation, transmission and distribution, supply activities and
introducing competition into electricity generation. Under these new electricity market regimes, it is
important to have an evaluation tool that is capable of examining the impacts of these market changes.
The adoption of Data Envelopment Analysis as a form of benchmarking for electricity distribution regu-
lation is one method to conduct this analysis. This paper applies a Data Envelopment Analysis framework
to the electricity distribution network in Ireland to explore the merits of using this approach, to deter-
mine the technical efficiency and the potential scope for efficiency improvements through reorganizing
and the amalgamation of the distribution network in Ireland. The results presented show that overall grid
efficiency is improved through this restructuring. A diagnostic parameter is defined and pursued to
account for aberrations across Electricity Distribution Counties as opposed to the traditionally employed
environmental variables. The adoption of this diagnostic parameter leads to a more intuitive understand-
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1. Introduction

The structural adjustment of Electricity Power Systems (EPS)
liberalization over the last 20 years worldwide has seen a signifi-
cant shift in focus from regulated to a deregulated environment
to enhance technical efficiency, financial viability and guard
against the threat of dwindling fossil fuel resources coupled with
increasing fuel prices. The underlying rational behind these
reforms is to foster a shift from an inefficient monopolized verti-
cally-integrated industry to an efficient competitive electricity
market environment [59]. The transmission and distribution net-
works of a nation’s electricity system are natural monopolies,
and as such are less affected by the recent EPS deregulation. How-
ever, as electricity policy thinking has altered with private sector
participants in the generation sector, regulatory reform and incen-
tive regulation of electricity distribution utilities have become
more common [28]. Implementing benchmark performance mea-
surement and assessing technical efficiency of electricity distribu-
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tion utilities* have seen extensive research in recent years with DEA
at the forefront of this research. Effective regulation in terms of elec-
tricity distribution, network access, network interconnection and
delivery prices, network investment and network service quality is a
paramount component of successful EPS liberalization programmes
worldwide [36]. Data Envelopment Analysis (DEA) concepts were
first introduced by Farrell [27] but later the approach was pioneered
by Charnes et al. [12] that has led to the foundations of a literature
field that has formed at the interface of operational research and
economics. This paper employs a DEA non-parametric methodology
to establish a frontier or best practice benchmark measure of the rel-
ative performance of twenty-six Electricity Distribution Counties
(EDCs) in Republic of Ireland (ROI). The aims and objectives of this
research are: (1) to establish technical efficiency and differentiate
between efficient and inefficient EDCs by implementing the DEA
benchmarking approach to electricity distribution in the ROI; (2)
to propose specific directions to enhance operational management
and to improve the utilization of resources within the inefficient
EDCs and (3) to investigate the possibility of reorganizing and
amalgamation of existing EDCs to improve efficiency of electricity

4 We adopt the umbrella term utilities to refer to electricity distribution organi-
zations, companies, districts, centers, zones, areas, regions, counties and operators.

5 Electricity Distribution Counties refer to autonomous regions, or municipalities
located on the island of Ireland.
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supply networks distribution system based on geographical
convenience.

The research conducted in this paper adds to the field of research
in evaluating the technical efficiency of power systems. Firstly, in its
application to the test system in all island SEM, secondly, in its
employment of input-output parameters and alternative combina-
tions to develop new models based on the DEA techniques for the
efficiency assessment. The input-output parameters, alternative
combinations and constructed DEA models are the salient contribu-
tions of the paper. A significant contribution of the current research
is the wind generating regional DEA model employed in the National
level efficiency context as it provides a new framework for evaluat-
ing wind generation on a regional basis.

2. Single electricity system

Since 1988, the Irish electricity market has adopted a process of
liberalization, prior to this Electricity Supply Board (ESB) operated
as a vertically integrated state owned monopoly. The liberalization
process has occurred in phases with sections of the market being
progressively opened for competition, with the market entirely
open since 2004. The Northern Ireland Authority for Utility Regula-
tion (NAIRU) and the Commission for Energy Regulation (CER)
commenced on the 1st November 2007 governance of the Single
Electricity Market (SEM). The SEM is an All-Island cross-border
electricity market incorporating both the Republic of Ireland
(ROI) and Northern Ireland (NI). The SEM initiative established a
wholesale electricity market for the island, which subsequently
formed the All-Island Market for Electricity (AIME). In 2008, it
had 2.5 million electricity customers in total, 1.8 in ROI and 0.7
million in NI [16]. As a centralized gross mandatory pool, all elec-
tricity in SEM is traded through a market clearing mechanism
based on generators bidding their Short Run Marginal Cost (SRMC)
and receiving the System Marginal Price (SMP) [45]. The SEM is
operated and administered by the Single Electricity Market Opera-
tor (SEMO), which is a contractual joint venture between Eirgrid
and the Systems Operator for Northern Ireland (SONI), the trans-
mission system operators in the ROI and NI respectively (both
are Independent System Operators (ISO)). The distribution system
operators (DSO) of ROI and NI are owned and operated by ESB Net-
works and Northern Ireland Electricity (NIE) respectively. The SEM
market design has features reminiscent of markets in other juris-
dictions (most notably Nordpool, the Eastern Australian market
and the former British pool) but is a unique dual currency inter-
jurisdictional market [16]. The SEM represents the first synchro-
nous system of electricity system of its kind in the world. The
transmission network consists of 6529 km of 400/220/110 kV
overhead lines and 1083 km of 220/110/38 kV underground cables.
Due to ROI widely dispersed and significant rural population, the
electricity distribution network is typically characterized by long
length of 38 kV (138,977 km) and medium voltage (20,600 km)
overhead lines with low customer density of 12 per km [62]. These
unique characteristics provide an interesting market to study in
terms of efficiency.

The EU Third Energy Package under Directive 2009/72/EC pro-
vides three unbundling models for achieving the separation of
transmission from generation and supply activities [31]. Ireland
currently does not comply with any of the proposed models as Eir-
grid is licensed by the CER to act as transmission system operator
(TSO) and is responsible for the operation and development of the
transmission grid while ownership of the transmission asset
remains with ESB, responsible for the maintenance and construc-
tion of the system. The restructuring of the Irish electricity market
is inevitable under the EU Directive 2009/72/EC. Further restruc-
turing of the distribution network is anticipated with ESB Net-
works National plan envisaging the disentanglement of the

national electricity distribution network into 26 zones [23]. As of
2012, data relating to the technical efficiency of electricity distri-
bution are only available on a county basis. The registered capacity
of the SEM is 11,388 MW with thermal plants contributing 84%
(9535 MW), wind 11% (1331 MW), pumped storage 3% (292 MW)
and hydro 2% (216 MW). The All-Island fuel mix for 2008 consisted
of 61% Gas, 7% Peat, 11% Renewables, 17% Coal, 4% Oil, and 1%
other. There is a growing trend evident since 2005 of an increase
in contributions of Peat, Gas and Renewables at the expense of
Oil and Coal [15]. The Annual Energy Flow of the SEM in GWhs
for 2008 consisted of 29,981 generated, 26,677 from the transmis-
sion system, with the distribution network consuming 18,714. The
total customer sales for 2008 were 26,194, with DSO contributing
24,043 and TSO 2150. ESB Networks is the licensed owner of the
electricity distribution system assets whilst ESB Networks Limited
is the licensed distribution system operator responsible for the
planning, development, construction, operation, maintenance and
connection to the electricity distribution system. ESB Networks
Limited is also responsible for the installation, maintenance and
reading of electricity meters. Numerous countries are employing
incentive regulation to promote efficiency improvement in elec-
tricity transmission and distribution utilities [33].

3. Literature review on electricity distribution efficiency
measurement

DEA has long been established as an advanced mathematical
methodology for benchmarking and measuring efficiency a set of
homogenous entities called Decision Making Units (DMUs)
[24,67,17]. DEA models have been adopted effectively to assess
the optimal production of a wide variety of goods and services
including agriculture, transport, waste management and in partic-
ular the energy sector [56,6,60,40,57,8,66,46]. Since 1980s DEA
has been used to measure the relative performance of electricity
utilities. The adoption of DEA to Electricity Power Systems has been
extensive as it accommodates the efficiency measurement of multi-
ple outputs and multiple inputs without pre-assigned weights and
where no functional form is pre-established but one is calculated
from the sample observations in an empirical way [44]. These char-
acteristics are particularly relevant when investigating, evaluating
and modelling the performance of electricity distribution utilities.
Fare et al. [26] pioneered research in this area when they measured
the efficiency of electric plants in Illinois (USA) between 1975 and
1979, in order to relate the efficiency scores obtained to the regula-
tion of the sector. Their findings indicate that regulation does not
automatically result in efficient operation of electric utilities, nor
does it result in consistent performance across plants. The relative
efficiency of electricity distribution utilities has seen extensive
research worldwide in the last decade due to the restructuring of
electricity energy markets, particularly with the introduction of
regulation, privatization and trade liberalization in numerous coun-
tries [55]. Weyman-Jones [63,64] measured the productive effi-
ciency of 12 area electricity boards in England and Wales before
and after their privatization in 1990. Less than half of the area
boards were technical efficient and wide divergences exist in their
performance. Weyman-Jones [64] finds there are numerous practi-
cal issues that need to resolve dangers of market collusion and reg-
ulatory commitment that exist. Miliotis [43] employed DEA to
evaluate the efficiency of 45 distribution districts of the Greek Pub-
lic Power Corporation (PPC), adopting various models to explore the
effects of geographic region, size and grid sparsity on the results,
concluding urban areas attain higher efficiency scores than sparse
populated regions. Numerous studies have focused attention on
the impact of ownership on the efficiency of distribution utilities
with conflicting results. Pollitt [50], Hjalmarrson and Veiderpass
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[32] conclude there exists no significant difference between public
and privately owned electricity distribution utilities in terms of
technical efficiency. In contrast to this Bagdadioglu et al. [3] and
Kumbhakar and Hjalmarsson [38] find private ownership of electric
utilities leads to greater efficiency performance as opposed to pub-
lic ownership. Lo et al. [41] and Chien et al. [14] investigate the effi-
ciency of electricity distribution districts and service centers
associated with the Taiwan Power Company (TPC) respectively.
Both studies propose district and service center reorganization to
increase efficiency. In both cases higher efficiency is attainable
through reorganization. Yang and Lu [65], and Chen [13] investi-
gated Taiwan'’s electricity distribution sector in a rural versus urban
setting found on average technical efficiency to be greater for urban
areas as a result of the geographical dispersion of customers. They
recommend including an environmental variable in the DEA analy-
sis to account for these differing electricity distribution environ-
ments (i.e. environmental variable).® Jha et al. [35] analyse the
performance of the electricity distribution system in Nepal using
weight restriction DEA techniques to measure efficiency. Again as
with previous examples in the literature electricity distribution cen-
tre reorganization and directions for improvement are put forward.
Pahwa et al. [49] present a method for benchmarking the perfor-
mance of the 50 largest electric distribution utilities in the U.S. based
on DEA. The results analyse performance efficiency, inefficient utili-
ties, input-output variables and sensitivity-based classification of
utilities. They conclude inefficient utilities can adopt and develop
strategic plans to improve performance. For an extensive review on
applications of DEA on electricity distribution systems the reader is
referred to Santos et al. [55], Jamasb and Pollitt [33], Reyes and Tovar
[53], Doraisamy [21], Kheirkhah et al. [39] and de Souza et al. [20].

4. Non-parametric Data Envelopment Analysis (DEA) efficiency
measurement

DEA is a mathematical programming non-parametric tech-
nique, applied in performance measurement and benchmarking
[40]. It has been applied in a range of empirical settings to identify
technical inefficiencies of DMUs and provide targets for improve-
ment for inefficient DMUs. Charnes et al. [12] pioneered the DEA
approach, entitled Charnes-Cooper-Rhodes (CCR) model where a
frontier based efficiency measurement is developed under con-
stant returns to scale (CRS). DMUs operating on the constructed
efficiency frontier are Pareto-optimal efficient units and DMUs
not on the efficiency frontier are inefficient. The formulation of
the primal form of the CCR linear programming model to measure
total technical efficiency (TTE) for each DMU is given as

m
—1Urky
Max DMUk:Hk:M
>or1 VikXik
m
. u 1
Subject to: Mgl; z=1,...,s; (1)
r=1VikXjz
urkyjk>0§ r:17"'m; j:177n,

In this formulation, there are m outputs produced, n input
resources, and s DMUs or EDCs. kth DMU being evaluated in the
set of z=1,...,s DMUs, with an efficiency measure of 0, rated rela-
tive to all other DMUs. The output data y,, are the value of output r
for DMU,, while xj, is the input j for DMUy during the period of
observation. u, is the coefficient or weight assigned to outputs r
computed in the solution to the DEA model, similarly v is the
coefficient of weight assigned to inputs j computed in the DEA
model. All weights are restricted and non-negative. The measure

6 Environmental variables refer to environmental influences, non-discretionary,
exogenously fixed input or output factors that affect DEA efficiency.

of efficiency is defined as the maximization of the ratio of weighted
linear combinations of outputs to the weighted linear combina-
tions of inputs, subject to the constraint that the efficiency score
obtained for each DMU cannot exceed one. The efficiency score is
bounded between zero and one. The above CCR model is a
fractional programming model and can be transformed to a linear
programming problem if either the denominator or numerator of
the ratio is forced to equal one [51].
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where ¢ is an infinitesimal positive number. This form is known as
the multiplier form of the linear programming problem. The dual
problem of the multiplier is solved for computational convenience

and examining the slack variables.
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where 0y is the scalar efficiency measure of DMY “k” rate relative to
all other DMUs, s;, slack variable for input constraint, s, slack var-
iable for output constraints, which are both constrained and to be
non-negative, and /, is the dual coefficient or weight assigned to
DMUs. Efficiency scores are constructed by measuring how far a
DMU is from the frontier. DEA establishes an efficiency score for
each DMU relative to other DMUs in the database that demon-
strates what the “most efficient” DMUs are and by how much less
efficient DMUs fall short [47]. Banker et al. [4] constructed the
Banker-Charnes-Cooper (BCC) model under Variable Returns to
Scale (VRS) environment producing an efficiency frontier measure
of technical efficiency. The formulation of the BCC model is
achieved by adding the convexity constraint >3 7, =1 to (3).
The BCC model allows for further analysis of the CCR efficiency
score by decomposing it into technical and scale efficiency compo-
nents thereby permitting an investigation of scale effects [58]. Scale
efficiency is a ratio of the two efficiency scores obtained in the CCR
and BCC models and is not greater than one [19].

Scale efficiency = ccr/Oscc (4)

where 0Occr and Ogcc are CCR and BCC efficiency scores of DMU
respectively. The scale efficiency represents the proportion of inputs
that can be further reduced after pure technical in efficiency is elim-
inated if scale adjustments are possible. Environmental, exogenous
or non-discretionary variables are those that are not under the
direct discretionary control of the DMUs or EDCs in this case. The
previous illustrated DEA procedures implicitly assume DMUs
control all variables, failing to account for environmental variable
influences.

Examples from DEA electricity distribution literature include
inverse density index, customer and network density, customer
dispersion. Banker and Morey [5| whose formulation follows,
develop a single stage approach to account for non-discretionary
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Fig. 1. Electricity Distribution Counties (EDCs) in the Republic of Ireland.

environmental variables (quasi-fixed inputs and/or outputs
whose magnitudes are temporarily constrained by contractual
arrangements).
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The software package DEA-Solver version 11 was used to estimate
the DEA models presented in this paper.

5. Research framework and data selection

Ireland is 81,638 km? separated politically into the Republic of
Ireland (ROI) and Northern Ireland (NI). The island of Ireland con-
sists of 32 counties,” 26 in the ROI and 6 in NI. These counties are
further divided into four provinces Leinster, Munster, Connaght
and Ulster (see map Fig. 1). This paper utilizes a data set of 26 Elec-
tricity Distribution Counties (EDCs) associated with ESB Networks

7 Counties of the island of Ireland refer to sub-national divisions adopted for the
purpose of geographic demarcation and local government.

company in the ROIL. Our empirical study analyses the technical effi-
ciency of ESB Networks interconnected distribution system, each
EDC responsible for medium and low voltage electricity distribution
to a particular geographic region in the ROI (see Fig. 2 and Table 1).

Each EDC, autonomous region, or municipality is considered as
a Decision Making Unit (DMU) under DEA analysis. The year under
observation is 2008, the first full operational year of the All-Island
Single Electricity Market (SEM). The use of annual data reduces the
influence of seasonal effects. Five inputs and four outputs exten-
sively used in similar studies that use DEA are employed in this
study. The input and output variables adopted in this study are
all expressed in physical units. Keeney and Raiffa [37] state a desir-
able set of measurement factors should be complete, decompos-
able, operational, non-redundant, and minimal. The adopted five
model analysis incorporates internationally recognized variables
judiciously to capture the essence of the electricity distribution
process associated with ESB Networks. The database developed
for DEA analysis in this study has been sourced predominately
through collaborating and consultation with ESB Networks. Other
sources of variable information include public sector databases
SEAI, (2008), and central statistics database (CSO, Ireland). The def-
inition and descriptive statistics of the variables adopted in the
analysis are given in Tables 2 and 3.

X1 Labour - This incorporates only the number of ESB Network
employees within each EDC irrespective of their status. It includes
operation and maintenance, technical, non-technical as well as
administrative employees.

X2 Distribution Network Length - This represents the 38 kV,
Medium (MV) and Low Voltage (LV) distribution network mea-
sured in (km) per EDC.
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Fig. 2. Electricity Distribution Zones (EDZs).

Table 1

Overview of the electricity sector market operators in the ROI and NI.
Market segment Republic of Ireland Regulator Northern Ireland Regulator

Owner Operator Owner Operator

Generation ESB and others ESB and others CER ESB and others ESB and others NIAUR
Transmission System ESB Eirgrid CER NIE SONI NIAUR
Distribution System ESB Networks ESB Networks Ltd CER NIE NIE NIAUR
Suppliers N/A Various CER N/A Various NIAUR

Table 2

Definition of variables: inputs (X) and outputs (Y). Y1 Gross Energy Consumed — This represents the total energy
Inputs (X) and Outputs (Y) Measurement utilized or consumed within the EDC area. It is expressed in MWhs.

X1: Labour Numerical number

X2: Distribution Length Kilometre (km)

X3: Transformer Capacity Megavolt ampere (MVA)

X4: Categorical Variable [0,1]

Y1: Gross Energy Consumption Megawatt hour (MWh)

Y2: Net Energy Consumption Megawatt hour (MWh)

Y3: No of Customers Numerical number

Y4: Service Area km?

Y5: Diagnostic Parameter (Industrial Output) Numerical number

Y6: Environmental Variable (Customer Line Numerical number/per
Density) km

X3 Transformer Capacity - It is the total capacity of transformers
connected to the distribution system for the distribution purpose.
This is measured in MVA.

X4 Categorical Variable - Use of categorical variable (0,1) to rep-
resent whether EDC is composed of a city or urban centre.

Y2 Net Energy Consumed - This is Y1 Gross Energy Consumed
less the distribution losses incurred within the area served by
the EDC. Losses are included as a proxy for the technical quality
of the grid or the service quality of the grid. It is expressed in
MWhs.

Y3 Number of Customers - It is the total number of connection
points to supply the customers. Customers are not differentiated
based upon their categories. The number of customers captures
the number of nodes the utility must supply.

Y4 Service Area (km?) — The service area encapsulates the geo-
graphical differences among Electricity Distribution Counties. Both
the number of customers and the km? of service area represent
customer area density. The service area is employed as an output
variable to reflect the difficulty of meeting customer services over
a less densely populated area.

Y5 Diagnostic Parameter — The industrial output per EDC repre-
sents the selling value of goods actually produced in the year, as
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Table 3
Descriptive statistic of variables of the EDCs.

Inputs (X) and Outputs (Y) Number of EDCs Mean Standard Deviation Minimum value Maximum value
X1 26 167 102 58 536

X2 26 6186.84 3793.21 2145 19,858

X3 26 22699.79 29495.09 4826.05 157025.8

Y1 26 306753.9 398582.3 65,217 2,121,970

Y2 26 284054.13 369087.18 60390.94 1964944.22

Y3 26 84,099 106846.7 17,925 565,110

Y4 26 2703.46 1727.09 826.13 7499.95

Y5 26 3670943.07 6659936.3 161,190 31,274,436

Y6 26 12.69 10.26 7 62

reported by the business themselves, irrespective of whether sold
or put into stock [9].

Y6 Environmental Variable - The customer line density defined
as the number of customers per (km) length of distribution
network.

5.1. Model orientation

DEA efficiency analysis can be determined by adopting input-
minimizing or output-maximizing models. Input oriented model -
model whose objective is to minimize inputs while producing at
least the given output levels. Output oriented model — model that
attempts to maximize outputs while using no more than the
observed amount of any input [19]. Traditionally, efficiency analy-
ses in the electricity sector assume the output fixed in a market
with the legal duty to serve all customers in a predefined service
territory. Because EDCs are unable to control the amount of energy
consumed (consumer demand) and the environmental factors, and
because the researchers wanted to assess the technical efficiency
of EDCs under the objective of minimizing the amount of resources
utilized, input-oriented models were adopted.

5.1.1. Model 1 (Comprehensive)

This is the base model and all other models are a variation of the
inputs and outputs employed. This model is designed to encapsu-
late the overall variables impacting on the technical efficiency of
electricity distribution in ROI. This is an extensive model including
four inputs and three outputs. This model is an amalgamation of
the first two models to represent the overall operational character-
istic of EDCs under analysis. Table 4 outlines the various models
employed in the analysis.

5.1.2. Model 2 (Basic Traditional)

From the extensive DEA literature, the choice of input/output
variables for electricity distribution benchmarking needs to
account for international experience and data availability. Jamasb
and Pollitt [34] review 20 benchmarking studies in terms of
electricity distribution efficiency establishing the number of
employees® (labour), network length® (capital) and transformer
capacity (peak load) the most frequently used input variables while
output measures being energy delivered, and number of customers.
There is no pre-defined set of variables to assess the performance of
electricity distribution utilities and each study is case specific [29].
The basic model incorporates the above mentioned variables. Similar
input/output combinations have been employed by Azadeh et al.
[1,2] and Sadjadi and Omrani [54].

8 Using the number of employees imposes an implicit assumption that the aver-
age number of working hours is similar across firms. Therefore, total hours worked
may be a better measure for labor input. However, data availability required the use
of this variable.

9 Estache et al. [25] state network length can be employed as an input or output
variable, but the author uses it as a measure of input capital.

5.1.3. Model 3 (Quality Service)

The inclusion of distribution losses as a proxy for the technical
quality of the grid or the service quality of the grid establishes the
quality of electricity distribution service offered within each
EDC. Distribution losses are a source of inefficiency and are the
difference between the electricity required and the electricity dis-
tributed to end-users. These losses can be of technical and non-
technical nature (measurement error and unmetered supplier). A
reduction in costs to the consumer requires a reduction in both
forms of losses and contributes to a reduction in CO? emissions
[52]. The Gross energy consumption less the distribution losses
gives Net energy consumption (MWh). The input/output combina-
tions in model 3 have been successfully adopted by Ramos-Real
et al. [52], Pacudan and De Guzman [48], Von Hirschhausen et al.
[61].

Discretionary models of DEA assume that all inputs and outputs
are discretionary, i.e., controlled by the management of each DMU
and varied at its discretion. In any realistic situation, however,
there exists external exogenously fixed factors or non-discretion-
ary inputs/outputs that are beyond the control of DMUs manage-
ment that influences the performance of EDCs. The final two
models attempt to acknowledge and account for these influential
factors. EDCs may not be operating under equivalent environmen-
tal conditions; that is certain EDCs may operate in a more favorable
position in terms of population density, topography, geography,
industrialized area.

5.1.4. Model 4 (Urban)

Adapted from Miliotis [43], a categorical variable is introduced
to account for EDCs that contain an urban centre/city. Two groups
are formed Urban Distribution Counties (UDC) that contain Irish
cities and Rural Distribution Counties (RDC) that do not. Two
DMU groups are formed one containing all 26 EDCs and from this
group the DEA efficiency scores of UDCs containing a city are cal-
culated; the second group excludes the UDCs containing a city
leaving 21 RDCs. The DEA efficiency scores of the remaining RDCs
without a city are calculated. This is equivalent to introducing a
categorical variable [19].

5.1.5. Model 5 (Diagnostic)

Given the nature of the Irish Electricity market and the vari-
ance in usage across the country, a diagnostic parameter was
chosen to highlight county differences. Non-discretionary models
with traditional environmental variables such as inverse density
index, customer and network density, and customer dispersion
were employed with conflicting results. The industrial output
variable was incorporated into Non-discretionary model to
account for differences amongst EDCs in terms of electricity
characteristics, geography. To the authors knowledge this vari-
able has not been employed in DEA literature in a similar con-
text to this research. This model incorporates all the variables
in the comprehensive model whilst adding a non-discretionary
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Table 4
Model specification and variables employed for analysis.

Model 1 Model 2

Model 3 Model 4 Model 5 Model 6

Inputs

X1: Labour

X2: Distribution Length
X3: Transformer Capacity
X4: Categorical Variable

\
\

Outputs

Y1: Gross Energy Consumption »
Y2: Net Energy Consumed
Y3: No of Customers

Y4: Service Area

Y5: Diagnostic Parameter
Y6: Environmental Variable

\
\

P
P

AV VAY
X\
\

X

\
VA WA WA

\

variable to measure each EDC Industrial output. This additional
variable is in thousands of Euro and represents the selling value
of goods produced within EDCs; as reported by the business
themselves, it is thought this variable will represent the different
geographical energy configuration across Electricity Distribution
Counties (EDCs) of ESB Networks. These data were extracted
from a CSO'® (2008) survey entitled “Census of Industrial
Production”.

5.1.6. Model 6 (Environmental)

This model includes non-discretionary models employing the
traditional environmental variable customer density, to account
for differences across EDCs. This model is similar to model 5 in
terms of inputs/outputs employed differing only in the variable
included to account for different electricity distribution character-
istics across EDCs. A comparison with model 5 is therefore sought.

5.2. Correlation analysis of input and output variables

The relationship between inputs and outputs should be posi-
tively correlated [42]. The correlation relationship between input
and output variables is statistically verified using Pearson’s corre-
lation. The greater the value of the correlation coefficient, the
stronger the relationship between two variables is. The correlation
coefficients from the input/output matrix are presented in Table 5.
It can be concluded that there is a strong relationship between
labour and distribution length with Pearson’s of 0.974; similarly
the tables illustrate there is a weak relationship between labour
and customer density 0.152. The assumption of an “isotonicity”
relationship between input and output factors is satisfied [11].
That is, a requirement that the relationship between inputs and
outputs not be erratic. Increasing the value of any input while
keeping other factors constant should not decrease any output
but should instead lead to an increase in the value of at least one
output. Dyson et al. [22] state this is achieved when increased
input reduces efficiency whilst increased output increases effi-
ciency. Also, a desirable property of evaluation method is its dis-
criminating power as a summary measure. Data selection and
model validation according to Boussofiane et al. [7] require that
the minimum number of DMU observations (EDCs) is equal to, or
larger than, the product of the number of inputs and outputs. Coo-
per et al. [18], Golany and Roll [30] also state the number of DMUs
should be three times the sum of the input/output factors. All the
models adopted, in this paper satisfy both of these conditions 26

10 The Central Statistic Office perform the duties of collection, compilation,
extraction and dissemination for statistical purposes of information relating to
economic, social and general activities and conditions in the Republic of Ireland.

EDCs >(3 x 4) or 3(3 +4). Therefore the proposed DEA models
are of high construct validity.

6. Empirical results and discussion

6.1. Model 1 (Comprehensive): Analysis and improvement directions
for inefficient EDCs

The relative efficiency value of the CCR model is the overall effi-
ciency of the EDCs. If the efficiency value equals 1, the DMU is effi-
cient; if it is less than 1, the evaluated EDC is inefficient [19]. The
CCR model exhibits constant returns to scale assumption and mea-
sures the overall efficiency for each unit, specifically by aggregat-
ing pure technical efficiency and scale efficiency into one value.
The BCC model with variable returns to scale relates to pure tech-
nical efficiency accountable to management skills and establishes
scale effects. These results are discussed in the next section. The
dual linear programming formulations of the CCR and BCC models
were run 26 times, i.e. one for each DMU or EDC. The results of CCR
model analysis indicate that 21 EDCs are inefficient, with only 5
EDCs operating on the efficiency frontier (Westmeath, Offaly, Laois,
Dublin, Leitrim).

The average overall efficiency score of all the EDCs is 83%, with
14 EDCs scoring below this average value. This implies that the
resource utilization of Electricity Distribution Counties is subopti-
mal with considerable room for improvement. In order to identify,
establish targets and indicate the improvement directions neces-
sary for inefficient EDCs a slack analysis is employed to establish
whether additional specific output amounts or a decrease in spe-
cific input amounts leads to improvements in efficiency ratings.
The input slack values represented in Table 6 highlight the neces-
sary reductions of the corresponding input factors to become tech-
nically efficient generating units. It can be observed that slacks for
efficient plants with an efficiency score of 100% are zero (Dublin).
The potential for improvement of inefficient EDCs is also presented
in Table 6. X1, X2, X3, Y2, Y3, Y4 show the potential improvements
that are attainable by inefficient EDCs, if inputs and outputs are
adapted accordingly. For example, the inefficient Sligo EDC can
decrease employees (X1) by 5.27%, distribution length (X2) by
4.92%, transformer capacity (X3) by 4.92% and allow for an increase
in energy consumption (Y1) of 19.26%. This means Sligo EDC is over
utilizing its inputs at current levels and can be as efficient as its peer
group. However, the differences between efficient and inefficient
EDCs in terms of distributions losses are not significant. It is clear
from the analysis that inefficient EDCs are predominantly associ-
ated with medium and large sized service areas. The 5 efficient
EDCs are all small sized service areas meaning that these small
EDCs are more efficient at integrating their resources. The majority
of EDCs present decreasing returns to scale characteristics.
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Table 5
Correlation coefficient between input and output variables.

X1: X2: X3: Y1: Gross Energy ~ Y2: Net Energy Y3: No of Y4: Y5: Y6: Customer
Labour Distribution Transformer Consumed Consumed Customers Service Industrial Density
Length Capacity Area Output
X1: Labour -
X2: Distribution 974 -
Length
X3: Transformer 901 .90 -
Capacity
Y1: Gross Energy  .961 951 969 -
Consumed
Y2: Net Energy 961 961 .969 .958 -
Consumed
Y3: No of 969 .969 .958 .995 .997 -
Customers
Y4: Service Area 934 934 785 .840 .840 .857 -
Y5: Industrial .790 .790 .871 .904 .904 .888 573 -
Output
Y6: Customer 571 571 729 .702 702 .703 490 .644 -
Density

" Correlation is significant at the 0.05 level.
“* Correlation is significant at the 0.01 level.

6.2. Technical and scale efficiency analysis

The BCC model was adopted to establish technical and scale
efficiency of the Electricity Distribution Counties studied. These
results indicate the sources of inefficiency amongst the EDCs.
When interpreting the BCC scores or pure technical efficiency,
the number of efficient EDC rises to 9 with the average pure tech-
nical efficiency (PTE) of all the EDCs 91%. EDCs that have a scale
efficiency score less than one are scale inefficient. A scale ineffi-
cient EDC that exceeds the most productive scale size (MPSS) will
present decreasing returns to scale. Alternatively, a scale inefficient
EDC that is smaller than the most productive scale size will present
increasing returns to scale. MPSS is the optimal operational perfor-
mance of plants. The EDCs Westmeath, Offaly, Laois, Dublin, Lei-
trim operate on both the CCR and BCC efficiency frontier
displaying 100% efficiency, exhibiting constant returns to scale
characteristics, and hence are Pareto-Koopmans efficient. Mayo,
Galway, Cork, and Carlow, exhibit 100% BCC efficiency but a lower
score in CCR, hence are operating locally efficiently but not overall
efficiently due to the scale size. The first three EDCs are scale inef-
ficient and should decrease the operation scales to improve overall
efficiency as they present decreasing returns to scale with the
exception of Carlow. Carlow should increase operational scales.
Donegal, Monaghan, Clare, Longford, Louth, and Wicklow all have
pure technical efficiency (PTE) scores greater than their corre-
sponding scale efficiency scores. The EDCs of Monaghan, Longford
and Louth should increase their operation scales as they exhibit
increasing returns to scale to improve overall efficiency. Clare
and Wicklow display decreasing returns to scale indicating these
EDCs have considerable scope for improvements in their overall
efficiency by resizing (decreasing) their scales of operation to the
optimal scale MPSS. The remaining nine EDCs all display overall
and local technical inefficiency, with a relatively high scale effi-
ciency score. These EDCs could improve their technical efficiency
by altering their resource allocation and utilization which would
increase their overall efficiency score. Individual efficiency results
suggest that the EDCs operating at the relatively more developed
eastern part of Ireland have noticeably higher average relative effi-
ciency scores, with performance of EDCs deteriorating towards
rural and the western parts of Ireland. This would be due to
increased population in Dublin’s surrounding EDCs with 40% of Ire-
land’s population residing in the East region [10], resulting in a
more densely populated distribution network.

6.3. Comparison and discussion of models

The six adopted models employ constant returns to scale tech-
nologies to establish total technical efficiency (TTE) for each of
EDCs under analysis. The numerical efficiency scores attained for
the models are given in Table 7. The main study is the comprehen-
sive model against which all other models are compared. Efficiency
of each EDC is scored out of 100. The average efficiency of all the
models is given. The spearman correlation coefficients are calcu-
lated to establish and assess the impact of omitting/including cer-
tain variables on the results obtained from the comprehensive
model. A spearman correlation coefficient of 100% illustrates the
dropped variable(s) have no significant effect on the results
obtained from the comprehensive model. The adoption of model
2 reflects the basic structural model for efficiency analysis of elec-
tricity distribution utilities extensively used in the literature. The
low correlation coefficient of 39% in relation to model 1 suggests
omitting (I) distribution losses and (O) service area has a signifi-
cant effect on the results. This trend of a very low correlation coef-
ficient (35%) is also seen when comparing model 4 with model 1.
This implies that establishing two DMU groups reflecting Rural
Distribution Counties (RDCs) and Urban Distribution Counties
(UDCs) has a significant effect on efficiency scores obtained.
However, dropping the variable transformer capacity and includ-
ing service area in the analysis have considerably less effect on
the results, represented by the correlation coefficient of 87%.
Comparing the spearman correlation coefficient results obtained
for models 5 and 6, it can be seen that the inclusion of industrial
output is statistically more significant (0.74) than the inclusion
of the environmental variable customer density (0.78).

The inclusion of environmental and categorical variables to
account for differences across EDCs has significant effects on effi-
ciency scores. The descriptive statistics for the comprehensive
model accounting for EDCs that contain an urban center (City)
are presented in Table 8. The comprehensive model was adopted
as the full sample of variables was sought for analysis. The total
comprehensive efficiency scores are given in Table 7 (model 1).
The impact of including environmental categorical variable in
model 4 greatly influences the efficiency scores RDCs. Comparing
with model 1 average efficiency score increases from 83% to 91%
with the number of efficient EDCs rising from 5 to 8. When observ-
ing all 26 EDCs scale efficiency TTE is relatively low at 83% with
scale efficiency being quite high at 91%. The UDC mean scale
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efficiency is quite close to this at 89% with RDCs scoring a little outperforms the latter in terms of total, pure technical and scale
higher at 94%. When two DMU groups are formed relating to rural efficiency. Similarly the inclusion of a non-discretionary environ-
and urban electricity distribution centers, it is the former that mental variable in model five increases efficiency for all EDCs with

Table 6
Individual efficiency scores of EDCs and returns to scale: Model 1.

EDC county regions TTE PTE TTE/PTE RTS % % % % % %
X1 X2 X3 Y2 Y3 Y
Donegal 91 99 91 DRS -9.04 -9.04 -9.04 21.06 0 0
Cavan 63 67 94 DRS —37.01 —37.04 —37.01 0 0 1.9
Monaghan 71 96 74 IRS —28.58 28.71 —28.58 41.31 0 0
Leitrim 100 100 100 CRS 0 0 0 0 0 0
Sligo 95 96 99 DRS -5.27 -4.92 -4.92 19.26 0 0
Roscommon 86 90 96 DRS —14.25 —14.18 —47.40 0 5.71 0
Mayo 98 100 98 DRS -1.68 -1.81 -1.68 58.46 327 0
Galway 82 100 82 DRS -18 —-18.03 —33.86 1.35 0 0
Clare 93 99 94 DRS -7.13 -7.27 —47.75 4.89 0 0
Limerick 72 76 92 DRS -27.53 -27.63 —35.28 0 0 0
Tipperary 74 84 88 DRS —-26.07 —-26.07 —26.07 17.25 0 0
Kerry 83 90 92 DRS -16.79 17.05 18.14 20.13 0 0
Cork 70 100 70 DRS —30.05 -30.15 30.05 7.21 0 0
Waterford 89 90 98 DRS -11.72 -11.49 -11.49 5.14 0 0
Carlow 73 100 73 IRS —26.82 —26.81 —26.81 0 2.89 0
Dublin 100 100 100 CRS 0 0 0 0 0 0
Kildare 65 65 100 DRS -34.75 -34.75 —43.02 4.83 0 0
Kilkenny 80 87 92 DRS -20.33 -20.13 -20.13 0 5.88 35
Laois 100 100 100 CRS 0 0 0 0 0 0
Longford 74 96 77 IRS —25.95 —25.95 —25.95 41.04 0 0
Louth 60 80 75 IRS -39.70 39.84 —69.12 14.14 0 0
Meath 78 81 96 DRS —21.52 -21.73 -52.07 33.99 0 0
Offaly 100 100 100 CRS 0.29 0 -33.27 6.30 0 0
Westmeath 100 100 100 CRS 0 0 0 0.81 0 0
Wexford 70 78 90 DRS —29.81 —29.65 —29.65 0.81 0 0
Wicklow 91 99 91 DRS —-8.93 -9.11 -8.93 0 13 20.3
Average 83 91 91 0 0

Total technical efficiency (TTE); pure technical efficiency (PTE); scale efficiency (TTE/PTE); (RTS) returns to scale; X1: Labour; X2: Distribution Length; X3: Transformer
Capacity; X4: Distribution Losses; Y1: Energy Consumed; Y2: No of Customers; Y3: Service Area.

Table 7

Efficiency scores of all models adopted.
EDC Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Donegal 91 64 91 95 91 91
Cavan 63 63 61 69 71 63
Monaghan 71 70 55 72 84 71
Leitrim 100 58 100 100 100 100
Sligo 95 84 92 100 95 95
Roscommon 86 40 86 86 88 86
Mayo 98 67 91 98 100 98
Galway 82 51 82 82° 83 82
Clare 93 43 93 94 94 93
Limerick 72 54 72 72° 100 72
Tipperary 74 64 72 78 82 74
Kerry 83 57 83 86 83 83
Cork 70 60 69 70° 100 70
Waterford 89 71 88 89° 96 93
Carlow 73 58 73 89 73 100
Dublin 100 100 100 100° 100 100
Kildare 65 47 65 100 72 67
Kilkenny 80 80 64 80 80 80
Laois 100 100 99 100 100 100
Longford 74 69 67 82 77 83
Louth 60 31 60 100 70 96
Meath 78 44 78 100 78 78
Offaly 100 55 100 100 100 100
Westmeath 100 100 72 100 100 100
Wexford 70 70 62 86 70 70
Wicklow 91 91 78 100 97 91
Mean efficiency score 83 65 79 91 88 86
SCC with Model 1 - 39 .87 35 74 78
Minimum efficiency score 60 31 55 68 70 63
Number of efficient EDCs 4 3 3 10 8 6

¢ Denotes UDCs - Urban Distribution Counties; EDCs - Electricity Distribution Counties; SCC - Spearman Correlation Coefficients.
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UDCs greatly influenced (Cork, Limerick, Waterford and Galway).
Comparing model 5 with model 1 in terms of average efficiency
score increases from 83% to 88% with the number of efficient EDCs
rising from 4 to 10. This is intuitively what one would expect with
UDCs producing greater industrial output than RDCs. All EDCs see
an increase in efficiency. Non-discretionary models employing the
traditional environmental variables inverse density, customer den-
sity and customer dispersion were pursued. The model incorporat-
ing the customer density variable was most significant. A direct
comparison can therefore be made with our constructed diagnostic
model employing non-discretionary industrial output (model 5) in
place of the traditional environmental variable customer density
(model 6). In terms of average overall efficiency model 5 returns
a higher efficiency of 88% as opposed to model 6 with 86%. Also
the number of efficient EDCs in model 5 is 8, this falls to 5 when
observing model 6 in Table 7. All EDCs obtain a higher efficiency
score in diagnostic model 5 when compared with the environmen-
tal model 6. The diagnostic parameter industrial output has more
explanatory power when attempting to account for differing
electricity distribution characteristics across EDCs when compared
with traditional environmental variables that have been exten-
sively adopted in the DEA literature.

6.4. Efficiency improvement through reorganization of EDCs

In this study, we investigated possible reorganization alterna-
tives to reduce the number of EDCs, to improve resource utilization
and to promote efficiency. Reorganization and operational mergers
are feasible methods to increase efficiency. Thus, the objective of
EDC reorganization was focused on improving overall efficiency.
Based on geographical convenience, a restructuring and amalgam-
ation of the current 26 EDCs within ESB Networks distribution
framework have been hypothesized. Ireland with its relatively
small size, sparse population and installed capacity would benefit
from the aggregation of the 26 EDCs to 11 more efficient and man-
ageable Electricity Distribution Zones (EDZs). This would also
greatly reduce duplication of services between EDCs. Due to geo-
graphical limitations, only adjacent EDCs are combined to form
EDZs. To examine the reorganization alternatives, the CCR and
BCC models were applied to establish total technical efficiency
(TTE) and pure technical efficiency (PTE) along with scale efficiency
(SE). Due to the reduction in number of DMUs employed compar-
isons are only made with the original basic and quality models
(2 and 3) These models have been extensively adopted in the
literature. The results of the restructuring are displayed in Table 9.
For example EDCs Offaly, Laois and Kilkenny can combine to form
the Central Electricity Distribution Zone.

Table 8
Descriptive statistics of EDCs divided into categories of RDCs and UDCs.

Table 9
Reorganization of EDCs into EDZs to improve efficiency.

EDC Model 2 CCR-1 BCC-I Scale efficiency
Donegal 64 72 88
Leitrim 58 100 58
Sligo 84 91 92
North West Zone 94 98 96
Mayo 67 98 68
Galway 51 57 89
West Zone 76 82 93
Clare 43 49 88
Limerick 54 55 98
Central West Zone 57 86 66
Kerry 57 63 90
Cork 60 75 80
South West Zone 74 80 93
Roscommon 40 54 74
Longford 69 96 72
Westmeath 100 100 100
North Central Zone 91 99 92
Offaly 55 76 72
Laois 100 100 100
Kilkenny 80 85 94
Central Zone 100 100 100
Tipperary 64 83 77
Waterford 71 80 89
South Central Zone 92 94 98
Cavan 63 65 97
Monaghan 70 96 73
Louth 31 80 39
North East Zone 50 86 58
Kildare 47 56 84
Meath 44 53 83
Central East Zone 47 95 49
Dublin East Zone 100 100 100
Carlow 58 100 58
Wexford 70 76 92
Wicklow 91 97 94
South East Zone 100 100 100
CCR-1 BCC-1
Basic Model 2 65 (3) 79 (5)
Reorganized Model 2 80 (3) 93 (3)
Quality Model 3 79 (3) 85 (7)
Reorganized Model 3 85(2) 95 (5)

Note: Figures in the parenthesis represent efficient DMUs.

In terms of the basic model in both cases, the efficiency results
obtained are significantly higher after TTE increasing 15% from 65%
to 80% whilst PTE efficiency increased 14% from 79% to 93% after

Model 1 Number of EDCs Mean efficiency score Standard Deviation Minimum value Maximum value No of efficient EDCs
All EDCs

TTE 26 0.83 0.126 0.60 100 4
PTE 26 0.91 0.106 0.65 100 9
SE 26 0.91 100 6
RDCs

TTE 21 0.91 0.099 0.69 100 9
PTE 21 0.96 0.068 0.71 100 14
SE 21 0.94 100 9
UDCs

TTE 5 0.83 0.126 0.72 100 1
PTE 5 0.93 0.175 0.76 100 3
SE 5 0.88 100 1

SE = TTE/PTE; EDCs - Electricity Distribution Counties; RDCs - Rural Distribution Counties; UDCs - Urban Distribution Counties.
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reorganization of EDCs. A similar trend is observed when compar-
ing the quality model where both the TTE and PTE scores were
higher after restructuring than before. TTE increases by 6% to
85% and PTE increases by 10% to 95%. When observing all eight
models under constant and variables returns to scale, comparing
pre and post electricity distribution restructuring, little variation
is shown amongst the number of efficient DMUs but efficiency is
gained when employing the Electricity Distribution Zones concept
for distribution.

7. Conclusions

This study has extended the literature on efficiency analysis to
the electricity distribution sector in the Republic of Ireland. The
employment of the Irish electricity distribution system and Elec-
tricity Distribution Counties (EDCs) as the main research focus
has never been done. The paper provides a DEA framework to mea-
sure technical efficiency, to establish whether empirical efficiency
gains were possible, and to investigate the reorganization of the
electricity distribution network for efficiency gains. The paper
has explored the efficiency and benchmarks of the EDCs from a
comprehensive viewpoint with the employment of five differing
models to capture the characteristics of EDCs. Analysis, discussion
and presentation of key findings comparing all five models are pre-
sented. External factors that are not controllable by EDCs can inhi-
bit efficiency. This was accounted for by adopting a categorical
variable to account for urban/rural environments and a diagnostic
parameter to account for differing electricity distribution charac-
teristics across EDCs, and comparisons were made with employing
traditional environmental variables. The adoption of the diagnostic
parameter proves to be a superior variable. The proposed reorgani-
zation alternative of employed Electricity Distribution Zones
(EDZs) achieved higher efficiency scores of up to 10%. The results
of this paper can assist ESB Networks to improve the operational
management of EDCs. Also, this empirical analysis can provide use-
ful information to the policy makers responsible for electricity dis-
tribution regulation under changing market regimes. The DEA
benchmark approach employed here offers an alternative form of
electricity distribution regulation open to the Commission for
Energy Regulation (CER) in Ireland as opposed to the status quo
of OPEX and CAPEX regulation. This alternative approach can be
adopted by other countries with similar electricity distribution
environments.
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